Puncturable Signatures and Applications in
Proof-of-Stake Blockchain Protocol

Xinyu Li*, Jing Xu*, Xiong Fan’, Yuchen Wang*, Zhenfeng Zhang*
*Trusted Computing and Information Assurance Laboratory,
Institute of Software, Chinese Academy of Sciences, Beijing, China
TDepartment of Computer Science, University of Maryland
Email: {xinyu2016, xujing} @iscas.ac.cn, leofanxiong@gmail.com, {wangyuchen, zfzhang} @tca.iscas.ac.cn

Abstract—Proof-of-stake (PoS) blockchain protocols are
emerging as one of the most promising alternative to the energy-
consuming proof-of-work protocols. However, one particularly
critical threat in the PoS setting is the well-known long-range
attacks caused by secret key leakage (LRSL attack). Specif-
ically, an adversary can attempt to corrupt the secret keys
corresponding to accounts possessing substantial stake at some
past moment such that double-spend or erase past transactions,
violating the fundamental persistence property of blockchain.
Puncturable signatures, introduced by Bellare et al. (Eurocrypt
2016), provide a satisfying solution to construct practical proof-
of-stake blockchain protocols resilient to LRSL attack, despite of
the fact that existent constructions are not efficient enough for
practical deployments.

In this paper, we provide a systematic study of punc-
turable signatures and explore its applications in proof-of-stake
blockchain protocol. The puncturing functionality we desire is
for a particular part of message, like prefix, instead of the whole
message. We formalize a security model that allows adversary for
adaptive signing and puncturing queries, and show a construction
with efficient puncturing operation based on Bloom filter data
structure and strong Diffie-Hellman assumption. In order to
further improve efficiency of puncturing, we introduce another
primitive, called tag-based puncturable signature and present a
generic construction based on hierarchical identity based signa-
ture scheme. Finally, we use puncturable signature to construct
practical proof-of-stake blockchain protocols that are resilient
to LRSL attack, while previously forward secure signature is
used to immunize this attack. We implement our scheme and
provide experimental results showing that in comparison with
forward secure signatures, our constructions of puncturable
signature perform substantially better on signature size, signing
and verification efficiency, significantly on key update efficiency.

I. INTRODUCTION

Proof-of-stake (PoS) protocols have been heralded as a
more ecological way to come to consensus on blockchain since
it does not rely on expensive hardware using vast amounts of
electricity to compute mathematical puzzles as bitcoin’s proof-
of-work mechanism. In a proof-of-stake blockchain protocol,
roughly speaking, participants randomly elect one party to
produce the next block by running a “leader election” process
with probability proportional to their current stake (a virtual
resource) held on blockchain.

In spite of high efficiency, proof-of-stake blockchains only
account for a tiny percentage of existing digital currencies
market, mainly due to the fact that most existing proof-of-
stake protocols suffer from the well-known long-range attacks
(also related to ‘“costless simulation”)[41] which degrades

security in the blockchain. A oft-cited long-range attack is
caused by secret key leakage (abbreviated as LRSL attack in
this paper). Specifically, an adversary can attempt to bribe
(or corrupt) the secret keys corresponding to accounts that
possessed substantial stake at some past moment (however,
currently low-stake), and then construct a fork and alter the
history from the point in the past when he controls majority.
In this case, the adversary can continue to hold majority stake
(e.g., by the reward fees of generating or issuing blocks) such
that the attack can be sustained.

Puncturable signature (PS), introduced by Bellare et
al. [12], provides a satisfying solution to construct practical
proof-of-stake blockchain protocols resilient to LRSL attack.
Loosely speaking, a puncturable signature scheme provides a
Puncture functionality that, given a secret key and a message
m, produces an updated secret key that is able to sign all
messages except for the punctured message m. In this paper,
we further generalize the definition of puncturable signature,
particularly, the strings associated with the punctured signing
key can be any part of signed messages (e.g. its prefix). In
proof-of-stake protocols, the leader U (elected for issuing
block) signs the block B; with puncturable signature by secret
key sky at some time slot sl;, where sl; is the part of block
B;, and then U performs puncturing operation on message sl;
which results in an updated skj;. More specifically, if no empty
block is allowed, the punctured message can be H(B;_1)
instead of sl;, where H(B;_1) is the part of block B; and
B;_ is the previous block of B;. The security of puncturable
signature guarantees that anyone cannot sign another data
block B; with the same sl; (or H(B;_1)) even though sk, is
exposed, and thus LRSL attack can be avoided.

A natural way to remedy LRSL attack in proof-of-stake
blockchain protocols is to use forward secure signature [11],
which preserves the validity of past signatures even if the
current secret key is compromised. However, the computation
performance of forward secure signature depends on either
the time periods set in advance logarithmically (even linearly)
or the time periods elapsed so far, which brings undesirable
consumption and becomes a fatal issue for blockchain appli-
cations. Moreover, most signers have no chance to do any
signing within one period but they have to update the signing
key as long as the current period ends, which makes the update
operation a vain effort in the proof-of-stake blockchain. In fact,
forward secure signature can be treated as one special kind of
puncturable signature where the punctured message is earlier
period of time.

Puncturable signatures can also be used in many other sce-
narios such as asynchronous transaction data signing services.
Transaction data signing is a process which guarantees the
integrity and authenticity of the sensitive transaction data, such
as payment instruction or transaction information of buying
a real estate offering. In many cases, using ordinary digital
signatures is not enough for these application, as they often
fail to ensure the integrity of past messages in the case when
a user’s key is compromised. This is particularly challenging
in non-interactive and asynchronous message system, where
users may not be online simultaneously and messages may
be delayed for substantial periods due to delivery failures and
connectivity issues. Similar problem also exists in theoretical
part. For instance, in non-interactive multiparty computation
(NI-MPC) [31], where a group of completely asynchronous
parties can evaluate a function (e.g. for the purpose of voting)
over their joint inputs by sending a signed message to an
evaluator who computes the output. The adversary would
control the final output if he can corrupt some parties within
a period of time. In these examples, the transaction session ID
can be used as a prefix, and after the honest user signs the
transaction data (or message), the prefix is punctured so that
no other signature exists for messages agreeing on the same
prefix. Therefore, the integrity of transaction data (or message)
is ensured by puncturable signatures.

A. Our Contributions

In this work, we provide a systematic study of puncturable
signature and its applications in proof-of-stake blockchain
protocol. Our overall goal is to design puncturable signature
that allows for fine-grained revocation of signing capability
with minimum computation cost, and make it a suitable
building block to construct secure and practical proof-of-
stake blockchain protocol. More specifically, our technical
contributions are threefold.

Puncturable signature and its construction. We introduce
the notion of puncturable signature with extended puncturing
functionality where the secret key can be updated by punc-
turing any particular part of message (for simplicity, we use
the prefix of message in this paper) instead of puncturing
the whole message. In the security model we propose, in
addition to making adaptive signing and puncturing queries,
adversary also has (one-time) oracle access to a featured
Corruption oracle, by which the adversary can obtain the
current secret key if the challenging string is in the puncturing
set P. Then we show a construction of puncturable signature
based on the probabilistic Bloom filter data structure [13] that
is secure under our security model. Our PS construction is
inspired by an elegant work [24], where the authors show
how to construct puncturable encryption based on Bloom filter.
However, different from the expanded (k times) ciphertext size
of underlying encryption scheme in [24], in our construction,
the signature size is almost equal to that of the underlying
signature scheme.

In comparison with two prior puncturable signature
schemes [12][31], our construction achieves significant effi-
ciency improvement in both signing and puncturing operations.
More specifically, the construction in [12] relies on indis-
tinguishability obfuscation, which incurs prohibitive compu-
tational burden in practice, while the other one [31] needs

update public key for every puncturing, which has some theo-
retical merits but hard to implement in real world deployment.
On the contrary, in our construction, a puncturing operation
only involves a small number of efficient computations (i.e.
hashing), plus the deletion of certain parts of the secret key,
which outperforms previous schemes by orders of magnitude.
Indeed, puncturable signature is not a simple inverse operation
of puncturable encryption, which is also the reason for no
efficient puncturable signature scheme even though efficient
puncturable encryption constructions have been proposed for
a long time. The crucial difficulty in designing puncturable
signature scheme is how to bind the private key with punctured
messages such that the updated private key cannot sign for
punctured messages.

Tag-based puncturable signature. For our puncturable sig-
nature scheme based on Bloom filter, the signing algorithm
may output | for messages whose prefix is not punctured. This
is caused by the false positive probability in Bloom filter, and
the probability it happens is closely related to the size of secret
key and the number of puncturing performed. Put simply, the
lower the error probability, the larger the size of secret key
and the smaller number of puncturing performed. Therefore,
to maintain a balance between space efficiency and error
probability, we introduce a new primitive, called tag-based
puncturable signatures. In particular, in the lifetime of public
key, an ordered tag is updated as long as puncturing operation
times reach a pre-set limit, and correspondingly the Bloom
filter is reset. We present a generic construction based on
Bloom filter from hierarchical identity based signature (HIBS)
scheme, and prove our construction is secure against adaptive
puncturing if the underlying HIBS is secure. The intuition
behind the construction combines a binary tree approach with
our construction of puncturable signatures, where each tag
corresponds to a leaf of an ordered binary tree of depth d. Our
tag-based construction and its security analysis are independent
of any particular instantiation of building blocks, HIBS and PS.

Applications in Proof-of-stake blockchain protocol. We
use puncturable signature to construct practical proof-of-
stake blockchain protocols that are resilient to LRSL attack.
Ouroboros Paros [23], a proof-of-stake blockchain protocol,
has a real-world implementation in Cardano platform. We
present an ideal functionality Fpg of puncturable signature
scheme, and replace Fkgs of forward secure signature schemes
in Ouroboros Paros [23] protocol with Fpg. Then we show
that the properties (common prefix, chain quality and chain
growth) of Ouroboros Paros protocol remain true in the re-
placed setting. However, most of the existing forward secure
signatures have poor performance on key update as well as
other operations, often depending on the time period number
linearly, which is unsuitable for blockchain application. We
conduct experiments evaluating the overhead of deploying
our puncturable signature construction and existing forward
security signature schemes [33][43] at both 128-bit and 192-bit
security levels. Figure 1 illustrates the efficiency comparison
and the results show that our scheme performs substantially
better on signature size, signing and verification efficiency,
significantly on key update efficiency, which reduces both
communication and computation complexity. In fact, we can
replace the ordinary signature with our puncturable signature
construction in any other proof-of-stake protocols such as
Ouroboros [36] and Snow White [22] protocols. Due to the

time/ms time/ms
36 ours 72 ours
64
27 [33] 56 [33]
48
[43] 20 [43]
18 3
24
9 16
8
0 0
signing signing verification verification
128-bit 192-bit 128-bit 192-bit

time/ms size/bytes
2000000 ours 4500 ours
1600000 (33] 3600 [33]
[43]
1200000 2700 [43]
800000 1800
400000 900
0 0
update update signature signature
128-bit 192-bit 128-bit 192-bit

(a) Sign time (b) Verify time

(c) Update time (d) Signature size

Figure 1: Efficiency Comparison

fact that our construction can retain the efficiency of the
underlying scheme on signing and verifying, with additional k
hash functions, the improved protocols can provide resilience
to LRSL attack at almost no additional computing cost.

B. Related Work

Puncturable signature. A puncturable signature scheme
allows to update its signing key sk for an arbitrary message
m such that the resulting punctured signing key can produce
signatures for all messages except for m. It is introduced
by Bellare et al. [12] as a tool to prove a negative results
on differing-inputs obfuscation. However, their construction
is based on indistinguishability obfuscation [26] and one-way
function, thus, do not yield practical schemes. Moreover, it
requires that the punctured signing key is associated with
the full signed message. In contrast our construction is based
on 7-SDH assumption and the associated messages with the
punctured signing key can be any particular part of signed
messages (e.g. the prefix of message), which is more flexible
and applicable. Halevi et al. [31] also propose a puncturable
signature scheme which is puncturable at any prefix of the
signed message. However, their puncturable operation needs
to update public keys repeatedly. In practice, it is inefficient
to verify the updated public keys continuously and it is also
difficult to let each user in the system maintain other users’
public keys updated.

Delegatable Signature. Policy-based signature, introduced
by Bellare et al. [10], allows a signer to only sign messages
conforming to some authority-specified policy. It elegantly
unifies existing work, capturing other forms of signatures as
special cases. Puncturable signature differs from this work,
as secret key is updated adaptively with respect to message
prefix. Another related primitive, called functional signature is
introduced in work [15]. In functional signature, in addition
to a master signing key that can be used to sign any message,
there are signing keys for a function f, which allow one to
sign any message in the range of f. Delegatable functional
signature is introduced in work [6] and supports the delegation
of signing capabilities to another party, called the evaluator,
with respect to a functionality. Append-only signatures (AOS)
[37] is also a related primitive, in particular, any party given an
AOS signature on a message m = Mi||...||M,, can compute an
AOS signature on any message m = M;||...|| M, || M}, 41. Dif-
ferent from above primitives, puncturable signature provides
a puncture functionality that may repeatedly update the secret

key to revoke signing capability for selected messages besides
providing delegation function.

Forward secure signature. A forward secure signature
scheme guarantees the adversary with the compromised secret
key at some point in time cannot forge signatures relative to
previous time periods. It is introduced by Anderson [5] and
formalized by Bellare et al. [11]. The constructions of prior for-
ward secure signatures are divided into two categories: using
arbitrary signature schemes in a black box manner [39][43],
and modifying specific signature schemes [4][11][33]. All
these forward secure schemes except for [43], the number of
time periods 7' (arbitrarily large) must be set in advance, such
that the performance depends on 7' logarithmically or even
linearly. Nevertheless, the performance in [43] still depends
on the time periods elapsed so far.

Proof-of-stake blockchain protocol. Proof-of-stake proto-
cols were first initiated in online forums and subsequently
a number of proof-of-stake protocols were proposed and
implemented by the academic community. In order to provide
forward security (and also achieve resilience against LRSL
attack and other long-range attack), Ouroboros Paros [23] and
Ouroboros Genesis [7] formalize and realize in the universal
composition setting a forward secure digital signature scheme,
Algorand [28] considers it as one of future work and imple-
ments ephemeral key pairs in its updated full version [20],
whereas Snow White [22] and Ouroboros [36] adopt a weak
adaptive corruption model and cannot avoid LRSL attack. In
addition, several countermeasures have been proposed, such as
punishment mechanism revealing the real identity [41] or the
signing key [25] of the malicious stakeholder, the trusted exe-
cution environments [41], and checkpointing mechanism [22].

