
EthDKG: Distributed Key Generation with Ethereum
Smart Contracts

Philipp Schindler, Aljosha Judmayer, Nicholas Stifter, and Edgar Weippl
SBA Research, Univerity of Vienna, TU Wien

Abstract—Distributed key generation (DKG) is a fundamental
building block for a variety of cryptographic schemes and pro-
tocols, such as threshold cryptography, multi-party coin tossing
schemes, public randomness beacons and consensus protocols.
More recently, the surge in interest for blockchain technologies,
and in particular the quest for developing scalable protocol
designs, has renewed and strengthened the need for efficient
and practical DKG schemes. Surprisingly, given the broad range
of applications and available body of research, fully functional
and readily available DKG protocol implementations still remain
limited. This paper hereby aims to close this gap by tailoring
Gennaro et al.’s [1] well known protocol design towards being ef-
ficiently implementable within public cryptocurrency ecosystems
such as Ethereum. Our theoretical improvements are supported
by an open source, fully functional, well documented DKG
implementation1 that can employ any Ethereum Virtual Machine
(EVM) compatible smart contract platform as a communication
layer. We evaluate the efficiency of our protocol and demonstrate
its practicability through the deployment and successful execution
of our DKG contract in the Ethereum Ropsten testnet. Given the
current Ethereum block gas limit, all steps required for the key
generation process, even in demanding scenarios tested with up
to 256 nodes, can be verified at the smart contract level.

I. INTRODUCTION

Distributed key generation (DKG) protocols serve as a key
building block for threshold cryptography. The goal of a DKG
scheme is to agree on a common secret/public key pair such
that the secret key is shared among a set of n participants.
Only a subset of t + 1 ≤ n parties can use or reveal the
generated secret key, while t collaborating parties cannot learn
any information about it. In this regard DKG is related to
secret sharing protocols, as first introduced by Shamir [2]
and Blakley [3]. However, in contrast to secret sharing, DKG
protocols do not rely on a (trusted) dealer which generates,
knows and distributes the secret key, and hence avoid this
single point of failure. Instead, the key pair is generated using
a multi-party computation in a way that no single party learns
the secret that is being shared.

Distributed key generation has been studied and discussed
for over two decades [4], [5], [1], [6], [7], [8], [9]. However, the
extensive body of literature is currently not matched by a single
clear, succinct, and practical protocol design template that
reflects the state of the art and leverages on recent technical
developments such as distributed ledgers. Moreover, real-world
open source implementations of DKG protocols are still rare,
and often not well documented.

1The source code, documentation, and logs of a successful execution in the
Ropsten testnet are publicly available at https://github.com/PhilippSchindler/
EthDKG/.

We aim to close this gap by providing and evaluating a
lightweight, scalable, and well-documented protocol design
and open source implementation of a DKG protocol. Our
design is based on the Joint-Feldman DKG protocol [1] and
incorporates the enhancements proposed by Neji et al. [9]
to address biasing attacks [1], without requiring two dis-
tinct secret sharing rounds. Additionally, we describe and
implement a new mechanism that handles disputes during
the protocol execution more efficiently. The resulting protocol
design is described in its generality for any discrete logarithm
based cryptosystem, and we demonstrate that our protocol
improvements enable the verification of the key generation
process within Ethereum, and similar smart contract platforms.

Leveraging the capabilities provided by distributed ledger-
based smart contract platforms, our DKG protocol allows the
set of participating entities to be dynamically defined and
can incentivize participation as well as penalize adversarial
behavior. Further, we are able to ensure that any security
deposits provided by participants following the protocol rules
always remain safe, even if the DKG protocol itself is executed
by a majority of adversarial participants. This design approach
can help address the issue of Sybil nodes in settings where
open participation for better decentralization [10] in the DKG
is desirable.

