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Abstract

In a traitor tracing (TT) system for n users, every user has his/her own secret key. Content providers
can encrypt messages using a public key, and each user can decrypt the ciphertext using his/her secret
key. Suppose some of the n users collude to construct a pirate decoding box. Then the tracing scheme
has a special algorithm, called Trace, which can identify at least one of the secret keys used to construct
the pirate decoding box.

Traditionally, the trace algorithm output only the ‘index’ associated with the traitors. As a result,
to use such systems, either a central master authority must map the indices to actual identities, or there
should be a public mapping of indices to identities. Both these options are problematic, especially if
we need public tracing with anonymity of users. Nishimaki, Wichs, and Zhandry (NWZ) [Eurocrypt
2016] addressed this problem by constructing a traitor tracing scheme where the identities of users are
embedded in the secret keys, and the trace algorithm, given a decoding box D, can recover the entire
identities of the traitors. We call such schemes ‘Embedded Identity Traitor Tracing’ schemes. NWZ
constructed such schemes based on adaptively secure functional encryption (FE). Currently, the only
known constructions of FE schemes are based on nonstandard assumptions such as multilinear maps and
iO.

In this work, we study the problem of embedded identities TT based on standard assumptions. We
provide a range of constructions based on different assumptions such as public key encryption (PKE),
bilinear maps and the Learning with Errors (LWE) assumption. The different constructions have different
efficiency trade offs. In our PKE based construction, the ciphertext size grows linearly with the number
of users; the bilinear maps based construction has sub-linear (

√
n) sized ciphertexts. Both these schemes

have public tracing. The LWE based scheme is a private tracing scheme with optimal ciphertexts (i.e.,
log(n)). Finally, we also present other notions of traitor tracing, and discuss how they can be build in a
generic manner from our base embedded identity TT scheme.

1 Introduction

Traitor tracing (TT) systems, as introduced by Chor, Fiat, and Naor [CFN94], studied the problem of
identifying the users that contributed to building a rogue decoder in a broadcast environment. In a TT
system an authority runs a setup algorithm on input a security parameter λ, and the number of users n in
the system. This results in generation of a global public key pk, a tracing key key, and n private user keys
(sk1, sk2, . . . , skn). Each private key is distributed to an authorized user in the system with the guarantee that
it can be used to decrypt any ciphertext ct encrypting a message m under the global public key pk. The first
security property satisfied by such systems is that the message will be hidden from every unauthorized user,
that is one who does not have access to any secret key. The most salient feature of a traitor tracing system
is the presence of an additional tracing algorithm which is used to identify corrupt/coerced users. Suppose
an attacker corrupts some subset S ⊆ {1, . . . , n} of authorized users and produces a special decryption
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algorithm/device D that can decrypt the ciphertexts with some non-negligible probability. The tracing
property of the system states that the tracing algorithm, on input the tracing key key and oracle access to
device D, outputs a set of users T where T contains at least one user from the colluding set S (and no users
outside of S).

The initial traitor tracing systems allowed bounded collusions [CFN94, SW98, KD98, BF99, CFNP00,
SSW01, KY02a, KY02b, PST06, CPP05, ADM+07, FNP07, BP08, LPSS14, ABP+17]; here we focus on
collusion resistant systems [BSW06, BW06, GKSW10, Fre10, BZ14, NWZ16, GKW18, CVW+18]. While
the concept of traitor tracing was originally motivated by catching corrupt users in broadcast systems,
the notion of traitor tracing has numerous other applications such as transmitting sensitive information to
first responders (or military personnel etc) on an ad-hoc deployed wireless network, accessing and sharing
encrypted files on untrusted cloud storage etc. This propels us to study the problem of traitor traitor more
finely with a dedicated focus on understanding the issues that prevent a wider adoptability of such systems.

One major hurdle is that, as per the traditional description of the problem, the tracing portion (that is
identifying the corrupt users) is inherently tied to the central authority (key generator) in the system. This
is due to the fact that the authority needs to keep track of the users who have been issued private keys, and
thus it needs to maintain an explicit mapping (as a look-up table) between the user identification information
and the indices of their respective private keys. Otherwise, the output of the tracing algorithm will simply be
a subset T of the user indices which can not be linked to actual users in the system, thereby introducing the
problem of accountability and circumventing the whole point of tracing traitors. In addition, this not only
constrains the authority to be fully stateful (with the state size growing linear with the number of users) by
necessitating that the authority must record the user information to key index mapping, but also restricts
the authority to be the only party which can perform any meaningful notion of tracing if (authorized) user
privacy/anonymity is also desired.1 Therefore, even if the TT system achieves public traceability, that is
the tracing key key can be included as part of public parameters, no third party would be able to identify
traitors in system due to lack of a public mapping as described above.

Furthermore, in certain situations the user information to key index mapping might be undetermined.
For example, suppose all the users in the system obtain their private decryption keys without revealing any
sensitive identification information to the key generating authority. (Note that this can be achieved by some
sort of two party computation-based transfer between the user and authority.) In such a scenario, it is not
clear how tracing would work since the authority would not be able to point to any user in the system as a
traitor because the key index to user identity mapping is unknown, even if the tracing algorithm correctly
outputs an index of some coerced secret key.

These observations lead to the following question —

Is it possible to embed the user identification information in the private decryption keys such that during
tracing the algorithm not only finds the corrupted key indices, but also extracts the corresponding user

identities from the pirate decoding device?

Formally, this is captured by giving an additional parameter κ as an input to the setup algorithm, where κ
denotes the length of the user identities that can be embedded in the private keys. The setup now outputs
a master secret key msk, instead of n private user keys, where msk is used to generate private keys ski,id for
any index-identity pair (i, id) ∈ [n] × {0, 1}κ. And the tracing algorithm outputs a set of ‘user identities’
T ⊆ {0, 1}κ where id ∈ T indicates that id was one of the corrupted users.2 This interpretation of traitor
tracing resolves the above issues of statefulness, third-party traceability, and maintaining a private look-up
table for providing user anonymity.

The above-stated question of traitor tracing with embedded information in secret keys was first stud-
ied by Nishimaki, Wichs, and Zhandry [NWZ16]. Their approach was to directly work with the existing
private linear broadcast encryption (PLBE) framework [BSW06], however that resulted in solutions based

1Although the problem of statefulness can be avoided by posting the identity of all authorized users along with their respective
(decryption key) indices on a public-bulletin board, such a solution is particularly undesirable in practice as the user identities
might include highly sensitive information such as passport information, driving license number, etc.

2Note that the tracing algorithm could be additionally asked to output the corresponding user index along with the identity,
but since the index i ∈ [n] could itself be encoded in the identity id using only log(n) bits therefore this seems unnecessary.
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on non-standard assumptions. Concretely, they assume existence of an adaptively-secure collusion-resistant
public-key functional encryption (FE) scheme with compact ciphertexts. Currently all known instantiations
are either based on multilinear maps [GGH13, CLT13, GGH15, CLT15], or indistinguishability obfusca-
tion [BGI+01, BGI+12]. An important open question here is whether the above problem of embedded
information traitor tracing can be solved from standard assumptions such as one-way functions, bilinear
assumptions, learning with errors etc. In this work, we study this question and provide a general framework
for solving this problem with a wide range of parameter choices and assumption families.

Our Results. We give new constructions for traitor tracing systems with embedded identity tracing under
the following assumptions.3

Public-key encryption. Our first construction is that of an embedded identity TT scheme with public
traceability that relies only on regular PKE schemes. The ciphertext size and length of public key
grows linearly in both the number of users n as well as the length of embedded identities κ. This is a
natural generalization of the basic TT scheme based on PKE, and is provided to serve as a baseline
benchmark for comparing efficiency with other instantiations.

Bilinear maps. Second, we show that using a more algebraic approach via bilinear maps we can build an
embedded identity TT scheme with a square-root speed-up w.r.t. the PKE-based scheme. Concretely,
the size of ciphertexts and length of public key grows linearly in

√
n and

√
κ. And the scheme still

achieves public traceability.

Learning with errors. Lastly, we build a compact embedded identity TT scheme secure under the learning
with errors (LWE) assumption. Here compactness means that the size of ciphertexts and public key
scales polynomially with log(n) and κ. On the flip side, the tracing key needs to be private, that is it
only achieves private key traceability.

These are summarized in Table 1. In the next section we elaborate more on our framework and general
methodology for breaking down the problem. Below we discuss our results in more detail.

Assumption |ct| |pk| |sk| Tracing Mode Unbounded

PKE n · κ · poly(λ) n · κ · poly(λ) κ · poly(λ) Public No
Bilinear

√
n · κ · poly(λ)

√
n · κ · poly(λ) log n+ κ+ poly(λ) Public No

LWE (log n+ κ) · poly(λ) poly(λ) (log n+ κ) · poly(λ) Private Yes

Table 1: Embedded Identity Traitor Tracing.

In this work, we provide three new pathways for realizing embedded identity TT systems, and notably
the first constructions relying only on standard assumptions. Our first two constructions from public-key
encryption and bilinear maps are novel, where our bilinear map based scheme draws ideas from the trace and
revoke scheme of Boneh-Waters [BW06]. And, for building an LWE-based solution we adapt the recently
introduced Mixed Functional Encryption (Mixed FE) schemes [GKW18, CVW+18] in our framework to get
the desired results.

Furthermore, a very important and useful piece of our approach is that it allows us to avoid subexponential
security loss in the transformation (due to complexity leveraging) if we allow an exponential number of users
in the system and the intermediate primitives used are only selectively-secure. Particularly, this is used in
our LWE-based solution which relies on mixed FE for which most of the current constructions are only
known to achieve selective security. (For example, the first mixed FE construction by Goyal, Koppula, and
Waters [GKW18] and two of three follow-up constructions by Chen et al. [CVW+18] were proven to be
only selectively-secure.) Therefore, our approach also answers the question whether adaptivity is necessary

3Nishimaki, Wichs, and Zhandry [NWZ16] used the term “flexible” traitor tracing to refer to schemes where the space of
identities that can be traced is exponential. Here we call such TT systems as embedded identity TT schemes (or EITT for
short).
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for building embedded identity TT schemes if the system is required to support an unbounded number of
users. Note that in the prior work of Nishimaki, Wichs, and Zhandry [NWZ16], it was crucial that they
start with an ‘adaptively-secure’ FE scheme for security purposes, but here our approach helps in bypassing
the adaptivity requirement. Next, we provide a detailed technical overview of our results.

2 Technical Overview

We start by formally defining the notion of embedded identity traitor tracing (EITT) systems. In order to
capture a broader class of traitor tracing systems, we consider three different variants for embedded identity
tracing — (1) indexed EITT, (2) bounded EITT, and (3) full (unbounded) EITT. Although the notion of
full/unbounded EITT is the most general notion we define and therefore it is also likely the most desirable
notion, we believe that both indexed and bounded EITT systems will also find many direct applications as
will be evident later during their descriptions. In addition, we also show direct connections between all three
notions by providing different transformations among these notions.

Next, we move on to realizing these EITT systems under standard assumptions. To that end, we first
introduce a new intermediate primitive which we call embedded-identity private linear broadcast encryption
(EIPLBE) that we eventually use to build EITT schemes. As the name suggests, the notion of EIPLBE
is inspired by and is an extension of private linear broadcast encryption (PLBE) schemes introduced in the
work of Boneh, Sahai, and Waters (BSW) [BSW06]. BSW introduced the notion of PLBE schemes as a
stepping stone towards building general TT systems. In this work, we show that the above-stated extension
of PLBE systems can be very useful in that it leads to new solutions for the embedded identity traitor tracing
problem.

Finally, we provide multiple instantiations of EIPLBE schemes that are secure under a variety of assump-
tions (PKE, Bilinear, and LWE). Using these EIPLBE schemes in the aforementioned transformation, we
can build various EITT systems with appropriate efficiency metrics.

2.1 Embedded Identity Traitor Tracing Definitions

Let us first formally recall the notion of standard traitor tracing (i.e., without embedding identities in the
secret keys). A traitor tracing system consists of four poly-time algorithms — Setup, Enc, Dec, and Trace.
The setup algorithm takes as input security parameter λ, and number of users n and generates a public key
pk, a tracing key key, and n private keys sk1, . . . , skn. The encryption algorithm encrypts a message m using
public key pk, and the decryption algorithm decrypts a ciphertext using any one of the private keys ski.
The tracing algorithm takes tracing key key, two messages m0,m1 as input, and is given (black-box) oracle
access to a pirate decoding algorithm D.4 It outputs a set S ⊆ [n] of users signalling that the keys skj for
j ∈ S were used to create the pirate decoder D. The security requirements are as described in the previous
section.

Let us now look at how to embed identities in the private user keys such that the tracing algorithm
outputs a set of identities instead. Below we describe the identity embedding abstractions considered in this
work. Throughout this sequel, κ denotes the length of identities embedded (that is, identity space is {0, 1}κ).

Indexed EITT. We begin with indexed EITT as the simplest way to introduce identity embedding func-
tionality in the standard TT framework is as follows. The setup algorithm takes both n and κ as inputs and
outputs a master secret key msk. Such systems will have a special key generation algorithm that takes as
input msk along with an index-identity pair (i, id) ∈ [n]×{0, 1}κ, and outputs a user key ski,id. When the ith

user requests a key then it can supply its identity id, and the authority runs key generation on corresponding
inputs to sample a secret key for that particular user.

4Traditionally, the tracing algorithm was defined to work only if the decoder box could decrypt encryptions of random
messages. However, as discussed in [GKRW18], this definition does not capture many practical scenarios. Therefore we work
with a broader abstraction where the trace algorithm works even if the decoder can only distinguish between encryptions of
two specific messages.
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Encryption, decryption, and tracing algorithms remain unaffected with the exception that the tracing
algorithm outputs a set of user identities S ⊆ {0, 1}κ instead.5 Now the IND-CPA and secure tracing
requirements very naturally extend to indexed EITT systems with one caveat that the adversary can only
obtain a user key for each index at most once in the traitor tracing game. Comparing this with standard TT
schemes in which each corrupted user receives a unique private key depending on its index, this constraint
on set of corruptible keys is a natural translation.

Looking carefully at the above abstraction, we observe that using such indexed systems in practice
would seem to resolve the ‘look-up table’ problem thereby allowing third party tracing, but the problem of
statefulness is not yet completely resolved. Concretely, the key generating authority still needs to maintain
a counter (that is log(n) bits) which represents the number of keys issued until that point. Basically each
time someone queries for a secret key for identity id, the authority generates a secret key for identity id and
index being the current counter value, and it increments the counter in parallel. This constraint stems from
the fact that for guaranteeing correct tracing it is essential that the adversary receives at most one key per
index i ∈ [n]. Although for a lot of applications indexed EITT might already be sufficient, it is possible that
for others this is still restrictive. To that end, we define another EITT notion to completely remove the state
as follows.

Bounded EITT. The idea behind bounded EITT is that now the input n given to the setup algorithm
represents an upper bound on the number of keys an adversary is allowed to corrupt while the system still
guarantees correct traceability. And importantly, the key generation algorithm now only receives an identity
id as input instead of an index-identity pair. Thus, the authority does not need to maintain the counter,
that is it does not need to keep track of number of users registered. Another point of emphasis is that
in a Bounded EITT system if the number of keys an attacker corrupts exceeds the setup threshold n, the
attacker may avoid being traced; however, even in this scenario tracing procedure will not falsely indict an
non-colluding user. In addition to being a useful property in its own right, the non-false indictment property
will be critical in amplifying to Unbounded EITT.

Interestingly, we show a generic transformation from any indexed EITT scheme to a bounded EITT
scheme with only a minor efficiency loss. More details on this transformation are provided towards the end
of this section. Looking ahead, this transformation only relies on the existence of signatures additionally.

Unbounded EITT. Lastly the most general notion of embedded identity traitor tracing possible is of
systems in which the setup algorithm only takes κ the length of identities as input, thus there is no upper
bound on the number of admissible corruptions set during setup time. Therefore, the adversary can possibly
corrupt an arbitrary (but polynomial) number of users in the system. In this work, we additionally provide
an efficient unconditional transformation from bounded EITT schemes to unbounded EITT schemes thereby
completely solving the embedded identity tracing problem. More details on this transformation are also
provided towards the end of this section.

Next, we move on to building the indexed EITT schemes under standard assumptions. As discussed before,
we first introduce the intermediate notion of EIPLBE.

2.2 Embedded-Identity Private Linear Broadcast Encryption

Let us start by recalling the notion of private linear broadcast encryption (PLBE) [BSW06]. Syntactically,
a PLBE scheme is same as a traitor tracing scheme as in it consists of setup, key generation, encryption,
decryption algorithms with the exception that instead of tracing algorithm it provides an additional encryp-
tion algorithm usually referred to as index-encryption algorithm. In PLBE systems, the setup algorithm
outputs a public, master secret, and index-encryption key tuple (pk,msk, key). As in TT systems, the key
generation uses master secret key to sample user private keys skj for any given index j ∈ [n], while the

5Although one could ask the tracer to output a set of index-identity pairs instead of only identities, this seems unnecessary
as the user index can always be embedded in its identity.
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PLBE encryption algorithm uses the public key to encrypt messages. The index-encryption algorithm on
the other hand uses the index-encryption key to encrypt messages with respect to an index i. Now such a
ciphertext can be decrypted using skj only if j ≥ i, thus one could consider such ciphertexts as encrypting
messages under the comparison predicate ‘≥ i’. The security requirements are defined in an ‘FE-like’ way;
that is, if an adversary does not have a key for index i, then index-encryption of any message m to index i
should be indistinguishable from index-encryption of m to index i+ 1. Additionally, public key encryptions
of any message m should also be indistinguishable from index-encryptions of same message for index 1 (even
if adversary is given all keys). And finally, index-encryptions to index n + 1 should completely hide any
information about the encrypted message.

BSW showed that the PLBE framework could be very useful for building TT systems. At a very high
level, their main idea was to use the index-encryption functionality to build the tracing algorithm. The
tracing algorithm, given access to a decoding algorithm D, estimates the successful decryption probability of
index-encryptions to different indices in 1 to n+ 1 when decrypted using algorithm D. If it finds an index i
such that the probability estimates corresponding to index-encryptions to i and i+1 are noticeably far, then
the tracing algorithm includes index i to the set of traitors. In prior works [BSW06, GKW18], it was shown
that such a transformation preserves IND-CPA security as well as guarantees secure and correct tracing.

An important aspect of the tracing schema described above is that during tracing the algorithm essentially
runs a brute force search over set of user indices {1, 2, . . . , n} to look for traitors. This turns out to be
problematic if we want to embed polynomial length identities in the secret keys. Because now the search
space for traitors is exponential which turns the above brute force search mechanism rather useless. Thus it
is not very clear whether the PLBE framework is an accurate abstraction for ‘embedded identity’ TT.

In this work, our intuition is to extend the PLBE framework such that it becomes more conducive
for implementing the embedded identity tracing functionality in TT systems. Hence, we propose a new
PLBE framework called embedded-identity PLBE. As in PLBE, an EIPLBE scheme consists of a setup, key
generation, encryption, decryption and special-encryption algorithm. (Here special-encryption algorithm is
meant to replace/extend the index-encryption algorithm provided in general PLBE schemes.) Semantically,
the differences between PLBE and EIPLBE are as follows. In EIPLBE, the user keys are associated with
an index-identity pair (j, id). And, special-encryptions are associated with a index-position-bit tuple (i, `, b),
where position is a symbol in [κ] ∪ {⊥}. The special-encryption ciphertexts can further be categorized into
two types:

(` = ⊥) In this case the special-encryption ciphertext for index-position-bit tuple (i, ` = ⊥, b) behaves
identical to a PLBE index-encryption to index i. That is, such ciphertexts can be decrypted using
skj,id as long as j ≥ i.

(` 6= ⊥) In this case the ciphertext can be decrypted using skj,id as long as either j ≥ i + 1 or (j, id`) =
(i, 1 − b). In words, these ciphertexts behave same as a PLBE index-encryption to index i, except
decryption by the users corresponding to index-identity pair (i, id) is also disallowed if `th bit of their
id matches bit value b.

In short, the special-encryption algorithm (when compared with PLBE index-encryption) provides an addi-
tional capability of disabling decryption ability of users depending upon a single bit of their identity. The
central idea behind introducing this new capability is that it facilitates a simple mechanism for tracing the
identity bit-by-bit. The tracing algorithm runs as a two-step process where the first phase is exactly same
as in the PLBE to TT transformation which is to trace the indices of corrupt users. This can be executed
as before by using the PLBE functionality of disabling each index one-by-one, that is estimate successful
decryption probability of encryptions to indices in 1 to n + 1 while keeping position variable ` = ⊥. This
is followed by the core identity tracing phase in which the tracing algorithm performs a sub-search on each
user index i where it noticed a gap in first phase. Basically the sub-search corresponds to picking a target
index obtained during first phase, and then sequentially testing whether the `th bit in the corrupted identity
is zero or one for all positions ` ∈ [κ]. And, this is where the above additional disabling capability is used.

Next we discuss the expanded set of security properties required from EIPLBE. More details on the above
transformation are provided afterwards.
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normal-hiding. Standard encryptions are indistinguishable from special-encryptions to (1,⊥, 0).
index-hiding. Special-encryptions to (i,⊥, 0) are indistinguishable from special-encryptions to (i+ 1,⊥, 0)

if an adversary has no secret key for index i.
lower-ID-hiding. Special-encryptions to (i,⊥, 0) are indistinguishable from special-encryptions to (i, `, b)

if an adversary has no secret key for index i and identity id such that id` = b.
upper-ID-hiding. Special-encryptions to (i + 1,⊥, 0) are indistinguishable from special-encryptions to

(i, `, b) if an adversary has no secret key for index i and identity id such that id` = 1− b.
message-hiding. Special-encryptions to (n+ 1,⊥, 0) hide the message encrypted.

Building Indexed EITT from EIPLBE. The setup, key generation, encryption and decryption algo-
rithms for the tracing scheme are same as that for the underlying EIPLBE scheme. Let us now look at
how to trace identities from the pirate decoding device. As mentioned before, the tracing proceeds in two
phases — (1) index tracing, followed by (2) identity tracing. The idea is to first trace the set of indices of
the corrupted users, say Sindex ⊆ [n], and then in the second phase for each index i ∈ Sindex, the tracer will
(bit-by-bit) extract the corresponding identity corrupted. Formally, the tracing proceeds as follows

Phase 1. For i ∈ [n+ 1], do the following:

A. Compute polynomially many special-encryptions to index-position-bit (i,⊥, 0).

B. Run decoder D on each ciphertext individually to test whether it decrypts correctly or not. Let
p̂i denote the fraction of successful decryptions.

Let Sindex denote the set of indices i of such that p̂i and p̂i+1 are noticeably far.

Phase 2. Next, for each i ∈ Sindex and ` ∈ [κ], do the following:

A. Compute polynomially many special-encryptions to index-position-bit (i, `, 0).

B. Run decoder D on each ciphertext individually to test whether it decrypts correctly or not. Let
q̂i,` denote the fraction of successful decryptions.

Output Phase. Finally, for each i ∈ Sindex, it sets the associated traced identity id as follows. For each
` ∈ [κ], if p̂i and q̂i,` are noticeably far, then set `th bit of id to be 0, else sets it to be 1.

Let us now see why this tracing algorithm works. In the above procedure, the first phase (index tracing)
is identical to the PLBE-based tracing algorithm. Thus, by a similar argument it follows that if i ∈ Sindex,
then it suggests that the decoder D was created using a key corresponding to index-identity pair (i, id) for
some identity id. (This part of the argument only relies on normal-hiding, index-hiding and message-hiding
security properties.)

The more interesting component of the tracing algorithm is the identity tracing phase (i.e., phase 2).
The idea here is to selectively disable the decryption ability of users for a fixed index if a particular bit
in their identities is 0. Recall that an adversary can not distinguish between special-encryptions to tuple
(i,⊥, 0) and (i, `, 0) as long as it does not have any secret key for (i, id) such that id` = 0. This follows
from ‘lower-ID-hiding’ property. Similarly, an adversary can not distinguish between special-encryptions to
tuple (i + 1,⊥, 0) and (i, `, 0) as long as it does not have any secret key for (i, id) such that id` = 1. This
follows from ‘upper-ID-hiding’ property. Now whenever i ∈ Sindex we know that p̂i and p̂i+1 are noticeably
far. Also, recall that in indexed EITT tracing definition the adversary is allowed to key query for at most
one identity per index. Therefore, the estimate q̂i,` will either be close to p̂i or to p̂i+1, as otherwise one of
upper/lower-ID-hiding properties will be violated. Combining all these observations, we can prove correct-
ness/security of the above tracing algorithm.

Next, we move to standard assumption constructions for EIPLBE schemes.
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2.3 Building EIPLBE from standard assumptions

In this section, we provide three different pathways for securely realizing embedded-identity private linear
broadcast encryption systems under standard assumptions. Our first instantiation is based only on general
public key encryption, and is provided to serve as a baseline benchmark for comparing efficiency of other
schemes. Our second instantiation is based on Bilinear maps, and provides a quadratic improvement over the
PKE-based scheme. And finally, our third and last instantiation is based on learning with errors, and it leads
to extremely efficient system parameters. See Table 1 for concrete efficiency comparison. Below we discuss
these three approaches in greater detail highlighting the main challenges and contributions. Throughout this
section, we use n to denote the maximum number of indices and κ to be the length of identities.

2.3.1 EIPLBE via Public Key Encryption

We first present a EIPLBE scheme based on any PKE scheme. In this scheme, the size of the ciphertexts
grows linearly with the maximum number of indices n and the length of identities κ. To understand the
intuition behind the PKE based EIPLBE construction, let us recall the folklore PLBE construction based
on PKE.

PKE-based PLBE scheme. The setup algorithm chooses n PKE keys (pki, ski)i∈[n]. A secret key for

index i is simply ski. Standard encryption of message m consists of n ciphertexts, where the ith ciphertext
is an encryption of m under public key pki. A special-encryption of m for index i∗ consists of n ciphertexts;
the first i∗ ciphertexts are encryptions of a special symbol ⊥ (under the respective public keys) while the
remaining are encryptions of m (under the respective public keys). In summary, the ciphertext consists of n
independent and disjoint components, where each component contains one PKE sub-ciphertext. Thus a user
can perform decryption by only looking at its dedicated PKE component in the ciphertext. And security
follows directly from PKE security since all the PKE sub-ciphertexts are independently created.

Extending this to EIPLBE. Let us now look at how to extend the simple PLBE scheme described
above to embed identities as well. Once again, we will have n different strands, and each strand will have
2κ slots. (Here we perform a PKE setup for each slot in each strand.) A secret key for index i and identity
id can unlock κ out of the 2κ slots of the ith strand, and using these κ unlocked components, the decryption
algorithm tries to reconstruct a message. In particular, the secret key (i, id) can unlock each of the {(`, id`)}`
slots. This is executed by giving out the PKE secret keys associated with these slots.

To encrypt a message m, one first creates n copies of the message, and secret shares each copy (inde-
pendently) into κ shares. Let {ri,`}`∈[κ] denote the κ shares of the ith copy. In the ith strand, the (`, 0)

and (`, 1) slots encrypt the same message ri,`. (Here the per-slot per-strand encryption is performed under
the corresponding PKE public key.) As a result, a secret key for index i and identity id can recover all the
{ri,`}` components, and therefore the decryption algorithm can reconstruct the message m.

A special-encryption for index-position-bit tuple (i∗, `∗, b∗) is more involved. In the first i∗ − 1 strands,
it has no information about the message m (it secret shares ⊥ and puts the shares in the 2κ slots). For all
i > i∗, the ith strand is constructed just as in the standard encryption (secret share message m into κ shares,
and put the `th share in the slots (`, 0) and (`, 1)). The i∗ strand is set up in a more subtle way; here, the
encryption algorithm again breaks down m into κ shares {ri∗,`}`. It puts ri∗,` in slots (`, 0) and (`, 1) for all
` except `∗. In slot (`∗, b∗) it puts ⊥, and in slot (`∗, 1− b∗) it puts ri∗,`∗ . As a result, a secret key for index
i∗ and identity id such that id`∗ = b∗ cannot recover ri∗,`∗ , and therefore cannot reconstruct the message.

The security properties follow directly from IND-CPA security of the underlying PKE scheme. Consider,
for instance, the index hiding property (special-encryption to (i,⊥, 0) is indistinguishable from special-
encryption to (i+ 1,⊥, 0) if an adversary has no secret keys for index i). The only difference between these
two special-encryptions is the ciphertext components in the {(`, 0), (`, 1)}` slots of ith strand. But since the
adversary gets no secret keys for index i, it does not have any secret keys to unlock these strand i slots, and
hence the index-hiding property holds. The other security properties also follow in a similar manner, except
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while arguing that the scheme satisfies upper-ID-hiding security we have to additionally use the fact that
the message is randomly and independently split in each strand.

The ciphertext size in the above construction grows linearly with both n and κ. Next, we will see how
to achieve better parameters using bilinear maps.