II. PRELIMINARIES

Notation. Let \ denote the security parameter, |x| denote
the greatest integer less than or equal to x, [n] denote the set
of the first n positive integers, and PPT denote probabilistic
polynomial time. For an array 7' € {0, 1}, we let T'[i] denote
the ¢-th bit of the array, if ¢ < n.

We say a function negl(-) : N — (0,1) is negligible, if for
every constant ¢ € N, negl(n) < n~¢ for sufficiently large n.
A. Bloom Filter

A Bloom filter [13] is a probabilistic data structure for
the approximate set membership problem. It allows a succinct

representation 1" for set S of elements from a large universe U.
Put simply, a query to Bloom filter always outputs 1 (“yes”)
for element s € S, and ideally it always outputs 0 (“no”
for element s ¢ S. However, the succinctness of Bloom filter
comes at the cost that for any query s ¢ S the answer can
also be 1, with small probability (called the false-positive
probability).

Definition 1 (Bloom Filter). A Bloom filter BF for set U con-
sists of algorithms (Gen, Update, Check), which are defined as
follows.

e Gen(¢,k): On input two integers ¢,k € N, the algorithm
first samples k universal hash functions H1, ..., Hy, where
H;:U—[{] (j €[k]). Set H={H;};cp) and T = 0° (T
is an ¢-bit array with all bits set to 0). Output (H,T).

e Update(H,T,u): On input H = {H;};ep), T € {0,1},
and u € U, the algorithm defines the updated state 7’ by
first assigning 7" = T. Then, it sets 7'[H;(u)] = 1 for all
i € [k], and returns 7".

e Check(H, T, u): On input H = {H;};ep4), T € {0,1}*, and
u € U, the algorithm returns a bit b = A T[H; (u)].

Properties of Bloom filter. The properties of Bloom filter
relevant to our work can be summarized as follows:

Perfect completeness: A Bloom filter always outputs 1 for
elements that have already been added to the set S. More
precisely, let S = {s1,...,8,} € U™ be any vector of n
elements of U. Let (H,Ty) < Gen(¢,k) and for i € [n],
set T; = Update(H, T;_1, ;). Then for any s* € S and any
(H,Ty)«Gen({, k), we have Pr[Check(H,T,,s*) = 1] = 1.

Compact representation of set S: The size of representation
T is a constant number of ¢ bits, and independent of the size
of set S and the representation of individual elements of /.
The increase in size of set S only increases the false-positive
probability, but not the size of representation 7.

Bounded false-positive probability: Given the size of set S,
the probability that an element which has not yet been added
to the Bloom filter is erroneously “recognized” as being in
the filter can be made arbitrarily small, by choosing ¢ and
k accordingly. More precisely, let S = {s1,...,8,} € U™
be any vector of n elements of U/, for any s* € U — S,
we have Pr[Check(H,T,,s*) = 1] ~ (1 — e*/*)* where
(H,Ty) « Gen((,k), T; = Update(H, T;_1, s;) for i €
[n], and the probability is taken over the random coins of
algorithm Gen(¢, k).

Discussion on the choice of parameters. In bloom filter,
assuming the optimal number of hash function k to achieve
the smallest false-positive probability pr, we obtain a size of

the bloom filter given by £ = —ZIIIHQI)’S, and the optimal k is

given by k = [£In2]. Recall the instance in [24], when
pr =103, we have £ ~ 2 MB and k = 10.

B. Bilinear Groups

We say that G is a bilinear group generator if given
the security parameter A, it outputs a tuple params =
(p,e,¥,Gy1,Go,Gr, Py, Py), where Gy, Gy and G are three
groups have prime order p, P; is the generator of G, for
i € {1,2}, and e : G; X Gy — Gr is a non-degenerate map
satisfying:

e Bilinearity: For any (P,Q) € G; x G3 and a,b € Z}, we
have e(aP,bQ) = e(P, Q).

e Non-degeneracy: For any P € Gq, e(P,Q) = 1 for any
QeGyiff S=0.

e Computability: There is an efficient algorithm to compute
e(P, Q) for any (P, Q) € Gy x Gas.

e There exists an efficiently, publicly computable isomorphism
¥ : Go — G such that ¥(Q) = P.

The security of our scheme is based on the 7-strong
Diffie-Hellman (7-SDH) assumption, which was previously
formalized in [14] and [44].

Definition 2 (7-Strong Diffie-Hellman Assumption (7-SDH)).
Let params = (p,e, 1, Gy, Ga, G, P, Py) < G(1*), and let
(P, P2, aP,0?Ps,...,a" Py) be a T + 2 tuple for o € Ly,
We say 7-SDH assumption holds if for any PPT adversary
A Pr[(hﬁpl) — A(Py, Py, aPp, 0P, ...,a" P)] <
negl(\) with h € Zj,.

C. Hierarchical Identity-Based Signature

We recall the syntax and security definition of hierarchical
identity-based signature (HIBS) [21][27].

Definition 3 (Hierarchical Identity-based Signature(HIBS)).
A t-level hierarchical identity-based signature scheme with
identity space D = D; X --- X Dy consists of the following
algorithms:

e Setup(1*): On input a security parameter)\, the algorithm
outputs the master public key mpk and the root secret key
ske.

e Delegate(sk,, d): On input the secret key sk, (7 € D; x
.-+ xD;_1) and d € D;, the algorithm outputs a secret key
SkT d-

. Sigl‘w(skT,m): On input the secret key sk, and a message
m, the signing algorithm outputs a signature o.

o Verify(mpk, 7,m,0): On input the identity 7, a signature o
and message m, the verification algorithm outputs 1 if o is
a valid signature of message m signed by 7. Otherwise, it
outputs 0.

Definition 4 (Correctness). For any message m and
any (mpk,sk.) < Setup(1), we have Verify(mpk,t,m,
Sign(sk,,m)) = 1.

Security Definition. For the security definition of HIBS, we
use the following experiment to describe it. Formally, for any
PPT adversary A, we consider the experiment Expt"™*(1*)
between adversary A and challenger C:

1) Setup: C computes (mpk,sk.) ¢ Setup(1*) and sends
mpk to adversary .A. C also initializes two empty sets Qsign
and Qyey-

2) Queries: Proceeding adaptively, adversary A can submit
the following two kinds of queries:

e Signing queries: On input identity 7 and message m
from adversary A, C computes o < Sign(sk,,m) and
sends back o. C also puts (7,m) into set Qsign.

e Key queries: On input identity 7 from adversary A, C
returns a secret key sk, by computing Delegate(sk,, 7).
C also puts 7 into set Qey-

3) Forgery: Adversary A outputs a forgery (7%, m*, o).

We say that the forgery wins experiment Exptmbs(lA) if there
does not exist T € Qey, such that 7 is 7* or prefix of 7%, and

(1%, m") ¢ Qsign A Verify(mpk, 7*,m*, o) =1

Definition 5. We say the HIBS scheme is unforgeable, if for
any PPT adversary A, the probability of winning experiment
Expt'*(1*) is negl(\), where the probability is over the

randomness of the challenger and adversary.

III. PUNCTURABLE SIGNATURES

In this section, we formalize the syntax and security
definition of puncturable signature, and then we propose a
puncturable signature scheme and prove its security under 7-
SDH assumption.

A. Syntax and Security Definition

Let the message space be M. A puncturable signature
scheme > consists of a tuple of PPT algorithms ¥ =
(Setup, Puncture, Sign, Verify) with descriptions as follows:

e Setup(1*, 4, k): On input the security parameter)\, parame-
ters ¢ and k for the Bloom filter, the setup algorithm outputs
public key vk, secret key sk.

e Puncture(sk, str): On input the secret key sk and a string
str € M, the puncturing algorithm outputs updated secret
key sk’. We also say that str has been punctured.

e Sign(sk,m): On input the secret key sk and a message m,
it outputs a signature o.

o Verify(vk,m, o): On input the public key vk, a signature o
and message m, the verification algorithm outputs 1 if o is
a valid signature for m. Otherwise, it outputs 0.

Correctness of puncturable signature. Intuitively, the cor-
rectness requires that (1) signing is always successful with
the initial, non-punctured secret key, (2) signing fails when
attempting to sign a message with a prefix that has been
punctured, and (3) the probability that signing fails is bounded
by some non-negligible function, if the prefix of the message
to be signed has not been punctured.

Definition 6 (Correctness). For any message m with prefix m/,
any (skinit, vk) < Setup(1*), and any sequence of invocations
of sk < Puncture(sk,.), we have

1) Verify(vk, m, Sign(skinit, m)) = 1, where skin is the initial,
non-punctured secret key.

2) If m/ has been
Verify(vk, m, Sign(sk’,m)) = 0.

3) Otherwise, it holds that Pr[Verify(vk, m,Sign(sk,m)) #
1] < p(f, k), where u(-) is some (possibly non-negligible)
bound.

Remark 1. We note that the puncturing functionality defined
above is for message-prefix, whose length can be determined
in specific implementation (e.g., the slot parameter in proof-
of-stake blockchain). In specific applications, the message m
to be signed can be split into n (n > 1) parts denoted by
m = mq||...||my||...||mn, where different parts may have
different lengths and different semantics, for example, m;
denotes the time stamp and the remaining denotes the mes-
sage specifics. We can extend the puncturing functionality

punctured, then

by puncturing strings at arbitrarily pre-defined position (even
the whole message), e.g. i-th part, which means the signing
algorithm fails for message m = mq||...||my]|...||m, if m; has
been punctured. For simplicity, we still use prefix-puncturing
through this paper, but both the definitions and our construc-
tions can be easily extended to support the extended puncturing
functionality.

Security Definition. For the security definition of punc-
turable signature 3, we use the following experiment to
describe it. Formally, for any PPT adversary .4, we consider
the experiment Expt";(1*) between .4 and challenger C:

1) Setup: C computes (vk,sk) < Setup(1*) and sends vk to
adversary A. The C initializes two empty sets Qsig = () and
P =0.
2) Query Phase: Proceeding adaptively, adversary A can
submit the following two kinds of queries:
e Signature query: On input message m from adversary
A, C computes o < Sign(sk,m) and updates Qsiz =
Qsig U {m}. Then C sends back o.
e Puncture query: On input a string str, C updates sk by
running Puncture(sk, str), and updates P=P U {str}.
3) Challenge Phase: A sends the challenge puncture string m/’
to challenger, and A can still submit signature and puncture
queries as described in Query phase.
4) Corruption query: The challenger returns sk if m’ € P
and L otherwise.
5) Forgery: A outputs a forgery pair (m, o).

We say that adversary A wins the experiment Expt®;(1*) if
m/ is the prefix of m and m ¢ Qsig A Verify(vk,m, o) = 1.

Definition 7 (Unforgeability with adaptive puncturing). We
say the puncturable signature scheme Y. is unforgeable with
adaptive puncturing, if for any PPT adversary A, the prob-
ability of winning experiment Expt®;(1*) is negl(\), where
the probability is over the randomness of the challenger and
adversary.

B. Our Construction

We present a puncturable signature construction based on
Chinese IBS, an identity-based signature scheme standardized
in ISO/IEC 14888-3 [32].

The key idea of our construction is to derive secret keys for
all Bloom filter bits ¢ € [I] using IBS schemes, and then bind
the prefix string m’ with k positions where the secret keys are
used to sign messages with prefix m’. In addition, puncturing
at m’ implies the deletion of keys in corresponding positions.

Let (p,e,v,G1,G2,Gr, P1, Py) <+ G(1%), and BF =
(BF.Gen, BF.Update, BF.Check) be a Bloom filter. Choose
a random generator Py € Go, and set P, = ¢(P2) € Gj.
Let hy : N — Zy and hy : {0,1}* x Gr — Zj be cryp-
tographic hash functions, which we model as random oracles
in the security proof. The public parameters are params :=
(p,e,¥,G1,Go,Gr, P, Pa, h, hs) and all the algorithms de-
scribed below implicitly take params as input. The construction
of puncturable signature scheme ps = (Setup,Puncture,
Sign, Verify) is the following:

e Setup(1*, ¢, k): This algorithm first generates a Bloom filter
instance by running ({H;};cpx,T) < BF.Gen(£, k). Then

it chooses s <- Z,, and outputs

sk = (T7 {Ski}ie[f])a vk = (Ppubag7 {Hj}je[k])7

where sk; = Wi(i)Pl, Ppup = sP,, and g = e(P1, Ppyp).

o Puncture(sk, str): Given a secret key sk = (7', {sk;};cjg)
where sk; = —>— P, or L, this algorithm first computes

s+h1 ()
T" = BF.Update ({H;}jc[x), T, str). Then, for each i € [(]
define
o _ J sk it T =0
SKi = 1, otherwise

where T"[i] denotes the i-th bit of 7”. Finally, the algorithm
returns sk’ = (77, {ski }ic[q)-

e Sign(sk,m): Given a secret key sk = (T, {sk;};c[q) and
a message m with prefix m’, the algorithm first checks
whether BF.Check ({H; }jc(x), T, m’) = 1 and outputs | in
this case. Otherwise, note that BF.Check({ H; }je[k]’ T, m)
= 0 means there exists at least one index i; € {i1,--- ,ix
such that sk;; # L, where i; = H;(m') for j € [k]. Then

it picks a random index ;- such that ski].* = mpl.
J

Choose x ﬁ Z; and compute r = g%, then set
h = ha(m,r),S = (x — h)sk,..

The output signature on m is o = (h, S,4;+).

e Verify(vk,m,o): Given public key vk =
(Poub» 95 {Hj}jek)), a message m with prefix m/,
and a signature ¢ = (h,S,i;+), the algorithm checks
whether

ij* € Sm’ ANh= h2 (m, 6(5, hl (ZJ*)PQ + Ppub)gh),

where S,y = {H;(m’) : j € [k]}. If it holds, the algorithm
outputs 1, and O otherwise.