A. Structure of this Paper

We continue this paper by introducing and comparing
related work to our approach in Section II. We describe our
system model, including assumptions concerning the network
infrastructure, the capabilities of the adversary as well as the
security properties expected from DKG protocols, in Sec-
tion III. Our generalized protocol design for discrete logarithm
based cryptosystems is presented and analysed in sections IV
and V. Section VI provides implementation specific details,
while Section VII provides an overview of our evaluation
results. Additional details regarding the evaluation are moved
to appendices A, B and C due to space constraints. Finally,
we discuss and conclude the paper in sections VIII and IX.

II. RELATED WORK

The first protocol for DKG was introduced by Pedersen [4]
in 1991, and was subsequently built upon within a wide
range of publications in the field of threshold cryptography.
A popular variant is the so called Joint-Feldman DKG pro-
tocol, introduced by Gennaro et al. [1] as a simplification of
Pedersen’s work. The core idea of the Pedersen (and the Joint-
Feldman) protocol is that each party executes Feldman’s [11]
verifiable secret sharing (VSS) protocol, acting as a dealer in
order to share a randomly chosen secret among all parties.

After a verification step, ensuring the participants shared their
secrets correctly, the resulting group private key is defined by
the sum of the properly shared secrets. This private key is
unknown to the individual participants, but may be obtained by
a collaborating group of parties. The corresponding public key
can be computed using the commitments published during the
sharing phase with Feldman’s VSS protocol and is the public
result of executing the DKG protocol.

However, as described in great detail by the works of
Gennaro et al. [1], [6], keys generated using (a wide range
of variants of) the Pedersen protocol, are not guaranteed to
be uniformly distributed over the respective keyspace. An
adversary can bias bits of the resulting key by selectively
denouncing the validity of shares of one or more of the
parties it controls. Consequently, the set of parties which
properly shared their secrets, and thus define the resulting
key, is influenced as the denounced parties are excluded. The
issue in this case is that honest parties have provided all the
information required to compute the resulting public key before
agreement on the set of shares that are used to create the master
key is reached, allowing the adversary to influence the final
outcome.2

Gennaro et al. [1] presents mitigation strategies against
these kind of attacks. However, their approach adds complexity
as it requires an additional secret sharing step using Pedersen’s
VSS protocol [13]. Canetti et al. [14] extend the solution from
Gennaro et al. to cope with adaptive adversaries, which may
corrupt parties based on prior knowledge gathered during the
protocol execution. More recently, Neji et al. [9] describe
a different countermeasure which we adopt in this paper,
avoiding these drawbacks.

Kate and Goldberg [7] were the first to study DKG in
an asynchronous communication model, whereas synchronous
message delivery was previously assumed. In order to sup-
port these weaker assumptions, they require a network of
n ≥ 3t + 2f + 1 participants, out of which t are controlled
by the adversary and thus considered Byzantine and f parties
may fail in the crash-stop model. This is in contrast to works
in the style of Gennaro et al. and our protocol, which require
synchrony but can tolerate (n ≥ 2t+1) Byzantine adversaries.
In a subsequent extension of their work [8], Kate et al. provide
an implementation, tested with up to 70 parties distributed over
multiple continents. A crucial distinction between Kate and
Goldberg’s work and the approach followed by Gennaro et al.
and this paper, is that the former also implement a Byzantine
agreement protocol alongside the DKG, whereas the consensus
protocol is not part of the DKG specification in the latter. We
outline the advantages and drawbacks of both design decisions
in our discussion (see Section VIII).

To the best of our knowledge, the DKG protocol developed
by the Orbs Network team [15] is the only publicly available
protocol targeted at a similar deployment scenario, namely,
an implementation of a DKG protocol using the Ethereum
platform. However, the presented prototypical implementation
appears to be incomplete and has not been updated since
5th August, 2018. A peer-reviewed publication outlining the
details of the protocol is also not available at the time of

2We refer to the works of Gennaro et al. [6], [12] for an in-depth discussion
of the implications of a non-uniform distribution.

writing. Further, this approach, in comparison to the works
of Gennaro et al., Kate and Goldberg, and our work, fails
to guarantee liveness under adversarial behavior. It requires a
protocol restart even if only a single adversarial participant
sends an invalid share – a major drawback we can avoid.