2.3.2 EIPLBE via Bilinear maps

When studying EIPLBE, a natural question to ask is whether it can realized generically from standard PLBE
schemes. Since we already have bilinear-map based PLBE constructions [BSW06, BW06] in which the size
of ciphertext grows linearly with

√
n, thus a generic transformation from PLBE to EIPLBE could probably

lead to a bilinear-map solution for EIPLBE with similarly efficiency. Here we consider a very natural such
transformation from PLBE to EIPLBE and discuss the challenges faced in executing this approach in a
black-box way. Starting with this black-box approach we dig deeper into the existing PLBE schemes and
extend them directly to a EIPLBE scheme. More details follow.

Why generic transformation from PLBE to EIPLBE does not work? Let us first describe a simple
candidate EIPLBE scheme based on PLBE. The starting point for this transformation is the PKE-based
construction described previously. The intuition is to replace each ‘strand’ sequence in the PKE-based
solution with a single PLBE instantiation while keeping the slot structure intact. That is, during setup the
algorithm now runs PLBE setup 2κ times — once for each slot in {(`, b)}`,b. The public/master secret key

consists of the 2κ public/master secret keys
{

pk`,b,msk`,b
}
`,b

, one from each slot (`, b) ∈ [κ] × {0, 1}. And,

a secret key for index-identity pair (i, id) consists of κ PLBE secret keys, where the `th key component is
a secret key for index i in the (`, id`) slot (that is, sk = {sk`}` where sk` ← KeyGen(msk`,id` , i)). Next, let
us look at encryption. A ciphertext consists of 2κ PLBE ciphertexts {ct`,b}`,b. The (standard) encryption

algorithm splits message m into κ shares {r`}`, and then encrypts r` under the public keys for both (`, 0)
and (`, 1) slots, independently. The special-encryption algorithm on the other hand works as follows — to
encrypt m for index-position-bit tuple (i∗, `∗, b∗), the algorithm as before splits m into κ shares {r`}`, and
then computes all but the (`∗, b∗)-slot of the ciphertext as a PLBE index-encryption (of the corresponding
share) for index i∗. And, the last remaining ciphertext component (if any6) is a PLBE index-encryption (of
the corresponding share) for index ‘i∗ + 1’. Now decryption can be quite naturally defined. Let us next try
to analyze its security.

A careful inspection of the above scheme shows that it satisfies all requisite security properties except one
which is upper-ID-hiding security.7 Recall that upper-ID-hiding security requires that special-encryption to
(i + 1,⊥, 0) must be indistinguishable from special-encryption to (i, `, b) if the adversary doed not get any
secret key for (i, id) such that id` = 1 − b. Suppose an adversary has two secret keys ski,id and ski+1,id, for

some identity id such that id` = b. Consider a new secret key s̃k which is equal to ski,id, except that the

`th component is set to be the `th component of ski+1,id. It turns out that this hybrid key s̃k can decrypt a
special-encryption for (i, `, b) but not for (i+ 1,⊥, 0), even though both key queries for index-identity pairs
(i, id) and (i+ 1, id) are permissible as per upper-ID-hiding security game.

As exhibited by the above attack, the main issue with the above (broken) candidate is that there is no
mechanism to tie together the different components of a particular secret key. Thus such key mixing attacks,
which allow rendering hybrid keys such as s̃k in the aforementioned attack, are unavoidable. In order to
prevent such attacks, we dive into the existing PLBE constructions with the goal of exploiting the underlying
algebraic structure for linking together the individual PLBE secret keys coming from different subsystems.

Our intuition and fixing [BW06]. Our starting point is the trace and revoke (broadcast) scheme by
Boneh and Waters (BW) [BW06]. We start by presenting a simplified version of the BW PLBE scheme, and
then use that as a building block to build our EIPLBE scheme. Along the way we uncover a crucial bug in

6If `∗ = ⊥, then all ciphertext slots have already been filled.
7Actually there is a pretty simple (related) attack to break the false tracing guarantee if one uses this transformation to

build an indexed EITT scheme from standard PLBE. Here we only focus on breaking upper-ID-hiding security..
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the security proof provided by BW that renders their theorem as stated incorrect. In this work, we fix the
BW security proof while building our EIPLBE scheme, thereby restoring the bilinear map based TT (also
trace and revoke) schemes to their original glory.

Revisiting BW tracing scheme. Let p, q be primes, G,GT groups of order N = p · q with a bilinear
map e : G×G→ GT , and let Gp,Gq denote the subgroups of G of orders p and q respectively. In the BW
tracing scheme for n parties, any index i ∈ [n] is represented as a pair (i1, i2) ∈ [

√
n]× [

√
n]; secret keys and

special-encryptions are for pairs (x, y) ∈ [
√
n] × [

√
n]. We say that (x1, y1) ≺ (x2, y2) if either x1 < x2 or

(x1 = x2 and y1 < y2).
The setup algorithm chooses generator g ← G and gq ← Gq, scalars αx, rx, cx ← ZN for each x ∈ [

√
n]

and sets Ex = grx , Gx = e(g, g)αx and Hx = gcx . It chooses β ← ZN , sets Eq = gβq , Eq,x = gβrxq and

Gq,x = e(gq, gq)
βαx . The public key consists of {Ex, Gx, Eq, Eq,x, Gq,x, Hx}x (together with some additional

components); the master secret key consists of {αx, rx, cx}x, and the tracing key is the public key itself.
A secret key for index (x, y) is set to be gαx+rxcy . Special-encryption of message m for index (x∗, y∗) has
4
√
n components {Ri, Ai, Bi, Ci}i∈[

√
n]. It chooses sx ← ZN for each x ∈ [

√
n], t ← ZN . For x > x∗, it

sets Rx = Esxq,x = gβrxsxq , Ax = Esxtq = gβsxtq and Bx = m · Gsxtq,x = m · e(gq, gq)βαxsxt. For x = x∗, it sets
Rx = Esxx = grxsx , Ax = gsxt and Bx = m · Gsxtx = m · e(g, g)αxsxt. For x < x∗, Rx, Ax, Bx are random
group elements. Next, it sets Cy as follows. For y > y∗, it sets Cy = Ht

y = gcyt; else it sets Cy = gcyt · hp,
where hp is a group element in Gp, derived from the public parameters.

For correctness, let K = gαx+rxcy be a key for (x, y), ct = {Ri, Ai, Bi, Ci}i an encryption of m for (x′, y′),
where (x′, y′) ≺ (x, y). Consider the terms (Rx, Ax, Bx, Cx). If x > x′, then Rx = gβrxsxq , Ax = gβsxtq ,

Bx = e(gq, gq)
βαxrxsxt for some β, sx, t. On pairing Rx with Cy, one obtains Γ1 = e(gq, gq)

βrxsxtcy . Here,
note that it does not matter whether y < y′ or not, because pairing an element in Gp with an element in Gq
results in identity. Next, pairing Ax with the secret key K results in Γ2 = e(gq, gq)

βrxsxcyt+αxrxsx . Finally,
note that Bx ·Γ1/Γ2 = m. If x = x′ but y > y′, then pairing Ax and K results in Γ2 = e(g, g)rxsxcyt+αxrxsx ,
and pairing Rx and Cy results in e(g, g)rxsxcyt. Therefore Bx · Γ1/Γ2 outputs m.

The main intuition behind the index-hiding security proof is that if an adversary does not have a secret
key for index i = (x, y), then the hp term multiplied to Cy component can be undetectably added or removed.
In the actual scheme, the public parameters and the ciphertext includes some additional terms for security
purposes. Here we removed them for simplicity of exposition. Next, let us look at how to extend BW for
building an EIPLBE scheme.

Our EIPLBE scheme based on Bilinear Maps. Our EIPLBE scheme, at a very high level, is inspired
by the 2κ-subsystems idea (described in the attempted generic transformation from PLBE to EIPLBE)
applied to the BW scheme. However, we will ensure that the adversary cannot mix-and-match differ-
ent secret keys. Consider 2κ different subsystems of the BW scheme, where all the subsystems share the
same {αx, rx}x∈[

√
n] values, but each subsystem has its own {cy}y∈[

√
n] values. So, the public key has

{Ex, Gx, Eq, Eq,x, Gq,x}x (together with some additional components) as in the BW scheme, but instead of
{Hy}y∈[

√
n], it now has {Hy,`,b}y∈[

√
n],`∈[κ],b∈{0,1}, where the setup algorithm chooses {cy,`,b}y∈[

√
n] values

for the (`, b) subsystem and sets Hy,`,b = gcy,`,b . The secret key for index i = (x, y) and identity id consists
of just one component. The key generation algorithm combines the appropriate cy,`,b elements (depending
on id) and multiplies with rx. Let γx,y = rx · (

∑
` cy,`,id`). The key generation algorithm outputs gαx+γx,y

as the secret key. Note that unlike the PLBE to EIPLBE transformation, here the components from one
key cannot be mixed with the components of another key to produce a hybrid key. An alternate view of
the secret key is that it is the BW key, but with cy value being different for each identity (for identity id,
cy =

∑
` cy,`,id`).

In the ciphertext/special-ciphertext, we have the {Rx, Ax, Bx}x∈[
√
n] components as in the BW scheme.

However, instead of {Cy}y∈[
√
n], we now have 2κ such sets of components. During decryption, one must first

combine the Cy,`,b components depending on the identity id to obtain a term Cy, which is then used to carry
out BW-like decryption. We will now present the scheme in more detail.
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The setup algorithm chooses {cy,`,b}y∈[
√
n],`∈[κ],b∈{0,1}. It sets Hy,`,b = gcy,`,b for each (y, `, b) ∈ [

√
n] ×

[κ] × {0, 1}, and the public key is
{
Ex, Gx, Eq, Eq,x, Gq,x, {Hx,`,b}`,b

}
x
, where the Ex, Gx, Eq, Eq,x, Gq,x

terms are computed as in the BW scheme (outlined above). To compute a secret key for index (x, y) and
identity id, the key generation algorithm computes z = αx + rx · (

∑
i cy,i,idi) and outputs gz as the secret

key. Finally, the special-encryption of m for index (x∗, y∗), position `∗ and bit b∗ is computed as follows: for
each x ∈ [

√
n], the encryption algorithm computes {Rx, Ax, Bx} as in the BW scheme. In addition to these

components, it computes {Cy,`,b} components for each y ∈ [
√
n], ` ∈ [κ] and b ∈ {0, 1} as follows: if (y > y∗)

or (y = y∗ and (`, b) 6= (`∗, b∗))t, then Cy,`,b = Ht
y,l,b, else Cy,`,b = Ht

y,l,b · hp, where hp is some element in
Gp computed using the public parameters.

Suppose K is a key for index (x, y) and identity id, and
{
Rx, Ax, Bx, {Cx,l,b}l,b

}
x

is an encryption of m

for ((x∗, y∗), `∗, b∗). Decryption works as follows: first, compute Cy =
∏
l Cy,l,idl ; next, pair Cy and Ax to

compute Γ1, pair K and Rx to compute Γ2, and output Bx · Γ1/Γ2 as the decryption.
The full scheme and security proof is discussed in detail later in Section 7. Note that in the above outline,

the size of ciphertexts grows linearly with
√
n and κ. In the main body, we optimize the construction such

that the size of ciphertexts grows linearly with both
√
n and

√
κ. Finally, we will present a scheme with

optimal ciphertext size with only polylogarithmic dependence on n.

2.3.3 EIPLBE via Learning With Errors

In a recent work, Goyal, Koppula, and Waters [GKW18] gave a traitor tracing scheme with compact cipher-
texts. Their scheme is based on a new primitive called Mixed Functional Encryption (Mixed FE), which can
also be used to build an EIPLBE scheme with optimal parameters. A Mixed FE scheme for a function class
F can be seen as an extension of a secret key FE scheme for F . It has a setup, key generation, encryption and
decryption algorithm (as in a secret key FE scheme). In addition, it also has a public encryption algorithm.
For the PLBE and EIPLBE schemes, it helps to have keys associated with messages and ciphertexts with
functions. The setup algorithm chooses a public key pk and a master secret key msk. The master secret key
can be used to generate a secret key for any message m, and can also be used to encrypt any function f . A
key for message m can decrypt an encryption of function f if f(m) = 1. In addition, the public-encryption
algorithm can also generate ciphertexts; it only takes as input the public key pk, and outputs a ciphertext
that ‘looks like’ a secret-key encryption of the ‘all-accepting function’. For security, GKW require bounded
query FE security, together with the public/secret key mode indistinguishability.

The work of [GKW18] showed a construction of Mixed FE for log-depth circuits. A recent work by Chen
et al. [CVW+18] showed three different constructions for the same. To construct PLBE, [GKW18] combined
a 1-bounded Mixed FE scheme with an ABE scheme. The PLBE encryption of a message m is simply an
ABE encryption of m for attribute x being a public-mode Mixed FE encryption. The special-encryption of m
for index i∗ is again an ABE encryption of m, but with attribute x being a secret-key Mixed FE encryption of
the (> i∗) function. Finally, to compute a secret key for index i, the key generation algorithm first computes
a Mixed FE key k for the message i, and then computes an ABE key for a Mixed FE decryption circuit that
has k hardwired, takes a Mixed FE ciphertext ct as input and outputs Mixed FE decryption of ct using k.
Note that for this transformation, it suffices to only have a Mixed FE scheme that allows the comparison
functionality.

Fortunately (for us), [GKW18] (and later [CVW+18]) showed Mixed FE for a much richer class of
functions (log-depth circuits), and this will be useful for our construction. Our EIPLBE scheme will also
follow the Mixed FE+ABE approach (which is referred to as Mixed FE with messages in [CVW+18]). Instead
of the comparison function, the Mixed FE ciphertexts in our scheme will be for more expressive functions.
In particular, it suffices to have a Mixed FE scheme where the functions are parameterized by (y∗, `∗, b∗),
and it checks if input (y, id) either satisfies y > y∗, or y = y∗ and id` 6= b∗. Since such simple functions can
be implemented in log-depth, we can use the ABE+Mixed FE approach for building EIPLBE as well.
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2.4 Indexed Embedded-Identity TT to Bounded Embedded-Identity TT

In this part, we discuss our transformation from a tracing scheme with indexed key generation to one where
there is no index involved, but the correct trace guarantee holds only if total number of keys is less than an
apriori set bound. For technical reasons we require the bounded EITT system to provide a stronger false
tracing guarantee, which states there should be no false trace even if the adversary obtains an unbounded
(but polynomial) number of keys. Looking ahead, this property will be crucial for the transformation from
bounded EITT to its unbounded counterpart.

The high-level idea is to have λ different strands, and in each strand, we have a separate indexed-system
with a large enough index bound (that depends on the bound on number of keys n). When generating
a key, we choose λ random indices (within the index bound) and generate λ different keys for the same
identity in the different strands using the respective randomly chosen indices. Now, we will set the index
bound to be n2, and as a result, at least one strand has all distinct indices (with overwhelming probability).
To (special-)encrypt a message, we secret-share the message in the λ different strands, and encrypt them
separately. This approach satisfies the correct-trace guarantee, but does not satisfy the false-trace guarantee.
In particular, note that the false-trace guarantee should hold even if the number of key queries is more than
the query bound. This means the underlying indexed scheme should not report a false trace even if there are
multiple identities for a index, which is a strictly stronger false-trace guarantee for the underlying system
(and our system does not satisfy it).

There is an elegant fix to this issue. Instead of generating keys for the queried identity id, the key gen-
eration algorithm now generates a signature on id, and generates keys for (id, σ). This fixes the false-trace
issue. Even if an adversary queries for many secret keys, if it is able to produce a decoding box that can
implicate a honest user, then that means this box is able to forge signatures, thereby breaking the signature
scheme’s security. We describe the scheme a little more formally now.

To build a tracing scheme with bound n, the setup algorithm chooses λ different public/secret/tracing
keys for the indexed scheme with index bound set to be n2. The setup algorithm also chooses a signature
key/verification key. It sets the λ different public keys and the verification key to be the new public key, and
similarly the master secret key has the λ different master secret keys and the signature key. Encryption of
a message m works as follows: the encryption algorithm chooses λ shares of the message, and then encrypts
the ith share under the ith public key. To compute a secret key for identity id, the key generation algorithm
first chooses λ different indices j1, . . . , jλ. It then computes a signature σ on id, and generates a key for
(id, σ) using each of the λ master secret keys with the corresponding indices. The tracing algorithm uses the
underlying indexed scheme’s trace algorithm to obtain a set of (id, σ) tuples. It then checks if σ is a valid
signature on id; if so, it outputs id as a traitor.

Now, suppose an adversary queries for t(< n) secret keys, and outputs a decoding box D. Let ji,k denote
the kth index chosen for the ith secret key. With high probability, there exists an index k∗ ∈ [λ] such that
the set of indices {j1,k∗ , j2,k∗ , . . . , jt,k∗} are all distinct. As a result, using the correct-tracing guarantee of
the underlying tracing scheme for the k∗ strand, we can extract at least one tuple (id, σ).

Next, we need to argue the false trace guarantee. This follows mainly from the security of the signature
scheme. Suppose an adversary receives a set of keys corresponding to an identity set I, and outputs a
decoding box D. If trace outputs an identity id /∈ I, then this means the sub-trace algorithm output a tuple
(id, σ) such that σ is a valid signature on id. As a result, σ is a forgery on message id (because the adversary
did not query for a key corresponding to id).

2.5 Bounded Embedded-Identity TT to Unbounded Embedded-Identity TT

The final component is to transform a tracing system for bounded keys to one with no bound on the number
of keys issued. For this transformation to be efficient, it is essential that the underlying bounded EITT
scheme to have ciphertexts with polylogarithmic dependence on the key bound n. The reason is that our
core idea is to have λ (bounded) EITT systems running in parallel, where the ith system runs the bounded
tracing scheme with bound ni = 2i, and if the ciphertext size does not scale polylogarithmically with the
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bound ni, then this transformation would not work.8

More formally, the setup algorithm runs the bounded system’s setup λ times, the ith iteration run with
bound ni = 2i. It sets the public key (resp. master secret key and the tracing key) to be the λ public keys
(resp. the λ different master secret keys and the tracing keys). The encryption algorithm secret shares the
message into λ shares, and encrypts the ith share using the ith public key. The key generation algorithm
computes λ different secret keys. Finally, the tracing algorithm runs the bounded system’s trace algorithm,
one by one, until it finds a traitor. First, note that since the adversary is polynomially bounded, if it
queries for t keys, then there exists some i∗ such that t ≤ 2i

∗
< 2t. As a result, the trace is guaranteed

to find a traitor in the i∗th system, and hence it runs in time poly(2i
∗
) = poly(t). Second, since every

underlying bounded system’s false trace guarantee holds even if the adversary queries for more keys than
permitted, thus none of the premature sub-traces result in a false trace. At a very high level, the central
observation here that allows us in avoiding the need for adaptive security is that: while tracing we simply
perform the “tighest” fit search for finding the smallest polynomial bound on keys corrupted and then carry
out the tracing procedure rather than tracing on an exponential sized space directly. Similar techniques of
combining different bounded adversary instances, and invoking the security of the instance with just high
enough security were used previously in [BHJ+13, DS15].

2.6 Comparing Techniques

We conclude by giving some further comparisons between the techniques we introduce and those from the
earlier work of NWZ [NWZ16]. The closest point for comparisons are the techniques they use to trace an
identity of arbitrary size κ while keeping ciphertexts possibly smaller than κ bits. (We modify their variable
names to more closely match ours.) Here they introduce a sub-primitive called private block linear broadcast
encryption (PBLBE) which can be used as follows. A private key for identity id = (id1, id2 · · · , idκ) will
be associated with a randomly chosen tag s from an exponential sized space. It is then organized into i
blocks where each block is associated with the pair (s, idj) which is embedded by the value 2s+ idj . Given
a decoding algorithm D the tracing algorithm will perform a search procedure on each individual block to
recover the set of corrupted tag/identity bit values on each one. The process will essentially perform a search
on the j-th block values while leaving all blocks k 6= j alone. At the end, the tracing process will look for
a tag s∗ that is present in all the individual block searches and use that to reconstruct the traitor identity.
An analysis is needed to show that such a tag exists so that one is not just stuck with fragments of many
different identities.

At a high level our indexed EITT two part structure (consisting of an index i and identity id) is similar to
the two part structure of [NWZ16] consisting of a tag s along with the identity. However, there exists some
important differences that are closely linked to our goal of realizing embedded traitor tracing from standard
assumptions.

• First, our tracing procedure searches in a qualitatively different manner where it first performs a search
across the index space (without regard) to identity bits and only when an index is found does it perform
a dive into extracting the identity. This is in contrast to the NWZ approach of performing tag/index
search per each identity bit, and then combining the identity bits (corresponding to every unique tag)
to reconstruct traitor identities. We believe the current way is simpler and has less tracing overhead.
In addition, our indexed EITT interface is intended to be a minimalistic which in general helps for
realization from more basic assumptions as opposed to full blown functional encryption.

• We consider indices of small range while the tag spaces of NWZ are exponential size. This enables us
to access a wider class of traitor tracing realizations from PKE and bilinear maps. There are no known
PLBE schemes for exponentially large identity spaces from these assumptions.

• We achieve our scheme for unbounded identities by amplifying from smaller index sized schemes along
with an analysis that finds the “tightest fit”. The work of [NWZ16] requires adaptive security of the

8Due to similar reasons, it is essential that the running time of all algorithms (except possibly the tracing algorithm) grows
at most polylogarithmically with n.

13



underlying primitive. The only known scheme from standard assumptions that can handle exponen-
tially large identity space is the [CVW+18] which builds the core “Mixed FE” component from lockable
obfuscation [GKW17, WZ17]. It is notable that the private constrained PRF-based construction of
[CVW+18] and the earlier [GKW18] construction of Mixed FE only offer selective security. This sug-
gests that adaptive security may in general be hard to come by and developing techniques to avoid it
a worthwhile goal.

Lastly, NWZ also studied the problem in the bounded collusion setting, wherein they provided con-
structions from regular public-key encryption (instead of full blown FE) where the size of ciphertexts and
parameters grew at least linearly in the collusion size. If one sets the collusion size to be the number of
users n, then their bounded collusion constructions could be interpreted as collusion-resistant constructions
for our indexed EITT notion. However, that approach leads to much less efficient constructions.

3 Preliminaries

Notations. Let PPT denote probabilistic polynomial-time. We denote the set of all positive integers upto
n as [n] := {1, . . . , n}. Throughout this paper, unless specified, all polynomials we consider are positive
polynomials. For any finite set S, x ← S denotes a uniformly random element x from the set S. Similarly,
for any distribution D, x← D denotes an element x drawn from distribution D. The distribution Dn is used
to represent a distribution over vectors of n components, where each component is drawn independently
from the distribution D.

3.1 Bilinear Groups and Assumptions

In this work, we will use composite order bilinear groups for our main construction. Let Gen be a PPT
algorithm that takes as input a security parameter λ and outputs a tuple (p, q,N = pq,G,GT , e (·, ·)) where
p, q are two distinct primes, G and GT are two cyclic groups of order N , and e is an efficiently computable
function mapping two group elements of G to a group element in GT and satisfying the following properties:

• Bilinearity: ∀g ∈ G, a, b ∈ ZN , e(ga, gb) = e(g, g)ab,

• Non-Degeneracy: e(g, g) 6= 1GT for g 6= 1G, where 1G and 1GT are the identity elements of groups G
and GT respectively.

We now recall the assumptions on composite order bilinear groups from Boneh-Waters [BW06]. Here the
first three assumptions are exactly what were used in [BW06], and the fourth assumption is new but is
required to prove security of the Boneh-Waters scheme also.9 We will use the notation Gp,Gq to denote the
respective subgroups of order p and order q of G.

Assumption 1 (Decision (Modified) 3-party Diffie-Hellman Assumption). For every PPT adversary A,
there exists a negligible function negl(·) such that for all λ ∈ N,

Pr

A( N,G,GT , e(·, ·), gp, gq,
gap , g

b
p, g

c
p, g

b2

p , Tb

)
= b :

(p, q,N = pq,G,GT , e (·, ·))← Gen(1λ);
gp ← Gp; gq ← Gq; a, b, c, r ← Zp;
T0 = gabcp ; T1 = grp; b← {0, 1}

 ≤ 1/2 + negl(λ).

Assumption 2 (Diffie-Hellman Subgroup Decision Assumption). For every PPT adversary A, there exists
a negligible function negl(·) such that for all λ ∈ N,

Pr

A( N,G,GT , e(·, ·), g, h,
gaq , h

a
q , g

bgcp, h
b, Tb

)
= b :

(p, q,N = pq,G,GT , e (·, ·))← Gen(1λ);
gp, hp ← Gp; gq, hq ← Gq; a, b, c← ZN ;

g = gpgq; h = hphq; T0 ← Gq; T1 ← G; b← {0, 1}

 ≤ 1/2 + negl(λ).

9Recall that the security proof provided in [BW06] is incorrect as discussed in the technical introduction.
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Assumption 3 (Bilinear Subgroup Decision Assumption). For every PPT adversary A, there exists a
negligible function negl(·) such that for all λ ∈ N,

Pr

A (N,G,GT , e(·, ·), gp, gq, e(Tb, g)) = b :
(p, q,N = pq,G,GT , e (·, ·))← Gen(1λ);

gp ← Gp; gq ← Gq; g ← G;
T0 ← Gp; T1 ← G; b← {0, 1}

 ≤ 1/2 + negl(λ).

Assumption 4 (Relaxed 3-party Diffie-Hellman Assumption). For every PPT adversary A, there exists a
negligible function negl(·) such that for all λ ∈ N,

Pr

A( N,G,GT , e(·, ·), gp, gq,
gaq , g

ã
pg
a2

q , g
c̃
pg
c
q, Tb

)
= b :

(p, q,N = pq,G,GT , e (·, ·))← Gen(1λ);
gp ← Gp; gq ← Gq; ã, c̃← Zp; a, c← Zq;

T0 = ga
2c
q ; T1 ← Gq; b← {0, 1}

 ≤ 1/2 + negl(λ).

4 Traitor Tracing with Embedded Identities

4.1 Indexed Embedded-Identity Traitor Tracing

In this section, we will present the syntax and definitions for traitor tracing with embedded identities where
the number of users is bounded, and the key generation is ‘indexed’.

Let T be a (indexed keygen, public/private)-embedded identity tracing scheme for message space M =
{Mλ}λ∈N and identity space ID = {{0, 1}κ}κ∈N. It consists of five algorithms Setup,KeyGen,Enc,Dec and
Trace with the following syntax:

Setup(1λ, 1κ, nindx) → (msk, pk, key): The setup algorithm takes as input the security parameter λ, the
‘identity space’ parameter κ, index space [nindx], and outputs a master secret key msk, a public key
pk, and a tracing key key.

KeyGen(msk, id ∈ {0, 1}κ, i ∈ [nindx]) → ski,id: The key generation algorithm takes as input the master
secret key, identity id ∈ {0, 1}κ and index i ∈ [nindx]. It outputs a secret key ski,id.

Enc(pk,m ∈ Mλ) → ct: The encryption algorithm takes as input a public key pk, message m ∈ Mλ and
outputs a ciphertext ct.

Dec(sk, ct) → z: The decryption algorithm takes as input a secret key sk, ciphertext ct and outputs
z ∈Mλ ∪ {⊥}.

TraceD(key, 1y,m0,m1) → T ⊆ {0, 1}κ. The trace algorithm has oracle access to a program D, it takes as
input key (which is the master secret key msk in a private-key tracing scheme, and the public key pk in
a public tracing algorithm), parameter y and two messages m0,m1. It outputs a set T of index-identity
pairs, where T ⊆ {0, 1}κ.

Correctness. A traitor tracing scheme is said to be correct if there exists a negligible function negl(·) such
that for all λ, κ, n ∈ N, m ∈Mλ, identity id ∈ {0, 1}κ and i ∈ [n], the following holds

Pr

Dec(sk, ct) = m :
(msk, pk, key)← Setup(1λ, 1κ, n);

sk← KeyGen(msk, id, i);
ct← Enc(pk,m)

 ≥ 1− negl(λ).

Efficiency. Let T-s, T-e, T-k, T-d, T-t, S-c, S-k be functions. A (indexed keygen, public/private)-embedded
identity tracing scheme is said to be (T-s, T-e, T-k, T-d, T-t, S-c, S-k)- efficient if the following efficiency
requirements hold:

• The running time of Setup(1λ, 1κ, nindx) is at most T-s(λ, κ, nindx).
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• The running time of Enc(pk,m) is at most T-e(λ, κ, nindx).
• The running time of KeyGen(msk, id) is at most T-k(λ, κ, nindx).
• The running time of Dec(sk, ct) is at most T-d(λ, κ, nindx).
• The number of oracle calls made by TraceD(key, 1y,m0,m1) to decoding boxD is at most T-t(λ, κ, nindx, y).
• The size of the ciphertext output by Enc(pk,m) is at most S-c(λ, κ, nindx).
• The size of the key output by KeyGen(msk, id) is at most S-k(λ, κ, nindx).

Definition 4.1. A traitor tracing scheme T = (Setup,Enc,Dec,Trace) is said to have public tracing if the
tracing algorithm Trace uses the public key.