Lemma 1. Our basic construction described above satisfies
correctness (c.f. Definition 6).

Proof: 1f the secret key is initial and non-punctured, we
have

6(5, hl(lj*)P2 + Ppub)gh
s

_) P (hy (i Py).e(Py, Py)"

e((x)hl(ij*)+s 1, (ha (i) + 8)P2).e(Pr, Ps)

= (P, o)™ e(Py, Py = g7 = 7

and then h = hy(m,7r) = ha(m,e(S, hi(ij«) P> + Ppup)g").
Therefore, the first requirement of Definition 6 holds. If m/’
is punctured, by the perfect completeness of Bloom filter, we
have BF.Check(H,T,m’) = 1. Therefore, the signing of the
message m with prefix m/ fails and the second requirement of
Definition 6 holds. If m/ is not punctured, the correctness error
of our construction occurs only when BF.Check(H,T,m') =
1, which is essentially identical to the false-positive probability
of the Bloom filter and the third requirement of Definition 6
holds.]

Remark 2. In this section, we assume that the false-positive
probability from Bloom filter is acceptable, which means
the number of puncturings supported by our construction is
below a pre-set parameter, depending on Bloom filter and the

application scenarios. In the security proof below, we also
assume that the number of puncturing queries is also bounded
by the pre-set parameter. We will discuss how to handle a
larger number of punturings in Section IV.

Theorem 1. Assuming that an algorithm A wins in the
Expt®; (1) experiment (c.f. Definition 7) to our construction
ps, with advantage o > 10k(qs + 1)(qs + qn,)/(p(1 — (1 —
1/1)*)) within running time to, T-SDH assumption can be bro-
ken for T = qp,, within running time ty < 120686qp,t0/(€o(1—
7/p)), where qn,, qn, and qs are maximum query times of hash
Sfunction hi, ho and signing respectively.

Due to space limit, we present the full proof in Appendix A.
Our proof is split into two steps. First, if there exists an
adversary A wins in the Expt®;(1*), we can construct another
adversary B that wins in a weaker attack experiment denoted
by Exptfﬂs(l’\), where B is challenged on a fixed position by
the challenger and B has to output a forgery on messages
at that position. Second, we prove the 7-SDH assumption
would be broken if such an adversary B exists according to
the forking lemma [47].

IV. TAG-BASED PUNCTURABLE SIGNATURES

For a puncturable signature scheme based on Bloom fil-
ter, the false-positive probability would exceed an acceptable
bound if the secret key has been punctured for many times,
and thus the signing key pair has to be updated for an empty
bloom filter. In this part, we formalize and construct a new
primitive, tag-based puncturable signatures, where the lifetime
of the public key is split into several periods, during each
period secret key can be punctured for at most max times'.
We use a tag 7 (initialized to 1) to identify the valid period of
the signing key, and 7 increases by one for next period. The
main advantage of this approach is that for a given bound of
correctness error, we can handle the number of puncturing per
valid period as in the basic scheme during the entire life time
of the public key. This is inspired by the time-based approach
used to construct puncturable encryption [24][29][30], which
in turn is inspired by the construction of forward-secure PKE
by Canetti et al. [18].

A. Syntax and Security Definition

A tag-based puncturable signature scheme . consists of a
tuple of PPT algorithms ¥ = (Setup, PuncStr, PuncTag, Sign,
Verify) with descriptions as follows:

e Setup(1*,4,k,t): On input the security parameter \, pa-
rameters ¢ and k for the Bloom filter, and ¢ specifying the
number of time periods, the setup computes the secret/public
keys (sk,vk), and initialize a tag 7p. It then outputs public
key vk, secret key sk associated to tag 7.

e PuncStr(sk, str): On input the secret key sk associated to
tag 7 and a string str, the puncturing algorithm outputs
the updated secret key sk’. We also say (str,7) has been
punctured.

e PuncTag(sk,7): On input the secret key sk associated to
tag 7, the puncturing algorithm outputs the updated secret

IRecall that, in Bloom filter, max = n, where n denotes the number of
elements to be added.

key sk’ for the next period 7 + 1. We also say 7 has been
punctured.

e Sign(sk,m): On input the secret key and a message m, the
signing algorithm outputs the tag 7 and a signature o.

e Verify(vk,m, 7,c): On input the public key vk, a message
m, a tag 7, and a signature o, the verification algorithm
outputs 1 if o is a valid signature for m. Otherwise, it
outputs 0.

Correctness of tag-based puncturable signature. Intuitively,
it requires that (1) signing is always successful with the
initial, non-punctured secret key, (2) signing fails if the signed
message m with prefix m/ and tag 7 satisfies the condition
that (m’,7) or 7 has been punctured, and (3) otherwise,
the probability that signing fails is bounded by some non-
negligible function.

Definition 8 (Correctness). For any message m with prefix m/,
any tag T, any (Skinit, vk)<Setup(1*), and any sequence of
invocations of sk <— PuncStr(sk, .) and sk <— PuncTag(sk, .),
we have

o Verify(vk, m, 79, Sign(skinit, m)) = 1, where sk is the
initial, non-punctured secret key,

o [If (m/,T) has been punctured or T has been punctured, then
Verify(vk, m, T, Sign(sk,m)) = 0,

o Otherwise, it holds that Pr[Verify(vk, m, 7, Sign(sk,m))=
0] < p(l, k), where p(-) is some (possibly non-negligible)
bound.

Security Definition. For the security definition of tag-based
puncturable signature ¥, we use the following experiment to
describe it. Formally, for any PPT adversary .4, we consider the

experiment Expt'}>(1*) between adversary A and challenger

C:

1) Setup: The challenger computes (vk, sk) + Setup(1*) and
sends vk to adversary A. C initializes three empty sets
Qsig = ws Py, = (Z) and Ptag = (Z)

2) Query Phase: Proceeding adaptively, adversary A can
submit the following three kinds of queries:

e Signature query: On input message m from adversary
A, the challenger computes (7,0) « Sign(sk,m) and
updates Qsig = Qsig U {(m, 7)}. C sends back o.

e PuncStr query: On input string str from A, C runs sk <
PuncStr(sk, str) and updates Pa, = Py U {(str,7)},
where sk is associated to tag 7.

e PuncTag query: On input a tag 7 from A, C runs sk <
PuncTag(sk, 7) and updates Pg = Prag U {7}.

3) Challenge Phase: A sends the challenge puncturing string
m’ and tag 7 to C, and A can still submit signature and
puncture queries as described in Query phase.

4) Corruption query: If (m/,7*) € Py, or 7* € Ppag, then C
returns the current sk, and L otherwise.

5) Forgery: A outputs a forgery tuple (m,7*,0), where m
has prefix m/'.

We say that adversary A wins the experiment Expt 4(1*) if
(WL, T*) ¢ Qsig A\ Verify(vk7 m, ’]'*7 O’) =]_

Definition 9 (Unforgeability with adaptive puncturing). We say
the tag-based puncturable signature scheme Y. is unforgeable

with adaptive puncturing, if for any PPT adversary A, the
probability of winning experiment Expt®(1*) is negl(\),
where the probability is over the randomness of the challenger
and adversary.

B. Our Construction of Tag-Based Puncturable Signature

In this construction, we deploy a HIBS scheme based on an
ordered binary hierarchy tree [18] of depth ¢ and the Bloom
filter to construct a tag-based puncturable signature scheme,
which allows to use 2° periods with the corresponding tag
7 € {0,1}'. The root node of tree has the label e. The left
child of a node under label d is labeled with d0 and the right
child with d1. Two nodes at level ¢’ of the tree are siblings
if and only if the first ¢’ — 1 bits of their labels are equal. In
a HIBS scheme, the identity space is D = D1 X --- X Dyyq
where Dy = --- = D; = {0,1}, Dyyq1 = [{], and ¢ is the size
of the Bloom filter. Each bit string 7 € {0, 1} is associated
to a leaf of the tree.

The basic idea of our construction is to compute and
update secret keys by using the hierarchical key delegation
property of HIBS. In more detail, we can derive keys for
all positions of Bloom filter from a given HIBS-key sk, for
tag 7 by computing sk, |, < HIBDel(sk,,u) for all u € [¢].
Once we have computed all Bloom filter keys sk, |, for some
7 € {0,1} and puncturing operation at period 7 has reached
the maximum number, we can compute sk and sk, for
all v € [¢] from sk., and delete sk,. Specifically, the secret
keys associated to all right-hand siblings of nodes that lie on
the path from node 7 to the root are computed, and then all
secret keys associated to nodes that lie on the path from node
T to the root are deleted.

Let BF = (BF.Gen, BF.Update, BF.Check) be a Bloom
filter for set G, and HIBS = (HIBGen, HIBDel, HIBSign,
HIBVerify) be a (¢t + 1)-level hierarchical identity based
signature scheme. The construction of tag-based puncturable
signature scheme ¥ = (Setup, Puncture, Sign, Verify) is the
following:

o Setup(1*, 4, k,t): This algorithm first runs
({H;}jer), T)+BF.Gen({,k) to generate a Bloom
filter instance, and runs (mpk, sk.)«<HIBGen(1?) to
generate a key pair. Then it obtains the HIBS secret key
for the initialized tag 7 = 0! by recursively computing

skou < HIBDel(skgu-1,0), Vu € [t].
Next it computes the ¢ Bloom filter keys for 0% as
skotjy < HIBDel(sko:, u), Vu € [£],

and sets Skplgom = {SKot|u» 0" },c[¢]- Then it deletes the secret
key skot, and computes

Skou—ll — HIBDeI(SkOu—l7 1),V'U/ S [t]

and sets skupdae = {SKou~11 }uepy- Finally, the algorithm re-
turns sk = (7', skpioom» SKupdaie) and vk = (mpk, {H;} je[x)-
e PuncStr(sk, str): On input the secret key sk = (7', skpiooms
Skupdae) and a string str, where skpioom i associated to
tag 7, the PuncStr algorithm computes 7’ = BF.Update

({H;}jep), T, m). Then, for each u € [{] it defines

o« - skrju if T'u] =0,
Tl T L otherwise

where T"[u] denotes the wu-th bit of 7. The algo-
rithm sets skyjoom = (SK;(,, T)uepe, and returns sk’ =
(T/) Sk{)loom? Skupdate) :

e PuncTag(sk,7): On input the secret key sk = (7', skpiooms
Skupdate) and a tag 7, where skpioom is associated to tag 7, the
PuncTag algorithm resets 7 = 0, then it computes sk,
from the keys contained in skypgae by the key delegation
algorithm, and computes

skr 41w < HIBDel(skr41,u), Vu € [£].

Finally, the algorithm updates Sklljpdate by computing the

secret keys associated to all right-hand siblings of nodes
that lie on the path from node 7 + 1 to the root, adding
these corresponding keys to sk! and deleting all keys

update
from sklllpda[e that lie on the path from node 7 + 1 to the

root. The algorithm sets skijoom = (K741, 7+ 1)uepe and
returns sk’ = (7", skijoom» SKipdate)-

e Sign(sk,m): On input secret key sk = (7", skpioom, SKupdate)
where skpioom = (SKr|u; T)ue[q) and a message m with prefix
m/, the signing algorithm first checks whether BF.Check
(H,T,m') =1 and outputs L in this case. Otherwise, note
that BF.Check(H, T', m’) = 0 means there exists at least one
index ij € {i1,--- ,ix} such that sk;; . # L, where i; =
H;(m’),Vj € [k]. Then it picks a random index i;- such
that sk, ;.. # L, and computes o5 <~ HIBSign(sk;,. ,m).
It outputs o = {7|ij~,05}.

o Verify(vk,m,0): On input vk = (mpk, {H}};c[x)), a mes-
sage m with prefix m/, a signature o = {r]i;-,0g}, the
verification algorithm checks whether

i« € {H;(m'): j € [k]} and HIBVerify(mpk, 7|i;«,m,os) =

If both hold, the algorithm outputs 1, and 0 otherwise.

Lemma 2. Our generic construction described above satisfies
correctness (c.f. Definition 8).

Proof: The correctness proof of our construction fol-
lows directly from the correctness of HIBS and the relevant
properties of the Bloom filter. Therefore, the first require-
ment of Definition 8 follows directly from the correctness of
HIBS (c.f. Definition 4), if the secret key is initial and non-
punctured. Secondly, by the perfect completeness of Bloom
filter, BF.Check(H,T,m’) = 1 if m’ is punctured. Therefore
the signing of the message m with prefix m/’ fails, moreover the
signing for period 7 will also fail if 7 has been punctured be-
fore due to the unforgeable property of HIBS, thus the second
requirement of Definition 8 holds. Finally, the correctness error
of our construction is essentially identical to the false-positive
probability of the Bloom filter and the third requirement of
Definition 8 holds. u
Theorem 2. Assuming that an algorithm A wins in the
experiment Exptizs(l’\) (c.f. Definition 9) to our construction
tps with advantage e, there exists an algorithm B wins in
the experiment Expty* (1) (c.f. Definition 5) with advantage
€1 Z €0-

Due to space limit, we present the security proof in

Appendix B. The strategy of our proof is: suppose there exists
an adversary A against the security of tag-based puncturable
signature, we construct a simulator 5 that simulates an attack
environment and uses the forgery from A4 to create a forgery for
the HIBS scheme, which violates the unforgeability of HIBS
as defined in Definition 5.

V. PUNCTURABLE SIGNATURE IN PROOF-OF-STAKE
BLOCKCHAIN

Before describing the application of puncturable signature
in proof-of-stake blockchain, we recall some basic defini-
tions [23][36] of proof-of-stake blockchain and secure prop-
erties [35][46] of blockchain. We assume that there are n
stakeholders Uy, ..., U, and each stakeholder U; possesses s;
stake and a public and secret key pair (vk;, sk;). Without loss
of generality, we assume that the public keys vky, ..., vk, are
known by all system users. The protocol execution is divided
in time units, called slots.

Definition 10 (Genesis Block). The genesis block By con-
tains the list of stakeholders identified by their public-keys,
their respective stakes (vki,s1),...,(vkn,Sn) and auxiliary
information p.

Definition 11 (State, Block Proof, Block, Blockchain, Epoch).
A state is a string st € {0,1}*. A block proof is a set of values
B, containing information that allows stakeholders to verify
whether a block is valid. A block B = (sl;, st,d, Bx j,0;)?
generated at a slot sl; € {sli,---,slgr} contains the slot
number sl;, the current state st € {0,1}*, data d € {0,1}%,
a block proof By ;, and o;, a signature on (sl;,st,d, B ;)
computed under the signing key for sl; of the stakeholder U;
generating the block.

A blockchain relative to the genesis block By is a sequence
of blocks By,---,B, associated with a strictly increasing
kquence of slots for which the state st; of B; is equal to
H(B;_1), where H is a prescribed collision-resistent hash
Sunction. The length of a chain len(C) = n is its number
of blocks. The block B, is the head of the chain, denoted
head(C). We treat the empty string € as a legal chain and by
convention set head(e) = e.

An epoch is a set of R adjacent slots S = {sly, ..., slr},
during which the stake distribution for selecting slot leaders
remains unchanged.

Definition 12 (Properties of Blockchain). A blockchain proto-
col should satisfy the following three properties.

o Common Prefix. The chains C1 and Co possessed by two
honest rparties at the onset of the slots sly < sls are such
that Cll~C = Cy, where ClnC denotes the chain obtained by
removing the last k blocks from C1 and < denotes the prefix
relation.

e Chain Quality. Consider any portion of length at least k
of the chain possessed by an honest party at the onset of a
round; the ratio of blocks originating from the adversary is
at most 1 — u. We call p the chain quality coefficient.

2Recall that the puncturable signature proposed in this paper supports
puncturing at any position. However, for ease of presentation, slot number
sl; is defined as the prefix of the block, which maybe has different locations
in specific PoS protocols.

o Chain Growth. Consider the chains Cy and Cq possessed by
two honest parties at the onset of two slots sly, sly with sl
at least s slots ahead of sly. Then it holds that len(C2) —
len(Cy) > 7 - s. We call T the speed coefficient.

A. Application in Ouroboros Paros Protocol

Ouroboros Praos [23], a proof-of-stake protocol, pro-
vides security against fully-adaptive corruption in the semi-
synchronous setting, where the adversary can corrupt any
stakeholders adaptively under the honest majority of stake as-
sumption and an adversary-controlled message delivery delay
unknown to the honest stakeholders is tolerated.

Their security analysis adopts the universal composability
framework. The adversary can control transactions and blocks
generated by corrupted parties by interacting with functionali-
ties Fpsig, FKes and Fygr, where transactions are signed with
a regular EUF-CMA secure signature scheme modelled by
Fbsig. blocks are signed with key-evolving signature scheme
with forward security modelled by Fkes, and the leader
selection process is executed locally using a special verifiable
random function (VRF) modelled by Fyrr. The basic protocol
for the static stake case denoted by Fspos is constructed in
the FiNiT-hybrid model, where the genesis stake distribution
Sp and the nonce 7 used in Fygr are determined by the ideal
functionality Fini7. It is proved Fgpos can achieve common
prefix, chain growth and chain quality by using the natural
bookkeeping tool “forks” as in [36], and results remain true
when Fpgig, Fkes and Fygrr are replaced by their real-word
implementations in the so-called real experiment. Finally, the
protocol is extended to the dynamic case where the stake
distribution changes over time. All the functionalities we
mentioned above are defined in Appendix F.

The puncturable signature can resist LRSL attack due to
the fact that the leader U in slot sl; would update the secret
signing key sk after the block proposed, and with the updated
signing key the adversary cannot forge a signature at sl; in
the name of U and thus cannot re-write a new block at the
position sl;. Also note that as in [23], we also assume in this
paper that honest stakeholders can do secure erasures, which is
argued to be a reasonable assumption when capturing protocol
security against adaptive adversaries [42].

We now present an ideal functionality Fpg of puncturable
signature scheme, and show any property of the protocol that
we prove true in the hybrid experiment (including common
prefix, chain quality and chain growth) will remain true in the
setting Fkes is replaced by Fps. The revised static proof-of-
stake protocol 7¢p,g is described in Appendix C. In addition,
we show that Fpg can be realized by basic puncturable
signature construction in Section III.B. The case for tag-based
puncturable signature scheme is similar, and the details are
described in Appendix D.

In a high level, the ideal functionality Fpg (as defined in
Figure 2) allows an adversary that corrupts the signer to forge
signatures only for messages whose part at given position (e.g.,
j-th part) having not been punctured. Our starting point for Fpg
is the basic signature functionality Fgg defined in [16] with
the difference that the signing operation is packed together
with a puncture operation and the signature verification oper-

ation lets the adversary set the response only for the signature
of unpunctured message.

Theorem 3. The improved proof-of-stake blockchain protocol
Tep,s described in Appendix C still satisfies common prefix,
chain quality and chain growth if Fes is replaced by Fps.

Due to space limit, we present the full proof in Appendix
E. The strategy of our proof is: given the event of violating
one of common prefix, chain quality and chain growth in an
execution of m§p ¢ With access to Fpg by adversary A and
environment Z, we can construct another adversary A’ so that
the corresponding event happens with the same probability in
an execution of 7gpos With access to Fges (c.f. Appendix F-C)
by adversary A’ and environment Z, where Tsp,s is original
protocol [23]. If the environment Z can distinguish a real
execution with A and m{p ¢ (accessing Fpg) from an ideal
execution, then Z can also distinguish a real execution with
A’ and 7spos (accessing Fkes) from an ideal execution.

Remark 3. The dynamic stake case can be extended as in [23].
Specifically, FiniT is replaced with a “resettable” variant to
capture the grinding capabilities of the adversary by permitting
him/her to select one from a family of r independent and uni-
formly random nonces, a resettable leaky beacon functionality
is introduced such that provides a fresh nonce for each epoch
to accommodate dynamic stake, and other sub-functionalities
remain unchanged.

Realizing Fps. Following the proof strategy of [16], in
this section we will show how to translate a puncturable
signature scheme 3 into a signature protocol 7y in the
present setting and then prove that 7y can securely realize
Fps. Specifically, 7s; protocol runs between a stakeholder
Us and other stakeholders Uy, ..., U,, and proceeds based on
a puncturable signature scheme Y=(Setup, Puncture, Sign,
Verify) as follows:

1) Key Generation: When Ug, running s, receives an input
(KeyGen, sid, Ug), it verifies whether sid = (Ug, sid") for
some sid’. If not, it ignores the input. Otherwise, it runs
Setup(1*), records the signing key (sid, Us, sk) and sets
P =0, and outputs (VefificationKey, sid, vk).

2) Sign and Puncture: When Uy receives an input (PSign,
sid, Us, m = m/...) for an sid which it owns the signing
key (sid, Ug, sk), it checks whether m’ € P. If not,
Us runs Sign(sk,m) to obtain o, runs Puncture(sk,m’)
to update the secret keys, sets P = P U m’ and outputs
(Signature, sid, m, o).

3) Verify: When a stakeholder U; (i € [n]) receives an
input (Verify, sid, m, o, vk’), it outputs (Verified, sid, m,
Verify(vk’, m, o)).

Theorem 4. Let ¥ = (Setup, Puncture, Sign, Verify) be a
puncturable signature scheme, if X satisfies the unforgeability
with adaptive puncturing as in Definition 7, then 1y, securely
realizes Fpg.

Proof: Assume that mx, does not realize Fpg, i.e. there
exists an environment Z that can tell whether it is interacting
with a prescribed simulator S and Fpg, or with an adversary
A and 7x. Then following the proof approach of [16] we
can show Z can be used to construct a forger G that wins

Functionality Fps

Fpg interacts with a signer Ug and stakeholder U; as follows:

Key Generation. Upon receiving a message (KeyGen, sid, Ug) from a stakeholder Ug, verify that sid = (Ug, sid’)
for some sid'. If not, then ignore the request. Else, send (KeyGen,sid,Ug) to the adversary. Upon receiving
(PublicKey, sid, Us, v) from the adversary, send (PublicKey, sid, v) to Ug, record the entry (sid, Ug,v), and set P = ().

Sign and Puncture. Upon receiving a message (PSign, sid, Us, m = m/'...) from Ug, verify that (sid, Ug,v) is recorded
for some sid and that m’ ¢ P. If not, then ignore the request. Else, send (Sign, sid,Ug, m) to the adversary. Upon
receiving (Signature, sid, Ug, m, o) from the adversary, verify that no entry (m, o, v, 0) is recorded. If it is, then output an
error message to Ug and halt. Else, send (Signature, sid, m, o) to Ug, record the entry (m, o, v, 1), and set P = PU{m'}.

Signature Verification. Upon receiving a message (Verify, sid,m = m’...,o,v’) from some stakeholder U; do:

1) If v = v and the entry (m,o,v,1) is recorded, then set f = 1. (This condition ensures completeness: If the public

key v’ is the registered one and o is a legitimately generated signature for m, then the verification succeeds.)

2) Else, if v' = v, the signer is not corrupted, and no entry (m,o’,v,1) for any ¢’ is recorded, then set f = 0 and record

Output (Verified, sid, m, f) to U;.

the entry (m,o,v,0). (This condition ensures unforgeability: If the public key v’ is the registered one, the signer is
not corrupted, and m is never by signed by the signer, then the verification fails.)

3) Else, if there is an entry (m, o, v, f') recorded, then let f = f’. (This condition ensures consistency: All verification
requests with identical parameters will result in the same answer.)

4) Else, if m’ € P, then let f = 0 and record the entry (m, o, v, 0). Otherwise, send (Verify, sid, m, o, v’) to the adversary.
Upon receiving (Verified, sid, m, ¢) from the adversary, let f = ¢ and record the entry (m,o,v’, ¢). (This condition
ensures that the adversary is only able to forge signatures of corrupted parties on messages with unpunctured prefix.)

Figure 2: Functionality Fpg

with non-negligible probability in the experiment Exptf; (1*)
for the underlying puncturable signature scheme X as defined
in Definition 7, which in turn violates the unforgeability
with adaptive puncturing of . Since Z can succeed for any
simulator S, it also succeeds for the following specific S,
where S runs a simulated copy of A:

1) Any input from Z is forwarded to A, and any outputs from
A is returned to Z.
2) Whenever S receives (KeyGen, sid,Ug) from Fpg, it
proceeds as follows: if sid is not of the form (Us, sid’),
then S ignores this request. Otherwise, S runs Setup(lA),
records the signing key (sid,Ug, sk), sets P = (), and
outputs (VefificationKey, sid, vk) to Fps.
Whenever S receives (PSign, sid, Us, m m’...) from
Fps, if there is a recorded signing key (sid,Ug, sk)
and m' ¢ P, S runs Sign(sk,m) to obtain o, runs
Puncture(sk,m’) to obtain the update secret keys, sets
P = P U {m'} and outputs (Signature, sid, m, o) to
Fps. Otherwise, it ignores the request.
Whenever S receives (Verify, sid, m, o, vk’) from Fpg, it
returns (Verified, sid, m, Verify(vk’,m, o)) to Fps.
When A corrupts a party U;, S corrupts U; in the ideal
world. If U; is the signer Ug, S reveals the current signing
keys sk and the internal state of algorithm Sign (if there
exists) as the internal state of U;.

3)

4)

5)

Recall that Z can distinguish an ideal execution with S
and Fpg from a real execution with A and 7y, then we would
demonstrate that the underlying X is forgeable by constructing
a forger G as follows. G runs a simulated instance of Z,
and simulates for Z an interaction with S and Fpg where G
plays the role of both S and Fpg. Moreover, in the simulating
process, like S, G will also run a simulated run of A.

When Z activates some party Ug with input

10

(KeyGen, sid,Us), G returns the public key vk from
its experiment to Z. When Z activates Ug with input
(Sign, sid,Us, m m’...), G calls its signing oracle with
m to obtain a signature o, calls its puncture oracle with
m’ to update the secret keys, then updates the puncturing
set P P U {m'} and the set of queried messages
Qsig Qsig U {m}. When Z activates an uncorrupted
party with input (Verify, sid, m m'...,o,vk"), G tests
whether m € Qig, the signer is uncorrupted before m’ is
punctured, and Verify(vk/,m,0) = 1. If these conditions are
met, then in its experiment Exptgs(l’\), G outputs m’ as the
challenge string, and makes series of queries as in Definition
7. Eventually G outputs the tuple (m, o), succeeding in the
experiment.

Denote by E' the event that in a run of 7wy with Z and
sid = (Ug, sid'), the signer Ug generates a public key vk,
and some party U,; is activated with a verification request
(Verify, sid, m=m'..., o, vk), where Verify(vk,m,o) = 1, m ¢
Qsig, and Ug is not corrupted before m/ is punctured. If event
FE does not occur, Z would not distinguish the between an
ideal and a real executions. However, we are guaranteed that Z
can distinguish real from ideal executions with non-negligible
advantage, then event I also happens with non-negligible
advantage. Note that, from the view of Z, the interaction with
G looks the same as the interaction with 7s;, which means that
whenever E happens, G outputs a successful forgery. []

B. Applications in Other Proof-of-Stake Protocols

As we have described above, most existing proof-of-stake
blockchain protocols are vulnerable to the LRSL attack, and
we would show that our puncturable signature construction can
also be applied in other Proof-of-stake blockchain protocols to
resist LRSL attack.

In both Ouroboros [36] and Snow White [22] protocols,
each block is signed by the leader using ordinary signature
scheme and thus they cannot resist LRSL attack. Fortunately,
their signature schemes can also be replaced by puncturable
signatures directly. Specifically, in Ouroborous, the leader U;
signs the block B; by o = Sign(sk;, (st;,d, sl;)) and updates
the secret key of U; by Puncture(sk;,sl;), and the case
in Snow White is similar with the exception that the slot
parameter is replaced with the time step ¢. By this means, even
if an adversary A obtains the updated secret key, he cannot sign
for other block data d’ at the same slot sl; or time step ¢, which
furthermore avoids the forks in blockchains and LRSL attack.
In addition, our puncturable signature also can be applied in
Ouroboros Genesis [7] protocol similar to Section V.A.