4.1.1 Security

As in the traditional traitor tracing definitions, we have two security definitions. The first security definition
(IND-CPA security) states that any PPT adversary should not distinguish between encryptions of different
messages. This definition is identical to the INDCPA definition in traditional traitor tracing. The second
definition states that if there exists a pirate decoder box, then the tracing algorithm can trace the identity
of at least one of the secret keys used to build the decoding box, and there are no ‘false-positives’.

Definition 4.2 (IND-CPA security). Let T = (Setup,KeyGen,Enc,Dec,Trace) be a (indexed keygen, public/private)-
embedded identity tracing scheme. This scheme is IND-CPA secure if for every stateful PPT adversary A,
there exists a negligible function negl(·) such that for all λ ∈ N, the following holds

Pr

[
A(ct) = b :

(1κ, 1nindx)← A(1λ); (msk, pk, key)← Setup(1λ, 1κ, nindx);
b← {0, 1}; (m0,m1)← A(pk); ct← Enc(pk,mb)

]
≤ 1

2
+ negl(λ).

Definition 4.3 (Secure tracing). Let T = (Setup,KeyGen,Enc,Dec,Trace) be a (indexed keygen, public/private)-
embedded identity tracing scheme. For any non-negligible function ε(·) and PPT adversary A, consider the
experiment Expt-TT-emb-indexTA,ε(λ) defined in Figure 1.

Experiment Expt-TT-emb-indexTA,ε(λ)

• 1κ, 1nindx ← A(1λ)

• (msk, pk, key)← Setup(1λ, 1κ, nindx)

• (D,m0,m1)← AO(·)(pk)

• T ← TraceD(key, 11/ε(λ),m0,m1)

Each oracle query made by the adversary A consists of an index-identity pair (i, id) ∈ [nindx]× {0, 1}κ. Let
SID the set of identities queried by A. Here, oracle O(·) has msk hardwired and on query (i, id) it outputs
KeyGen(msk, id, i) if index i is distinct from all previous queries made by the adversary, otherwise it outputs
⊥. In other words, for each index i ∈ [nindx], the adversary is allowed to make at most one key query.
However, for different indices i, i′ ∈ [nindx], the identity can be same (that is, (i, id) and (i′, id) are valid
queries if i 6= i′).

Figure 1: Experiment Expt-TT-emb-index

Based on the above experiment, we now define the following (probabilistic) events and the corresponding
probabilities (which are a functions of λ, parameterized by A, ε):

• Good-Decoder : Pr[D(ct) = b : b← {0, 1}, ct← Enc(pk,mb)] ≥ 1/2 + ε(λ)
Pr -G-DA,ε(λ) = Pr[Good-Decoder].

• Cor-Tr : T 6= ∅ ∧ T ⊆ SID
Pr -Cor-TrA,ε(λ) = Pr[Cor-Tr].

• Fal-Tr : T 6⊆ SID
Pr -Fal-TrA,ε(λ) = Pr[Fal-Tr].
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A scheme T is said to be ind-secure if for every PPT adversary A, polynomial q(·) and non-negligible
function ε(·), there exists negligible functions negl1(·), negl2(·) such that for all λ ∈ N satisfying ε(λ) > 1/q(λ),
the following holds

Pr -Fal-TrA,ε(λ) ≤ negl1(λ), Pr -Cor-TrA,ε(λ) ≥ Pr -G-DA,ε(λ)− negl2(λ).

Remark 4.1. We want to point out that in both IND-CPA and secure tracing games we require the
adversary to output the index bound nindx in unary instead of binary (i.e., A outputs (1κ, 1nindx) instead of
(1κ, nindx)). Now since the running time of the adversary A is bounded by a polynomial, thus it can only
select a polynomially-bounded value for index bound nindx. However, the setup algorithm is given the input
nindx in binary. This distinction will later be useful in our constructions and security proofs.

5 A New Framework for Embedded-Identity Traitor Tracing

5.1 Embedded-Identity Private Linear Broadcast Encryption

We introduce the notion of embedded-identity private linear broadcast encryption (EIPLBE) as a gen-
eralization of private linear broadcast encryption scheme which was introduced by Boneh, Sahai and Wa-
ters [BSW06] as a framework for constructing traitor tracing schemes. There are five algorithms in a EIPLBE
scheme — Setup,KeyGen,Enc,SplEnc,Dec. The setup algorithm outputs a master secret key and a public
key. The key generation algorithm is used to sample private keys for index-identity pairs (j, id). The public
key encryption algorithm can be used to encrypt messages, and ciphertexts can be decrypted using any
of the private keys via the decryption algorithm. In addition to these algorithms, there is also a special-
encryption algorithm SplEnc. This algorithm, which uses the master secret key, can be used to encrypt
messages to any index-position-value tuple (i, `, b). A secret key for user (j, id) can decrypt a ciphertext for
index-position-value tuple (i, `, b) only if (1) j ≥ i+ 1, or (2) (i, `) = (j,⊥) or (i, id`) = (j, 1− b).

Belowe we first provide the EIPLBE syntax, and then present the security definitions.

Syntax. A EIPLBE scheme EIPLBE = (Setup,KeyGen,Enc,SplEnc,Dec) for message spaceM = {Mλ}λ∈N
and identity space ID = {{0, 1}κ}κ∈N has the following syntax.

Setup(1λ, 1κ, n)→ (msk, pk, key) . The setup algorithm takes as input the security parameter λ, the ‘identity
space’ parameter κ, index space n, and outputs a master secret key msk and a public key pk.

KeyGen (msk, id ∈ {0, 1}κ, i ∈ [n])→ sk. The key generation algorithm takes as input the master secret key,
an identity id ∈ {0, 1}κ and index i ∈ [n]. It outputs a secret key sk.

Enc(pk,m)→ ct. The encryption algorithm takes as input a public key pk, message m ∈ Mλ, and outputs
a ciphertext ct.

SplEnc(key,m, (i, `, b))→ ct. The special-encryption algorithm takes as input a key key, message m ∈ Mλ,
and index-position-value tuple (i, `, b) ∈ [n+1]×([κ]∪{⊥})×{0, 1}, and outputs a ciphertext ct. (Here
the scheme is said to be public key EIPLBE scheme if key = pk. Otherwise, it is said to be private key
EIPLBE scheme.)

Dec(sk, ct)→ z. The decryption algorithm takes as input a secret key sk, ciphertext ct and outputs z ∈
Mλ ∪ {⊥}.

Correctness. A EIPLBE scheme is said to be correct if there exists negligible functions negl1(·), negl2(·)
such that for all λ, κ, n ∈ N, m ∈ Mλ, and i ∈ [n + 1], j ∈ [n], id ∈ {0, 1}κ, ` ∈ ([κ] ∪ {⊥}) and b ∈ {0, 1},
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the following holds

Pr

Dec(sk, ct) = m :
(msk, pk, key)← Setup(1λ, 1κ, n)

sk← KeyGen(msk, id, j)
ct← Enc(pk,m)

 ≥ 1− negl1(λ),

(j ≥ i+ 1) ∨(
(i, `) = (j,⊥) ∨

(i, id`) = (j, 1− b)

)
⇒ Pr

Dec(sk, ct) = m :
(msk, pk, key)← Setup(1λ, 1κ, n)

sk← KeyGen(msk, id, j)
ct← SplEnc(key,m, (i, `, b))

 ≥ 1− negl2(λ).

Efficiency. Let T-s, T-e, T-̃e, T-k, T-d, S-c, S-k be functions. A EIPLBE scheme is said to be (T-s, T-e,
T-̃e, T-k, T-d, S-c, S-k)- efficient if the following efficiency requirements hold:

• The running time of Setup(1λ, 1κ, n) is at most T-s(λ, κ, n).
• The running time of Enc(pk,m) is at most T-e(λ, κ, n).
• The running time of SplEnc(key,m, (i, `, b)) is at most T-̃e(λ, κ, n).
• The running time of KeyGen(msk, id, i) is at most T-k(λ, κ, n).
• The running time of Dec(sk, ct) is at most T-d(λ, κ, n).
• The size of the ciphertexts is at most S-c(λ, κ, n).
• The size of the key is at most S-k(λ, κ, n).

5.1.1 q-query EIPLBE Security

Now we provide the security definitions for EIPLBE as a generalization of the PLBE q-query security [GKW18].
Also, see Remark 4.1.

Definition 5.1 (q-query Normal Hiding Security). Let q(·) be any fixed polynomial. A EIPLBE scheme is
said to satisfy q-query normal hiding security if for every stateful PPT adversary A, there exists a negligible
function negl(·) such that for every λ ∈ N, the following holds:

Pr

ASplEnc(key,·,·),KeyGen(msk,·,·)(ctb) = b :

(1κ, 1n)← A(1λ)
(pk,msk, key)← Setup(1λ, 1κ, n)

m← ASplEnc(key,·,·),KeyGen(msk,·,·) (pk)
b← {0, 1}; ct0 ← Enc(pk,m)
ct1 ← SplEnc(key,m, (1,⊥, 0))

 ≤ 1

2
+ negl(λ)

with the following oracle restrictions:

• SplEnc Oracle: A can make at most q(λ) queries, and for each query (m, (j, `, γ)) the index j must be
equal to 1.

• KeyGen Oracle: A can make at most one query for each index position j. That is, let (j1, id1), . . . , (jk, idk)
denote all the key queries made by A, then ja and jb must be distinct for all a 6= b.

Definition 5.2 (q-query Index Hiding Security). Let q(·) be any fixed polynomial. A EIPLBE scheme is
said to satisfy q-query index hiding security if for every stateful PPT adversary A, there exists a negligible
function negl(·) such that for every λ ∈ N, the following holds:

Pr

ASplEnc(key,·,·),KeyGen(msk,·,·)(ct) = b :

(1κ, 1n, i)← A(1λ)
(pk,msk, key)← Setup(1λ, 1κ, n)

m← ASplEnc(key,·,·),KeyGen(msk,·,·) (pk)
b← {0, 1}; ct← SplEnc(key,m, (i+ b,⊥, 0))

 ≤ 1

2
+ negl(λ)

with the following oracle restrictions:

• SplEnc Oracle: A can make at most q(λ) queries, and for each query (m, (j, `, γ)) the index j must be
equal to either i or i+ 1.
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• KeyGen Oracle: A can make at most one query for each index position j ∈ [n], and no key query of
the form (i, id). That is, let (j1, id1), . . . , (jk, idk) denote all the key queries made by A, then ja and jb
must be distinct for all a 6= b. And, ja 6= i for any a.

Definition 5.3 (q-query Upper Identity Hiding Security). Let q(·) be any fixed polynomial. A EIPLBE
scheme is said to satisfy q-query upper identity hiding security if for every stateful PPT adversary A, there
exists a negligible function negl(·) such that for every λ ∈ N, the following holds:

Pr

ASplEnc(key,·,·),KeyGen(msk,·,·)(ctb) = b :

(1κ, 1n, i, `, β)← A(1λ)
(pk,msk, key)← Setup(1λ, 1κ, n)

m← ASplEnc(key,·,·),KeyGen(msk,·,·) (pk)
b← {0, 1}; ct0 ← SplEnc(key,m, (i+ 1,⊥, 0))

ct1 ← SplEnc(key,m, (i, `, β))

 ≤ 1

2
+ negl(λ)

with the following oracle restrictions:

• SplEnc Oracle: A can make at most q(λ) queries, and for each query (m, (j, `, γ)) the index j must be
equal to either i or i+ 1.

• KeyGen Oracle: A can make at most one query for each index position j ∈ [n], and no key query of
the form (i, id) such that id` = 1−β. That is, let (j1, id1), . . . , (jk, idk) denote all the key queries made
by A, then ja and jb must be distinct for all a 6= b. And, for every a, (ida)` 6= 1− β or ja 6= i.

Definition 5.4 (q-query Lower Identity Hiding Security). Let q(·) be any fixed polynomial. A EIPLBE
scheme is said to satisfy q-query lower identity hiding security if for every stateful PPT adversary A, there
exists a negligible function negl(·) such that for every λ ∈ N, the following holds:

Pr

ASplEnc(key,·,·),KeyGen(msk,·,·)(ctb) = b :

(1κ, 1n, i, `, β)← A(1λ)
(pk,msk, key)← Setup(1λ, 1κ, n)

m← ASplEnc(key,·,·),KeyGen(msk,·,·) (pk)
b← {0, 1}; ct0 ← SplEnc(key,m, (i,⊥, 0))

ct1 ← SplEnc(key,m, (i, `, β))

 ≤ 1

2
+ negl(λ)

with the following oracle restrictions:

• SplEnc Oracle: A can make at most q(λ) queries, and for each query (m, (j, `, γ)) the index j must be
equal to i.

• KeyGen Oracle: A can make at most one query for each index position j ∈ [n], and no key query of
the form (i, id) such that id` = β. That is, let (j1, id1), . . . , (jk, idk) denote all the key queries made by
A, then ja and jb must be distinct for all a 6= b. And, for every a, (ida)` 6= β or ja 6= i.

Definition 5.5 (q-query Message Hiding Security). Let q(·) be any fixed polynomial. A EIPLBE scheme is
said to satisfy q-query message hiding security if for every stateful PPT adversary A, there exists a negligible
function negl(·) such that for every λ ∈ N, the following holds:

Pr

ASplEnc(key,·,·),KeyGen(msk,·,·)(ct) = b :

(1κ, 1n)← A(1λ)
(pk,msk, key)← Setup(1λ, 1κ, n)

(m0,m1)← ASplEnc(key,·,·),KeyGen(msk,·,·) (pk)
b← {0, 1}; ct← SplEnc(key,mb, (n+ 1,⊥, 0))

 ≤ 1

2
+ negl(λ)

with the following oracle restrictions:

• SplEnc Oracle: A can make at most q(λ) queries, and for each query (m, (i, `, γ)) the index i must be
equal to n+ 1.

• KeyGen Oracle: A can make at most one query for each index position i. That is, let (i1, id1), . . . , (ik, idk)
denote all the key queries made by A, then ia and ib must be distinct for all a 6= b.
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5.2 Building Indexed EITT from EIPLBE

5.2.1 Construction

Consider an EIPLBE scheme EIPLBE = (EIPLBE.Setup, EIPLBE.KeyGen, EIPLBE.Enc, EIPLBE.SplEnc, EIPLBE.Dec)
for message space M = {Mλ}λ∈N and identity space ID = {{0, 1}κ}κ∈N. Below we provide our embedded
identity TT construction with identical message and identity spaces. (Here we provide a transformation
for TT schemes with secret key tracing, but the construction can be easily extended to work in the public
tracing setting if the special encryption algorithm in the underlying EIPLBE scheme is public key as well.)

Setup(1λ, 1κ, n)→ (msk, pk, key). The setup algorithm runs the EIPLBE setup as (msk, pk, key)← EIPLBE.Setup(1λ,
1κ, n), and outputs master secret-public-tracing key tuple (msk, pk, key).

KeyGen(msk, id, i)→ ski,id. The key generation algorithm runs the EIPLBE key generation algorithm as ski,id
← EIPLBE.KeyGen(msk, id, i), and outputs secret key ski,id.

Enc(pk,m)→ ct. The encryption algorithm runs the EIPLBE encryption algorithm as ct← EIPLBE.Enc(pk,
m), and outputs ciphertext ct.

Dec(sk, ct) → z. The decryption algorithm runs the EIPLBE decryption algorithm as z ← EIPLBE.Dec(sk,
ct), and outputs z.

TraceD(key, 1y,m0,m1) → T. Let ε = 1/y. First, consider the Index-Trace algorithm defined in Fig. 2.
The sub-tracing algorithm simply tests whether the decoder box uses the user key for index i where
i is one of the inputs provided to Index-Trace. Now the tracing algorithm simply runs the Index-Trace
algorithm for all indices i ∈ [n], and for each index i where the Index-Trace algorithm outputs 1,
the tracing algorithm adds index i to the index-set of traitors T index.10 Next, consider the ID-Trace
algorithm defined in Fig. 3. The identity-tracing algorithm takes as input the index-set T index and
uses the decoder box to find the identity of the particular indexed user. Next, the tracing algorithm
simply runs the ID-Trace algorithm for all indices i ∈ T index, and for each index i where the ID-Trace
algorithm does not output ⊥, the tracing algorithm adds the output of the ID-Trace algorithm to the
identity-set of traitors T .

Concretely, the algorithm runs as follows:

• Set T index := ∅. For i = 1 to n:

– Compute (b, p, q)← Index-Trace(key, 1y,m0,m1, i).

– If b = 1, set T index := T index ∪ {(i, p, q)}.
• Set T := ∅. For (i, p, q) ∈ T index:

– Compute id← ID-Trace(key, 1y,m0,m1, (i, p, q)).

– Set T := T ∪ {id}.
• Output T .

Finally, it outputs the set T as the set of traitors.

Correctness. This follows directly from correctness of the underlying EIPLBE scheme.

10Technically, the set T index constains tuples of the form (i, p, q) where i is an index and p, q are probabilities which are the
estimations of successful decryption probability at index i and i+ 1 (respectively).
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Algorithm Index-Trace(key, 1y,m0,m1, i)

Inputs: Key key, parameter y, messages m0,m1, index i
Output: 0/1
Let ε = b1/yc. It sets N = λ · n/ε, and count1 = count2 = 0. For j = 1 to N , it computes the following:

1. It chooses bj ← {0, 1} and computes ctj,1 ← EIPLBE.SplEnc(key,mbj , (i,⊥, 0)) and sends ctj,1 to D.
If D outputs bj , set count1 = count1 + 1, else set count1 = count1 − 1.

2. It chooses cj ← {0, 1} and computes ctj,2 ← EIPLBE.SplEnc(key,mcj , (i + 1,⊥, 0)) and sends ctj,2 to
D. If D outputs cj , set count2 = count2 + 1, else set count2 = count2 − 1.

If count1−count2
N

> ε
4n

, output (1, count1
N

, count2
N

), else output (0,⊥,⊥).

Figure 2: Index-Trace

Algorithm ID-Trace(key, 1y,m0,m1, (i, p, q))

Inputs: Key key, parameter y, messages m0,m1, index i, probabilities p, q
Output: id ∈ {0, 1}κ
Let ε = b1/yc. It sets N = λ · n/ε, and count` = 0 for ` ∈ [κ]. For ` = 1 to κ, it proceeds as follows:

1. For j = 1 to N , it computes the following:

(a) It chooses bj ← {0, 1} and computes ctj ← EIPLBE.SplEnc(key,mbj , (i, `, 0)) and sends ctj to D.
If D outputs bj , set count` = count` + 1, else set count` = count` − 1.

Next, let id be an empty string. For ` = 1 to κ, do the following:

1. If
p+ q

2
>

count`
N

, set id` = 0. Else set id` = 1.

Finally, output id.

Figure 3: Index-Trace

Efficiency. If the scheme EIPLBE = (EIPLBE.Setup, EIPLBE.KeyGen, EIPLBE.Enc, EIPLBE.SplEnc, EIPLBE.Dec)
is a EIPLBE scheme with (T-s, T-e, T-̃e, T-k, T-d, S-c, S-k)-efficiency, then the scheme TT = (Setup, KeyGen,
Enc, Dec, Trace) is a (indexed keygen, public/private)-embedded identity tracing scheme with (T-s′, T-e′,
T-k′,T-d′,T-t′,S-c′,S-k′)-efficiency, where the efficiency measures are related as follows:

• T-s′(λ, κ, n) = T-s(λ, κ, n),
• T-k′(λ, κ, n) = T-k(λ, κ, n),
• T-e′(λ, κ, n) = T-e(λ, κ, n),
• T-d′(λ, κ, n) = T-d(λ, κ, n),
• T-t′(λ, κ, n, y) = (2n+ κ) · λ · y · n,
• S-c′(λ, κ, n) = S-c(λ, κ, n),
• S-k′(λ, κ, n) = S-k(λ, κ, n).

5.2.2 Security

In this section, we prove security of our construction. Formally, we prove the following.

Theorem 5.1. If the scheme EIPLBE = (EIPLBE.Setup, EIPLBE.KeyGen, EIPLBE.Enc, EIPLBE.SplEnc,
EIPLBE.Dec) is a 1-query secure EIPLBE scheme as per Definitions 5.1 to 5.5, then the scheme T = (Setup,
KeyGen, Enc, Dec, Trace) is a secure (indexed keygen, public/private)-embedded identity tracing scheme as
per Definitions 4.2 and B.2.

We prove the above theorem in two parts. First, we prove IND-CPA security of the above construction.
Later we argue correctness of tracing to complete the proof of security. Note that in the proof we use the
fact that n is bounded by a polynomial in the security parameter. (See Remark 4.1.)
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IND-CPA Security. We would like to point out that the scheme T is IND-CPA secure even if the EIPLBE
scheme satisfies only 0-query security. In other words, we do not need the scheme to achieve 1-query security
for arguing IND-CPA security. At a high level, the proof of IND-CPA security is identical to that used for
proving IND-CPA security of (standard) traitor tracing systems from (standard) private linear broadcast
encryption scheme [BSW06]. Below we provide a high level sketch.

Lemma 5.1. If the scheme EIPLBE is a 0-query secure EIPLBE scheme as per Definitions 5.1, 5.2 and 5.5,
then the scheme T is an IND-CPA secure (indexed keygen, public/private)-embedded identity tracing scheme
as per Definition 4.2.

Proof. We will construct a sequence of 2n + 4 hybrid experiments to prove IND-CPA security. The first
experiment, that is Hybrid H0, is exactly the IND-CPA game.

Hybrid H0 : In this experiment, the challenger sends public key pk, receives m0,m1 from A and sends
ct← EIPLBE.Enc(pk,m0) to A.

Hybrid Hi,b (for i ∈ [n+ 1], b ∈ {0, 1}) : This experiment is identical to the IND-CPA experiment, except
that the adversary, after sending challenge messages m0,m1, receives ct← EIPLBE.SplEnc(key,mb, (i,⊥, 0)).

Hybrid H1 : In this experiment, the challenger sends public key pk, receives m0,m1 from A and sends
ct← EIPLBE.Enc(pk,m1) to A.

For any PPT adversary A, let pA,x(·) be a function of λ that denotes the probability of A outputting 0 in
Hybrid Hx. Note that pA,0 − pA,1 is the advantage of A in the IND-CPA security game.

Claim 5.1. If the scheme EIPLBE is a 0-query normal hiding secure EIPLBE scheme as per Definition 5.1,
then for any PPT adversary A, there exists a negligible function negl(·) such that for all λ ∈ N and b ∈ {0, 1},
|pA,b − pA,1,b| ≤ negl(λ).

This follows from 0-query normal hiding security of EIPLBE.

Claim 5.2. If the scheme EIPLBE is a 0-query index hiding secure EIPLBE scheme as per Definition 5.2,
then for any PPT adversary A, there exists a negligible function negl(·) such that for all λ ∈ N and (i, b) ∈
[n]× {0, 1}, |pA,i,b − pA,i+1,b| ≤ negl(λ).

This follows from 0-query index hiding security of EIPLBE.

Claim 5.3. If the scheme EIPLBE is a 0-query message hiding secure EIPLBE scheme as per Definition 5.5,
then for any PPT adversary A, there exists a negligible function negl(·) such that for all λ ∈ N, |pA,n+1,0 −
pA,n+1,1| ≤ negl(λ).

This follows from 0-query message hiding security of EIPLBE.

Combining the above claims, we get proof of Lemma 5.1.

Correctness of Tracing. Next, we show that the false trace probability is bounded by a negligible
function, and the correct trace probability is close to the probability of A outputting an ε-successful decoding
box for some non-negligible ε.

First, we introduce some notations. Fix some public-master secret key pair (pk,msk). Given any pirate
decoder box D and messages m0,m1, for any i ∈ [n+ 1], ` ∈ [κ], let

pDi,⊥ = Pr[D(ct) = b : b← {0, 1}, ct← EIPLBE.SplEnc(key,mb, (i,⊥, 0))]

pDi,` = Pr[D(ct) = b : b← {0, 1}, ct← EIPLBE.SplEnc(key,mb, (i, `, 0))]

pDnrml = Pr[D(ct) = b : b← {0, 1}, ct← EIPLBE.Enc(pk,mb)]
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where the probability is taken over random coins of decoder D as well as the randomness used during en-
cryption.

False Trace Probability. First, we show that the tracing algorithm never falsely accuses any user with
non-negligible probability. Formally, we prove the following.

Theorem 5.2. If the scheme EIPLBE is a 1-query secure EIPLBE scheme as per Definitions 5.1 to 5.5,
then for every PPT adversary A, polynomial q(·) and non-negligible function ε(·), there exists a negligible
function negl(·) such that for all λ ∈ N satisfying ε(λ) > 1/q(λ),

Pr -Fal-TrA,ε(λ) ≤ negl(λ),

where Pr -Fal-TrA,ε(·) is as defined in Definition B.2.

Proof. Let S ⊆ [n] × {0, 1}κ be the set of index-identity pairs queried by the adversary A for secret keys,
Sindex ⊆ [n] be the set of indices queried by the adversary A for secret keys, and let D be the decoder box
output by A.

In the sequel we skip the dependence of ε(·) on λ for simplicity of notation. For i ∈ [n], ` ∈ [κ], we define
events

Diff-AdvDi : pDi,⊥ − pDi+1,⊥ > ε/8n

Diff-AdvDi,`,lwr : pDi,⊥ − pDi,` > ε/16n

Diff-AdvDi,`,upr : pDi,` − pDi+1,⊥ > ε/16n

Diff-AdvD :

∨
i∈[n]\Sindex

Diff-AdvDi∨
(i,id)∈S, `∈[κ]

s.t. id`=1

Diff-AdvDi,`,lwr

∨
(i,id)∈S, `∈[κ]

s.t. id`=0

Diff-AdvDi,`,upr

For simplicity of notation, we will drop dependence on decoder D whenever clear from context. Next, note
that the probability of the event false trace can be rewritten (using union bound) as follows by conditioning
on the events defined above

Pr[Fal-Tr] ≤ Pr
[
Fal-Tr | Diff-Adv

]
+
∑
i∈[n]

Pr [i /∈ Sindex ∧ Diff-Advi]

+
∑

(i,`)∈[n]×[κ]

Pr

[
∃id ∈ {0, 1}κ s.t. (i, id) ∈ S ∧

(
(Diff-Advi,`,lwr ∧ id` = 1) ∨
(Diff-Advi,`,upr ∧ id` = 0)

)]
.

We will show that each of these terms is bounded by a negligible function. We start by bounding the first
term.

Lemma 5.2. For every PPT adversary A, there exists a negligible function negl1(·) such that for all λ ∈ N,

Pr[Fal-Tr | Diff-Adv] ≤ negl1(λ).

Proof. The proof of this lemma follows from Chernoff bounds, and is similar to those provided in [GKW18,
Lemma 4.4] and [GKRW18, Lemma 5.3]. Here we sketch the high level idea.

Note that event Fal-Tr occurs iff the tracing algorithm outputs a user identity which was not key queried
by the adversary. Recall that the tracing algorithm takes a two-step approach. It proceeds by first tracing
the key indices of the corrupted keys, and then it traces the corresponding identity. Now there are two
sources of error in incorrect tracing. First, during step one of tracing the algorithm might incorrectly include
some index i /∈ Sindex in the index-set of traitors T index. Second, during step two it may output a non-
corrupt identity id for some index i ∈ Sindex, that is for some i ∈ Sindex the ID-Trace algorithm traces the id
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incorrectly at at least one bit position. Thus, we could write the following (using union bound), where sets
T and T index are as defined in the description of the tracing algorithm,

Pr[Fal-Tr | Diff-Adv] ≤
∑
i∈[n]

Pr
[
Fal-Tr ∧ i /∈ Sindex ∧ (∃ p, q : (i, p, q) ∈ T index) | Diff-Adv

]
+

∑
(i,`)∈[n]×[κ]

Pr
[
Fal-Tr ∧ ∃id, ĩd : (i, id) ∈ S ∧ ĩd ∈ T ∧ id` 6= ĩd` | Diff-Adv

]
.

In the above expression, the first term on the right side bounds the type 1 error (i.e., faulty step one tracing)
and the second term bounds the type 2 error (i.e., faulty step two tracing).

Now let us analyze the first term. Note that if event Diff-Adv occurs then it implies that for every
i /∈ Sindex event Diff-Advi occurred. Thus, it must hold that for every i ∈ [n]

Pr
[
i /∈ Sindex ∧ (∃ p, q : (i, p, q) ∈ T index) | Diff-Adv

]
≤ 2−O(λ).

This follows from a Chernoff bound since Diff-Advi states that pi,⊥ − pi+1,⊥ ≤ ε/8n and event (∃ p, q :
(i, p, q) ∈ T index) suggests that p̂i,⊥ − p̂i+1,⊥ > ε/4n where p̂ denotes the corresponding estimate computed
by the tracing algorithm.