Nevertheless, the case of the application for tag-based
puncturable signature in PoS blockchain protocols is somewhat
subtle. As we show in Appendix D, the tag-based scheme
itself is not enough for PoS blockchain to resist LRSL attacks.
Specifically, the adversary with the leaked secret key in current
tag 7 can forge signatures on any message with the tag
7' > 7 in the same slot, and thus construct forks at the slot.
We remedy this problem by binding the slot parameter with
corresponding tag, in particular, let miners maintain the current
tag of all parties, which is inspired by the idea of maintaining
unspent transaction outputs (UTXO). For readability, we defer
a detailed description to Appendix D.

C. On tolerating a non-negligible correctness error for Proof-
of-Stake Blockchain

The significant efficiency improvement of our PS con-
struction stems partially from the relaxation of tolerating a
non-negligible correctness error, which, in turn, comes from
the non-negligible false-positive probability of a Bloom filter.
Specifically, the correctness error in our puncturable signature
construction means that the signing of message m may yield
1 even though the secret key has never been punctured at the
prefix m’ of message m. However, the correctness error can be
as small as possible by adjusting the corresponding parameters
in Bloom filter (see Section II.A), which implies a trade-off
between non-negligible correctness error and the size of secret
key.

For proof-of-stake blockchain, it is a reasonable approach
to accept a small, but non-negligible correctness error, in ex-
change for the huge efficiency gain. In fact, existent blockchain
protocols achieve security properties (i.e. common prefix,
chain quality and chain growth) with high probability instead
of certainty, which means a small error probability is inherent
in these protocols. Moreover, the signing error would not
affect the running of the blockchain system. For instance, in
Ouroboros [36], the stakeholder selected as one of the leaders
in current slot can still get the reward even if his signing fails.
While in Ouroboros Praos [23] and Snow White [22], some
slots might have multiple slot leaders or no leader (i.e., empty
slot), which means the signing error for one leader would not
affect the protocol running.

D. Analysis and Comparison

For proof-of-stake blockchain application, we make a com-
parison between our puncturable signature and two existing

11

forward secure signature, in terms of functionality and per-
formance. First, puncturable signature allows each leader to
generate at most one block at any slot (by puncturing at
sl;, the slot number of the current block), and thus prevents
attackers from compromising leaders to mount long-range at-
tacks. Although forward secure signature can achieve the same
functionality by using different secret key for signing in each
period, their performance depends on the time periods, which
is unsuitable for blockchain application. More specifically, in
each slot of proof-of-stake blockchain, only one stakeholder
is elected as a leader to propose and sign block, which means
some stakeholders may only have a chance to sign block after
long slots (i.e. time periods), however, the computational cost
of one signature after long time periods is almost equal to
that of multiple signatures for most forward secure signature
schemes. On the contrary, puncturable signature can alleviate
this problem because the computation is independent of time
periods.

Second, keeping on signing and verifying operation as
efficient as the underlying scheme is an important goal for
forward-secure signatures as well as puncturable signatures.
However, except for [33], almost all existing forward secure
signature schemes require longer time for signing or verify-
ing. Particularly, [39][43] requires two ordinary verification
together with several hash computations, and verification time
in [4][11] even grows linearly with the number of periods 7T'.
Apparently, our construction can retain the efficiency of the
underlying scheme on signing and verifying, with additional
k hash functions.

Third, the key update time of [33][43] depends on T or ¢,
which may bring undesirable consumption and even become
a fatal issue for some particular applications. Specifically, in
the proof-of-stake blockchain, the signer may not even do any
signing within one period but he has to update the signing
key as long as the current period ends, which makes the
update operation a vain effort. In some other applications,
the signer has to update the secret key immediately after
one signing operation, leading to that the number of update
operations (i.e. T) within a given validity time of the public
key becomes so large that the update time is unacceptable.
Despite that the general construction [39] outperforms other
schemes on key update, O(T') non-secret certificates storage
(in publicly readable tamper-proof memory) is needed, and
moreover, one update includes complete key generation and
verification process, which is also undesirable. The key update
in our puncturable signature construction is independent on T’
or ¢, and only needs k£ hash computations.

Finally, in Table I we compare the performance of our
construction with that of [43] and [33]°, which are most
efficient in existing forward secure signature schemes. We use
thy th, tm1, tma, teT, tp, tmn, th, N> ten and tp,; to denote the
time for computing a universal hash, a hash for H;(j € [k])
in Bloom filter, a multiplication in G, a multiplication in G,

3For [43], we adopt the worst case when evaluating key update time,
otherwise it depends on logt after amortization with longer secret keys
(additional |H|logt + |N|log|H| bits), and moreover the total update time
still increases linearly with ¢. For [33], we adopt the original scheme, whose
key update time depends on log7" after optimization with longer secret key
(additional |N|(1 4 logT") bits) and more expensive signing and verifying
operations.

TABLE I: Efficiency comparison

Ours

[33]

[43]

Keygen time

Ut

Tty +T -t v + 3ten

Alen

Sign time

ter + tm1 + k) +1n

2 teN + tmN + th

ZteN +toN + th

Verify time

k.t +ty +tp + ter + timo

2ten + N + Uy

@ teny + 2 tin) + (logh+logt) ty

Key update time k.t T -ten +TA 1y t-ten

Secret key size - e FIPIG, | 3|Z% | + A + 2logT |Z5] + X - (log\ + logt)
Public key size |G| 2|25 + logT A

Signature size 1Z;] + 1G] [Z3 T+ 2\ + logT 41231+ MlogA + logt)

TABLE II: Experimental results comparison

Ours [33] [43]
128-bit 192-bit 128-bit 192-bit 128-bit 192-bit
Keygen time (ms) 5.19 x 103 1.11 x 107 6.92 x 10% | 1.62 x 10° 378.88 3.40 x 103
Sign time (ms) 1.17 5.61 5.92 35.41 5.92 35.41
Verify time (ms) 4.14 23.09 5.92 35.41 11.84 70.82
Key update time (ms) 107° 107° 3.65 x 10° | 1.93 x 10° | 2.96 x 10° | 1.77 x 10°
1.31x 1.64x
Secret key size! oo IPI/143x10°) p | - |PI/Laax10 yy | 114K B 2.84K B 761.758B 1.51KB
Public key size 95.25B 119.50B 770.08B 1.88KB 16B 24B
Signature size 129.11B 169.35B 418.08B | 1010.08B | 1.87KB 4.32KB

I The secret size decreases with puncturing operation. For 128-bit and 192-bit security level, the maximum is 1.31M B and 1.64M when |P| = 0,
and the minimum is 0.65M and 0.82M when |P| reaches its maximum (i.e., 103), respectively.

TABLE III: Experimental cost of each unit operation (ms)

tm1 tm2 teT tp timN t{mN teN tpt th t;L
128-bit | 0.36 | 0.97 | 0.81 | 2.36 | 0.0035 | 0.00095 | 2.96 | 0.0054 9% 105 | 10-6
192-bit | 0.77 | 6.93 | 4.84 | 11.32 | 0.011 0.0023 | 17.7 | 0.0084

an exponentiation in Gy, a bilinear pairing, a multiplication in
Z%;, a multiplication in (), an exponentiation in Z7} and
one primality test for one A-bit number, respectively. We also
denote |Zy|, |Z| and [G1| as the bit-length of an element
in Z;, an element in Z7% and an element in G, respectively,
where p is the order of Gj.

The implementations are written in C using version 3 of
AMCL [1] and compiled using gcc 5.4.0, and the programme
runs on a Lenovo ThinkCentre M8500t computer with Ubuntu
16.04.9 (64 bits) system, equipped with a 3.40 GHz Intel Core
i7-4770 CPU with 8 cores and 8GB memory. Particularly, the
AMCL library recommends two types of BLS curves (i.e.,
BLS12 and BLS24) to support bilinear pairings, and the curves
have the form y2 = 23 + b defined over a finite field Fy, with
b =15 and |g| = 383 for BLS12, while b = 19 and |g| = 479
for BLS24, where ¢ is a prime. According to the analysis
[8], BLS12 and BLS24 curves can provide 128-bit and 192-
bit security levels respectively. For the group Z%;, we choose
|[N| = 3072 and |N| = 7680 for 128-bit and 192-bit security
levels respectively. For hash function, we choose SHA-384.%
In addition, we assume one stakeholder can be leader for 103

4The hash function H;(j € [k]) in bloom filter can be simulated by two
hash functions according to the analysis in [38]. In practice, the guava library
[3] by Google employs Murmur3 hash [2] for Bloom filter. For simplicity, we
replace Murmur3 with SHA-384 during the test, however, our scheme would
perform better using the faster Murmur3.

12

times on average and set n = 103 in Bloom filter. Without
loss of generality we assume the average probability that one
stakeholder is selected as the leader in one slot is 1/100 (which
is large enough in practice)’, which means there are at least
10° slots in blockchain and set 7' = 10°. We also set the error
probability pr = 1/1000 of Bloom filter, then we can compute
(= —Fik = 144 x 10" and k = [£1n2] = 10. Note that
t in [43] denotes the time periods elapsed, also the number
of signed operations so far, so we set t = 10° to evaluate the
worst case.

Table II summarizes the experiment results, where the
time represents the average time for 100 runs of each oper-
ation and the experimental cost of each basic operation over
recommended groups at different security levels is shown in
Table III. The results show that our scheme performs better on
signing and verification efficiency, significantly on key update
efficiency. Moreover, our scheme has the smallest signature
size, which drastically reduces the communication complexity
for proof-of-stake blockchain. In addition, key generation in
our scheme can be further optimized by pre-computing some

SNote that here we just choose the specific parameters to carry out the
efficiency comparison. For larger n and 7', the efficiency of our scheme
remains unchanged except that the time for key generation and secret size
would increase according to Table I, and thus the advantage of our scheme
over forward secure signature schemes in the aspect of sign/verify/key update
time as well as signature size still holds.

exponentiations off-line. However, the initial secret key size
in our scheme is large due to the Bloom filter. Fortunately,
the secret key size shrinks with increasing amount of signing
operations and can be furthermore reduced by HIBS-based
optimization (i.e., clearing and reconstructing of the bloom
filter frequently). In practice, the secret keys are stored locally
on personal equipments, and reducing computation complexity
and communication complexity may be more important with
the rapid advance of storage technology.

VL

Although the notion of puncturable signatures has been
proposed before, this is the first work that makes it efficient
enough to be deployed in practice. We proposed a construction
approach based on Bloom filter, whose puncturing operation
only involves a small number of efficient computations (e.g.
hashing), which outperforms previous schemes by orders of
magnitude. In order to further improve efficiency, we also
introduced a new primitive, called tag-based puncturable sig-
nature. Then we showed a generic construction based on
hierarchical identity based signature scheme, and proved its
security against adaptive puncturing. Our construction and
security analysis are independent of any particular instantiation
of building blocks. Next, we used puncturable signature to
construct practical proof-of-stake blockchain protocol resilient
to LRSL attacks. Our motivation stems from the observation
that LRSL attack can alter transactions history and furthermore
hamper the development of proof-of-stake blockchain. Our
construction allows to realize practical blockchain protocol,
and experiment results show that our scheme performs signif-
icantly on communication and computation efficiency.

CONCLUSION

How to design efficient puncturable signature without
Bloom filter is a worthwhile direction. We believe that punc-
turable signature will find applications beyond proof-of-stake
blockchain protocols.

REFERENCES
[1]
[2]
[3]

https://github.com/milagro-crypto/amcl/tree/master/version3.
https://sites.google.com/site/murmurhash/.

https://github.com/google/guava/blob/master/guava-tests/test/com/
google/common/hash/BloomPFilterTest.java.

Michel Abdalla and Leonid Reyzin. A new forward-secure digital
signature scheme. In International Conference on the Theory and
Application of Cryptology and Information Security, pages 116-129.
Springer, 2000.

Ross Anderson. Two remarks on public-key cryptology. In an invited
lecture at the Fourth ACM Conference on Computer and Communica-
tions Security, 1997.

[4]

[5]

[6] Michael Backes, Sebastian Meiser, and Dominique Schroder. Dele-
gatable functional signatures. In Chen-Mou Cheng, Kai-Min Chung,
Giuseppe Persiano, and Bo-Yin Yang, editors, PKC 2016, Part I, volume

9614 of LNCS, pages 357-386. Springer, Heidelberg, March 2016.

Christian Badertscher, Peter Gazi, Aggelos Kiayias, Alexander Russell,
and Vassilis Zikas. Ouroboros genesis: Composable proof-of-stake
blockchains with dynamic availability. In Proceedings of the 25th ACM
conference on Computer and communications security, pages 913-930.
ACM, 2018.

Razvan Barbulescu and Sylvain Duquesne. Updating key size estima-
tions for pairings. Journal of Cryptology, pages 1-39, 2017.

Paulo SLM Barreto, Benoit Libert, Noel McCullagh, and Jean-Jacques
Quisquater. Efficient and provably-secure identity-based signatures and
signeryption from bilinear maps. In International conference on the
theory and application of cryptology and information security, pages
515-532. Springer, 2005.

[7]

[8]

[9]

13

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]
[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

(33]

Mihir Bellare and Georg Fuchsbauer. In

Krawczyk [40], pages 520-537.

Mihir Bellare and Sara K Miner. A forward-secure digital signature
scheme. In Annual International Cryptology Conference, pages 431—
448. Springer, 1999.

Mihir Bellare, Igors Stepanovs, and Brent Waters. New negative results
on differing-inputs obfuscation. In Proceedings of EUROCRYPT 2016,
pages 792-821. Springer, 2016.

Burton H Bloom. Space/time trade-offs in hash coding with allowable
errors. Communications of the ACM, 13(7):422-426, 1970.

Dan Boneh and Xavier Boyen. Short signatures without random
oracles. In International Conference on the Theory and Applications of
Cryptographic Techniques, pages 56—73. Springer, 2004.

Policy-based signatures.

Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures
and pseudorandom functions. In Krawczyk [40], pages 501-519.

Ran Canetti. Universally composable signature, certification, and
authentication. In Proceedings of 17th IEEE Computer Security Foun-
dations Workshop, pages 219-235. IEEE, 2004.

Ran Canetti. Universally composable signature, certification, and au-
thentication. ieee computer security foundations symposium, 2003:219—
233, 2004.

Ran Canetti, Shai Halevi, and Jonathan Katz. A forward-secure
publickey encryption scheme. In Proceedings of EUROCRYPT 2003,
pages 255-271. Springer, 2003.