Next, let us analyze the second term. For a fixed (i, `), the probability term corresponds to the event

that the ID-Trace algorithm outputs the traitor identity ĩd such that id` 6= ĩd` where the adversary makes
a key query for index-identity pair (i, id). (Recall that the adversary is allowed to receive at most one key
per index. See Definition B.2.) Concretely, by conditioning on the event Diff-Adv we get that for every
(i, id) ∈ S, ` ∈ [κ], event Diff-Advi,`,X always occurs where X = lwr if id` = 1 else X = upr. Thus, it must
hold that for every (i, id) ∈ S, ` ∈ [κ]

Pr
[
∃id, ĩd : (i, id) ∈ S ∧ ĩd ∈ T ∧ id` 6= ĩd` | Diff-Adv

]
≤ 2−O(λ).

For simplicity, fix (i, id, `) and let id` = 1. Then the above statement follows from a Chernoff bound since we

know that event Diff-Advi,`,lwr occurs, thus we have that pi,⊥−pi,` ≤ ε/16n and event ĩd ∈ T∧ ĩd` = 0 suggests
that p̂i,⊥ − p̂i,` > ε/8n where p̂ denotes the corresponding estimate computed by the tracing algorithm.

Therefore, combining all the above claims we get that

Pr[Fal-Tr | Diff-Adv] ≤ n · 2−O(λ) + n · κ · 2−O(λ) = negl1(λ).

Lemma 5.3. If the scheme EIPLBE is a 1-query index hiding secure EIPLBE scheme as per Definition 5.2,
then for every PPT adversary A, polynomial q(·) and non-negligible function ε(·), there exists a negligible
function negl2(·) such that for all λ ∈ N satisfying ε(λ) > 1/q(λ) and i ∈ [n],

Pr[i /∈ Sindex ∧ Diff-Advi] ≤ negl2(λ),

where n is the index bound chosen, and Sindex is the set of indices queried by A.

Proof. The proof of this lemma is similar to those provided in [GKW18, Lemma 4.5] and [GKRW18, Lemma
5.4].

Lemma 5.4. If the scheme EIPLBE is a 1-query lower and upper identity hiding secure EIPLBE scheme as
per Definitions 5.3 and 5.4, then for every PPT adversary A, polynomial q(·) and non-negligible function ε(·),
there exists a negligible function negl3(·) such that for all λ ∈ N satisfying ε(λ) > 1/q(λ) and i ∈ [n], ` ∈ [κ],

Pr

[
∃id ∈ {0, 1}κ s.t. (i, id) ∈ S ∧

(
(Diff-Advi,`,lwr ∧ id` = 1) ∨
(Diff-Advi,`,upr ∧ id` = 0)

)]
≤ negl3(λ),

where n is the index bound chosen, and S is the set of index-identity pairs queried by A.
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Proof. Suppose, on the contrary, there exists a PPT adversary A, polynomial q(·) and non-negligible func-
tions ε(·), δ(·) such that for all λ ∈ N satisfying ε(λ) > 1/q(λ), there exists an i∗ ∈ [n], `∗ ∈ [κ] s.t.

Pr

[
∃id ∈ {0, 1}κ s.t. (i∗, id) ∈ S ∧

(
(Diff-Advi∗,`∗,lwr ∧ id`∗ = 1) ∨
(Diff-Advi∗,`∗,upr ∧ id`∗ = 0)

)]
≥ δ(λ).

Then we can use A to build a PPT reduction algorithm B that breaks the upper/lower identity hiding
security property of EIPLBE. The reduction algorithm B first receives 1n, 1κ from the adversary. It chooses
a random index i← [n], position ` ∈ [κ], and value b ∈ {0, 1}, and sends the challenge index-position-value
tuple (i, `, 0) and (1n, 1κ) to the EIPLBE challenger.11 (In other words, the reduction algorithm randomly
guesses the index-position pair (i∗, `∗) as well as if b = 0 it interacts with EIPLBE lower identity hiding
challenger, otherwise if b = 1 it interacts with EIPLBE upper identity hiding challenger.) It then receives
the EIPLBE public key pk from the challenger, which it sends to A. The adversary A then queries for
secret keys. If A key queries for index-identity pair (j, id) where j = i and id` = b, then B aborts and sends
a random guess to the EIPLBE challenger. Else, on key query for (j, id) from A, reduction algorithm B
forwards (j, id) to the EIPLBE challenger and forwards the challenger’s response to the adversary. After
all key queries, the adversary outputs a decoding box D and messages m0,m1 to B. B then chooses two
bits α, β uniformly at random, i.e. α, β ← {0, 1}. Next, B sends message mα as its challenge message,
and receives challenge ciphertext ct∗ from EIPLBE challenger. It also queries the EIPLBE challenger for a
special-encryption of mα for index-position-value tuple (i, `, 0) if β = 0, else for (i + b,⊥, 0). Let ct be the
challenger’s response. Finally, B runs decoder box D on ct and ct∗ independently, and if D(ct) = D(ct∗), it
outputs b′ = β, else it outputs b′ = 1− β as its guess.

First, note that B is an admissible adversary in the upper/lower identity hiding security game (if b = 0
then ‘lower’, else ‘upper’ respectively). This is because B does not query the challenger for secret key on
index-identity pair (j, id) such that j = i and id` = b. Additionally, it only makes a single special-encryption
query on index-position-value tuple (i, `, 0) or (i+b,⊥, 0). Finally, by an analysis similar to that in [GKW18,
Lemma 4.1, 4.5] and [GKRW18, Lemma 5.4], it follows that the advantage of the reduction algorithm is at

least δ
2κn

(
ε

16n

)2
. Thus, the lemma follows.

From the above lemmas, it follows that the probability of false trace is at most negl1(λ) + n · negl2(λ) + n ·
κ · negl3(λ), thus theorem follows.

Correct Trace Probability. Now we show that whenever the adversary outputs a good decoder, then
with all but negligible probability the tracing algorithm outputs a non-empty set T . Combining this with
Theorem 5.2, we get that the tracing algorithm correctly traces. Formally, we show the following.

Theorem 5.3. If the scheme EIPLBE is a 1-query secure EIPLBE scheme as per Definitions 5.1 to 5.5,
then for every PPT adversary A, polynomial q(·) and non-negligible function ε(·), there exists a negligible
function negl(·) such that for all λ ∈ N satisfying ε(λ) > 1/q(λ),

Pr -Cor-TrA,ε(λ) ≥ Pr -G-DA,ε(λ)− negl(λ)

where Pr -Cor-TrA,ε(·) and Pr -G-DA,ε(·) are as defined in Definition B.2.

Proof. Let us start by analyzing the probability that tracing algorithm outputs a non-empty set T . First, we
know that if event Good-Decoder occurs, then pDnrml ≥ 1/2+ε for some non-negligible ε. Next, let Sindex ⊆ [n]
be the set of indices i ∈ [n] such that pDi,⊥ − pDi+1,⊥ > ε/2n. By using Chernoff bounds similar to that in
Lemma 5.2, we get that

∀ i ∈ Sindex, Pr
[
p̂Di,⊥ − p̂Di+1,⊥ < ε/4n

]
≤ 2−O(λ) = negl1(λ), (1)

11Note that both n and κ are outputted in unary, thus they are some polynomials in the security parameter.
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where p̂ denotes the corresponding estimate computed by the tracing algorithm.
Note that by 1-query message hiding security of the underlying EIPLBE scheme, we have that pDn+1,⊥ ≤

1/2 + negl2(λ) for some negligible function negl2(·). Also, by 1-query normal hiding security, we have that
pDnrml − pD1,⊥ ≤ negl3(λ) for some negligible function negl3(·). Thus, we can write that

pD1,⊥ − pDn+1,⊥ ≥ ε− negl2(λ)− negl3(λ) > ε/2.

Given this we can conclude that the set Sindex (as defined above) must be non-empty whenever event
Good-Decoder occurs. Combining this with Eq. (1), we get that if event Good-Decoder occurs then with
all-but-negligible probability

T index 6= ∅, and ∀ (i, p, q) ∈ T index : p− q > ε

4n

where T index is as defined in the tracing algorithm.
Looking back at Fig. 3, we observe that for every tuple (i, p, q) the ID-Trace algorithm always outputs

some identity id. This is because the algorithm simply checks for every ` ∈ [κ], either pDi,` > (p + q)/2 and
the algorithm sets id` = 1, otherwise it sets id` = 0. Thus, this implies the following:

T index 6= ∅ =⇒ T 6= ∅.

Therefore, we can write the following

Pr[T 6= ∅] ≥ (1− n · negl1(λ)) · Pr -G-DA,ε(λ) ≥ Pr -G-DA,ε(λ)− negl(λ).

Finally, combining with Theorem 5.2, we get that

Pr -Cor-TrA,ε(λ) ≥ Pr -G-DA,ε(λ)− negl(λ).

This concludes the proof.

6 Building EIPLBE from Public Key Encryption

Let PKE = (PKE.Setup,PKE.Enc,PKE.Dec) be a public key encryption scheme for message space M =
{Mλ}λ∈N. Below we provide an EIPLBE scheme for same message space and identity space ID = {{0, 1}κ}κ∈N.

Setup(1λ, 1κ, n)→ (msk, pk, key) . The setup algorithm runs the PKE setup 2n · κ times as

(ski,`,b, pki,`,b)← PKE.Setup(1λ), for (i, `, b) ∈ [n]× [κ]× {0, 1}

and outputs sets pk =
{

pki,`,b
}

(i,`,b)∈[n]×[κ]×{0,1}, msk = {ski,`,b}(i,`,b)∈[n]×[κ]×{0,1}, and key = pk.

KeyGen(msk, id ∈ {0, 1}κ, i ∈ [n])→ sk. Let msk = {skj,`,b}j,`,b. The key generation algorithm outputs the

secret key as sk =
(
i, id, {ski,`,id`}`∈[κ]

)
.

Enc(pk,m)→ ct. Let pk =
{

pki,`,b
}
i,`,b

. The encryption algorithm first chooses n · (κ− 1) random messages

as ri,` ←M for (i, `) ∈ [n]× [κ− 1]. Next, for every i, it sets ri,κ = m⊕
(⊕κ−1

`=1 ri,`

)
. It then encrypts

messages ri,` under key pki,`,b as follows:

cti,`,b ← PKE.Enc(pki,`,b, ri,`), for (i, `, b) ∈ [n]× [κ]× {0, 1}

Finally, it outputs the ciphertext as ct = (cti,`,b)i,`,b.
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SplEnc(key,m, (i∗, `∗, b∗))→ ct. Let key =
{

pki,`,b
}
i,`,b

. The encryption algorithm first chooses n · (κ − 1)

random messages as ri,` ←M for (i, `) ∈ [n]× [κ− 1]. Next, it sets ri,κ as:

ri,κ =

{
m⊕

(⊕κ−1
`=1 ri,`

)
i ≥ i∗

←M otherwise

where ‘←M’ denotes sampling ri,` as a random message. Now it sets messages r̃i,`,b as:

r̃i,`,b =

{
ri,` if (i, `, b) 6= (i∗, `∗, b∗)

←M otherwise

It then encrypts messages r̃i,`,b under key pki,`,b as follows:

cti,`,b ← PKE.Enc(pki,`,b, r̃i,`,b), for (i, `, b) ∈ [n]× [κ]× {0, 1}

Finally, it outputs the ciphertext as ct = (cti,`,b)i,`,b.

Dec(sk, ct)→ z. Let sk = (i, id, {sk`}`) and ct = (ctj,`,b)j,`,b. The decryption algorithm runs the PKE

decryption on ciphertexts {cti,`,id`}` as follows:

z` ← PKE.Dec(sk`, cti,`,id`), for ` ∈ [κ].

Finally, it outputs
⊕κ

`=1 z`.

Correctness. This follows directly from correctness of the underlying PKE scheme. Below we briefly sketch
the main points.

First, note that the EIPLBE (normal) encryption algorithm computes each ciphertext cti,`,b such that it
encrypts message ri,` under public key pki,`,b with the condition that, for every i,

⊕κ
`=1 ri,` = m where m is

the message encrypted. Now the secret key for user j with identity id consists of PKE secret keys skj,`,id` .
Thus, the decryption algorithm correctly reconstructs the message if the underlying PKE scheme is correct.

Second, the EIPLBE special-encryption algorithm, on input (i∗, `∗, b∗), computes each ciphertext cti,`,b
such that it encrypts message r̃i,`,b under public key pki,`,b where we know that for

((i ≥ i∗ + 1) ∨ (i∗, `∗) = (i,⊥) ∨ (i∗, id`∗) = (i, 1− b∗)) =⇒ r̃i,`,b = ri,`.

And since we know that for every i ≥ i∗,
⊕κ

`=1 ri,` = m where m is the message encrypted. Thus, correctness
of special-encryption follows from the correctness of the underlying PKE scheme.

Efficiency. Let the public key encryption scheme PKE = (PKE.Setup, PKE.Enc, PKE.Dec) be (T-s, T-e,
T-d, S-c, S-k)-efficient, then the EIPLBE scheme EIPLBE = (Setup, KeyGen, Enc, SplEnc, Dec) is (T-s′, T-e′,
T-̃e′, T-k′,T-d′,S-c′,S-k′)-efficient, where the efficiency measures are related as follows:

• T-s′(λ, κ, n) = 2n · κ · T-s(λ),
• T-k′(λ, κ, n) = O(2n · κ · λ),
• T-e′(λ, κ, n) = 2n · κ · T-e(λ),
• T-̃e′(λ, κ, n) = 2n · κ · T-e(λ),
• T-d′(λ, κ, n) = κ · T-d(λ),
• S-c′(λ, κ, n) = 2n · κ · S-c(λ),
• S-k′(λ, κ, n) = κ · S-k(λ).
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6.1 Security

In this section, we prove security of our construction. Formally, we prove the following.

Theorem 6.1. If the scheme PKE = (PKE.Setup, PKE.Enc, PKE.Dec) is an IND-CPA secure PKE scheme,
then the scheme EIPLBE = (Setup, KeyGen, Enc, SplEnc, Dec) described above is a secure EIPLBE as per
Definitions 5.1 to 5.5.

We prove the above theorem in parts where we prove that our construction satisfies all five security
properties. The proof of each security property follows directly from the IND-CPA security of the underlying
PKE scheme. Before we sketch the main ideas behind the proof, we would like to highlight that since the
EIPLBE scheme described above has a public key special-encryption algorithm thus the adversary does not
need to query the EIPLBE challenger for special-encryption queries since the adversary can simulate them
on its own. Therefore, throughout this section we consider that the adversary queries the challenger for
secret keys only.

6.1.1 Normal Hiding

This follows directly from our construction since when the special-encryption algorithm is run on input
(i∗, `∗, b∗) with i∗ = 1 and `∗ = ⊥, then r̃i,`,b = ri,` for all i, `, b as the condition (i > i∗) ∨ (i = i∗ ∧ (` 6=
`∗ ∨ b 6= b∗)) is equivalent to i ≥ 1 which is always true. Thus, the distributions of (normal) ciphertexts and
(special-encryption) ciphertexts is identical.

6.1.2 Index Hiding

Recall that index hiding property requires that special-encryption of message m for index-position-value tuple
(i∗,⊥, 0) is indistinguishable from special-encryption of message m for index-position-value tuple (i∗+1,⊥, 0)
if the adversary does not receice any key for index i∗. Now the proof of index hiding follows from a simple
hybrid experiment. The main idea is that we will use IND-CPA security to switch the sub-ciphertexts

cti∗,κ,0, cti∗,κ,1 to encryptions of a common random message instead of encryptions of m ⊕
(⊕κ−1

`=1 ri∗,`

)
.

This can be done since the adversary is not allowed to key query for index i∗, thus the adversary does not
receive secret keys ski∗,κ,0, ski∗,κ,1 and therefore using IND-CPA security we can indistinguishably switch the
corresponding ciphertexts to encrypt a random message ri∗,κ ←M.

We construct a sequence of 3 hybrid experiments. The first experiment, Hybrid H0, is exactly the
index hiding security game in which the challenge ciphertext is an encryption for index-position-value tuple
(i∗,⊥, 0). The next hybrid H1 is identical to H0 except the ciphertext cti∗,κ,0 encrypts a random message

ri∗,κ instead of m⊕
(⊕κ−1

`=1 ri∗,`

)
. And, in the final hybrid H2, both ciphertext cti∗,κ,0 and cti∗,κ,1 encrypt

a random message ri∗,κ instead of m⊕
(⊕κ−1

`=1 ri∗,`

)
. Thus, index hiding security follows from IND-CPA of

the PKE scheme.

6.1.3 Upper/Lower Identity Hiding

The proof of upper/lower identity hiding again follows directly from the IND-CPA security of the underlying
PKE construction and is similar to the previous proof. Let (i∗, `∗, b∗) be the adversary’s challenge index-
position-value tuple. In the case of upper identity security, the challenger uses IND-CPA security to switch

ciphertext cti∗,`∗,1−b∗ from encryption of m⊕
(⊕κ−1

`=1 ri∗,`

)
to encryption of ri∗,κ where ri∗,κ is the message

encrypted in the ciphertext cti∗,`∗,b∗ . This follows from the fact that the adversary is not allowed to query
(j, id) for secret key where j = i∗ and id`∗ = 1− b∗.

Similarly, for lower identity hiding security, the challenger uses IND-CPA to switch cti∗,`∗,b∗ from en-

cryption of a random message ri∗,κ to encryption of m⊕
(⊕κ−1

`=1 ri∗,`

)
. This again follows from the fact that

the adversary is not allowed to query (j, id) for secret key where j = i∗ and id`∗ = b∗.
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6.1.4 Message Hiding

This follows directly from our construction since the special-encryption algorithm when run on input (n+1,⊥
, b∗) computes sub-ciphertexts cti,`,b as encryptions of completely random and independent messages (for
all i, `).12 (Note that for a any i, `, cti,`,0 and cti,`,1 encrypt the same message.) Thus, the ciphertext
is completely independent of the message m, therefore the distributions of special-encryptions on any two
messages m0 and m1 is identical.

7 Building EIPLBE using Bilinear Maps

Let Gen be a bilinear group generator of composite order. Below we provide our EIPLBE scheme based on
bilinear maps. Below we are using a notation similar to that used in [BW06, Section 4.3-4.4] for indexing
users.

Setup(1λ, 1κ, n)→ (msk, pk, key) . Let m̃ =

⌈√
n

κ

⌉
and m =

⌈ n
m̃

⌉
.13 The setup algorithm samples a bilinear

group G as follows
(p, q,N = pq,G,GT , e (·, ·))← Gen(1λ).

It next samples random generators gp, hp ∈ Gp and gq, hq ∈ Gq and sets g = gpgq, h = hphq ∈ G.
Additionally it chooses random exponents as follows

∀ ` ∈ [κ], b ∈ {0, 1}, δ`,b ← ZN , γ`,b ← Zp
∀ y ∈ [m̃], ` ∈ [κ], b ∈ {0, 1}, cy,`,b ← ZN

∀ x ∈ [m], rx, αx ← ZN

It also samples β ← Zq. Finally, it sets the master secret-public-tracing key tuple as follows

pk =


N,G,GT , e (·, ·) , g, h, Eq = gβq ,{

Ex = grx , Fx = hrx , Gx = e(g, g)αx ,
Eq,x = gβrxq , Fq,x = hβrxq , Gq,x = e(gq, gq)

βαx

}
x∈[m]

,

{Hy,`,b = gcy,`,b}(y,`,b)∈[m̃]×[κ]×{0,1} ,{
Ṽ`,b = gδ`,bg

γ`,b
p , V`,b = hδ`,b

}
(`,b)∈[κ]×{0,1}

 ,

msk =

(
g,G, {rx, αx}x∈[m] ,

{cy,`,b}(y,`,b)∈[m̃]×[κ]×{0,1}

)
, key = pk.

KeyGen(msk, id ∈ {0, 1}κ, i ∈ [n])→ sk. The key generation algorithm first parses the key msk be as defined
during setup, and also let (x, y) ∈ [m] × [m̃] be the unique row-wise representation of index i. (That
is, for any i ∈ [n], its corresponding indices can be defined as y = i mod m̃ and x = di/m̃e.)

It outputs the secret key as sk = (x, y, id, gαx+rx(
∑
`∈[κ] cy,`,id` )).

Enc(pk,m)→ ct. The (normal) encryption algorithm is same as the special-encryption algorithm (described
next) when run on index-position-value tuple (i∗, `∗, b∗) = (1,⊥, 0). (Note that special-encryption is a
public key algorithm since key = pk.)

12Again this is because the condition (i > n + 1) ∨ (i = n + 1 ∧ (` 6= ⊥ ∨b 6= b∗)) is equivalent to i ≥ n + 1 which is always
false.

13Note that since we are rounding up, thus the number of users that the system can support can be more than the input n
provided. However, assymptotically the efficiency of the scheme is not affected.
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SplEnc(key,M ∈ GT , (i∗, `∗, b∗))→ ct. The encryption algorithm first parses the key key = pk be as defined
during setup, and also let (x∗, y∗) ∈ [m] × [m̃] be the unique row-wise representation of index i∗. It
chooses random exponents as follows

τ, t ∈ ZN , ∀ x ∈ [m], sx, ex, fx ← ZN
∀ y ∈ [m̃], ` ∈ [κ], b ∈ {0, 1}, wy,`,b, vy,`,b ← ZN

Now the ciphertext ct consists of the following components

ct =


{
Rx, R̃x, Ax, Bx

}
x∈[m]

,{
Cy,`,b, C̃y,`,b

}
(y,`,b)∈[m̃]×[κ]×{0,1}


where each of the components are computed as described in Tables 2 and 3.

Rx R̃x Ax Bx
> x∗ Eq,x

sx Fq,x
sxτ Eq

sxt M ·Gq,xsxt
= x∗ Ex

sx Fx
sxτ gsxt M ·Gxsxt

< x∗ gsx hsxτ gex e(g, g)fx

Table 2: Computing row components of the ciphertext for x ∈ [m].

Cy,`,b C̃y,`,b
(y > y∗) ∨

(y = y∗ ∧ (`, b) 6= (`∗, b∗))
Hy,`,b

t · hwy,`,bτ gwy,`,b

(y < y∗) ∨
(y, `, b) = (y∗, `∗, b∗)

Hy,`,b
t · hwy,`,bτ · V`,bvy,`,bτ gwy,`,b · Ṽ vy,`,b`,b

Table 3: Computing column components of the ciphertext for (y, `, b) ∈ [m̃]× [κ]× {0, 1}.

Dec(sk, ct)→M ∈ GT . The encryption algorithm first parses the ciphertext ct as defined during encryption.
Also, let sk = (x, y, id,K) where K ∈ G. It then computes the following and outputs the message M .

M =
Bx · e(Rx,

∏
` Cy,`,id`)

e(R̃x,
∏
` C̃y,`,id`) · e(K,Ax)

Correctness. The proof of correctness is similar to that of the Boneh-Waters [BW06] scheme. Below we
briefly highlight the main points.

Consider a secret key sk = (x, y, id,K) for index i = (x, y) and identity id. We know that K =

gαxgrx(
∑
`∈[κ] cy,`,id` ). Also, consider a ciphertext ct encrypting message M for index-position-value tuple

(i∗, `∗, b∗) where ciphertext ct consists of {Rx, R̃x, Ax, Bx}x, {Cy,`,b, C̃y,`,b}y,`,b. Recall that for correctness
we require that the decryption algorithm outputs the message M if i ≥ i∗ + 1, or (i∗, `∗) = (i,⊥), or
(i∗, id`∗) = (i, 1− b∗). Let i∗ = (x∗, y∗). Suppose that index i and identity id satisfies these constraints. Now
consider the following two cases:

Case 1: x > x∗. In this scenario, we have that the Rx = Eq,x
sx , R̃x = Fq,x

sxτ , Ax = Eq
sxt, Bx =

M ·Gq,xsxt (see Table 2). Now irrespective of the whether y > y∗ or not, we can simplify e(Rx, Cy,`,b) and

e(R̃x, C̃y,`,b) as in Table 4.
Therefore, we get that for every ` ∈ [κ],

e(Rx, Cy,`,id`)

e(R̃x, C̃y,`,id`)
= e(gq, gq)

βrxsxcy,`,id` t.
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e(Rx, Cy,`,b) e(R̃x, C̃y,`,b)
(y > y∗) ∨

(y = y∗ ∧ (`, b) 6= (`∗, b∗))
e(gq, gq)

βrxsxcy,`,bt

·e(gq, hq)βrxsxwy,`,bτ
e(gq, hq)

βrxsxwy,`,bτ

(y < y∗) ∨
(y, `, b) = (y∗, `∗, b∗)

e(gq, gq)
βrxsxcy,`,bt

·e(gq, hq)βrxsxwy,`,bτ
·e(gq, hq)βrxsxδ`,bvy,`,b

e(gq, hq)
βrxsxwy,`,bτ

·e(gq, hq)βrxsxδ`,bvy,`,b

Table 4: Partial evaluations 1.

Also, we have that e(K,Ax) = e(gq, gq)
βαxe(gq, gq)

βrx(
∑
` cy,`,id` ). Therefore, we get that

Bx · e(Rx,
∏
` Cy,`,id`)

e(R̃x,
∏
` C̃y,`,id`) · e(K,Ax)

=
Bx ·((((((((((∏

` e(gq, gq)
βrxsxcy,`,id` t

e(gq, gq)βαxsxt ·(((((((((((
e(gq, gq)

βrx(
∑
` cy,`,id` )sxt

=
Bx

e(gq, gq)βαxsxt
=
M ·(((((((

e(gq, gq)
βαxsxt

(((((((
e(gq, gq)

βαxsxt
= M

Thus, correctness follows.
Case 2: (otherwise). Now in this scenario, we have that Rx = Ex

sx , R̃x = Fx
sxτ , Ax = gsxt, Bx =

M ·Gxsxt (see Table 2). Since the correctness only needs to hold if (i∗, `∗) = (i,⊥), or (i∗, id`∗) = (i, 1− b∗)
(which is same as (y > y∗) ∨ (y = y∗ ∧ (`, b) 6= (`∗, b∗))), thus we can simplify e(Rx, Cy,`,b) and e(R̃x, C̃y,`,b)
as in Table 5.

e(Rx, Cy,`,b) e(R̃x, C̃y,`,b)
(y > y∗) ∨

(y = y∗ ∧ (`, b) 6= (`∗, b∗))
e(g, g)βrxsxcy,`,bt

·e(g, g)βrxsxwy,`,bτ
e(g, g)βrxsxwy,`,bτ

Table 5: Partial evaluations 2.

And we can perform the rest of cancellations as in Case 1. Thus, correctness follows.

Efficiency. The EIPLBE scheme EIPLBE = (Setup, KeyGen, Enc, SplEnc, Dec) is (T-s, T-e, T-̃e, T-k, T-d,
S-c, S-k)-efficient, where the efficiency measures are as follows:

• T-s(λ, κ, n) = max(m̃ · κ,m) · poly(λ),
• T-k(λ, κ, n) = max(m̃ · κ,m) · poly(λ),14

• T-e(λ, κ, n) = max(m̃ · κ,m) · poly(λ),
• T-̃e(λ, κ, n) = max(m̃ · κ,m) · poly(λ),
• T-d(λ, κ, n) = max(m̃ · κ,m) · poly(λ),15

• S-c(λ, κ, n) = max(m̃ · κ,m) · poly(λ),
• S-k(λ, κ, n) = poly(λ).16

Note that max(m̃ · κ,m) varies as follows.

max(m̃ · κ,m) =

{
≤ 2
√
n · κ if n ≥ κ,

κ otherwise.

14Here we include the time taken to parse the master secret key and select master secret key components as well.
15Here we include the time taken to parse the ciphertext and select ciphertext components as well.
16Here we ignore the fact that the secret key also contains the user index and identity. If we include that towards key size,

then S-k increases by an additive amount of κ+ logn.

31



7.1 Security

In this section, we prove security of our construction. Formally, we prove the following.

Theorem 7.1. If the assumptions 1, 2, and 3 hold over the group generator Gen, then the scheme EIPLBE =
(Setup, KeyGen, Enc, SplEnc, Dec) described above is a secure EIPLBE as per Definitions 5.1 to 5.5.

We prove the above theorem in parts where we prove that our construction satisfies all five security
properties. Parts of the security proof are similar to that of PLBE index hiding proof of [BW06]. Before we
sketch the main ideas behind the proof, we would like to highlight that since the EIPLBE scheme described
above has a public key special-encryption algorithm thus the adversary does not need to query the EIPLBE
challenger for special-encryption queries since the adversary can simulate them on its own. Therefore,
throughout this section we consider that the adversary queries the challenger for secret keys only.

7.1.1 Normal Hiding

Since the distributions of (normal) ciphertexts and (special-encryption) ciphertexts for index-position-value
tuple (1,⊥, 0) are the same, thus the normal hiding security of the scheme follows. (See construction.)

7.1.2 Index Hiding

Recall that the adversary in the index hiding game outputs the challenge index i∗ = (x∗, y∗) at the beginning
(see Definition 5.2) where the adversary must not be able to distinguish between encryptions to (i∗,⊥, 0)
and (i∗ + 1,⊥, 0) if it does not have a secret key corresponding to index i∗. Now if y∗ = m̃, then we have
that i∗ + 1 = (x∗ + 1, 1). Otherwise i∗ + 1 = (x∗, y∗ + 1). Similar to the [BW06] proof, we break down the
proof in two parts based on whether y∗ = m̃ or not.