Jae Choon Cha and Jung Hee Cheon. An identity-based signature from
gap Diffie-Hellman groups. In Yvo Desmedt, editor, PKC 2003, volume
2567 of LNCS, pages 18-30. Springer, Heidelberg, January 2003.

Jing Chen and Silvio Micali. Algorand. In arXiv:1607.01341v9, 2017.

Sherman SM Chow, Lucas CK Hui, Siu Ming Yiu, and KP Chow.
Secure hierarchical identity based signature and its application. In
International Conference on Information and Communications Security,
pages 480-494. Springer, 2004.

CPhil Daian, Rafael Pass, and Elaine Shi. Snow white: Provably secure
proofs of stake. In Cryptology ePrint Archive, Report 2016/919, 2016.

Bernardo David, Peter Gazi, Aggelos Kiayias, and Alexander Russell.
Ouroboros praos: An adaptively-secure, semi-synchronous proof-of-
stake blockchain. In Proceedings of EUROCRYPT 2018. Springer, 2018.

David Derler, Tibor Jager, Daniel Slamanig, and Christoph Striecks.
Bloom filter encryption and applications to efficient forward-secret O-rtt
key exchange. In Proceedings of EUROCRYPT 2018. Springer, 2018.

David Derler, Sebastian Ramacher, and Daniel Slamanig. Generic
double-authentication preventing signatures and a post-quantum instan-
tiation. provable security, 2018:258-276, 2018.

Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit
Sahai, and Brent Waters. Candidate indistinguishability obfuscation and
functional encryption for all circuits. In Proceedings of 54th Annual
IEEE Symposium on Foundations of Computer Science, FOCS 2013,
pages 40-49. IEEE, 2013.

Craig Gentry and Alice Silverberg. Hierarchical id-based cryptography.
In Proceedings of ASIACRYPT 2002, pages 548-566. Springer, 2002.

Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and
Nickolai Zeldovich. Algorand: scaling byzantine agreements for cryp-
tocurrencies. In Proceedings of the 26th Symposium on Operating
Systems Principles, pages 51-68. ACM, 2017.

Matthew D Green and Ian Miers. Forward secure asynchronous
messaging from puncturable encryption. In Proceedings of the 2015
IEEE Symposium on Security and Privacy, pages 305-320. IEEE, 2015.

Felix Gunther, Britta Hale, Tibor Jager, and Sebastian Lauer. O-rtt key
exchange with full forward secrecy. In Proceedings of EUROCRYPT
2017, pages 519-548. Springer, 2017.

Shai Halevi, Yuval Ishai, Abhishek Jain, Ilan Komargodski, Amit Sahai,
and Eylon Yogev. Non-interactive multiparty computation without
correlated randomness. In Proceedings of ASIACRYPT 2017, pages
181-211. Springer, 2017.

ISO/IEC. IT security techniques — digital signatures with appendix —
part 3: Discrete logarithm based mechanisms. ISO/IEC 14883-3:2018.
Gene Itkis and Leonid Reyzin. Forward-secure signatures with optimal
signing and verifying. In Proceedings of CRYPTO 2001, pages 332—
354. Springer, 2001.

[34] Stanislaw Jarecki, Aggelos Kiayias, and Hugo Krawczyk. Round-
optimal password-protected secret sharing and t-pake in the password-
only model. international conference on the theory and application of
cryptology and information security, 2014:233-253, 2014.

[35] Aggelos Kiayias and Giorgos Panagiotakos. Speed-security tradeoffs in
blockchain protocols. In Cryptology ePrint Archive, Report 2015/1019,
2015.

[36] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman
Oliynykov. Ouroboros: A provably secure proof-of-stake blockchain
protocol. In Proceedings of CRYPTO 2017, pages 357-388. Springer,
2017.

[37] Eike Kiltz, Anton Mityagin, Saurabh Panjwani, and Barath Raghavan.
Append-only signatures. international colloquium on automata lan-
guages and programming, 2005:434-445, 2005.

[38] Adam Kirsch and Michael Mitzenmacher.
formance: Building a better bloom filter.
Algorithms, 33(2):187-218, 2008.

[39] Hugo Krawczyk. Simple forward-secure signatures from any signature
scheme. In Proceedings of the 7th ACM conference on Computer and
communications security, pages 108-115. ACM, 2000.

[40] Hugo Krawczyk, editor. PKC 2014, volume 8383 of LNCS. Springer,
Heidelberg, March 2014.

[41] Wenting Li, Sebastien Andreina, Jens-Matthias Bohli, and Ghassan
Karame. Securing proof-of-stake blockchain protocols. In Proceedings
of ESORICS 2017 International Workshops, DPM2017/CBT2017, pages
297-315. Springer, 2017.

[42] Andrew Y Lindell. Adaptively secure two-party computation with
erasures. In Cryptographers Track at the RSA Conference, pages 117—
132. Springer, 2009.

[43] Tal Malkin, Daniele Micciancio, and Sara Miner. Efficient generic
forward-secure signatures with an unbounded number of time periods.
In Proceedings of EUROCRYPT 2002, pages 400-417. Springer, 2002.

[44] Shigeo Mitsunari, Ryuichi Sakai, and Masao Kasahara. A new traitor
tracing. IEICE Transactions on Fundamentals of Electronics, Commu-
nications and Computer Sciences, 85(2):481-484, 2002.

[45] Arvind Narayanan, Joseph Bonneau, Edward Felten, Andrew Miller,
and Steven Goldfeder. Bitcoin and cryptocurrency technologies, 2016.

[46] Rafael Pass, Lior Seeman, and Abhi Shelat. Analysis of the blockchain
protocol in asynchronous networks. In Proceedings of EUROCRYPT
2017, pages 643—673. Springer, 2017.

[47] David Pointcheval and Jacques Stern. Security arguments for digital
signatures and blind signatures. Journal of Cryptology, 13(3):361-396,
2000.

Less hashing, same per-
Random Structures and

APPENDIX A
Security Proof of Theorem 1

In order to prove the security of our scheme, we consider a
particular adversary 3 with fixed position against our signature
scheme in a variant of the above experiment Exptf‘f(l’\),
denoted by Expttzs(lA). Specifically, in the Setup, the chal-
lenger returns system parameters together with a fixed position
i* € [l]; the following Query Phase remains unchanged
and the Challenge Phase can be omitted; in the Corruption
query, the challenger only returns the current secret key by
excluding the key at position ¢*. We say B wins the experiment
Exptfﬁs(l/\), if B outputs some message m together with a
valid signature (h,.S,i*) on m.

We sketch the proof in two steps as in [9][19]. First, we
prove there exists an algorithm B that wins in the Exptfjs(lA)
experiment with non-negligible advantage, if adversary .4 has
non-negligible advantage against our signature scheme ps in
the Expt®;(1*) experiment (c.f. Lemma 3). Then, assuming
the existence of BB, we can construct an algorithm C that breaks
the 7-SDH assumption (c.f. Lemma 4).

Lemma 3. Assuming that an algorithm A wins in the
Exptfj(l’\) experiment (c.f. Definition 7) to our construction
ps, with probability ey within running time tg, there exists
an algorithm B that wins in the Exptizs(lx) experiment as
described above to ps which has probability € > ¢y(1 — (1 —

1/0)%)/k within a running time t; < to.

Proof: Suppose there exists such an adversary 4, and we
construct a simulator B that simulates an attack environment
and uses A’s forgery to win in its own Exptiﬁs(lA) experi-
ment. The simulator B can be described as follows:

e Invocation. B is invoked on a given position i* € [I].
e Queries. 5 answers adaptive queries from A as follows:

o B makes Setup query and forwards all the returned
parameters to A for A’s Setup query.

o Before A outputs the challenge string, 5 just forwards
the queries of A, including Sign, Puncture, hy and ho,
to its experiment and returns the result to A.

o When A outputs the challenge string denoted by m/’
after the series of queries, B checks whether i* €
{H;j(m') : j € [k]} and aborts if this does not hold.
Otherwise, B3 provides the simulation for A as follows.
For the queries hy, ha, Puncture and Sign, B just passes
them to its challenger and returns the result as before.
While for Corruption query, B firstly checks whether
m’ € P and returns) if this does not hold. Otherwise,
B makes Corruption query in its experiment, and returns
the response sk to A.

Eventually, A outputs a valid signature (m, o = (h, S, j*)),
where m/’ is the prefix of m. If j* = i*, then B sets (m, o) as
its own output and apparently BB also wins in its Expt’;‘{s(lA)
experiment.

In the simulation described above, there are two events
that causes B to abort: (1) ¢* ¢ {H;(m*) : j € [k]} for
the challenge string m*; (2) ¢* # j* for the forged signature
o= (h,S,j*).

Recall that the £ hash functions in Bloom filter are sampled
universally and independently, and thus each position in array
is selected with equal probability. Besides, ¢* is invisible and
looks random to A, then the selection of m’ is independent
of i*. Therefore the probability that i* ¢ {H;(m') : j € [k|}
is (1 — 1/¢)*. Similarly, the second event i* # j* happens
with probability 1—1/k. Combing these, with probability e; >
€o(1—(1—1/1)%)/k, B completes the whole simulation without
aborting and wins in the Exptizs(lx) experiment. [|

Lemma 4. Assuming that an algorithm B wins in the
Exptizs(l)‘) experiment to our construction ps, with advan-
tage €1 > 10(qs + 1)(gs + qn,)/p within running time ti,
there exists an algorithm C that breaks T-SDH assumption for
T = qp, within running time ty < 120686¢n,t1/(e1(1—7/p)),
where qn,, qn, and qs are maximum query times of hash
Sfunction hi, ho and signing respectively.

Proof: Suppose there exists such an adversary B, and we
construct a simulator C that simulates an attack environment
and uses B’s forgery to break the 7-SDH assumption. The
simulator C can be described as follows:

e Invocation. C takes as input a random instance (Py, Ps,
aP,, a?Ps,....,a™ P») and aims to find a pair (h, H%Pl) for
some h € Z;.

e Setup. C samples 7 — 1 elements wi,ws,...,Wr_1 <£ z*,
where the w; (i € [T—1]) will be used as the response to 3’s
h1 queries. C expands the polynomial f(y) HZ:_11 (y+w;)
to obtain cg, c1,...,cr—1 € Z}; so that f(y) = H:;()l Gyl .
Then C sets P, = 3.7 ¢;(@’)P, = f(a)P» € Gy and
P = 1/)(1f’2) € G to be new generators of Gy and G;. Then
the master public key is set to Ppub =Y cic1(a'Py)
such that Ppub = Oépg, thus the master secret key is the
unknown o.

To provide the secret keys corresponding to the positions

having been queried to hy, C expands f;(y) = f(y)/(y +
w;) = 3723 diy" and
T—2
. P o
> di(@tP) = afi(a)Pr = afl)h o p
P o+ w; o+ w;
(1)

Thus, the 7 — 1 pairs (w;, ﬁﬁl) can be computed using
the left member of equation (13. A
Then C provides the parameters (p, e, ¥, G1, Ga, G, P,
Py, hi, ho) to B. In addition, C also generates a Bloom filter
as ({H;}je), T) < BF.Gen(f, k), then outputs the verifi-
cation key vk = (Ppup, 9, {Hj }jex)) (how g = e(P1, Ppup))
and challenge position ¢* to B. Then C is ready to answer
B’s queries during the simulation. For simplicity, we may
assume as in [19] that for any ¢ € [I], B queries hq(4) at
most once and any query involving i is proceeded by the RO
query hq(2), which means that B has to query hq (i) before
he can obtain a signature (h, S,) from Signature query and
obtain the secret key sk; from Corruption query by using
a simple wrapper of B.
e Hash function queries. C initializes a counter ¢ to 1.
o hy : [l] = Zy: On input i € [l], C returns a random

w = w* <£ Z; if 4 = ¢*. Otherwise, C returns w = wy
and increments t. In both cases, C stores (i, w) in a list
L.

o hy : {0,1}* x G — Z; : On input (m,7), C outputs
h if (m,r, h) is in the list Lo (initialized to be empty).
Otherwise, it outputs a random element h and stores
(m,r,h) in Lo.

Note that, according to the query of h; and the computation

in the setup phase, C knows the secret key sk; =

for i # i*.

e Query Phase. C answers adaptive signing and puncturing
queries from B as follows:

o Signature query: On input a message m with prefix
m/, C first checks BF.Check({H,};ep, T,m') = 1
and outputs L in this case. Otherwise, there exists at
least one index i; € {i1,...,ir} such that sk;, # L,
where i, = H;(m'), for j € [k]. C picks a random
j € {i1,... i}, S E g and b & Z,, computes
and sets r e(S, hl(j)Pg + Ppub).e(Pl,ﬁ’pub)h, and
backpatches to define hg(m,r) = h. Finally, C stores
(m,r,h) in Lo, and returns the signature o = (h, S, j)
(C aborts in the unlikely collision event that hgo(m,r) is
already defined by other query results of Sign or hg, the

atw; Pl

15

probability of which is negligible since r is random [47]).
o Puncture query: On input a string str, C first updates
T" = BF.Update({H}}c[x], T, str). Then for each i €
[€], update
sk, = {

The updated signing key is sk’ = (17, {sk; };c[¢)).

e Corruption query: For Corruption query, C recovers the
matching pair (¢, w) from L; and returns the previously
computed 2P

e Forgery. If adversary B forges a valid tuple (m,r, h,S,i*)
in a time ¢; with probability €; > 10(gs + 1)(gs + gn,)/p:
where the message m has prefix m/, according to the
forking lemma [47], C can replay adversary 3 with different
choices of random elements for hash function Ao and obtain
two valid tuples (m, r, h’, Sy,i*) and (m,r, h”, Se,i*), with
h'#£h" in expected time t5<120686¢p,t1/€;1.

sk;, ifT'[i]=0
1, otherwise

Now a standard argument for outputs of the forking lemma
can be applied as follows: C recovers the pair (i*,w*) from
L4, and note that w* # wy, ..., w,_1 with probability at least
1—7/p. Since both forgeries satisfies the verification equation,
we can obtain the following relations:

"

e(S1, Qs)-e(Pr, Ppub)h, = e(Sa, Qi-)-e(Py1, Ppup)"",
where ;- = hl(i*)ﬁg + Ppub = (w* + a)]52. Then we have

e((h" —h)™1- (81— 52),Q) = G(Plvppub)’

and hence T* = (P — (h" — h/)"1.(81 — Sy))/w*

(P, — wggpl)/w* = w*lJraPI = wf(i)aPl From T, C can
proceed as in [14] to extract ¢* = w*lJr Py: C first writes
the polynomial f as f(yg = y(y)(y + w*) + y_1 for some

=
7=

polynomial ~(y) = >-7_; vy" and some v_; € Z; by using
long division method, and eventually computes

1

T—2
1 .
U*:—T*—E (o' P, P,
1 [2 Y Z/J(2)] o+ o 1
and returns (w*,o*) as the solution to the 7-SDH instance.
|

The combination of the above lemmas yields Theorem 1.

APPENDIX B
Security Proof of Theorem 2

Proof: The proof we show below is a straightforward
reduction from the security of tag-based PS to the counterpart
of HIBS. Suppose there exists an adversary A against the
security of tag-based PS, we construct a simulator B that
simulates an attack environment and uses the forgery from
A to create a forgery for the HIBS scheme. The simulator 55
can be described as follows:

e Invocation. 3 obtains mpk of the HIBS scheme, and is
required to return a forgery satisfying the conditions in
Definition 5.

e Setup. B sets up a Bloom filter ({H;};cp,T)
BF.Gen(¢, k), and initializes the tag 7 = 0" and Qsign
B sends vk = (mpk, {H}} c[x)) to adversary A.
e Query Phase. 3 answers adaptive signing and puncturing
queries from adversary A as
o Signature query: On input message m with pre-
fix m’ from adversary A, B first checks whether
BF.Check(H,T,m') = 1 and outputs L in this case.
Otherwise, note that BF.Check(H, T, m’) = 0 means
there exists at least one index %;- € {i1,...,4x} such that
T[ij«] = 0, where i; = H;(m)(j € [k]). Then it picks
a random index i;- such that T'[i;«] = 0, and obtains
signature ¢ by querying (7]i;«,m) the signing oracle of
HIBS. B sends (7|i;«,0) to adversary A and adds (m, 7)
to set Qsig.

o PuncStr query: On input a string str, B updates
T=BF.Update
({H;}jemw)» T, str) and Py = Poye U {(str, 7)}.

o PuncTag query: On input tag 7, B resets 7' = 0', updates
Pog =PogU{r}and 7 =7+ 1.

e Challenge Phase: A sends the challenge puncturing
(m',7*) to B, and can still submit the above queries to

«—
= 0.

o Corruption query: If (m/,7*) € Py or 7* € Pg, then
B sends the current sk to adversary A using the Delegate
oracle in HIBS security experiment.

e Forgery: Adversary A outputs forgery tuple (m
m'...,7*|i*, o), such that (m,7*) ¢ Qs and Verify(mpk,
m,7*,0) = 1.

According to the corruption rules, adversary A does not
obtain secret keys corresponding to identity 7*|i*, so the tuple
(m, 7*|i*,0g) is a valid forgery corresponding to the identity
7*|i* in HIBS. This concludes the proof.]

APPENDIX C
Revised Ouroboros Praos Protocol m{p,g

In Figure 3, we describe the revised protocol WéPos’ where
we replace the functionality Fkgs in the original mgpos with
the Fpg proposed in this paper to resist LRSL attacks, and
others remain unchanged.

APPENDIX D
Tag-based Puncturable Signature in Proof-of-Stake
Blockchain

In this part, we show tag-based puncturable signature can
be deployed in proof-of-stake blockchain under some reason-
able assumption. In general, if the slot sl; contained in signed
message m is bound to one specific tag and moreover this
binding relation is publicly checkable, tag-based puncturable
signature can guarantee the same security as the original
puncturable signature.

Note that, the tag-based PS scheme itself is not enough
for PoS blockchain to resist LRSL attacks. In more detail, as
described in Section IV.A, the adversary with the leaked secret
key in current tag 7 can forge signatures on any messages
in any future tag 7" > 7. When applied to PoS blockchain
protocols, assuming the leader U, issue a new block B; by
o = Sign(sk;, (sl;, st;, d, By)) with the current tag 7 encoded
in o, then with sk; in tag 7 the adversary can forge a valid

16

signatures o’ = Sign(sk}, (sl;, st;, d’, BL)) with the tag 7/ > T
in the same slot s/; and construt a fork at s/;, even though
(sl;,7) has been punctured. To remedy this problem, we let
all miners maintain the current tag of U, so that they can
reject o’ if the embedded tag is not the correct 7. Next we
show how to achieve this additional check in implementation.

In proof-of-stake blockchain application, if stakeholder U;
is chosen as leader in slot sl;, he signs the block B; by ¢ =
Sign(sk;, (sl;, sti, d, By)), and the current tag 7 is encoded
in the o itself. The tag 7 will be updated to 7 + 1 if and
only if the signing times of U; denoted by Ny, reaches max
which denotes the maximum number of puncturing times,
in other words, T | Ny, /max|. Then we let each user
(specifically, the miner) maintains one list I consisting of
entries (PKy,, Ny,) of all users, where PKy, denotes the
public key of U;, and Ny, is initialized to be 0 and updated
by Ny, = Ny, + 1 once one signature on a new block issued
by the leader U; is generated. Then the signature on message
m with tag 7 and public key PKy;, would be accepted, if and
only if the Verify algorithm in TPS returns 1 and moreover
7 = | Ny,/max| for (PKy,, Ny,) € L. In fact, our solution
is inspired by the idea of maintaining UTXO in blockchain,
where fully validating nodes must maintain the entire set
of UTXO [45] and each entry in UTXO has similar form
indicating the available coins for one address.

By this binding, tag-based puncturable signature can per-
fectly achieve the property puncturable signature provides
for proof-of-stake blockchain. Specifically, for the additional
check, the construction of tag-based puncturable signature in
Section IV.B is extended as follows:

1) As an initialization, we set the maximum of puncturing
max according to the desirable error probability (i.e.,
max = n, where n denotes the number of elements to be
added in Bloom filter), and set L = 0.

The entry (PKy,, Ny,) for the leader U; in the public L
is updated by the miners after U; generates one block by
Sign() algorithm.

The verification algorithm is renewed as follows. On input
vk = (mpk, {H};};cx). a message m with prefix m/, a
signature o = {7|i;«,0g}, it outputs 1 if the following
conditions hold: (1) 7 = | Ny, /max], (2) i;+ € {H;(m’) :
j € [k]}, and (3) HIBVerify(mpk, 7|i;-, m, og) = 1
Otherwise, it outputs 0.

Since only a publicly verifiable check is added, the security
property of tag-based PS schemes in Section IV.B still holds
and can guarantee that the adversary cannot forge signatures
at the punctured slot. Then we present an ideal functionality
Frps of tag-based puncturable signature scheme in Figure 4
and show any property of the protocol that we prove true in
the hybrid experiment (including common prefix, chain quality
and chain growth) will remain true in the setting Fkgs is
replaced by Frpg. In addition, we show that Fypg can be
realized securely by the tag based puncturable signature. The
details are similar to those in Section V.A, and we omit them
here.

2)

3)

APPENDIX E
Security Proof of Theorem 3

Proof: Given the event of violating one of common prefix,
chain quality and chain growth in an execution of m{p ¢ With

/
Protocol 7gp.g

The protocol 7¢pg is run by stakeholders, initially equal to Uy,--- ,U, interacting among themselves and with ideal
functionalities Finit, FVRF. Fps. Fbsig. H over a sequence of slots S = {sly,--- ,sl,}. Define T; £ 20 g ¢ (;) as the
threshold for a stakeholder U;, where «; is the relative stake of stakeholder U;, fyge denotes the output length of Fyre,
f is the active slots coefficient and ¢r(a;) =1 — (1 — f)*.

Then 7pp.g proceeds as follows:

Initialization. The stakeholder U; sends (KeyGen, sid, U;) to Fyrr, Fps and Fpgig; receiving (PublicKey, sid, vy,
(PublicKey, sid,v}") and (PublicKey, sid, U?SIg), respectively. Then, in case it is the first round, it sends (ver_keys,
sid, Uy, v}™, o}, vf”g) to FiniT (to claim stake from the genesis block). In any case, it terminates the round by returning
U;, v, v, vf“g) to Z. In the next round, it sends (genblock_req, sid,U;) to Finit, receiving (genblock, sid, Sg,n)
as the answer. If U; is initialized in the first round, it sets the local blockchain C = By = (Sg,7) and its initial internal
state st = H(By). In case U; is initialized after the first round, it sets its initial state to st = H (head(C)) where C is the
initial local chain provided by the environment.

Chain Extension. After initialization, for every slot sl; € S, every online stakeholder U; performs the following steps:

1) U; receives from the environment the transaction data d € {0,1}* to be inserted into the blockchain.

2) U; collects all valid chains received via diffusion into a set C, pruning blocks belonging to future slots and verifying
that for every chain C' € C and every block B’ =(st’,d’, sl’, BL,0;/) € C' it holds that the stakeholder who created
it is in the slot leader set of slot si’ (by parsing B as (Us,y’,n’) for some s, verifying that Fygr responds to

S

new local chain and sets state st = H (head(C’)).
3)

(Verify, sid,n||sl’, y', =, v¥™) by (Verified, sid,n|/sl’, y',7’, 1), and that ¢/’ < T}), and that Fpg responds to (Verify,
sid, (sl',st’,d’', BL), 0,05 by (Verified, sid, (sl',st’,d’, BL),1). U; computes C’ = maxvalid(C, C), sets C’ as the

U; sends (EvalProve, sid,n)||sl;) to Fyrr, receiving (Evaluated, sid,y,). U; checks whether it is in the slot leader
set of slot sl; by checking that y < T;. If yes, it generates a new block B = (slj, st,d, Br,0) where st is its

current state, d € {0,1}* is the transaction data, B, = (U;,y,7) and o is a signature obtained by sending (PSign,
sid, U;, (slj, st,d, By)) to Fpg and receiving (Signature, sid, (sl;, st,d, Bx),0). U; computes C' = C|B, sets C’ as

the new local chain and sets state st = H (head(C’)). Finally, if U; has generated a block in this step, it diffuses C’.

Signing Transactions. Upon receiving (sign_tx, sid’,tx) from the environment, U; sends (Sign, sid, U;,tx) to Fpsig,
receiving (Signature, sid, tx, o). Then, U; sends (signed_tx, sid’,tx, o) back to the environment.

. . /
Figure 3: Protocol mgp g

access to Fpg by adversary A and environment Z, we can
construct an adversary A’ so that the corresponding event
happens with the same probability in an execution of mgpes
with access to Fkgs (c.f. Appendix F-C) by adversary A’
and environment Z, where mspos is original protocol [23].
Specifically, the adversary A’ simulates A as follows:

e Upon receiving (KeyGen, sid, Ug) from Fpg, A’ runs as in
the case of Fkgs for key generation, sets counter ke, = 1
and P = (), and sends (PublicKey, sid, Us,v) to Fps.

e Upon receiving (Sign, sid, Us,m = m’---) from Fpg, A’
ignores the request if m’ € P. Otherwise, it sets j = Ketr
and computes the signature o as in the case of Fkgs. Then
A’ updates the corresponding secret key, sets counter key, =
j+1land P = PUm/, and sends (Signature, sid, Us, m, o)
to Fps.

e Upon receiving (Verify, sid, m,o,v’) from Fpg, A" ver-
ifies the signature as in the case of Fkgs, and sends
(Verified, sid, m, ¢) to Fps.

Note that in an execution of 7§, with access to Fpg, m’
in Fpg equals sl (i.e, the slot parameter of the last block) (c.f.
Definition 11), while in the execution of 7sp,s With access to
Fkes, the input to signature algorithm is (Usign, sid, m
sl|]..., sl), which means that the update of punctured set P is
consistent with that of counter k.. In other words, when one
signing happens on m containing some prefix s/, P adds sl in
Fpg while ke, increases by 1 in Fggs.

17

Therefore, A’ can simulate the execution for A. If the
environment Z can distinguish a real execution with A and
Tépos (accessing Fpg) from an ideal execution that provides the
properties of common prefix, chain quality and chain growth,
then Z can also distinguish a real execution with A’ and
Tspos (accessing Fyes) from an ideal execution, which means
that any winning advantage of the adversary against common
prefix, chain quality and chain growth in 7§, ¢ Wwith access to
Fps immediately implies at least the same advantage in 7spos
with access to JFkes. [|

APPENDIX F
Ideal Functionality

A. Ideal Functionality FinT

In [23], the genesis stake distribution Sy and the nonce
7 (to be written in the genesis block Bj) are determined by
the ideal functionality FnT which we describe in Figure 5.
In addition, Fyy7 also incorporates the diffuse functionality
which allows for adversarially-controlled delayed delivery of
messages diffused among stakeholders and would be implicitly
used by all parties to send messages and keep synchronized
with a global clock.

B. Ideal Functionality Fpsig

In Figure 6, we describe the ideal functionality Fpgig as
presented in [23], and it is shown that EUF-CMA secure

Functionality Frps

Fpg interacts with a signer Ug and stakeholder U; as follows:

Key Generation. Upon receiving a message (KeyGen, sid, Ug) from a stakeholder Ug, verify that sid = (Ug, sid’)
for some sid’. If not, then ignore the request. Else, send (KeyGen,sid,Ug) to the adversary. Upon receiving
(PublicKey, sid, Ug,v) from the adversary, send (PublicKey, sid,v) to Ug, record the entry (sid,Us,v), and set
Py, = Prag = 0 and Ny, = 0.

Sign and Puncture. Denote by 7, the current tag. Upon receiving a message (PSign, sid,Us, m = m/...) from Usg,

verify that (sid,Ug,v) is recorded for some sid and (m',7.u,) ¢ Pa. If not, then ignore the request. Else, send
(Sign, sid, Us, m, Teur) to the adversary.
Upon receiving (Signature, sid, Us, m, (Teur,0s)) from the adversary, verify that no entry (m, (Teur,0s),v,0) is
recorded. If it is, then output an error message to Us and halt. Else, send (Signature, sid, m, (Teur, 0g)) to Usg, record
the entry (m, (Teur,0s),v,1), and set Py = Par U (m/,7eyr) and Nyg = Ny, + 1. If Ny ,%max = 0, then set
Prag = Prag U {Teur} and 7eyr = 7Teyr + 1, where max denotes the maximum number of puncturing times as mentioned
above.