Case 1: (y∗ < m̃). In this scenario we need to show that an encryption to (x∗, y∗,⊥, 0) and an encryption
to (x∗, y∗ + 1,⊥, 0) is indistinguishable. Formally, we prove the following lemma.

Lemma 7.1. If the assumption 1 holds over the group generator Gen, then no polynomial time adversary
can distinguish between an encryption to (x∗, y∗,⊥, 0) and an encryption to (x∗, y∗ + 1,⊥, 0) with non-
negligible advantage (where i∗ = (x∗, y∗) is the index output by the adversary in the index hiding game and
the adversary is not allowed to make key query for index i∗).

Proof. The proof of this lemma follows via a sequence of 2κ + 1 hybrid games H0, H˜̀,̃b for ˜̀ ∈ [κ] and

b̃ ∈ {0, 1}. Here the hybrid H0 corresponds to the index hiding game in which the challenge ciphertext is an
encryption to index-position-value tuple (i∗ = (x∗, y∗),⊥, 0) where y∗ < m̃. And, the hybrid H˜̀,̃b is identical

to hybrid H0, except the column components in the challenge ciphertext Cy∗,`,b for (`, b) ∈ [˜̀− 1] × {0, 1}
and ` = ˜̀, b ≤ b̃ have a random component in the Gp subgroup. Concretely, in the H˜̀,̃b hybrid the column
component is computed as in Table 6.

Cy,`,b C̃y,`,b
(y > y∗) ∨

(y = y∗ ∧ ` > ˜̀) ∨
(y = y∗ ∧ ` = ˜̀∧ b > b̃)

Hy,`,b
t · hwy,`,bτ gwy,`,b

(y < y∗) ∨
(y = y∗ ∧ ` < ˜̀) ∨

(y = y∗ ∧ ` = ˜̀∧ b ≤ b̃) Hy,`,b
t · hwy,`,bτ · V`,bvy,`,bτ gwy,`,b · Ṽ vy,`,b`,b

Table 6: Computing column components of the ciphertext in Hybrid H˜̀,̃b.
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Note that the hybrid H`,1 corresponds to the index hiding game in which the challenge ciphertext is an
encryption to index-position-value tuple (x∗, y∗+1,⊥, 0). Now to prove index hiding security it is sufficient to

prove that hybrids H˜̀,̃b and H˜̀+b̃−1,(̃b+1) mod 2 are indistinguishable for all ˜̀, b̃. (In addition, it is also required

that hybrids H0 and H1,0 are indistinguishable.) Below we just show that hybrids H˜̀,̃b and H˜̀+b̃−1,(̃b+1) mod 2

are indistinguishable as exactly same ideas could be applied for proving indistinguishability of remaining
consecutive hybrids however proving them together seems to involve a heavy notational overhead. Now note
that, combining these claims, the main lemma would follow.

Suppose, on the contrary, there exists a PPT adversaryA that distinguishes hybridsH˜̀,̃b andH˜̀+b̃−1,(̃b−1) mod 2

with non-negligible advantage ε(·). We build a PPT reduction algorithm B that breaks assumption 1 with
advantage ε(·) as follows.

The reduction algorithm B first receives the modified DBDH challenge from the challenger as

(N,G,GT , e(·, ·), gq, gp, A = gap , B = gbp, C = gcp, D = gb
2

p , T )

where T is either gabcp or a random group element in the subgroup of prime order p. Next, it receives the
challenge tuple (1κ, 1n, x∗, y∗) from the adversary A where y∗ < m̃.

Now B needs to generate the public key and send it to the adversary. After that adversary makes
polynomially many key queries for distinct indices, and sends a challenge message m. The key queries and
challenge message could be arbitrarily interleaved. Below we show that first how does B generates the public
key and later describe how to answer key queries and output challenge ciphertext. Note that finally the
adversary outputs its guess, which B uses to break assumption 1.

Main idea. Since the reduction plays the game with its challenger in the subgroup Gp, thus it can choose
everything in the Gq subgroup by itself. And the main idea is to implicitly set the exponents rp,x∗ , sp,x∗

as b · r̃p,x∗ , s̃p,x∗/b (respectively) where r̃p,x∗ , s̃p,x∗ are chosen at random, and also implicitly set tp = a · b,
hp = B = gbp and cp,y∗,˜̀,̃b = c · c̃p,y∗,˜̀,̃b where exponent c̃p,y∗,˜̀,̃b is chosen at random. Setting exponents this
way allows us to simulate the public key and secret keys exactly as well as the challenge group element T
can be programmed in the challenge ciphertext component Cy∗,˜̀,̃b.
Public key. It chooses random generator hq ∈ Gq by sampling random exponent d ∈ ZN and setting
hq = gdq . Additionally it chooses random exponents as follows

∀ ` ∈ [κ], b ∈ {0, 1}, δ`,b ← ZN , γ`,b ← ZN
∀ y ∈ [m̃], ` ∈ [κ], b ∈ {0, 1}, c̃y,`,b ← ZN

∀ x ∈ [m], r̃x ← ZN , αx ← ZN
It also samples β ← ZN . Next it computes key components {Ex, Fx, Gx, Eq,x, Fq,x, Gq,x} , {Hy,`,b} for x ∈ [m]
and (y, `, b) ∈ [m̃]× [κ]× {0, 1} as

Ex =

{
(gpgq)

r̃x for x 6= x∗,

(Bgq)
r̃x otherwise.

, Fx =

{
(Bhq)

r̃x for x 6= x∗,

(Dhq)
r̃x otherwise.

,

Hy,`,b =

{
(Cgq)

c̃y,`,b for y = y∗, ` = ˜̀, b = b̃,

(gpgq)
c̃y,`,b otherwise.

,

Eq,x = gβr̃xq , Fq,x = hβr̃xq , Gq,x = e(gq, gq)
βαx , Gx = e(g, g)αx .

Finally, it sets the public key as

pk =


N,G,GT , e (·, ·) , g = gpgq, h = Bhq, Eq = gβq ,{

Ex, Fx, Gx,
Eq,x, Fq,x, Gq,x

}
x

, {Hy,`,b}y,`,b ,{
Ṽ`,b = gδ`,bg

γ`,b
p , V`,b = hδ`,b

}
`,b
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Note that all the above terms can be computed using only the modified DBDH challenge.

Secret key queries. B answers the key query for index-identity pair (i = (x, y), id) with sk = (x, y, id,Kx,y)
where Kx,y is computed as follows

Kx,y =


gαxgr̃x(

∑
`∈[κ] c̃y,`,id` ) if x 6= x∗, y 6= y∗

gαx(Bgq)
r̃x(

∑
`∈[κ] c̃y,`,id` ) if x = x∗, (y 6= y∗ or id˜̀ 6= b̃)

gαxgr̃x(
∑
` 6= ˜̀ c̃y,`,id` )(Cgq)r̃xc̃y, ˜̀,b̃ if x 6= x∗, y = y∗, id˜̀ = b̃

Note that the adversary is not allowed to query for index i∗ = (x∗, y∗).

Challenge ciphertext. It chooses random exponents as follows

τ ∈ ZN , tq ← ZN , ∀ x ∈ [m], ex, fx ← ZN , s̃x ← ZN
∀ y ∈ [m̃], ` ∈ [κ], b ∈ {0, 1}, w̃y,`,b ← ZN , vy,`,b ← ZN

Now the ciphertext components are computed as described in Tables 7 and 8.

Rx R̃x Ax Bx
> x∗ Eq,x

s̃x Fq,x
s̃xτ Eq

s̃xtq M ·Gq,xs̃xtq

= x∗ gr̃xs̃x (Bhq)
r̃xs̃xτ (Ag

tq
q )s̃x M · e(g,Agtqq )αxs̃x

< x∗ gs̃x (Bhq)
s̃xτ gex e(g, g)fx

Table 7: Computing row components of the ciphertext for x ∈ [m].

Cy,`,b C̃y,`,b
(y > y∗) ∨

(y = y∗ ∧ ` > ˜̀) ∨
(y = y∗ ∧ ` = ˜̀∧ b > b̃)

g
c̃y,`,btq
q hw̃y,`,bτ A−c̃y,`,b/τgw̃y,`,b

y = y∗ ∧ ` = ˜̀∧ b = b̃ g
c̃y,`,btq
q hw̃y,`,bτT c̃y,`,b gw̃y,`,b

(y < y∗) ∨
(y = y∗ ∧ ` < ˜̀) ∨

(y = y∗ ∧ ` = ˜̀∧ b < b̃)

g
c̃y,`,btq
q hw̃y,`,bτg

vy,`,b
p gw̃y,`,b

Table 8: Computing column components of the ciphertext for (y, `, b) ∈ [m̃]× [κ]× {0, 1}.

Finally, B receives a guess b′ from A and it simply forwards that as its guess to the modified DBDH
challenger.

Analysis. If T = gabcp , then B simulates the view of hybrid H˜̀,̃b, otherwise if T is randomly chosen group
element in Gp subgroup then B simulates the view of hybrid H˜̀+b̃−1,(̃b−1) mod 2. Therefore, if A wins with

advantage ε, then B breaks assumption 1 with advantage ε.

Case 2: (y∗ = m̃). In this scenario we need to show that an encryption to (x∗, y∗ = m̃,⊥, 0) and an
encryption to (x∗ + 1, 1,⊥, 0) is indistinguishable. Formally, we prove the following lemma.
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Lemma 7.2. If the assumptions 1, 2, 3, and 4 holds over the group generator Gen, then no polynomial time
adversary can distinguish between an encryption to (x∗, y∗ = m̃,⊥, 0) and an encryption to (x∗ + 1, 1,⊥, 0)
with non-negligible advantage (where i∗ = (x∗, y∗ = m̃) is the index output by the adversary in the index
hiding game and the adversary is not allowed to make key query for index i∗).

Proof. The proof of this lemma follows by a sequence of hybrid experiments.

Hybrid 1. This hybrid corresponds to the index hiding game in which the challenge ciphertext is an
encryption to index-position-value tuple (i∗ = (x∗, y∗),⊥, 0) where y∗ = m̃.

Hybrid 2. This hybrid is same as previous hybrid, except that the challenge ciphertext is an encryption
to index-position-value tuple (i∗ = (x∗, y∗ + 1),⊥, 0) where y∗ = m̃.17 (see Table 3)

Hybrid 3. This hybrid is same as previous hybrid, except that the row components in the challenge
ciphertext are computed as in Table 9 where L = e(gp, g)z and z ∈ Zp is a random exponent.

Rx R̃x Ax Bx
> x∗ Eq,x

sx Fq,x
sxτ Eq

sxt M ·Gq,xsxt
= x∗ Ex

sx Fx
sxτ gsxt M ·Gxsxt · L

< x∗ gsx hsxτ gex e(g, g)fx

Table 9: Computing row components of the ciphertext for x ∈ [m] in Hybrids 3 and 4.

Hybrid 4. This hybrid is same as previous hybrid, except that the row components in the challenge
ciphertext are computed as in Table 9 where L = e(g, g)z and z ∈ ZN is a random exponent.

Hybrid 5. This hybrid is same as previous hybrid, except that the row components in the challenge
ciphertext are computed as in Table 10.

Rx R̃x Ax Bx
> x∗ Eq,x

sx Fq,x
sxτ Eq

sxt M ·Gq,xsxt
≤ x∗ gsx hsxτ gex e(g, g)fx

Table 10: Computing row components of the ciphertext for x ∈ [m] in Hybrid 5.

Hybrid 6. This hybrid is same as previous hybrid, except that in the challenge ciphertext the column
components are encrypted to (y∗ = 1, `∗ = ⊥, b∗ = 0). (see Table 3. In words, in this hybrid the challenger
encrypts to first index in the column components, and row x∗ is less than row, x∗ + 1 is greater than row.)

Hybrid 7. This hybrid corresponds to the index hiding game in which the challenge ciphertext is an en-
cryption to index-position-value tuple (i∗ + 1 = (x∗, 1),⊥, 0) where y∗ = m̃.

Next, we show via a sequence of claims that the adversary’s advantage in each pair of consecutive hybrids is
negligibly close thereby completing the proof.

17Note that the special-encryption algorithm does not legally encrypt to position (x∗, y∗+ 1 = m̃+ 1), however the algorithm
can be naturally extended to encrypt to such position.
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Claim 7.1. If the assumption 1 holds over the group generator Gen, then no polynomial time adversary can
distinguish between hybrids 1 and 2 with non-negligible advantage.

Proof. The proof of above claim is identical to that of Lemma 7.1.

Claim 7.2. If the assumption 1 holds over the group generator Gen, then no polynomial time adversary can
distinguish between hybrids 2 and 3 with non-negligible advantage.

Proof. Suppose, on the contrary, there exists a PPT adversary A that distinguishes between Hybrids 2 and
3 with non-negligible advantage ε(·) with constraint that y∗ = m̃. We build a PPT reduction algorithm B
that breaks assumption 1 with advantage ε(·) as follows.18

The reduction algorithm B first receives the DBDH challenge from the challenger as

(N,G,GT , e(·, ·), gq, gp, A = gap , B = gbp, C = gcp, T = e(gp, g)z)

where z is either abc or a random element in ZN . Next, it receives the challenge tuple (1κ, 1n, x∗, y∗) from
the adversary A where y∗ = m̃.

Now B needs to generate the public key and send it to the adversary. After that adversary makes
polynomially many key queries for distinct indices, and sends a challenge message m. The key queries and
challenge message could be arbitrarily interleaved. Below we show that first how does B generates the public
key and later describe how to answer key queries and output challenge ciphertext. Note that finally the
adversary outputs its guess, which B uses to break assumption 1.

Main idea. Since the reduction plays the game with its challenger in the subgroup Gp, thus it can choose
everything in the Gq subgroup by itself. And the main idea is to implicitly set the exponents rp,x∗ =
b, αp,x∗ = a · b, and tp = c. Additionally, set cp,y,`,b = c̃p,y,`,b − a for all y, `, b, where exponents c̃p,y,`,b are
chosen at random. Setting exponents this way allows us to simulate the public key and secret keys exactly
as well as the challenge group element T can be programmed in the challenge ciphertext component Bx∗ .

Public key. It chooses a random exponent d ∈ ZN . Additionally it chooses random exponents as follows

∀ ` ∈ [κ], b ∈ {0, 1}, δ`,b ← ZN , γ`,b ← ZN
∀ y ∈ [m̃], ` ∈ [κ], b ∈ {0, 1}, c̃y,`,b ← ZN

∀ x ∈ [m], r̃x ← ZN , α̃x ← ZN

It also samples β ← ZN . Next it computes key components {Ex, Fx, Gx, Eq,x, Fq,x, Gq,x} , {Hy,`,b} for x ∈ [m]
and (y, `, b) ∈ [m̃]× [κ]× {0, 1} as

Ex =

{
(gpgq)

r̃x for x 6= x∗,

Bgr̃xq otherwise.
, Fx =

{
(gpgq)

dr̃x for x 6= x∗,

Bdgdr̃xq otherwise.
,

Gx =

{
e(gpgq, gpgq)

α̃x for x 6= x∗,

e(A,B)κe(gq, gq)
α̃x otherwise.

,

Hy,`,b = A−1(gpgq)
c̃y,`,b , Eq,x = gβr̃xq , Fq,x = gdβr̃xq , Gq,x = e(gq, gq)

βα̃x .

Finally, it sets the public key as

pk =


N,G,GT , e (·, ·) , g = gpgq, h = gd, Eq = gβq ,{

Ex, Fx, Gx,
Eq,x, Fq,x, Gq,x

}
x

, {Hy,`,b}y,`,b ,{
Ṽ`,b = gδ`,bg

γ`,b
p , V`,b = hδ`,b

}
`,b


Note that all the above terms can be computed using only the DBDH challenge.

18Technically, we only rely on Decisional Bilinear Diffie-Hellman (DBDH) assumption here.
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Secret key queries. B answers the key query for index-identity pair (i = (x, y), id) with sk = (x, y, id,Kx,y)
where Kx,y is computed as follows

Kx,y =

{
gα̃xA−κr̃xgr̃x(

∑
`∈[κ] c̃y,`,id` ) if x 6= x∗,

gα̃xq B
∑
`∈[κ] c̃y,`,id` g

r̃x(
∑
`∈[κ] cy,`,id` )

q otherwise.

Note that the adversary is not allowed to query for index i∗ = (x∗, y∗).

Challenge ciphertext. B can compute all the column components on its own since the Gp subgroup

components are random in Cy,`,b, C̃y,`,b terms, and for computing the Gq subgroup components B already

knows all the required exponents. Similarly, all the row components Rx, R̃x, Ax, Bx values for x < x∗ are
just created randomly, and for x > x∗ they can be created by B’s knowledge of all required exponents
since they are only drawn from the Gq subgroup which it knows. Now for computing row components

Rx∗ , R̃x∗ , Ax∗ , Bx∗ , the algorithm B proceeds as follows

Rx∗ = (B gr̃x∗q )s̃x∗ , R̃x∗ = (B gr̃x∗q )ds̃x∗τ , Ax∗ = (Cgtqq )s̃x∗ , Bx∗ = M · Tκs̃x∗ e(gq, gq)α̃x∗ s̃x∗ tq

where exponents s̃x∗ , τ ∈ ZN and tq ← ZN are sampled uniformly at random. Finally, B receives a guess b′

from A and it simply forwards that as its guess to the DBDH challenger.

Analysis. If T = e(gp, g)abc, then B simulates the view of hybrid 2, otherwise if T = e(gp, g)z is randomly
chosen group element in GT,p subgroup then B simulates the view of hybrid 3. Therefore, if A wins with
advantage ε, then B breaks assumption 1 with advantage ε.

Claim 7.3. If the assumption 3 holds over the group generator Gen, then no polynomial time adversary can
distinguish between hybrids 3 and 4 with non-negligible advantage.

Proof. The proof of this lemma is identical to the indistinguishability proof of Hybrids 2a and 2b in [BW06,
Section C.2, Claim 5.5]. Here we sktech the main ideas. The reduction algorithm B will first receive the Bi-
linear Subgroup Decision (BSD) challenge from the challenger which consists of N,G,GT , e(·, ·), gp, gq, e(T, g)
where T is either a random group element in group G, or is a random group element in the subgroup Gp.
Since B already has generators gp and gq, it can perform the setup honestly and send the public key to the
adversary. Now it can also answer each key query from the adversary honestly. (Note the key queries could
be arbitrarily interleaved.) Finally, in order to compute the challenge ciphertext, B computes all ciphertext
components except Bx∗ honestly. And, it simply sets Bx∗ = M ·Gx∗sx∗ t · e(T, g) where e(T, g) is taken from
the BSD challenge. It is easy to check that B perfectly simulates hybrids 3 and 4 for A depending upon how
T is sampled. Therefore, if A wins with advantage ε, then B breaks assumption 3 with advantage ε.

Claim 7.4. If the assumption 4 holds over the group generator Gen, then no polynomial time adversary can
distinguish between hybrids 4 and 5 with non-negligible advantage.

Proof. Suppose, on the contrary, there exists a PPT adversary A that distinguishes between Hybrids 4 and
5 with non-negligible advantage ε(·) with constraint that y∗ = m̃. We build a PPT reduction algorithm B
that breaks assumption 4 with advantage ε(·) as follows.

The reduction algorithm B first receives the bilinear challenge from the challenger as

(N,G,GT , e(·, ·), Ip ∈ Gp, Iq ∈ Gq, A = Iaq , B = I ãp I
a2

q , C = I c̃pI
c
q , T )

where T is either Ia
2c
q or a random group element in the subgroup Gq. Next, it receives the challenge tuple

(1κ, 1n, x∗, y∗) from the adversary A where y∗ = m̃.
Now B needs to generate the public key and send it to the adversary. After that adversary makes

polynomially many key queries for distinct indices, and sends a challenge message m. The key queries and
challenge message could be arbitrarily interleaved. Below we show that first how does B generates the public
key and later describe how to answer key queries and output challenge ciphertext. Note that finally the
adversary outputs its guess, which B uses to break assumption 4.
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Main idea. Since the reduction plays the game with its challenger mostly in the subgroup Gq, thus it can
choose most components in the Gp subgroup by itself. By most we mean that since B and C terms in the
challenge have components in the Gp subgroup, thus some Gp exponents will also implicitly depend on ã
and c̃ terms.

Now the main idea is to implicitly set gp = Ip, gq = A, rq,x∗ = r̃q,x∗/a, rp,x∗ = r̃p,x∗ , sq,x∗ = c, sp,x∗ = c̃,
tq = a, and tp = ã. Here the r̃p,x∗ , r̃q,x∗ terms are sampled jointly and randomly. Additionally, the reduction
algorithm samples the remaining exponents like β, δ`,b, γ`,b, cy,`,b etc. Note that at any point we do not
sample the Gp and Gq exponents separately, but instead sample an exponent directly from ZN and make sure
that the distributions are not affected. (This is important because the reduction algorithm does not know
the factorization.) Finally, setting exponents this way allows us to simulate the public key and secret keys
exactly as well as the challenge group element T can be programmed in the challenge ciphertext component
Ax∗ .

Public key. It chooses random exponents as follows

d, β ← ZN
∀ ` ∈ [κ], b ∈ {0, 1}, δ`,b, γ`,b ← ZN

∀ y ∈ [m̃], ` ∈ [κ], b ∈ {0, 1}, cy,`,b ← ZN
∀ x ∈ [m], r̃x, αx ← ZN

Next it computes key components {Ex, Fx, Gx, Eq,x, Fq,x, Gq,x} , {Hy,`,b} for x ∈ [m] and (y, `, b) ∈ [m̃] ×
[κ]× {0, 1} as

Ex =

{
(IpA)r̃x for x 6= x∗,

(IpIq)
r̃x otherwise.

, Eq,x =

{
Aβr̃x for x 6= x∗,

Iβr̃xq otherwise.
,

Fx = Ex
d, Fq,x = Eq,x

d, Gx = e(IpA, IpA)αx , Gq,x = e(A,A)βαx , Hy,`,b = (IpA)cy,`,b .

Finally, it sets the public key as

pk =


N,G,GT , e (·, ·) , g = IpA, h = gd, Eq = Aβ ,{

Ex, Fx, Gx,
Eq,x, Fq,x, Gq,x

}
x

, {Hy,`,b}y,`,b ,{
Ṽ`,b = gδ`,bg

γ`,b
p , V`,b = hδ`,b

}
`,b


Note that all the above terms can be computed using only the bilinear challenge.

Secret key queries. B answers the key query for index-identity pair (i = (x, y), id) with sk = (x, y, id,Kx,y)
where Kx,y is computed as follows

Kx,y = gαxEx
∑
`∈[κ] cy,`,id` =

{
gαx(IpA)r̃x(

∑
`∈[κ] cy,`,id` ) if x 6= x∗,

gαx(IpIq)
r̃x(

∑
`∈[κ] cy,`,id` ) otherwise.

Note that the adversary is not allowed to query for index i∗ = (x∗, y∗).

Challenge ciphertext. It chooses random exponents as follows

τ, t̃p ∈ ZN
∀ x ∈ [m], ex, fx, s̃x ← ZN

∀ y ∈ [m̃], ` ∈ [κ], b ∈ {0, 1}, w̃y,`,b ← ZN , ṽy,`,b ← Zp

Now the ciphertext components are computed as described in Tables 11 and 12.
Finally, B receives a guess b′ from A and it simply forwards that as its guess to the bilinear challenger.
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Rx R̃x Ax Bx
> x∗ Iβr̃xs̃xq Iβr̃xs̃xτdq Aβs̃x M · e(A,A)βs̃xαx

= x∗ C r̃x C r̃xτd I
t̃p
p T e(g, g)fx

< x∗ gs̃x gs̃xτd gex e(g, g)fx

Table 11: Computing row components of the ciphertext for x ∈ [m].

Cy,`,b C̃y,`,b

∀ y Bcy,`,bhw̃y,`,bτI
ṽy,`,b
p gw̃y,`,b

Table 12: Computing column components of the ciphertext for (y, `, b) ∈ [m̃]× [κ]× {0, 1}.

Analysis. If T = Ia
2c
q , then B simulates the view of hybrid 4, otherwise if T is randomly chosen group

element in Gq subgroup then B simulates the view of hybrid 5 as the target row ‘= x∗’ will be statistically
indistinguishable from the less than row ‘< x∗’. Therefore, if A wins with advantage ε, then B breaks
assumption 4 with advantage ε.

Claim 7.5. If the assumption 1 holds over the group generator Gen, then no polynomial time adversary can
distinguish between hybrids 5 and 6 with non-negligible advantage.

Proof. The proof of this lemma is similar to that of Lemma 7.1. The proof follows via a sequence of 2m̃κ+ 1
sub-hybrid games H0, Hỹ,˜̀,̃b for ỹ ∈ [m̃], ˜̀ ∈ [κ] and b̃ ∈ {0, 1}. Here the sub-hybrid H0 corresponds to
the main hybrid 5 described above. And, the hybrid Hỹ,˜̀,̃b is identical to hybrid H0, except the column

components in the challenge ciphertext Cy,`,b for y < ỹ and (y, `, b) ∈ {ỹ}×[˜̀−1]×{0, 1} and y = ỹ, ` = ˜̀, b <
b̃ have a random component in the Gp subgroup. Concretely, in the Hỹ,˜̀,̃b hybrid the column component is
computed as in Table 15

Cy,`,b C̃y,`,b
(y > ỹ) ∨

(y = ỹ ∧ ` > ˜̀) ∨
(y = ỹ ∧ ` = ˜̀∧ b ≥ b̃) Hy,`,b

t · hwy,`,bτ gwy,`,b

(y < ỹ) ∨
(y = ỹ ∧ ` < ˜̀) ∨

(y = ỹ ∧ ` = ˜̀∧ b < b̃)

Hy,`,b
t · hwy,`,bτ · V`,bvy,`,bτ gwy,`,b · Ṽ vy,`,b`,b

Table 13: Computing column components of the ciphertext in Hybrid Hỹ,˜̀,̃b.
Note that the sub-hybrid H1,1,0 is same as main hybrid 6. Now to prove indistinguishability of main

hybrids 5 and 6 it is sufficient to prove that sub-hybrids Hỹ,˜̀,̃b and Hỹ,˜̀+b̃−1,(̃b+1) mod 2 are indistinguishable

for all ỹ, ˜̀, b̃. (In addition, it is also required that sub-hybrids H0 and Hm̃,`,1 are indistinguishable, as
well as sub-hybrids Hỹ,κ,1 and Hỹ+1,1,0.) Below we just show that hybrids Hỹ,˜̀,̃b and Hỹ,˜̀+b̃−1,(̃b+1) mod 2

are indistinguishable as exactly same ideas could be applied for proving indistinguishability of remaining
consecutive sub-hybrids however proving them together seems to involve a heavy notational overhead. Now
note that, combining these sub-claims, the main claim would follow.

Suppose, on the contrary, there exists a PPT adversaryA that distinguishes hybridsHỹ,˜̀,̃b andHỹ,˜̀+b̃−1,(̃b−1) mod 2

with non-negligible advantage ε(·). We build a PPT reduction algorithm B that breaks assumption 1 with
advantage ε(·) as follows.

The reduction algorithm B first receives the DBDH challenge from the challenger as

(N,G,GT , e(·, ·), gq, gp, A = gap , B = gbp, C = gcp, T )
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where T is either gabcp or a random group element in the subgroup of prime order p. Next, it receives the
challenge tuple (1κ, 1n, x∗, y∗) from the adversary A where y∗ = m̃.

Now B needs to generate the public key and send it to the adversary. After that adversary makes
polynomially many key queries for distinct indices, and sends a challenge message m. The key queries and
challenge message could be arbitrarily interleaved. Below we show that first how does B generates the public
key and later describe how to answer key queries and output challenge ciphertext. Note that finally the
adversary outputs its guess, which B uses to break assumption 1.

Main idea. Since the reduction plays the game with its challenger in the subgroup Gp, thus it can choose
everything in the Gq subgroup by itself. And the main idea is to implicitly set the exponents tp = a · b,
hp = B = gbp and cp,ỹ,˜̀,̃b = c · c̃p,ỹ,˜̀,̃b where exponent c̃ỹ,˜̀,̃b is chosen at random. Setting exponents this way
allows us to simulate the public key and secret keys exactly as well as the challenge group element T can be
programmed in the challenge ciphertext component Cỹ,˜̀,̃b.
Public key. It chooses random generator hq ∈ Gq by sampling random exponent d ∈ ZN and setting
hq = gdq . Additionally it chooses random exponents as follows

∀ ` ∈ [κ], b ∈ {0, 1}, δ`,b ← ZN , γ`,b ← ZN
∀ y ∈ [m̃], ` ∈ [κ], b ∈ {0, 1}, c̃y,`,b ← ZN

∀ x ∈ [m], rx ← ZN , αx ← ZN

It also samples β ← ZN . It sets group elements g = gpgq, h = Bhq, and Eq = gβq . Next it computes key
components {Ex, Fx, Gx, Eq,x, Fq,x, Gq,x} , {Hy,`,b} for x ∈ [m] and (y, `, b) ∈ [m̃]× [κ]× {0, 1} as

Ex = grx , Fx = hrx , Eq,x = gβrxq , Fq,x = hβrxq , Gq,x = e(gq, gq)
βαx , Gx = e(g, g)αx ,

Hy,`,b =

{
(Cgq)

c̃y,`,b for y = ỹ, ` = ˜̀, b = b̃,

(gpgq)
c̃y,`,b otherwise.