Signature Verification. Upon receiving a message (Verify, sid,m = m/...,0 = {7,05},v’) from some stakeholder U;
do:

1) If v = v and the entry (m,o,v, 1) is recorded, then set f = 1. (This condition ensures completeness: If the public
key v’ is the registered one and o is a legitimately generated signature for m, then the verification succeeds.)

2) Else, if v' = v, the signer is not corrupted, and no entry (m, o', v, 1) for any ¢’ is recorded, then set f = 0 and record
the entry (m,o,v,0). (This condition ensures unforgeability: If the public key v’ is the registered one, the signer is
not corrupted, and m is never by signed by the signer, then the verification fails.)

3) Else, if there is an entry (m,o,v’, f’) recorded, then let f = f’. (This condition ensures consistency: All verification
requests with identical parameters will result in the same answer.)

4) Else, if 7 < Teyr, OT T > Tour, OF {7 = Teyr } A {(M/, Teur) € Pawr) } then let f = 0 and record the entry (m, 0,v’,0).
Otherwise, send (Verify, sid, m,o,v’) to the adversary. Upon receiving (Verified, sid, m, ¢) from the adversary, let
f = ¢ and record the entry (m,o,v’, ¢). (This condition ensures that the adversary is only able to forge signatures
of corrupted parties on messages with unpunctured prefix in period with correct tag.)

Output (Verified, sid, m, f) to U;.

Figure 4: Functionality Frps

Functionality Finit

FiniT incorporates the delayed diffuse functionality and is parameterized by the number of initial stakeholders n and their
respective stakes si, ..., S,. FiNiT interacts with the stakeholders Uy, ..., U,, as follows:

— In the first round, upon a request from some stakeholder U; of the form (ver_keys, sid, U;
public keys tuple (U;, v!, v dsig

[SRS e

vrif _ ps _ dsigy .
o™ v, v, Y), it stores the

v; ~) and acknowledges its receipt. If any of the n stakeholders does not send a request

of this form to FyNT, it halts. Otherwise, it samples and stores a random value 7 <$4 {0,1}* and constructs a genesis
dsi dsi
block (Sg,n), where Sg = ((Ul,v‘l’rf,v‘fs,vls'g,sl), eoey (U, 0V 0P8 'g,sn)).

ny Yn o n7v’ﬂ

— In later rounds, upon a request of the form (genblock_req, sid, U;) from some stakeholder U; from some stakeholder
U;, Finit sends (genblock, sid, Sy, n) to Us.

Figure 5: Functionality FiniT

signature schemes realize Fpgig in [17]. This functionality is
used to model signatures on transactions in this paper.

C. Ideal Functionality Fges

In Figure 7, we describe the ideal functionality Fkgs
presented in [23], where Fkgs is used to sign the block.

Key evolving signature schemes formalize the notion of
forward secure signature schemes. In forward secure signature
schemes, compromise of the current secret key does not enable
an adversary to forge signature pertaining to the past or rather
the honest users can verify the a given signature was generated
at a certain point in time, which can be guaranteed by evolving

18

the signing key after each signature is generated and erasing
the previous key in such a way that the actual signing key after
for signing a message in the past cannot be recovered.

Definition 13 (Key Evolving Signature Schemes). A key
evolving signature scheme is a quadruple of algorithms KES
= (Gen, Sign, Verify, Update), where:

1) Gen(1*,T) is a probabilistic algorithm which takes as
input a security parameter \ and the total number of
periods T and returns a pair (ski,vk), the initial secret
key and the public key;

2) Sign(m) takes as input the secret key sk; for the time

Functionality Fpsig

Fpsig interacts with a signed Ug and stakeholder Uy, ..., U, as follows:

Key Generation. Upon receiving a message (KeyGen, sid, Ug) from a stakeholder Ug, verify that sid = (Ug, sid’)
for some sid’. If not, then ignore the request. Else, hand (KeyGen,sid,Us) to the adversary. Upon receiving
(PublicKey, sid, Ug, v) from the adversary, send (PublicKey, sid, v) to Ug, record the entry (sid, Ug,v).

Signature Generation. Upon receiving a message (Sign, sid,Us, m) from Ug, verify that (sid,Ug,v) is recorded
for some sid. If not, then ignore the request. Else, send (Sign,sid,Us,m) to the adversary. Upon receiving
(Signature, sid,Ug, m, o) from the adversary, verify that no entry (m,o,v,0) is recorded. If it is, then output an
error message to Ug and halt. Else, send (Signature, sid, m, o) to Ug, and record the entry (m, o, v, 1).

Signature Verification. Upon receiving a message (Verify,sid,m,o,v’) from some stakeholder
(Verify, sid, m,0,v") to the adversary. Upon receiving (Verified, sid, m, ¢) from the adversary do:

1) If v’ = v and the entry (m, o, v, 1) is recorded, then set f = 1. (This condition guarantees completeness: If the public
key v’ is the registered one and o is a legitimately generated signature for m, then the verification succeeds.)

2) Else, if v' = v, the signer is not corrupted, and no entry (m, o’,v, 1) for any ¢’ is recorded, then set f = 0 and record
the entry (m,o,v,0). (This condition ensures unforgeability: If the public key v’ is the registered one, the signer is
not corrupted, and never signed m, then the verification fails.)

3) Else, if there is an entry (m,o,v’, f) recorded, then let f = f’. (This condition ensures consistency: All verification
requests with identical parameters will result in the same answer.)

4) Else, Else, let f = ¢ and record the entry (m, o, v, ¢).

U;, hand

Output (Verified, sid, m, f) to U.

Figure 6: Functionality Fpgg

period j < T and a message m, outputting a signature
o; on m for period j, and the period j is encoded in the
signature itself.

3) Verify(m, ;) is a deterministic verification algorithm that
takes as input a public key vk, a message m and a signature
o, outputs 1 if o is valid on m for time period j and 0
otherwise.

4) Update(sk;) is a secret key update algorithm that takes as
input a secret key sk; for the current period j and outputs
a new secret key skj;1 for time period j + 1.

The forward security of key evolving security is as follows:

Definition 14 (Forward Security). Formally, let the forger
F = (Fema, Frorge). Fema has access to a signing oracle with
adaptively chosen messages, and outputs (CM,b), where CM
is the set of queried messages and b is the break-in time period.
Given CM, sign(C M) and the signing key sky, for time period
b, Frorge outputs (m, ;) < Fiorge(C M, sign(CM), sky). F is
successful if (m,j) ¢ CM, j <b and Verify(m,o;) = 1.

A key evolving signature scheme KES is forward secure if
the success probability of F is negligible in \.

In [23], it is shown that a construction mx gg intuitively
constructed from a key involving signature scheme such as
[33][43] can realize Fkgs.

D. Ideal Functionality Fygrr

In Figure 8, we describe the ideal functionality Fygrr
presented in [23]. This functionality is used as a private test
that is executed locally to decide whether a certain participant
of the protocol is eligible to issue a block. Fygr is used to
capture adaptive corruptions in [23][36] by guaranteeing that
the adversary cannot predict the eligibility of a stakeholder to

19

produce a block prior to corrupting it, thus he/she cannot gain
an advantage by corrupting specific stakeholders.

Definition 15 (Verifiable Random Function). A function
family F (.):{0,1}!—={0,1}% is a family of VRFs if there
exists algorithms (Gen,Prove,Ver) such that (i.) Gen(1%)
outputs a pair of keys (VRF .pk,

VRF.sk), (ii.) Proveygrr.si(x) outputs a pair
(Fvrp.sk(),mver sk(z)), where Fyrp si(z) € {0, 1}var
is the function value and wygrp sx(x) is the proof of
correctness, and (1ii.) Verygp o (2, y, Tver.sk(x)) verifies
that y = Fygp s, (x) using the proof myrr sk(x), outputting
1 if y is valid and 0 otherwise. Additionally, we require the
following properties:

1) Uniqueness: no values (VRF .pk, Y,
v, TVRF.sk(Z), TvRF.sk(2)') can satisfy
Verver pi(z, Y. TvRE.sk(T))= VerVRF.pk(xv Yy mvre.sk())
=1 when y # vy

z,

2) Provability: if (y, mvrr.sk(x)) = Provevpr si(z), then
we have VervRF_pk(xvyvﬂ-VRF.sk:(x)) =1

3) Pseudorandomness: for any PPT adversary A, set yo =
{0,1}v, 4 = Fyrp.si(z) and b € {0, 1}, then provide
yp and the Prove oracle to A, then Prib = V|0 <«
A(ys, Prove)] < 1/2 + negl(M).

In addition, in [23], another property called Unpre-
dictability is also needed to guarantee by VRF to capture
stronger attacks, namely if provided with an input that has
high entropy, the output of the VRF is unpredictable even
when the adversary is allowed to generate the secret key and
public key pair. It was shown how to realize the Fygr in the
random oracle based on the 2-Hash-DH verifiable oblivious
PRF construction of [34] and we omit further details here.

Functionality Fkes

Fkes is parameterized by the total number of signature updates 7', interacting with a signer Ug and stakeholder U; as

follows:

Key Generation. Upon receiving a message (KeyGen, sid, Ug) from a stakeholder Ug, verify that sid = (Ug, sid’)
for some sid’. If not, then ignore the request. Else, send (KeyGen,sid,Ug) to the adversary. Upon receiving
(PublicKey, sid, Ug, v) from the adversary, send (PublicKey, sid, v) to Ug, record the entry (sid, Ug, v) and set counter
Ketr = 1.

Sign and Update. Upon receiving a message (USign, sid, Us, m, j) from Ug, verify that (sid,Ug,v) is recorded for
some sid and that ke, < j < T. If not, then ignore the request. Else, set ket = j + 1 and send (Sign, sid, Us, m, j)
to the adversary. Upon receiving (Signature, sid, Us, m, j, o) from the adversary, verify that no entry (m,j,o,v,0) is
recorded. If it is, then output an error message to Ug and halt. Else, send (Signature, sid, m, j,o) to Ug, record the
entry (m,j,0,v,1).

Signature Verification. Upon receiving a message (Verify, sid, m, j,o,v’') from some stakeholder U; do:

1) If v/ = v and the entry (m, j,0,v,1) is recorded, then set f = 1. (This condition ensures completeness: If the public
key v’ is the registered one and o is a legitimately generated signature for m, then the verification succeeds.)

2) Else, if v' = v, the signer is not corrupted, and no entry (m, j,0’,v,1) for any ¢’ is recorded, then set f = 0 and
record the entry (m, j, o, v,0). (This condition ensures unforgeability: If the public key v’ is the registered one, the
signer is not corrupted, and m is never by signed by the signer, then the verification fails.)

3) Else, if there is an entry (m, j, o,v’, f') recorded, then let f = f’. (This condition ensures consistency: All verification
requests with identical parameters will result in the same answer.)

4) Else, if j < ketr, then let f = 0 and record the entry (m, j, o, v, 0). Otherwise, if j = ke, send (Verify, sid, m, j, o, v")
to the adversary. Upon receiving (Verified, sid,m, j,¢) from the adversary, let f = ¢ and record the entry
(m,j,0,v',¢). (This condition ensures that the adversary is only able to forge signatures under keys belonging
to corrupted parties for time periods corresponding to the current or future slots.)

Output (Verified, sid, m, j, f) to Uj.

Figure 7: Functionality Fggs

Functionality FVRF

JFvRre interacts with stakeholder Uy, ..., U,, as follows:

Key Generation. Upon receiving a message (KeyGen, sid) from a stakeholder U;, verify that sid = (U;, sid’) for some
sid’. If not, then ignore the request. Else, hand (KeyGen, sid, U;) to the adversary. Upon receiving (PublicKey, sid, U;, v)
from the adversary, if U; is honest, verify that v is unique, record the pair (U;,v) and return (PublicKey, sid, v) to U;.
Initialize the table T'(v,.) to empty.

Malicious Key Generation. Upon receiving a message (KeyGen, sid,v) from S, verify that v has not being recorded
before; in this case initialize table T'(v,.) to empty and record the pair (S,v).

VRF Evaluation. Upon receiving a message (Eval, sid, m) from U;, verify that some pair (U;, v) is recorded. If not, then
ignore the request. Then, if the value T'(v,m) is undefined, pick a random value y from {0, 1}*%F and set T'(v,m) = (y, 0).
Then output (Evaluated, sid, y) to P, where y is such that T'(v,m) = (y, .S) for some S.

VRF Evaluation and Proof. Upon receiving a message (EvalProve, sid, m) from U;, verify that some pair (U;,v)
is recorded. If not, then ignore the request. Else, send (EvalProve, sid,U;,m) to the adversary. Upon receiving
(Eval, sid, m,) from the adversary, if value T'(v,m) is undefined, verify that 7 is unique, pick a random value y
from {0, 1}*"* and set T'(v,m) = (y, {n}). Else, if T(v,m) = (y, S), set T'(v,m) = (y, S U {x}). In any case, output
(Evaluated, sid, y,) to Us.

Malicious VRF Evaluation. Upon receiving a message (Eval, sid,v,m) from S for some v, do the following. First, if
(S,v) is recorded and T'(v,m) is undefined, then choose a random value y from {0, 1}*# and set T'(v,m) = (y,).
Then, if T'(v,m) = (y, S) for some S # 0, output (Evaluated, sid, y) to S, else ignore the request.

Verification. Upon receiving a message (Verify, sid, m,y, 7, v") from some party P, send (Verify, sid, m,y,w,v") to the
adversary. Upon receiving (Verified, sid, m,y, 7, v’) from the adversary do:

1) If v = v for some (U;,v) and the entry T(U;, m) equals (y,S) with = € S, then set f = 1.

2) Else, if v = v for some (U;,v), but no entry T'(U;,m) of the form (y, {...,7,...}) is recorded, then set f = 0.
3) Else, initialize the table T'(v’,.) to empty, and set f = 0.

Output (Verified, sid, m,y, 7, f) to P.

Figure 8: Functionality Fyrr

20