.

Finally, it sets the public key as

pk =


N,G,GT , e (·, ·) , g = gpgq, h = Bhq, Eq = gβq ,{

Ex, Fx, Gx,
Eq,x, Fq,x, Gq,x

}
x

, {Hy,`,b}y,`,b ,{
Ṽ`,b = gδ`,bg

γ`,b
p , V`,b = hδ`,b

}
`,b


Note that all the above terms can be computed using only the DBDH challenge.

Secret key queries. B answers the key query for index-identity pair (i = (x, y), id) with sk = (x, y, id,Kx,y)
where Kx,y is computed as follows

Kx,y =

(∏
`

Hy,`,id`

)rx
=

{
gαxgrx(

∑
` 6= ˜̀ c̃y,`,id` )(Cgq)rxc̃y, ˜̀,b̃ if y = ỹ, id˜̀ = b̃

gαxgrx(
∑
`∈[κ] c̃y,`,id` ) otherwise.

Note that the adversary is not allowed to query for index i∗ = (x∗, y∗).

Challenge ciphertext. It chooses random exponents as follows

τ ∈ ZN , tq ← ZN , ∀ x ∈ [m], ex, fx ← ZN , sx ← ZN
∀ y ∈ [m̃], ` ∈ [κ], b ∈ {0, 1}, w̃y,`,b ← ZN , vy,`,b ← ZN

Now the ciphertext components are computed as described in Tables 14 and 15.
Finally, B receives a guess b′ from A and it simply forwards that as its guess to the DBDH challenger.
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Rx R̃x Ax Bx
> x∗ Eq,x

sx Fq,x
sxτ Eq

sxtq M ·Gq,xsxtq
≤ x∗ gsx hsxτ gex e(g, g)fx

Table 14: Computing row components of the ciphertext for x ∈ [m].

Cy,`,b C̃y,`,b
(y > ỹ) ∨

(y = ỹ ∧ ` > ˜̀) ∨
(y = ỹ ∧ ` = ˜̀∧ b > b̃)

g
c̃y,`,btq
q hw̃y,`,bτ A−c̃y,`,b/τgw̃y,`,b

y = ỹ ∧ ` = ˜̀∧ b = b̃ g
c̃y,`,btq
q hw̃y,`,bτT c̃y,`,b gw̃y,`,b

(y < ỹ) ∨
(y = ỹ ∧ ` < ˜̀) ∨

(y = ỹ ∧ ` = ˜̀∧ b < b̃)

g
c̃y,`,btq
q hw̃y,`,bτg

vy,`,b
p gw̃y,`,b

Table 15: Computing column components of the ciphertext for (y, `, b) ∈ [m̃]× [κ]× {0, 1}.

Analysis. If T = gabcp , then B simulates the view of hybrid Hỹ,˜̀+b̃−1,(̃b−1) mod 2, otherwise if T is randomly

chosen group element in Gp subgroup then B simulates the view of hybrid Hỹ,˜̀,̃b. Therefore, if A wins with
advantage ε, then B breaks assumption 1 with advantage ε.

Claim 7.6. If the assumption 2 holds over the group generator Gen, then no polynomial time adversary can
distinguish between hybrids 6 and 7 with non-negligible advantage.

Proof. The proof of this lemma is similar to that of [BW06, Claim 5.7]. Suppose, on the contrary, there
exists a PPT adversary A that distinguishes hybrids 6 and 7 with non-negligible advantage ε(·). We build a
PPT reduction algorithm B that breaks assumption 2 with advantage ε(·) as follows.

The reduction algorithm B first receives the DHSD challenge from the challenger as

(N,G,GT , e(·, ·), g = gpgq, h = hphq, A = gaq , B = haq , C = gbgcp, D = hb, T )

where T is either sampled as T = gdq or T = gd, where d is a random exponent sampled as d ← ZN . Next,
it receives the challenge tuple (1κ, 1n, x∗, y∗) from the adversary A where y∗ = m̃.

Now B needs to generate the public key and send it to the adversary. After that adversary makes
polynomially many key queries for distinct indices, and sends a challenge message m. The key queries and
challenge message could be arbitrarily interleaved. Below we show that first how does B generates the public
key and later describe how to answer key queries and output challenge ciphertext. Note that finally the
adversary outputs its guess, which B uses to break assumption 2.

Main idea. First note that the adversary neither knows the factorization of N , but it does get random
generators of the subgroup Gq. Since all the group elements the reduction algorithm has to output either lie
in the full group, or they lie in the subgroup Gq but with a fixed additional exponent β, thus it implicitly
sets β = a and randomly simulates all other components. Concretely, the main idea is to implicitly set the
exponents β = a, sx∗+1 = d · s̃x∗+1, and γ`,b = c · γ̃`,b, and δ`,b = δ̃`,b + b · γ̃`,b where exponents γ̃`,b, δ̃`,b
are chosen at random. Additionally, B implicitly sets τ such that hτ = gτ̃ where exponent τ̃ is sampled
uniformly at random. Setting exponents this way allows us to simulate the public key and secret keys exactly
as well as the challenge group element T can be programmed in the challenge ciphertext to compute the row
components for x = x∗ + 1.
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Public key. It chooses random exponents as follows

∀ ` ∈ [κ], b ∈ {0, 1}, δ̃`,b ← ZN , γ̃`,b ← ZN
∀ y ∈ [m̃], ` ∈ [κ], b ∈ {0, 1}, cy,`,b ← ZN

∀ x ∈ [m], rx ← ZN , αx ← ZN

It computes key components
{
Ṽ`,b, V`,b

}
`,b

for (`, b) ∈ [κ]× {0, 1} as

Ṽ`,b = gδ̃`,bC γ̃`,b , V`,b = hδ̃`,bDγ̃`,b .

Finally, it sets the public key as

pk =


N,G,GT , e (·, ·) , g, h, Eq = A,{

Ex = grx , Fx = hrx , Gx = e(g, g)αx ,
Eq,x = Arx , Fq,x = Brx , Gq,x = e(A, g)αx

}
x

, {Hy,`,b = gcy,`,b}y,`,b ,{
Ṽ`,b, V`,b

}
`,b


Note that all the above terms can be computed using only the DHSD challenge.

Secret key queries. B answers the key query for index-identity pair (i = (x, y), id) with sk = (x, y, id,Kx,y)
where Kx,y is computed as follows

Kx,y =

(∏
`

Hy,`,id`

)rx
.

Note that the adversary is not allowed to query for index i∗ = (x∗, y∗).

Challenge ciphertext. It chooses random exponents as follows

τ̃ ∈ ZN , t← ZN , ∀ x ∈ [m], ex, fx, s̃x ← ZN
∀ y ∈ [m̃], ` ∈ [κ], b ∈ {0, 1}, wy,`,b ← ZN , vy,`,b ← ZN

Now the ciphertext components are computed as described in Tables 16 and 17.

Rx R̃x Ax Bx
> x∗ + 1 Eq,x

s̃x Eq,x
s̃xτ̃ Eq

s̃xt M ·Gq,xs̃xt
= x∗ + 1 T rxs̃x T rxs̃xτ̃ T s̃xt M · e(T, g)αxs̃xt

≤ x∗ gs̃x hs̃xτ gex e(g, g)fx

Table 16: Computing row components of the ciphertext for x ∈ [m].

Cy,`,b C̃y,`,b
∀ y, `, b Hy,`,b

tgwy,`,bτ̃ gwy,`,b

Table 17: Computing column components of the ciphertext for (y, `, b) ∈ [m̃]× [κ]× {0, 1}.

Finally, B receives a guess b′ from A and it simply forwards that as its guess to the DHSD challenger.

Analysis. If T = gdq , then B simulates the view of hybrid 6, otherwise if T = gd that is it is randomly
chosen group element in G then B simulates the view of hybrid 7. Therefore, if A wins with advantage ε,
then B breaks assumption 2 with advantage ε.

This concludes the proof of Lemma 7.2.

This concludes the proof of index hiding.
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7.1.3 Lower Identity Hiding

In this scenario we need to show that an encryption to (i∗, `∗, b∗) and an encryption to (i∗,⊥, 0) is indistin-
guishable. Formally, we prove the following lemma.

Lemma 7.3. If the assumption 1 holds over the group generator Gen, then no polynomial time adversary can
distinguish between an encryption to (i∗, `∗, b∗) and an encryption to (i∗,⊥, 0) with non-negligible advantage
(where i∗ = (x∗, y∗) is the index output by the adversary in the lower identity hiding game and the adversary
is not allowed to make key query for index i∗ with identity id such that id`∗ = b∗).

Proof. The proof of this lemma is nearly identical to that of Lemma 7.1, except that it does not require
any intermediate hybrids. But instead it follows directly follows from the indistinguishability of intermediate
hybrids used in the proof of Lemma 7.1. Concretely, let (i∗ = (x∗, y∗), `∗, b∗) be the challenge tuple output by
the adversary A. Then, the hybrid H`∗,b∗ (as defined in Lemma 7.1) corresponds exactly to the lower identity
hiding game in which the challenge ciphertext is an encryption for index-position-value tuple (i∗, `∗, b∗),
and similarly H`∗,b∗ corresponds to the lower identity hiding game in which the challenge ciphertext is
an encryption for index-position-value tuple (i∗,⊥, 0). Now the proof of indistinguishability is same as
described in Lemma 7.1, however we need to assure that the reduction algorithm B could answer all key
queries permissible as per the lower index hiding game. Below we highlight why the reduction algorithm
(as described in Lemma 7.1) can answer all key queries of the form (i, id) where either i 6= i∗ or id`∗ 6= b∗.
(Below is how key queries were answered.)

Secret key queries. B answers the key query for index-identity pair (i = (x, y), id) with sk = (x, y, id,Kx,y)
where Kx,y is computed as follows

Kx,y =


gαxgr̃x(

∑
`∈[κ] c̃y,`,id` ) if x 6= x∗, y 6= y∗

gαx(Bgq)
r̃x(

∑
`∈[κ] c̃y,`,id` ) if x = x∗, (y 6= y∗ or id`∗ 6= b∗)

gαxgr̃x(
∑
` 6=`∗ c̃y,`,id` )(Cgq)

r̃xc̃y,`∗,b∗ if x 6= x∗, y = y∗, id`∗ = b∗

Now note that in the second case highlighted above we have that key queries for index i∗ = (x∗, y∗) can
also be answered as long as the queried identity id satisfies id`∗ 6= b∗). Since the adversary is constrained
not to make key queries of this form as per the lower identity hiding game, thus the reduction algorithm
can perfectly simulate lower identity hiding game thereby implying that the scheme satisfies lower identity
hiding security assuming that the assumption 1 holds.

7.1.4 Upper Identity Hiding

In this scenario we need to show that an encryption to (i∗, `∗, b∗) and an encryption to (i∗ + 1,⊥, 0) is
indistinguishable. Formally, we prove the following lemma.

Lemma 7.4. If the assumptions 1, 2, 3, and 4 holds over the group generator Gen, then no polynomial
time adversary can distinguish between an encryption to (i∗, `∗, b∗) and an encryption to (i∗ + 1,⊥, 0) with
non-negligible advantage (where i∗ = (x∗, y∗) is the index output by the adversary in the upper identity
hiding game and the adversary is not allowed to make multiple key queries for same index as well as it is
not allowed to key query for index i∗ with identity id such that id`∗ = 1− b∗).
Proof. The proof of this lemma follows by a sequence of hybrid experiments.

Hybrid 1. This hybrid corresponds to the upper identity hiding game in which the challenge ciphertext
is an encryption to index-position-value tuple (i∗ = (x∗, y∗), `∗, b∗).

Hybrid 2. This hybrid is same as previous hybrid, except that the column components in the challenge
ciphertext are computed as in Table 18. (Basically in this hybrid the ciphertext component Cy∗,`∗,1−b∗ also
includes a random component in the Gp subgroup. In previous hybrid, only Cy∗,`∗,b∗ for index j∗ included
a random component in the Gp subgroup.)
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Cy,`,b C̃y,`,b
(y > y∗) ∨

(y = y∗ ∧ ` 6= `∗)
Hy,`,b

t · hwy,`,bτ gwy,`,b

(y < y∗) ∨
(y = y∗ ∧ ` = `∗)

Hy,`,b
t · hwy,`,bτ · V`,bvy,`,bτ gwy,`,b · Ṽ vy,`,b`,b

Table 18: Computing column components of the ciphertext in Hybrid 2.

Hybrid 3.(˜̀, b̃) (for ˜̀∈ [κ], b̃ ∈ {0, 1}). This hybrid is same as previous hybrid, except that the column
components in the challenge ciphertext are computed as in Table 19. (Basically in this hybrid the ciphertext

components Cy∗,`,b for ` < ˜̀, or ` = ˜̀ and b ≤ b̃ also include a random component in the Gp subgroup.)

Cy,`,b C̃y,`,b
(y > y∗) ∨

(y = y∗ ∧ ` /∈ [˜̀] ∪ {`∗}) ∨
(y = y∗ ∧ ` = ˜̀∧ b > b̃)

Hy,`,b
t · hwy,`,bτ gwy,`,b

(y < y∗) ∨
(y = y∗ ∧ ` ∈ [˜̀− 1] ∪ {`∗}) ∨

(y = y∗ ∧ ` = ˜̀∧ b ≤ b̃) Hy,`,b
t · hwy,`,bτ · V`,bvy,`,bτ gwy,`,b · Ṽ vy,`,b`,b

Table 19: Computing column components of the ciphertext in Hybrid 3.(˜̀, b̃).
Hybrid 4. (This hybrid is identical to the previous hybrid that is 3.(κ, 1). Here we define it explicity
only for ease of exposition.) This hybrid is same as the upper identity hiding game, except the challenge
ciphertext is an encryption to index-position-value tuple (i∗ = (x∗, y∗ + 1),⊥, 0).19

Hybrid 5. This hybrid corresponds to the upper identity hiding game in which the challenge ciphertext is
an encryption to index-position-value tuple (i∗ + 1,⊥, 0).20

Next, we show via a sequence of claims that the adversary’s advantage in each pair of consecutive hybrids is
negligibly close thereby completing the proof.

Claim 7.7. If the assumption 1 holds over the group generator Gen, then no polynomial time adversary can
distinguish between hybrids 1 and 2 with non-negligible advantage.

Proof. The proof of above claim is identical to that of Lemmas 7.1 and 7.3.

Claim 7.8. If the assumption 1 holds over the group generator Gen, then for every ˜̀∈ [κ], b̃ ∈ {0, 1} no

polynomial time adversary can distinguish between hybrids 3.(˜̀, b̃) and 3.(˜̀+ b̃ − 1, (̃b + 1) mod 2) with
non-negligible advantage.

Proof. First, note that if ˜̀ = `∗, then we have that hybrids 3.(˜̀, b̃) and 3.(˜̀+ b̃ − 1, (̃b + 1) mod 2) are
identical. Otherwise, the proof of this lemma can be divided in two cases — (1) either adversary makes a

key query of the form (j, id) such that j = i∗ and id˜̀ = b̃, or (2) otherwise. (Note that adversary can make
at most one query per index.) Now in the latter case, i.e. case (2), we can use the same proof strategy as
used in Lemmas 7.1 and 7.3 which is to use the fact that the reduction algorithm does not need to know the

19Note that here y∗ could be equal to m̃. And recall that the special-encryption algorithm can be directly extended to encrypt
to such position.

20Note that if y∗ 6= m̃, then hybrids 4 and 5 are already identical.
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value of group element grx∗cy∗, ˜̀,b̃ for answering the key queries. Whereas in case (1), we provide a different
strategy which is to use the fact that to answer key query for index-identity pair (i∗, id), it is sufficient to

know the value of group element grx∗ (c
y∗, ˜̀,b̃+cy∗,`∗,b∗ ) since the adversary is constrained to query for id such

that id`∗ = b∗. Below we formally prove the same.

Type 1: (adversary makes a key query of the form (j, id) such that j = i∗ and id˜̀ = b̃.)

Suppose, on the contrary, there exists a PPT adversary A that distinguishes hybrids 3.(˜̀, b̃) and 3.(˜̀+ b̃

−1, (̃b− 1) mod 2) with non-negligible advantage ε(·). We build a PPT reduction algorithm B that breaks
assumption 1 with advantage ε(·) as follows.

The reduction algorithm B first receives the modified DBDH challenge from the challenger as

(N,G,GT , e(·, ·), gq, gp, A = gap , B = gbp, C = gcp, D = gb
2

p , T )

where T is either gabcp or a random group element in the subgroup of prime order p. Next, it receives the
challenge tuple (1κ, 1n, x∗, y∗, `∗, b∗) from the adversary A.

Now B needs to generate the public key and send it to the adversary. After that adversary makes
polynomially many key queries for distinct indices, and sends a challenge message m. The key queries and
challenge message could be arbitrarily interleaved. Below we show that first how does B generates the public
key and later describe how to answer key queries and output challenge ciphertext. Note that finally the
adversary outputs its guess, which B uses to break assumption 1.

Main idea. Since the reduction plays the game with its challenger in the subgroup Gp, thus it can choose
everything in the Gq subgroup by itself. And the main idea is to implicitly set the exponents rp,x∗ , sp,x∗

as b · r̃p,x∗ , s̃p,x∗/b (respectively) where r̃p,x∗ , s̃p,x∗ are chosen at random, and also implicitly set tp = a · b,
and hp = B = gbp. Most importantly, it sets cp,y∗,`∗,b∗ = c + c̃p,y∗,`∗,b∗ and cp,y∗,˜̀,̃b = −c + c̃p,y∗,˜̀,̃b, where

exponents c̃p,y∗,`∗,b∗ , c̃p,y∗,˜̀,̃b are chosen at random. Setting exponents this way allows us to simulate the
public key and secret keys exactly as well as the challenge group element T can be programmed in the
challenge ciphertext component Cy∗,˜̀,̃b.
Public key. It chooses random generator hq ∈ Gq by sampling random exponent d ∈ ZN and setting
hq = gdq . Additionally it chooses random exponents as follows

∀ ` ∈ [κ], b ∈ {0, 1}, δ`,b ← ZN , γ`,b ← ZN
∀ y ∈ [m̃], ` ∈ [κ], b ∈ {0, 1}, c̃y,`,b ← ZN

∀ x ∈ [m], r̃x ← ZN , αx ← ZN

It also samples β ← ZN . Next it computes key components {Ex, Fx, Gx, Eq,x, Fq,x, Gq,x} , {Hy,`,b} for x ∈ [m]
and (y, `, b) ∈ [m̃]× [κ]× {0, 1} as

Ex =

{
(gpgq)

r̃x for x 6= x∗,

(Bgq)
r̃x otherwise.

, Fx =

{
(Bhq)

r̃x for x 6= x∗,

(Dhq)
r̃x otherwise.

,

Hy,`,b =


C(gpgq)

c̃y,`,b for y = y∗, ` = `∗, b = b∗,

C−1(gpgq)
c̃y,`,b for y = y∗, ` = ˜̀, b = b̃,

(gpgq)
c̃y,`,b otherwise.

,

Eq,x = gβr̃xq , Fq,x = hβr̃xq , Gq,x = e(gq, gq)
βαx , Gx = e(g, g)αx .

45



Finally, it sets the public key as

pk =


N,G,GT , e (·, ·) , g = gpgq, h = Bhq, Eq = gβq ,{

Ex, Fx, Gx,
Eq,x, Fq,x, Gq,x

}
x

, {Hy,`,b}y,`,b ,{
Ṽ`,b = gδ`,bg

γ`,b
p , V`,b = hδ`,b

}
`,b


Note that all the above terms can be computed using only the modified DBDH challenge.

Secret key queries. B answers the key query for index-identity pair (i = (x, y), id) with sk = (x, y, id,Kx,y)
where Kx,y is computed as follows

Kx,y =



gαxgr̃x(
∑
`∈[κ] c̃y,`,id` ) if x 6= x∗, y 6= y∗

gαx(Bgq)
r̃x(

∑
`∈[κ] c̃y,`,id` ) if x = x∗, y 6= y∗

gαx(
∏
`Hy,`,id`)

r̃x if x 6= x∗, y = y∗

gαx(Bgq)
r̃x(

∑
`∈[κ] c̃y,`,id` ) if x = x∗, y = y∗, id`∗ 6= b∗, and id˜̀ 6= b̃

gαx(Bgq)
r̃x(

∑
`∈[κ] c̃y,`,id` ) if x = x∗, y = y∗, id`∗ = b∗, and id˜̀ = b̃

Note that the adversary is not allowed to query for index-identity pair (j, id) such that j = i∗ = (x∗, y∗) and
id`∗ 6= b∗. Also, note that Type 1 adversaries make a key queries of the form (j, id) such that j = i∗ and

id˜̀ = b̃. That is, if the adversary queries for (i∗, id) such that id˜̀ 6= b̃, then B aborts.

Challenge ciphertext. It chooses random exponents as follows

τ ∈ ZN , tq ← ZN , ∀ x ∈ [m], ex, fx ← ZN , s̃x ← ZN
∀ y ∈ [m̃], ` ∈ [κ], b ∈ {0, 1}, w̃y,`,b ← ZN , vy,`,b ← ZN

Now the ciphertext components are computed as described in Tables 20 and 21.

Rx R̃x Ax Bx
> x∗ Eq,x

s̃x Fq,x
s̃xτ Eq

s̃xtq M ·Gq,xs̃xtq

= x∗ gr̃xs̃x (Bhq)
r̃xs̃xτ (Ag

tq
q )s̃x M · e(g,Agtqq )αxs̃x

< x∗ gs̃x (Bhq)
s̃xτ gex e(g, g)fx

Table 20: Computing row components of the ciphertext for x ∈ [m].

Cy,`,b C̃y,`,b
(y > y∗) ∨

(y = y∗ ∧ ` /∈ [˜̀] ∪ {`∗}) ∨
(y = y∗ ∧ ` = ˜̀∧ b > b̃)

g
c̃y,`,btq
q hw̃y,`,bτ A−c̃y,`,b/τgw̃y,`,b

y = y∗ ∧ ` = ˜̀∧ b = b̃ g
c̃y,`,btq
q hw̃y,`,bτT−1 A−c̃y,`,b/τgw̃y,`,b

(y < y∗) ∨
(y = y∗ ∧ ` ∈ [˜̀− 1] ∪ {`∗}) ∨

(y = y∗ ∧ ` = ˜̀∧ b < b̃)

g
c̃y,`,btq
q hw̃y,`,bτg

vy,`,b
p gw̃y,`,b

Table 21: Computing column components of the ciphertext for (y, `, b) ∈ [m̃]× [κ]× {0, 1}.

Finally, B receives a guess b′ from A and it simply forwards that as its guess to the modified DBDH
challenger.

46



Analysis. If T = gabcp , then B simulates the view of hybrid H˜̀+b̃−1,(̃b−1) mod 2, otherwise if T is randomly

chosen group element in Gp subgroup then B simulates the view of hybrid H˜̀,̃b. Therefore, if A wins with
advantage ε, then B breaks assumption 1 with advantage ε.

Type 2: (otherwise.) The proof is identical to that of Lemmas 7.1 and 7.3.

Claim 7.9. No adversary can distinguish between hybrids 3 and 4 with non-negligible advantage.

Proof. The proof of this claim is immediate as hybrids 3 and 4 are identical.

Claim 7.10. If the assumptions 1, 2, 3, and 4 holds over the group generator Gen, then no polynomial time
adversary can distinguish between hybrids 4 and 5 with non-negligible advantage.

Proof. First, note that if y∗ 6= m̃, then hybrids 4 and 5 are already identical. Otherwise, the proof of this
claim follows by a sequence of hybrid experiments and is identical to the proof of Lemma 7.2. Concretely,
hybrid 4 described above is identical to the hybrid 2 described in the proof of Lemma 7.2. Similarly, hybrid
5 described above is identical to the hybrid 7 described in the proof of Lemma 7.2. Thus, the proof of this
claim follows directly from the proof of indistinguishability of hybrids 2 and 7 from Lemma 7.2.

This concludes the proof of Lemma 7.4.

7.1.5 Message Hiding

First, observe that the special-encryption ciphertexts for index-position-value tuple (m · m̃ + 1,⊥, 0) are
independent of the message M encrypted. Now suppose m · m̃ > n, then using the strategy same as used
in the proof of index hiding security we can indistinguishably switch ciphertexts from encryptions for index-
position-value tuple (n+ 1,⊥, 0) to (m · m̃+ 1,⊥, 0). This is because each of the adversary’s key query must
be of the form (i, id) where i ∈ [n]. Thus, the message hiding security follows by a simple hybrid argument.

8 Building EIPLBE from the Learning with Errors Assumption

We will now discuss how to build EIPLBE with ciphertext size polylogarithmic in the index bound n. For
this construction, we require the notion of mixed functional encryption, introduced by [GKW18]. Here, we
use the syntax and definitions from [CVW+18].

8.1 Secret-key and Mixed Functional Encryption

t-CT SKFE. We begin with the definition for SKFE:

Definition 8.1 (Secret-key functional encryption (SKFE)). A secret-key functional encryption scheme for
a class of functions Fµ = {f : {0, 1}µ → {0, 1}} is a tuple of probabilistic polynomial time (p.p.t) algorithms
(Setup,SKGen,SKEnc,Dec) such that:

• Setup(1λ) takes as input the security parameter 1λ, and outputs the master secret key MSK and the
public parameters PP.

• SKGen(MSK,m) takes as input MSK and a message m ∈ {0, 1}µ, and outputs a decryption key SKm.

• SKEnc(MSK, f) takes as input MSK and a function f ∈ Fµ, and outputs a ciphertext CT.

• Dec(SKm,CT) takes as input SKm and CT, and outputs a single bit.
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Correctness. For every message m ∈ {0, 1}µ and function f ∈ Fµ we have:

Pr[MSK←Setup(1λ); SKm ← SKGen(MSK,m) :

Dec(SKm,SKEnc(MSK, f)) = f(m)] = 1− negl(λ),

where the probability is taken over the randomness of the algorithms Setup,SKGen,SKEnc,Dec.

Function-hiding security. For all p.p.t stateful algorithms Adv, there is a p.p.t. stateful algorithm Sim
such that: {

Experiment REALAdv(1
λ)
}
λ∈N ≈c

{
Experiment IDEALAdv,Sim(1λ)

}
λ∈N

where the real and ideal experiments of stateful algorithms Adv,Sim are as follows:

Experiment REALAdv(1
λ) Experiment IDEALAdv,Sim(1λ)

MSK← Gen(1λ), Sim← 1λ

For i ∈ [t]: For i ∈ [t]:

Adv→ f [i]; Adv→ f [i];

Adv← CT[i] = SKEnc(PP,MSK, f [i]); Adv← CT[i] = Sim(1|f
[i]|);

Repeat polynomially many times: Repeat polynomially many times:

Adv→ m; Adv← SKGen(PP,MSK,m) Adv→ m; Adv← Sim(m,
{
f [i](m)

}
i∈[t]

)

Adv→ b; Output b Adv→ b; Output b

In the experiments, the adversary Adv can ask for t ciphertexts followed by polynomially many decryption
key queries. Once Adv makes a ciphertext query for a function f ∈ Fλ, in the real experiment Adv obtains
the ciphertext generated by the secret-key encryption algorithm; in the ideal experiment Adv obtains the
ciphertext generated by Sim given only the (circuit) size of f . Once Adv makes a message query m, in the
real experiment Adv obtains SKm from the decryption key generation algorithm; in the ideal experiment,
Adv obtains the decryption key generated by the simulator who is given m, and

{
f [i](m)

}
i∈[t]

. The output

of the experiment is the final output bit of Adv.

Remark 8.1 (adaptive security). A t-CT SKFE scheme is called adaptively secure if the function and
ciphertext queries can be made adaptively in any order.

t-CT mixed FE. We provide a simulation-based definition for t-ciphertext (t-CT) mixed-FE, which is
same as the definition in [GKW18, Section 5] where it is referred to as (t− 1)-bounded mixed-FE.

Definition 8.2 (Mixed functional encryption). A mixed functional encryption scheme for a class of functions
Fµ = {f : {0, 1}µ → {0, 1}} is a tuple of probabilistic polynomial time (p.p.t) algorithms (Setup, SKGen,
SKEnc, Dec, PKEnc) such that:

• (Setup,SKGen,SKEnc,Dec) are the same as SKFE.

• PKEnc(PP) takes as input PP, and outputs a ciphertext CT.

Correctness and Function-hiding security. Same as SKFE.

Public/secret-key mode indistinguishability. In addition to the security requirement above for a
normal secret-key functional encryption, a mixed-FE further requires that for a function f queried to the
encryption oracle, if for all message m queried by the adversary, f(m) = 1 (the other potential t−1 functions
does not have to satisfy this requirement), then the secret-key ciphertext SKEnc(MSK, f) is indistinguishable
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from a sample from PKEnc(PP). Formally, we require that for all p.p.t stateful algorithms Adv, the following
two experiments produce indistinguishable outputs:{

Experiment SKEXPAdv(1
λ)
}
λ∈N ≈c

{
Experiment PKEXPAdv(1

λ)
}
λ∈N

The experiments are as follows:

Experiment SKEXPAdv(1
λ) Experiment PKEXPAdv(1

λ)

MSK← Gen(1λ), MSK← Gen(1λ),

For i in [i∗ − 1]: For i in [i∗ − 1]:

Adv→ f [i]; Adv→ f [i];

Adv← CT[i] = SKEnc(MSK, f [i]); Adv← CT[i] = SKEnc(MSK, f [i]);

Adv→ f [i∗]; Adv→ f [i∗];

Adv← CT[i∗] = SKEnc(MSK, f [i∗]); Adv← CT[i∗] = PKEnc(PP);

For i in [i∗ + 1, t]: For i in [i∗ + 1, t]:

Adv→ f [i]; Adv→ f [i];

Adv← CT[i] = SKEnc(MSK, f [i]); Adv← CT[i] = SKEnc(MSK, f [i]);

Repeat polynomially many times: Repeat polynomially many times:

Adv→ m; Adv← SKGen(MSK,m) Adv→ m; Adv← SKGen(MSK,m)

Adv→ b; Output b Adv→ b; Output b

8.2 Building EIPLBE from ABE and Mixed FE

Goyal et al. [GKW18] showed how to build PLBE from ABE and mixed functional encryption. They used
mixed FE for the comparison function class. The same transformation can also be used to achieve EIPLBE
if we use the following (more expressive) function family:{

fy∗,`,b(y, id) = 1 iff y > y∗ or (y, id`) = (y∗, b)
}
y∗,`,b

This, combined with the LWE based ABE schemes [GVW13, BGG+14] and the LWE based Mixed FE
schemes [GKW18, CVW+18], results in an LWE based EIPLBE scheme with succinct ciphertexts.

9 Bounded Embedded-Identity Traitor Tracing

We will now present the syntax and definitions for traitor tracing with embedded identities where the key
generation is not indexed, but the number of key queries is bounded.

Let T be a (bounded keys, public/private tracing)-embedded identity tracing scheme for message space
M = {Mλ}λ∈N and identity space ID = {{0, 1}κ}κ∈N. It consists of five algorithms Setup,KeyGen,Enc,Dec
and Trace with the following syntax:

Setup(1λ, 1κ, nbd) → (msk, pk, key): The setup algorithm takes as input the security parameter λ, identity
space index κ, bound on number of key queries nbd, and outputs a master secret key msk and a public
key pk.

KeyGen(msk, id ∈ {0, 1}κ) → skid: The key generation algorithm takes as input the master secret key and
identity id ∈ {0, 1}κ. It outputs a secret key skid.

Enc(pk,m ∈ Mλ) → ct: The encryption algorithm takes as input a public key pk, message m ∈ Mλ and
outputs a ciphertext ct.
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Dec(sk, ct) → z: The decryption algorithm takes as input a secret key sk, ciphertext ct and outputs
z ∈Mλ ∪ {⊥}.

TraceD(key, 1y,m0,m1) → T ⊆ {0, 1}κ. The trace algorithm has oracle access to a program D, it takes
as input key (which is the master secret key in a private tracing scheme, and the public key in a
public tracing scheme), parameter y and two messages m0,m1. It outputs a set T of identities, where
T ⊆ {0, 1}κ.

Correctness. A traitor tracing scheme is said to be correct if there exists a negligible function negl(·) such
that for all λ, κ, nbd ∈ N, m ∈Mλ and identity id ∈ {0, 1}κ, the following holds

Pr

Dec(sk, ct) = m :
(msk, pk, key)← Setup(1λ, 1κ, nbd);

sk← KeyGen(msk, id)
ct← Enc(pk,m)

 ≥ 1− negl(λ).

Efficiency Let T-s,T-e,T-k be functions. A (bounded keys, public/private tracing)-embedded identity
tracing scheme is said to be (T-s, T-e, T-k)-efficient if the following efficiency requirements hold:

• The running time of Setup(1λ, 1κ, nbd) is at most T-s(λ, κ, nbd).
• The running time of Enc(pk,m) is at most T-e(λ, κ, nbd).
• The running time of KeyGen(msk, id) is at most T-k(λ, κ, nbd).
• The running time of Dec(sk, ct) is at most T-d(λ, κ, nbd).
• The number of oracle calls made by TraceD(key, 1y,m0,m1) to decoding boxD is at most T-t(λ, κ, nbd, y).
• The size of the ciphertext output by Enc(pk,m) is at most S-c(λ, κ, nbd).
• The size of the key output by KeyGen(msk, id) is at most S-k(λ, κ, nbd).

9.1 Security

The IND-CPA security definition is identical to the one in Section 4.1.1; the tracing-based security definition
is very similar, but instead of requiring that the index queries are distinct, we require that the number of
queries in the ‘correct-trace experiment’ is at most nbd.

Definition 9.1 (Secure tracing). Let T = (Setup,KeyGen,Enc,Dec,Trace) be a (bounded keys, public/private
tracing)-embedded identity tracing scheme. For any non-negligible function ε(·) and PPT adversary A, con-
sider the experiment Expt-TT-emb-bdTA,ε(λ) defined in Figure 4.

Experiment Expt-TT-emb-bdTA,ε(λ)

• 1κ, 1nbd ← A(1λ).

• (msk, pk, key)← Setup(1λ, 1κ, nbd).

• (D,m0,m1)← AO(·)(pk).

• T ← TraceD(key, 11/ε(λ),m0,m1).

Let SID be the set of identities queried by A. Here, O(·) is an oracle that has msk hardwired, takes as input
an identity id ∈ {0, 1}κ and outputs KeyGen(msk, id).

Figure 4: Experiment Expt-TT-emb-bd

Based on the above experiment, we now define the following (probabilistic) events and the corresponding
probabilities (which are a functions of λ, parameterized by A, ε):

• Good-Decoder : Pr[D(ct) = b : b← {0, 1}, ct← Enc(pk,mb)] ≥ 1/2 + ε(λ)
Admissible-Adv : A makes at most nbd key queries
Pr -G-DA,ε(λ) = Pr[Good-Decoder ∧ Admissible-Adv].
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• Cor-Tr : T 6= ∅ ∧ T ⊆ SID
Pr -Cor-TrA,ε(λ) = Pr[Cor-Tr].

• Fal-Tr : T 6⊆ SID
Pr -Fal-TrA,ε(λ) = Pr[Fal-Tr].

A traitor tracing scheme T is said to be ind-secure if for every PPT adversary A, polynomial q(·) and
non-negligible function ε(·), there exists negligible functions negl1(·), negl2(·) such that for all λ ∈ N satisfying
ε(λ) > 1/q(λ), the following holds

Pr -Fal-TrA,ε(λ) ≤ negl1(λ), Pr -Cor-TrA,ε(λ) ≥ Pr -G-DA,ε(λ)− negl2(λ).

9.2 Going from Indexed to Bounded

In this section, we will show how to build a (bounded keys, public/private tracing)-embedded identity tracing
scheme from a (indexed keygen, public/private)-embedded identity tracing scheme.

9.2.1 Construction

Let TT-ind = (Ind.Setup, Ind.Enc, Ind.KeyGen, Ind.Dec, Ind.Trace) be a (indexed keygen, public/private)-embedded
identity tracing scheme for message spaceM = {Mλ}λ∈N, identity space ID = {{0, 1}κ}κ∈N, and with (T-s,
T-e, T-k, T-d, T-t, S-c, S-k)-efficiency, and let S = (SS.Setup,SS.Sign,SS.Verify) be a signature scheme with
message space {{0, 1}κ}κ∈N and signature space

{
{0, 1}`ss(λ)

}
λ∈N. We use TT-ind to build a non-indexed

traitor tracing scheme TT = (Setup,KeyGen,Enc,Dec,Trace) as follows.

Setup(1λ, 1κ, nbd)→ (msk, pk, key). The setup algorithm runs the TT-ind setup algorithm λ times with index
value nindx = 2 · n2

bd and identity index κ+ `ss(λ) as follows:

∀i ∈ [λ], (mski, pki, keyi)← Ind.Setup(1λ, 1κ+`ss(λ), nindx = 2 · n2
bd).

It also chooses a signing/verification keys (ss.sk, ss.vk)← SS.Setup(1λ, 1κ). It then sets the master secret

and public keys as msk =
(

(mski)i∈[λ] , ss.sk, ss.vk
)

, pk = (pki)i∈[λ] and key = ss.vk, (keyi, pki)i∈[λ].

KeyGen(msk, id)→ sk. Let msk =
(

(mski)i∈[λ] , ss.sk, ss.vk
)

. The key generation algorithm chooses λ uni-

formly random indices ji ←
[
2 · n2

bd

]
for i ∈ [λ]. Next, it computes a signature on id; that is, it

computes σ ← SS.Sign(ss.sk, id). Finally, for ith subsystem, it computes indexed keys for index {ji}
and identity (id, σ). That is, for i ∈ [λ], it computes ski ← Ind.KeyGen(mski, (id, σ), ji), and outputs
the secret key sk as sk = (ski)i∈[λ].

Enc(pk,m)→ ct. Let pk = (pki)i∈[λ]. The encryption algorithm first chooses λ − 1 random messages as

ri ←M for i ∈ [λ− 1]. Next, it sets rλ = m⊕
(⊕λ−1

i=1 ri

)
. It then encrypts messages ri under key pki

as follows:
∀i ∈ [λ], cti ← Ind.Enc(pki, ri).

Finally, it outputs the ciphertext as ct = (cti)i∈[λ].

Dec(sk, ct)→ z. Let sk = (ski)i∈[λ], and ct = (cti)i∈[λ]. The decryption algorithm runs the TT-ind decryption

on each secret key-ciphertext pair as zi ← Dec(ski, cti) for i ∈ [λ].

If zi = ⊥ for any i ∈ [λ], then it outputs z = ⊥, otherwise it outputs z =
⊕λ

i=1 zi as the message.
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isGoodDecoderD((pki)i∈[λ] , 1
y,m0,m1, r, i)

Input: Keys (pki)i∈[λ], Parameter y, Messages m0,m1, r, Index i ∈ [λ].
Output: Yes/No.

1. Set count = 0. (Let ε = 1/y.)

2. For j = 1 to λ · y:

- Choose λ − 1 messages rk randomly for k ∈ [λ] \ {i} such that
⊕

k∈[λ]\{i} rk = r. (That is,

bit-wise parity of the messages chosen matches the message r.)
- Choose random bit b← {0, 1}, and compute ciphertexts as ctk ← Ind.Enc(pkk, rk) for k ∈ [λ]\{i},

and cti ← Ind.Enc(pki, r ⊕mb).
- Query ciphertext (ct1, . . . , ctλ) to the oracle D. Let b′ denote the oracle’s response.
- If b = b′, set count = count + 1.

3. If count/(λ · y) ≥ 1/2 + ε/3, then output ‘Yes’. Otherwise output ‘No’.

Figure 5: Routine isGoodDecoder

SubTraceD(key, 1y,m0,m1, r, i)

Input: Keys key = (keyi, pki)i∈[λ], Parameter y, Messages m0,m1, r, Index i ∈ [λ].
Output: T ⊆ {0, 1}κ.

1. It runs the TT-ind tracing algorithm on inputs — keys keyi, pki, parameter 4y, messages m0⊕r,m1⊕r
— and with oracle access to oracle D̃ which we define next.

2. On each query ct to oracle D̃ by Ind.Trace, the sub-tracing algorithm first chooses λ− 1 messages rj
randomly for j ∈ [λ] \ {i} such that

⊕
j∈[λ]\{i} ri = r. (That is, bit-wise parity of the messages chosen

matches the message r.) It encrypts these messages as ctj ← Ind.Enc(pkj , rj), and then sends the
ciphertext (ct1, . . . , cti−1, ct, cti+1, . . . , ctλ) to the oracle D as its query. And it forwards the oracle
D’s response to the Ind.Trace algorithm.

3. Finally, the Ind.Trace algorithm outputs a set T . The sub-tracing algorithm outputs the same set T
as its output.

In short, SubTraceD(key, 1y,m0,m1, r, i) = Ind.TraceD̃((mski, pki), 1
4y,m0 ⊕ r,m1 ⊕ r),

where
D̃(ct) = D(ct1, . . . , cti−1, ct, cti+1, . . . , ctλ),

∀j ∈ [λ] \ {i} , rj ←M such that
⊕

j∈[λ]\{i} ri = r,

∀j ∈ [λ] \ {i} , ctj ← Ind.Enc(pkj , rj)

Figure 6: Routine SubTrace

TraceD(key, 1y,m0,m1)→ T. Let key =
(

(mski, pki)i∈[λ] , ss.vk
)

and ε = 1/y. First we define a supple-

mentary algorithms isGoodDecoder (in Figure 5) and SubTrace (in Figure 6) that both get oracle
access to the decoder D and take as input all λ public-secret key pairs (mski, pki)i, parameter y, mes-
sages m0,m1, r and an index i ∈ [λ]. The tracing algorithm executes the following procedure using
isGoodDecoder and SubTrace routines as follows:

1. Set i = 1.

2. Set flag = ‘No’. For j = 1 to λ · y:

- Choose a random message r ←M.
- Run isGoodDecoder as flag← isGoodDecoderD(key, 1y,m0,m1, r, i).
- If flag = ‘Yes’, break. Else, continue.

3. If flag = ‘Yes’, run SubTrace as T ← SubTraceD(key, 1y,m0,m1, r, i). Else, set T = ∅.
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4. If T = ∅ and i < λ, set i = i+ 1 and go to step 2. Otherwise, output T .

Set T final = ∅. For each (id, σ) = ĩd ∈ T , if SS.Verify(ss.vk, id, σ) = 1, the tracing algorithm adds id to
T final. Concretely,

T final = {id : ∃ σ such that (id, σ) ∈ T and SS.Verify(ss.vk, id, σ) = 1} .

Finally, it outputs the set T final as the set of traitors.

Next, we prove the following.

Theorem 9.1. If TT-ind = (Ind.Setup, Ind.Enc, Ind.KeyGen, Ind.Dec, Ind.Trace) is a secure (indexed keygen,
public/private)-embedded identity tracing scheme (as per Definitions 4.2 and B.2) with (T-s, T-e, T-k,
T-d, T-t, S-c, S-k)-efficiency, and S = (SS.Setup,SS.Sign,SS.Verify) is a secure signature scheme (as per
Definition A.1), then the scheme TT = (Setup,KeyGen,Enc,Dec,Trace) (described in Section 9.2.1) is a
secure (bounded keys, public/private tracing)-embedded identity tracing scheme (as per Definitions 4.2 and
9.1) with (T-s′, T-e′, T-k′,T-d′,T-t′,S-c′,S-k′)-efficiency, where the efficiency measures are related as follows:

• T-s′(λ, κ, n) = λ · T-s(λ, κ, 2 · n2) + poly(λ, κ, log n),
• T-k′(λ, κ, n) = λ · T-k(λ, κ, 2 · n2) + poly(λ, κ, log n),
• T-e′(λ, κ, n) = λ · T-e(λ, κ, 2 · n2) + poly(λ, κ, log n),
• T-d′(λ, κ, n) = λ · T-d(λ, κ, 2 · n2) + poly(λ, κ, log n),
• T-t′(λ, κ, n, y) = λ · T-t(λ, κ, 2 · n2, 4y) + λ3 · y2,
• S-c′(λ, κ, n) = λ · S-c(λ, κ, 2 · n2),
• S-k′(λ, κ, n) = λ · S-k(λ, κ, 2 · n2).

Proof. Correctness: Fix any security parameter λ, public key pk = (pki)i∈[λ], master secret key msk =(
(mski)i∈[λ] , (ss.sk, ss.vk)

)
, tracing key key = (keyi, pki), message m ∈ M and identity id. The encryption

algorithm chooses {ri}i∈[λ] such that
⊕

i ri = m, computes cti ← Ind.Enc(pki, ri) and sets ct = (cti)i∈[λ].

The key generation algorithm first chooses λ indices {ji}i∈[λ], computes a signature σ on id, and outputs λ

keys (ski)i∈[λ], where ski is a key for identity (id, σ) and index ji. From the correctness of the underlying
scheme TT-ind, it follows that decryption of cti using ski outputs ri. As a result, the decryption of ct using
sk outputs message m.

IND-CPA security: IND-CPA security of our scheme follows directly from the IND-CPA security of
TT-ind. Suppose there exists a PPT adversary A that breaks the IND-CPA security of our scheme with
advantage ε. We can use A to break the IND-CPA security of TT-ind with advantage ε. The reduction
algorithm first receives pk1 from the TT-ind challenger. It chooses (mski, pki, keyi)← Ind.Setup(1λ, 1κ, nindx)
for each i ∈ {2, . . . , λ}, and sends (pki)i∈[λ] to A. (If TT-ind is a public tracing scheme, then the reduction

algorithm also receives a tracing key key1 from the challenger, and it sends the tracing key (keyi, pki)i∈[λ] to

A).
Next, A sends two messages m0,m1 to B. The reduction algorithm chooses r2, . . . , rn ← M, sets

m′b = mb ⊕
(⊕

i>1 ri
)

and sends (m′0,m
′
1) to the challenger. The challenger sends ct1 to B. The reduction

algorithm computes encryptions of r2, . . . , rλ, and sends ct = (cti)i∈[λ] to A. The adversary sends its guess,
which the reduction algorithm forwards to the challenger.

Clearly, if A has advantage ε, then so does B.

Efficiency: It is easy to verify that T-s′, T-k′, T-e′, T-d′, T-t′, S-c′ and S-k′ satisfy the efficiency measures.

Correct Trace and False Trace guarantees: We will now show that our scheme satisfies Definition 9.1.
False Trace: We will first show that the false trace probability of our scheme is negligible in the security

parameter. Recall, the false trace probability is defined as follows: the adversary receives the public key
(and the tracing key in a public tracing algorithm). Next, it queries for a set of keys SID corresponding
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to a set of identities (note that in the false trace experiment, the adversary can query for an unbounded
number of keys). Finally, it outputs a decoding box D and two messages m0,m1. The tracing algorithm
uses D and m0,m1 to output a set of traitors T final. In particular, the tracing algorithm uses the SubTrace
algorithm to find a polynomial sized set T = {(idj , σj)}j , and puts an identity id in T final if (id, σ) ∈ T and

SS.Verify(ss.vk, id, σ) = 1. The false trace probability is the probability that T final 6⊆ SID.
Suppose there exists a PPT adversary A such that the false trace probability is ε. We can use A to

break the signature scheme’s security. The reduction algorithm B receives the verification key ss.vk from
the challenger. It chooses λ public/master secret/tracing keys {(mski, pki, keyi)} for the underlying traitor
tracing system TT-ind, and sends (pki)i∈[λ] to the adversary (if TT-ind is public tracing, then it also sends(

(keyi)i∈[λ] , ss.vk
)

as the tracing key). Next, the adversary gets access to a key generation oracle. For

every query id, the reduction algorithm sends id to the challenger, and receives signature σ. It then chooses
λ uniformly random indices {ji}i∈[λ] and generates indexed keys skj ← Ind.KeyGen (mski, (id, σ), ji) for

each i ∈ [λ]. It sends (ski)i∈[λ] to A. Finally, after polynomially many secret key queries, the adversary
outputs a decoding box D and messages m0,m1. The reduction algorithm first checks if it is a good
decoder (that is, steps 1 and 2 of the tracing algorithm). Next, if it is a good decoder, it runs SubTrace
to obtain a set T = {idj , σj}j . If there exists an (id, σ) pair in T such that id was not queried by A
and SS.Verify(ss.vk, id, σ) = 1, then it sends id to the challenger. Since the false trace event happens with
probability ε, the reduction algorithm breaks the security of the signature scheme with probability ε.

Remark 9.1. Note that we do not require the ‘false trace’ guarantee of the underlying tracing scheme
TT-ind. We only require that the tracing algorithm of the underlying scheme is polynomial time.

Correct Trace:
Recall the traitor tracing experiment (Figure 4): the challenger sends a public key pk, then the adversary

queries for a set of secret keys (at most nbd keys) corresponding to identities. Finally, the adversary outputs
a decoding box D. We need to show that if the decoding box if ε good, then the tracing algorithm can trace
at least one identity for which the adversary queried a secret key. More formally, the correct trace guarantee
is captured by the following events/probabilities:

Good-Decoder : Pr[D(ct) = b : b← {0, 1}, ct← Enc(pk,mb)] ≥ 1/2 + ε(λ)
Admissible-Adv : A makes at most nbd key queries
Pr -G-DA,ε(λ) = Pr[Good-Decoder ∧ Admissible-Adv].
Cor-Tr : T 6= ∅ ∧ T ⊆ SID, Pr -Cor-TrA,ε(λ) = Pr[Cor-Tr].
We require that Pr -Cor-TrA,ε(λ) ≥ Pr -G-DA,ε(λ)− negl2(λ).

We will define some more events and their probabilities, which will be useful for our proof.

• Tracing without correctness: Event Tr, which is similar to Cor-Tr, except that we do not require
T ⊆ SID. More formally, let Tr : T 6= ∅, and the corresponding probability Pr -TrA,ε(λ) = Pr[Tr].

• Position with distinct indices for each key: Recall in our construction, each key for identity id consists
of λ different ‘indexed’ keys, where the λ indices are chosen uniformly at random from [2n2

bd]. Let
Dist-Indx be the event that there exists i ∈ [λ] such that the ith index of each key is distinct.

• Dist-Indxi: Position i is the first position such that the ith index of each key is distinct. Hence, by
definition, Dist-Indx =

⋃
i Dist-Indxi.

• Tracing without correctness in ith iteration: Let Ti denote the set of (identity, signatute) pairs traced
in the ith iteration. The event Tri happens if Ti is non-empty.

• Tracing with same signature as that received in key: Let Ti denote the set of (identity, signature) pairs
that are traced in the ith iteration. The event Cor-Tr-Sigi happens if for all (id, σ) ∈ Ti, id was queried
during the key query phase, and the key generation oracle output sk← Ind.KeyGen(mski, (id, σ), j) for
some index j.

54



• The flag is set to ‘Yes’ in the ith iteration: The event Found-Good-ri happens if in the ith iteration, the
flag is set to ‘Yes’.

• Good decoder D̃ during the SubTrace routine execution in ith iteration: We say that event Good-D̃i

happens if in the ith iteration, the execution reaches step 3 (that is, it found a ‘good’ r in the ith

iteration), and the decoder D̃ constructed is an ε/4 good decoder for distinguishing messages m0 ⊕ r
and m1 ⊕ r. Note that if no good r is found in step 3, then we say that Good-D̃i did not happen.

With these events defined, we will now show that Pr -Cor-TrA,ε(λ) ≥ Pr -G-DA,ε(λ) − negl(λ) for some
negligible function negl(·). The proof will proceed via a series of inequalities as shown below.

Pr -Cor-TrA,ε(λ) (2)

≥ Pr -TrA,ε(λ)− negl1(λ) (3)

≥ Pr [Tr ∧ Dist-Indx]− negl1(λ) (4)

=
∑
i

Pr [Tr ∧ Dist-Indxi]− negl1(λ) (5)

≥
∑
i

Pr [Cor-Tr-Sigi ∧ Dist-Indxi]− negl1(λ) (6)

≥
∑
i

Pr
[
Good-D̃i ∧ Dist-Indxi

]
− negl2(λ) (7)

≥
∑
i

Pr
[
Good-D̃i ∧ Found-Good-ri ∧ Good-Decoder ∧ Admissible-Adv ∧ Dist-Indxi

]
− negl2(λ) (8)

≥
∑
i

Pr [Found-Good-ri ∧ Good-Decoder ∧ Admissible-Adv ∧ Dist-Indxi]− negl3(λ) (9)

≥
∑
i

Pr [Good-Decoder ∧ Admissible-Adv ∧ Dist-Indxi]− negl4(λ) (10)

= Pr [Good-Decoder ∧ Admissible-Adv ∧ Dist-Indx]− negl4(λ) (11)

≥ Pr [Good-Decoder ∧ Admissible-Adv]− negl5(λ) (12)

We will now discuss each of these steps, and why the above inequalities hold. Step 2 to 3 follows from the
false trace guarantee. Using the false trace guarantee, we can show that Pr -TrA,ε(λ) ≤ Pr -Cor-TrA,ε(λ) +
negl(λ).

Claim 9.1. Pr -TrA,ε(λ) ≤ Pr -Cor-TrA,ε(λ) + negl(λ).

Proof. From the definition of the events, it follows that Pr -TrA,ε(λ) = Pr -Cor-TrA,ε(λ) + Pr -Fal-TrA,ε(λ).
Next, using the false trace guarantees, we can argue that Pr -Cor-TrA,ε(λ)+Pr -Fal-TrA,ε(λ) ≤ Pr -Cor-TrA,ε(λ)+
negl(λ).

Step 3 to 4 follows from definition of Pr -TrA,ε(λ). Step 4 to 5 follows from the fact that Dist-Indx =
∪iDist-Indxi, and these events are mutually exclusive. Step 5 to 6 holds because the event Cor-Tr-Sigi implies
Tr (we are assuming our signature scheme is perfectly correct, and hence any signature generated by the
signing key is accepted by the verification algorithm). Step 6 to 7 follows from the correct-trace guarantee
of the underlying TT-ind scheme. This is formalized in the following claim.

Claim 9.2. Assuming the traitor tracing scheme satisfies the correct-trace guarantee as defined in Defini-
tion B.2, there exists a negligible function negl(·) such that for all i ∈ [λ],

Pr [Cor-Tr-Sigi ∧ Dist-Indxi] ≥ Pr
[
Good-D̃i ∧ Dist-Indxi

]
− negl(λ)
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Proof. Suppose there exists a PPT adversary A such that Pr
[
Good-D̃i ∧ Admissible-Adv ∧ Dist-Indxi

]
−

Pr [Cor-Tr-Sigi ∧ Dist-Indxi] is non-negligible. We will use A to build a PPT algorithm B that breaks the se-
curity of TT-ind. The reduction algorithm first receives the bound nbd (in unary) from the adversary. It sets
nindx = 2 ·n2

bd, sends nindx to the challenger (in unary) and receives the public key pki (and keyi if TT-ind is a
public tracing scheme). For each k 6= i, it chooses (pkk,mskk, keyk)← Ind.Setup(1λ, 1κ+`ss(λ), nindx), chooses
a signing/verification key, and sends the public key to A (and the tracing key if applicable). Next, the
adversary queries for secret keys. For each query id, the reduction algorithm chooses λ indices jid,1, . . . , jid,λ.
It computes a signature σ on id and queries for a TT-ind key ski corresponding to (id, σ) for index jid,i. For
k 6= i, it computes a skk using mskk. Finally, it sends (sk1, . . . , skλ) to A. After at most nbd key queries, the
adversary submits a decoding box D and messages m0,m1. The reduction algorithm first checks if, for all
key queries, the ith position’s indices are distinct. If not, it outputs a dummy decoding box and quits. Next,
it runs isGoodDecoder((pki)i∈[λ] , 1

y,m0,m1, r) for uniformly random and independently chosen r, until it

finds an r s.t. isGoodDecoder outputs ‘Yes’. If no such r is found after λ · y iterations, it quits (and outputs

a dummy decoding box). It constructs D̃ using D (as described in SubTrace) and sets the distinguishing

messages to be m̃0 = m0 + r, m̃1 = m1 + r. It sends D̃, m̃0, m̃1 to the challenger.
First, let us compute the probability that the reduction algorithm outputs a 1/4y good decoding box for

m̃0, m̃1. This happens if all the following events happen:

• All the position i indices of the keys are distinct.

• The decoder D̃ is a 1/4y good decoder for m̃0, m̃1. This happens only if isGoodDecoder outputs ‘Yes’
for one of the randomly chosen r values.

The probability that B outputs a good decoding box is Pr
[
Good-D̃i ∧ Admissible-Adv ∧ Dist-Indxi

]
. Using

the security of TT-ind, Pr [Cor-Tr-Sigi ∧ Dist-Indxi] ≥ Pr
[
Good-D̃i ∧ Dist-Indxi

]
− negl(λ). Here, note that

the set of (identity, signature) pairs output by the tracing algorithm is a subset of the (identity, signature)
queries made by the reduction algorithm. This concludes our proof.

Step 7 to 8 follows directly from the definition of the events. Next, we will show that Found-Good-ri and

Good-D̃i happens with negligible probability. This justifies the step 8 to 9 inequality.

Claim 9.3. There exists a negligible function negl(·) such that for any index i, Pr
[
Found-Good-ri ∧ Good-D̃i

]
≤

negl(λ).

Proof. Using Chernoff bounds, we can argue that Pr
[
Found-Good-ri | Good-D̃i

]
< negl(λ), and hence the

claim follows.

We will now show that for every i, Good-Decoder and Found-Good-ri happen with negligible probability.
Hence, we can justify the step 9 to 10 transition.

Claim 9.4. There exists a negligible function negl(·) such that for any index i, Pr
[
Found-Good-ri ∧ Good-Decoder

]
≤

negl(λ).

Proof. As in the previous proof, this also follows via a simple application of Chernoff bounds, since the term
Pr
[
Found-Good-ri | Good-Decoder

]
can be bounded by negl(λ).

Next, since ∪iDist-Indxi = Dist-Indx, and all the Dist-Indxi are mutually exclusive, step 10 to 11 follows.
Finally, using the following claim, we can argue the step 11 to 12 inequality.

Claim 9.5. There exist a negligible function negl(·) such that

Pr [Good-Decoder ∧ Admissible-Adv ∧ Dist-Indx] ≥ Pr [Good-Decoder ∧ Admissible-Adv]− negl(λ).
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Proof. Consider the following experiment: choose xi,j ← [2 · n2
bd] for each i ∈ [λ], j ∈ [nbd] independently.

Let Yi = 1 if the set {xi,j}j∈[λ] consists of nbd distinct entries, else Yi = 0. Using a simple union bound, it

follows that Pr[Yi = 0] ≤ 1/4, and since all Yi are independent, Pr[ ∀i, Yi = 0] ≤ 1/4λ.
From the above experiment, it follows that Pr[Good-Decoder ∧ Admissible-Adv ∧ Dist-Indx] ≤ negl(λ). As

a result,

Pr [Good-Decoder ∧ Admissible-Adv]

= Pr [Good-Decoder ∧ Admissible-Adv ∧ Dist-Indx] + Pr
[
Good-Decoder ∧ Admissible-Adv ∧ Dist-Indx

]
≤ Pr [Good-Decoder ∧ Admissible-Adv ∧ Dist-Indx] + negl(λ)

10 Unbounded (Full) Embedded-Identity Traitor Tracing

We will now present the syntax and definitions for general traitor tracing with embedded identities.
Let T be a (unbounded keys, public/private tracing)-embedded identity tracing scheme for message space

M = {Mλ}λ∈N and identity space ID = {{0, 1}κ}κ∈N. It consists of five algorithms Setup,KeyGen,Enc,Dec
and Trace with the following syntax:

Setup(1λ, 1κ)→ (msk, pk, key): The setup algorithm takes as input the security parameter λ, identity space
index κ and outputs a master secret key msk and a public key pk.

KeyGen(msk, id ∈ {0, 1}κ) → skid: The key generation algorithm takes as input the master secret key and
identity id ∈ {0, 1}κ. It outputs a secret key skid.

Enc(pk,m ∈ Mλ) → ct: The encryption algorithm takes as input a public key pk, message m ∈ Mλ and
outputs a ciphertext ct.

Dec(sk, ct) → z: The decryption algorithm takes as input a secret key sk, ciphertext ct and outputs
z ∈Mλ ∪ {⊥}.

TraceD(key, 1y, Qbd,m0,m1)→ T ⊆ {0, 1}κ. The trace algorithm has oracle access to a program D, it takes
as input a master secret key key, parameters y and Qbd, and two messages m0,m1. It outputs a set T
of identities, where T ⊆ {0, 1}κ.

Correctness. A traitor tracing scheme is said to be correct if there exists a negligible function negl(·) such
that for all λ, κ ∈ N, m ∈Mλ and identity id ∈ {0, 1}κ, the following holds

Pr

Dec(sk, ct) = m :
(msk, pk, key)← Setup(1λ, 1κ);

sk← KeyGen(msk, id)
ct← Enc(pk,m)

 ≥ 1− negl(λ).

Efficiency Let T-s,T-e,T-k be functions. A (bounded keys, public/private tracing)-embedded identity
tracing scheme is said to be (T-s, T-e, T-k)-efficient if the following efficiency requirements hold:

• The running time of Setup(1λ, 1κ) is at most T-s(λ, κ).
• The running time of Enc(pk,m) is at most T-e(λ, κ).
• The running time of KeyGen(msk, id) is at most T-k(λ, κ).
• The running time of Dec(sk, ct) is at most T-d(λ, κ).
• The number of oracle calls made by TraceD(key, 1y, Qbd,m0,m1) to decoding box D is at most

T-t(λ, κ, y,Qbd).
• The size of the ciphertext output by Enc(pk,m) is at most S-c(λ, κ).
• The size of the key output by KeyGen(msk, id) is at most S-k(λ, κ).
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10.1 Security

The IND-CPA security definition is identical to the one in previous sections; the tracing-based security
definition is very similar, but there is no bound on the number of secret key queries.

Definition 10.1 (Secure tracing). Let T = (Setup,KeyGen,Enc,Dec,Trace) be a (unbounded keys, pub-
lic/private tracing)-embedded identity tracing scheme. For any non-negligible function ε(·), polynomial p(·)
and PPT adversary A, consider the experiment Expt-TT-embTA,ε(λ) defined in Figure 7.

Experiment Expt-TT-embTA,ε,p(λ)

• 1κ ← A(1λ).

• (msk, pk, key)← Setup(1λ, 1κ).

• (D,m0,m1)← AO(·)(pk)

• T ← TraceD(key, 11/ε(λ), p(λ),m0,m1).

Let SID be the set of identities queried by A. Here, O(·) is an oracle that has msk hardwired, takes as input
an identity id ∈ {0, 1}κ and outputs KeyGen(msk, id).

Figure 7: Experiment Expt-TT-emb

Based on the above experiment, we now define the following (probabilistic) events and the corresponding
probabilities (which are a functions of λ, parameterized by A, ε, p):

• Good-Decoder : Pr[D(ct) = b : b← {0, 1}, ct← Enc(pk,mb)] ≥ 1/2 + ε(λ)
Pr -G-DA,ε,p(λ) = Pr[Good-Decoder ∧ p(λ) ≥ |SID|].

• Cor-Tr : T 6= ∅ ∧ T ⊆ SID
Pr -Cor-TrA,ε,p(λ) = Pr[Cor-Tr].

• Fal-Tr : T 6⊆ SID
Pr -Fal-TrA,ε,p(λ) = Pr[Fal-Tr].

A traitor tracing scheme T is said to be secure if for every PPT adversary A, polynomials q(·), p(·)
and non-negligible function ε(·), there exists negligible functions negl1(·), negl2(·) such that for all λ ∈ N
satisfying ε(λ) > 1/q(λ), the following holds

Pr -Fal-TrA,ε(λ) ≤ negl1(λ), Pr -Cor-TrA,ε,p(λ) ≥ Pr -G-DA,ε,p(λ)− negl2(λ).

Remark 10.1. Note that unlike Definitions 9.1 and B.2, here the trace algorithm takes an additional
parameter Qbd. In the correct trace definition, we require that as long as the tracing algorithm uses a bound
greater than the number of keys queried, the tracing algorithm must identify at least one traitor. However,
the false trace guarantee should hold for all polynomially bounded Qbd values. In particular, even if the
number of keys queried is more than the bound used in tracing, the trace algorithm must not output an
identity that was not queried. We can show that this definition implies the ‘standard’ tracing definition
where the trace algorithm does not take this bound as input. One simply needs to run this bounded-version
of trace with increasing powers of two until the trace algorithm outputs at least one traitor.

The tracing algorithm in [NWZ16] also requires a bound q. However, in their definition, the false trace
and correct trace events are defined only when the tracing bound is equal to the number of keys queried. As
a result, it is not clear if this definition can be used to achieve the ‘standard’ tracing definition.

10.2 Going from Bounded to Unbounded

In this section, we provide an efficient generic transformation that removes the bound set on the number of
users/keys that an adversary is allowed to corrupt during setup.
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10.2.1 Construction

Let TT-bd = (BD.Setup,BD.KeyGen,BD.Enc,BD.Dec,BD.Trace) be a (bounded keys, public/private tracing)-
embedded identity tracing scheme for message spaceM = {Mλ}λ∈N, identity space ID = {{0, 1}κ}κ∈N, and
with (T-setup, T-enc, T-key)-efficiency. We use TT-bd to build a traitor tracing TT = (Setup, KeyGen, Enc,
Dec, Trace) with unbounded number of users as follows. (Here we provide a transformation for TT schemes
with secret key tracing, but the construction can be easily extended to work in the public tracing setting as
well.)

Setup(1λ, 1κ)→ (msk, pk, key). The setup algorithm runs the TT-bd setup algorithm λ times with increasing
values of the user bound nbd as follows:

∀i ∈ [λ], (mski, pki, keyi)← BD.Setup(1λ, 1κ, nbd = 2i).

It then sets the master secret and public keys as an λ-tuple of all these keys, i.e. msk = (mski)i∈[λ],

pk = (pki)i∈[λ] and key = (pki, keyi)i∈[λ].

KeyGen(msk, id)→ sk. Let msk = (mski)i∈[λ]. The key generation algorithm runs the TT-bd key generation

algorithm with all λ keys independently as ski ← BD.KeyGen(mski, id) for i ∈ [λ]. It outputs the secret
key sk as sk = (ski)i∈[λ].

Enc(pk,m)→ ct. Let pk = (pki)i∈[λ]. The encryption algorithm first chooses λ − 1 random messages as

ri ←M for i ∈ [λ− 1]. Next, it sets rλ = m⊕
(⊕λ−1

i=1 ri

)
. It then encrypts messages ri under key pki

as follows:
∀i ∈ [λ], cti ← BD.Enc(pki, ri).

Finally, it outputs the ciphertext as ct = (cti)i∈[λ].

Dec(sk, ct)→ z. Let sk = (ski)i∈[λ], and ct = (cti)i∈[λ]. The decryption algorithm runs the TT-bd decryption

on each secret key-ciphertext pair as zi ← Dec(ski, cti) for i ∈ [λ].

If zi = ⊥ for any i ∈ [λ], then it outputs z = ⊥, otherwise it outputs z =
⊕λ

i=1 zi as the message.

isGoodDecoderD((pki) , 1
y,m0,m1, r, i)

Input: Public keys (pki)i∈[λ], Parameter y, Messages m0,m1, r, Index i ∈ [λ].
Output: Yes/No.

1. Set count = 0. (Let ε = 1/y.)

2. For j = 1 to λ · y:

- Choose λ − 1 messages rk randomly for k ∈ [λ] \ {i} such that
⊕

k∈[λ]\{i} rk = r. (That is,

bit-wise parity of the messages chosen matches the message r.)
- Choose random bit b← {0, 1}, and compute ciphertexts as ctk ← BD.Enc(pkk, rk) for k ∈ [λ]\{i},

and cti ← BD.Enc(pki, r ⊕mb).
- Query ciphertext (ct1, . . . , ctλ) to the oracle D. Let b′ denote the oracle’s response.
- If b = b′, set count = count + 1.

3. If count/(λ · y) ≥ 1/2 + ε/3, then output ‘Yes’. Otherwise output ‘No’.

Figure 8: Routine isGoodDecoder

TraceD(key, 1y, Qbd,m0,m1)→ T. Let key = (keyi, pki)i∈[λ] and ε = 1/y. First we define a supplementary

algorithms isGoodDecoder (in Figure 8) and SubTrace (in Figure 9) that both get oracle access to the
decoder D and take as input all λ tracing/public key pairs (keyi, pki)i, parameter y, messages m0,m1, r
and an index i ∈ [λ]. The tracing algorithm executes the following procedure using isGoodDecoder and
SubTrace routines as follows:
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SubTraceD(key, 1y,m0,m1, r, i)

Input: Keys key = (keyi, pki)i∈[λ], Parameter y, Messages m0,m1, r, Index i ∈ [λ].
Output: T ⊆ {0, 1}κ.

1. It runs the TT-bd tracing algorithm on inputs — keys keyi, pki, parameter 4y, messages m0⊕r,m1⊕r
— and with oracle access to oracle D̃ which we define next.

2. On each query ct to oracle D̃ by BD.Trace, the sub-tracing algorithm first chooses λ− 1 messages rj
randomly for j ∈ [λ] \ {i} such that

⊕
j∈[λ]\{i} ri = r. (That is, bit-wise parity of the messages chosen

matches the message r.) It encrypts these messages as ctj ← BD.Enc(pkj , rj), and then sends the
ciphertext (ct1, . . . , cti−1, ct, cti+1, . . . , ctλ) to the oracle D as its query. And it forwards the oracle
D’s response to the BD.Trace algorithm.

3. Finally, the BD.Trace algorithm outputs a set T . The sub-tracing algorithm outputs the same set T
as its output.

In short, SubTraceD(key, 1y,m0,m1, r, i) = BD.TraceD̃((keyi, pki), 1
4y,m0 ⊕ r,m1 ⊕ r),

where
D̃(ct) = D(ct1, . . . , cti−1, ct, cti+1, . . . , ctλ),

∀j ∈ [λ] \ {i} , rj ←M such that
⊕

j∈[λ]\{i} ri = r,

∀j ∈ [λ] \ {i} , ctj ← BD.Enc(pkj , rj)

Figure 9: Routine SubTrace

1. Set i = dlogQbde.
2. Set flag = ‘No’. For j = 1 to λ · y:

- Choose a random message r ←M.
- Run isGoodDecoder as flag← isGoodDecoderD(

(
pkj
)
, 1y,m0,m1, r, i).

- If flag = ‘Yes’, break. Else, continue.

3. If flag = ‘Yes’, run SubTrace as T ← SubTraceD(key, 1y,m0,m1, r, i). Else, set T = ∅.
4. Output T .

Next, we prove the following.

Theorem 10.1. If TT-bd = (BD.Setup,BD.KeyGen,BD.Enc,BD.Dec,BD.Trace) is a secure (bounded keys,
public/private tracing)-embedded identity tracing scheme (as per Definitions 9.1 and 4.2) with (T-s, T-e,
T-k, T-d, T-t, S-c, S-k)-efficiency, then the scheme TT = (Setup,KeyGen,Enc,Dec,Trace) (described in
Section 10.2.1) is a secure (unbounded keys, public/private tracing)-embedded identity tracing scheme (as per
Definitions 10.1 and 4.2) with (T-s′, T-e′, T-k′,T-d′,T-t′,S-c′,S-k′)-efficiency, where the efficiency measures
are related as follows:

• T-s′(λ, κ) =
∑λ
i=1 T-s(λ, κ, 2i),

• T-k′(λ, κ) =
∑λ
i=1 T-k(λ, κ, 2i),

• T-e′(λ, κ) =
∑λ
i=1 T-e(λ, κ, 2i) + poly(λ),

• T-d′(λ, κ) =
∑λ
i=1 T-d(λ, κ, 2i) + poly(λ),

• T-t′(λ, κ, y,Qbd) = T-t(λ, κ, 2dlogQbde, 4y) + λ2 · y2,

• S-c′(λ, κ) =
∑λ
i=1 S-c(λ, κ, 2i),

• S-k′(λ, κ) =
∑λ
i=1 S-k(λ, κ, 2i).

Proof. Correctness: Fix any security parameter λ, public key pk = (pki)i∈[λ], master secret key msk =(
(mski)i∈[λ]

)
i∈[λ]

, tracing key key = (keyi, pki)i∈[λ], message m ∈ M and identity id. The encryption algo-

rithm chooses {ri}i∈[λ] such that
⊕

i ri = m, computes cti ← BD.Enc(pki, ri) and sets ct = (cti)i∈[λ]. The
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key generation algorithm outputs λ keys (ski)i∈[λ], where ski is a key for identity id computed using mski.
From the correctness of the underlying scheme TT-bd, it follows that decryption of cti using ski outputs ri.
As a result, the decryption of ct using sk outputs message m.

IND-CPA security: IND-CPA security of our scheme follows directly from the IND-CPA security of
TT-bd. Suppose there exists a PPT adversary A that breaks the IND-CPA security of our scheme with
advantage ε. We can use A to break the IND-CPA security of TT-bd with advantage ε. The reduction
algorithm first sends λ and bound = 2 to the challenger, and receives pk1 from the TT-ind challenger. It
chooses (mski, pki, keyi)← BD.Setup(1λ, 1κ, 2i) for each i ∈ {2, . . . , λ}, and sends (pki)i∈[λ] to A. (If TT-bd
is a public tracing scheme, then the reduction algorithm also receives a tracing key key1 from the challenger,
and it sends the tracing key (keyi, pki)i∈[λ] to A).

Next, A sends two messages m0,m1 to B. The reduction algorithm chooses r2, . . . , rn ← M, sets
m′b = mb ⊕

(⊕
i>1 ri

)
and sends (m′0,m

′
1) to the challenger. The challenger sends ct1 to B. The reduction

algorithm computes encryptions of r2, . . . , rλ, and sends ct = (cti)i∈[λ] to A. The adversary sends its guess,
which the reduction algorithm forwards to the challenger.

Clearly, if A has advantage ε, then so does B.

Correct Trace and False Trace guarantees: We will show that our scheme satisfies Definition 10.1.
False Trace: First, let us consider the false trace probability. False trace happens if the sub-tracing

algorithm outputs a non-empty set T such that T 6⊆ SID, where SID is the set of keys queried by the
adversary. We will show that if there exists an adversary A, polynomial p and non-negligible functions
ε, η such that Pr -Fal-TrA,ε,p(λ) ≥ η(λ), then there exists a PPT algorithm B that breaks the false-trace
guarantee of TT-bd.

The reduction algorithm B first sends p(λ) (in unary) to the TT-bd challenger, and let i = dp(λ)e. It
receives a public key pki (and a tracing key if it is a public tracing scheme). It chooses (mskj , pkj , keyj) for all

j 6= i, and sends
(
pkj
)

to A (and
(
keyj

)
for a public tracing scheme). Next, the adversary requests for keys.

For each query id, the reduction algorithm computes skid,j using mskj if j 6= i. It sends id to the challenger,
and receives skid,i. It sends skid = (skid,j) to A. Finally, A outputs a decoding box D and messages m0,m1.
The reduction algorithm first runs isGoodDecoder(

{
pkj
}
, 1y,m0,m1, r, i) for λ · y choices of r until it finds

an r s.t. isGoodDecoder outputs ‘Yes’. The reduction algorithm outputs D̃ (as defined in SubTrace) as the
decoding box, and m0 ⊕ r, m1 ⊕ r as the two messages.

Clearly, if Pr -Fal-TrA,ε,p(λ) ≥ η(λ), then B breaks the false-trace guarantee of TT-bd.

Correct Trace:
As before, our proof will proceed via a sequence of inequalities. The events are defined exactly as in the

proof of Theorem 9.1. Let i = dp(λ)e.

Pr -Cor-TrA,ε,p(λ) (13)

= Pr[Cor-Tri] (14)

≥ Pr[Good-Decoderi ∧ p(λ) ≥ |SID|]− negl1(λ) (15)

≥ Pr[Good-Decoderi ∧ p(λ) ≥ |SID| ∧ Found-Good-ri ∧ Good-Decoder] (16)

≥ Pr[Found-Good-ri ∧ Good-Decoder ∧ p(λ) ≥ |SID|] (17)

≥ Pr[Good-Decoder ∧ p(λ) ≥ |SID|] (18)

The first equality (Step 13 to 14) follows from the definition of corret-trace. Next, Step 14 to 15 follows
from the correct-trace guarantee of TT-bd. This is formalized in the following claim.

Claim 10.1. Assuming TT-bd satisfies Definition 9.1, for any PPT adversary A, polynomial p(·) and non-
negligible function ε(·), Pr[Cor-Tri] ≥ Pr[Good-Decoderi ∧ p(λ) ≥ |SID|]− negl1(λ).
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Proof. Suppose, on the contrary, there exists a PPT adversary A, polynomial p(·) and non-negligible func-
tions ε(·), η(·) such that Pr[Good-Decoderi ∧ p(λ) ≥ |SID|]− Pr[Cor-Tri] ≥ η(λ). We will use A to construct
a PPT algorithm B that breaks the correct-trace guarantee of TT-bd.

Let i = dlog p(λ)e. The reduction algorithm B sends λ, p(λ) (in unary) to the challenger, and receives
pki (and the tracing key keyi if TT-bd is a public tracing scheme). It then chooses (mskj , pkj , keyj) ←
BD.Setup(1λ, 1κ, 2j) for all j 6= i and sends

(
pkj
)
j∈[λ]

. It then receives key queries (at most p(λ) key

queries). For each key query id, the reduction algorithm generates skid,j for j 6= i, sends id to the challenger,
and receives skid,i. It sends skid = (skid,j) to the adversary.

Finally, the adversary sends a decoding box D and messages m0,m1. The reduction algorithm runs
isGoodDecoder with different r values until the flag is ‘Yes’. Then, it uses that r value to set the decoding
box D̃ (as in SubTrace), messages m′b = mb ⊕ r and sends D̃,m′0,m

′
1 to the challenger.

The inequality from 15 to 16 follows directly from the definition of the events. Next, the justification
for transition from Step 16 to 17 and Step 17 to 18 is similar to the proofs of Claim 9.3 and Claim 9.4
respectively.
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A Preliminaries (Cont’d)

A.1 Signature Schemes

A signature scheme S = (Setup,Sign,Verify) with message space M consists of three algorithms, as follows:

Setup(1λ) is a randomized algorithm that takes security parameter λ as input and returns a pair of keys
(sk, vk), where sk is the signing key and vk is the verification key.
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Sign(sk,m) is a possibly randomized algorithm that takes as input the signing key sk, and a message m,
and returns a signature σ.

Verify(vk,m, σ) is a determistic algorithm that takes as input the verification key vk, a message m, and a
signature σ, and outputs 1 (accepts) if verification succeeds, and 0 (rejects) otherwise.

Correctness : A signature scheme S must satisfy the following correctness requirement: For all λ ∈ N,
m ∈M, and signing/verification keys (sk, vk)← Setup(1λ)

Verify (vk,m,Sign(sk,m)) = 1.

Definition A.1. A signature scheme S = (Setup,Sign,Verify) is a secure signature scheme if for every PPT
attacker A there exists a negligible function negl(·) such that for all λ ∈ N, advSA(λ) ≤ negl(λ), where
advantage of A is defined as

advSA(λ) = Pr

[
Verify(vk,m∗, σ∗) = 1 :

(sk, vk)← Setup(1λ)
(m∗, σ∗) = ASign(sk,·)(1λ, vk)

]
,

and A should never have queried m∗ to Sign oracle.

A.2 Public Key Encryption

A public key encryption scheme PKE with message spaceM consists of three algorithms Setup, Enc and Dec
with the following syntax:

Setup(1λ) → (pk, sk) The setup algorithm takes as input the security parameter 1λ and outputs a public
key pk and secret key sk.

Enc(pk,m ∈M)→ ct The encryption algorithm takes as input a public key pk and a message m ∈M and
outputs a ciphertext ct.

Dec(sk, ct) → x ∈ M ∪ {⊥} The decryption algorithm takes as input a secret key sk, ciphertext ct and
outputs x ∈M∪ {⊥}.

Correctness: For correctness, we require that for all security parameters λ, (pk, sk) ← Setup(1λ) and
messages m ∈M, Dec(sk,Enc(pk,m)) = m.

Definition A.2 (IND-CPA Security). A public key encryption scheme PKE = (Setup,Enc,Dec) is said to be

IND-CPA secure if for all security parameters λ, stateful PPT adversaries A, advind-cpa
A,PKE(λ) is negligible in λ,

where advantage of A is defined as

advind-cpa
A,PKE(λ) = Pr

[
A(ct) = b :

(pk, sk)← Setup(1λ); b← {0, 1}
(m0,m1)← A(pk); ct← Enc(pk,mb)

]
.

B Traitor Tracing

The notion of traitor tracing was introduced by Chor, Fiat and Naor [CFN94]. In a traitor tracing scheme
for n parties, the setup algorithm chooses a master secret key, a public key and n secret keys for the users.
Encryption can be performed using the public key, and each user can decrypt the ciphertext using his/her
secret key. There is also a trace algorithm that, given black box access to a successful pirate decoding box,
can catch the traitors who colluded to create the pirate decoding box. The trace algorithm must catch a
traitor if a pirate decoding box can distinguish between encryptions of two adversarially chosen messages.

This (traditional) definition of traitor tracing (described formally in Section B.1) has two limitations.
First, the number of users is fixed during setup. Instead, we would like to have a separate key generation
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algorithm which uses a master secret key (generated during setup) to generate secret keys for each user.
Second, we would like to embed meaningful information in the secret keys, so that if a user u is traced,
then the tracing algorithm could directly output the relevant information about the user u. The recent
work of Nishimaki, Wichs, and Zhandry [NWZ16] introduced a more general syntax/definitions for traitor
tracing, where the traitor tracing scheme has a separate key generation algorithm that can embed meaningful
information in the secret keys, and the tracing algorithm can trace this information with black-box access to
a pirate decoding box. This notion is described formally in Section 10. Before describing this general notion,
we provide a weaker notions (in Section 4.1) which could be useful in certain practical situations, and also
work as stepping stones for achieveing the general notion.

B.1 (Traditional) Public Key Traitor Tracing

Here, we first present the definition of traitor tracing. This part is taken verbatim from [GKW18].
A traitor tracing scheme T with message space M = {Mλ}λ∈N consists of four PPT algorithms

Setup,Enc,Dec and Trace with the following syntax:

Setup(1λ, 1n) → (msk, pk, (sk1, . . . , skn)) . The setup algorithm takes as input the security parameter λ (in
unary), number of users n (in unary), and outputs a master secret key msk, a public key pk and n
secret keys sk1, sk2, . . . , skn.

Enc(pk,m ∈ Mλ) → ct. The encryption algorithm takes as input a public key pk, message m ∈ Mλ and
outputs a ciphertext ct.

Dec(sk, ct) → z. The decryption algorithm takes as input a secret key sk, ciphertext ct and outputs z ∈
Mλ ∪ {⊥}.

TraceD(msk, 1y,m0,m1) → T. The trace algorithm has oracle access to a program D, it takes as input
a master secret key msk, parameter y (in unary) and two messages m0,m1. It outputs a set T ⊂
{1, 2, . . . , n}.

Correctness. Informally, correctness requirement states decrypting an encryption of message m using any
one of the valid secret keys must output m. Formally, a traitor tracing scheme is said to be correct if there
exists a negligible function negl(·) such that for all λ ∈ N, n ∈ N, m ∈ Mλ, and i ∈ {1, 2, . . . , n}, the
following holds

Pr

[
Dec(ski, ct) = m :

(msk, pk, {ski}i∈[n])← Setup(1λ, 1n)
ct← Enc(pk,m)

]
≥ 1− negl(λ).

Definition B.1. A traitor tracing scheme T = (Setup,Enc,Dec,Trace) is said to have public tracing if the
tracing algorithm Trace uses the public key (instead of the master secret key).

B.1.1 Security

There are two security requirements for a traitor tracing scheme. First, it is required that it satisfies IND-
CPA security. Second, it is required that the tracing algorithm must (almost always) correctly trace at least
one key used to create a pirate decoding box (whenever the pirate box successfully decrypts with noticeable
probability) as well as it should not falsely accuse any user of cheating. The formal definitions are provided
below.

Definition B.2 (Ind-secure traitor tracing). Let T = (Setup,Enc,Dec,Trace) be a traitor tracing scheme.
For any non-negligible function ε(·) and PPT adversary A, consider the experiment Expt-TTTA,ε(λ) defined
as follows.

Based on the above experiment, we now define the following (probabilistic) events and the corresponding
probabilities (which are a functions of λ, parameterized by A, ε):
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Experiment Expt-TTTA,ε(λ)

• 1n ← A(1λ)

• (msk, pk, (sk1, . . . , skn))← Setup(1λ, 1n).

• (D,m0,m1)← AO(·)(pk)

• T ← TraceD(msk, 11/ε(λ),m0,m1).

Here, O(·) is an oracle that has {ski}i∈[n] hardwired, takes as input an index i ∈ [n] and outputs ski. Let S
be the set of indices queried by A.

Figure 10: Experiment Expt-TT

• Good-Decoder : Pr[D(ct) = b : b← {0, 1}, ct← Enc(pk,mb)] ≥ 1/2 + ε(λ)
Pr -G-DA,ε(λ) = Pr[Good-Decoder].

• Cor-Tr : T 6= ∅ ∧ T ⊆ S
Pr -Cor-TrA,ε(λ) = Pr[Cor-Tr].

• Fal-Tr : T 6⊆ S
Pr -Fal-TrA,ε(λ) = Pr[Fal-Tr].

A traitor tracing scheme T is said to be ind-secure if for every PPT adversary A, polynomial q(·) and
non-negligible function ε(·), there exists negligible functions negl1(·), negl2(·) such that for all λ ∈ N satisfying
ε(λ) > 1/q(λ), the following holds

Pr -Fal-TrA,ε(λ) ≤ negl1(λ), Pr -Cor-TrA,ε(λ) ≥ Pr -G-DA,ε(λ)− negl2(λ).
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