III. SYSTEM MODEL

Using our protocol, a set of n participants P =
{P1, P2, ..., Pn} wish to jointly generate a master secret/public
key pair of the form mpk = gmsk for a discrete logarithm
based threshold cryptosystem. We use g and h to denote two
independently3 selected generators of the group Gq with prime
order q and assume that computing discrete logarithms in Gq is
hard and the Computational Diffie-Hellman (CDH) assumption
holds for this group. The master public key mpk is the (public)
output of the protocol. The corresponding (virtual) secret key
msk is shared among the participants, and may be obtained by
pooling the shares from t+1 collaborating parties. Depending
on the use case scenario, it may not be desirable or even
necessary to ever obtain msk. For instance, by employing
BLS threshold signatures [16], a signature verifying under
the master public key mpk can be obtained by aggregating
signature shares without recovering msk first.

A. Communication Model

We assume all parties can monitor and broadcast messages
on a shared public and authenticated communication channel.
Further, all participants are in agreement on a common view
and ordering of these broadcast messages. We assume syn-
chrony in the sense that, any message that is broadcast by
a participant during some protocol phase is received by all
other parties before the next phase starts. In this regard, our
communication model is closely related to the notion of public
bulletin boards [17].

In contrast to Gennaro et al. [1], we do not consider
pairwise private communication links between parties. Instead,
we assume that each participant Pi ∈ P generates a fresh
secret/public key pair 〈ski, pki〉 of the form pki = gski

prior to the protocol start and knows the public keys of all
other participants.4 Note that these keypairs are independent
of the keys used to establish the authenticated communication
channel, and are only used to derive a symmetric encryption
key for each sender/receiver pair of nodes. These symmetric
keys are then used once to ensure the secrecy of the key shares
being transmitted in the sharing phase of the protocol.

Blockchain protocols, which allow inclusion of arbitrary
data, and other BFT state machine replication and distributed
ledger protocols present suitable candidates for such com-
munication channels. In practice, we leverage the Ethereum
blockchain as a public authenticated communication channel
and consensus protocol, where agreement on message ordering
is ensured through the common prefix property [18]. Together
with our client software, which enforces appropriate stabi-
lization times to ensure agreement with high probability, the
desired guarantees can be achieved. We refer to Section VI-A

3I.e. the discrete logarithm dlogg(h) between g and h is unknown.
4Instead of assuming a priori knowledge of the other parties’ keys, an

additional registration phase (see Section VI-F) can be used to exchange the
public keys.

for additional details on how the communication channel is
instantiated.

B. Adversarial Model

To ensure secrecy of the generated secret key msk, we
assume that an adversary controls at most t participants,
whereas a collaboration of t + 1 participants is required to
derive msk. A node controlled by the adversary may deviate
arbitrarily from the specified protocol. We consider an adaptive
adversary, in the sense that it can decide which parties to
corrupt based on prior observations. However, the adversary
is not mobile, once a party is corrupted it is considered
compromised for the entire protocol execution. To guarantee
both, secrecy of the generated key as well as liveness, i.e.,
that the protocol completes successfully, the adversary must
not control more than t < n/2 parties. These are the optimal
bounds one can hope to achieve in this setting [1].

C. Security Properties

In the following, we reiterate on the security properties we
aim for and expect from a DKG protocol. Hereby, we follow
the definitions given by Gennaro et al. [1] and Neji et al. [9]
for correctness and secrecy and refer to the corresponding
works for a more formal definition. The uniformity property
highlights a shortcoming identified by Gennaro et al. [1]
that was not covered by the original Joint-Feldman protocol.
Because recent DKG implementations appear to not consider
this property, e.g., the Ethereum-based DKG implementation
in [15], we use a distinct category to further emphasize this
characteristic. Robustness ensures that a subset of parties,
which want to recover the master secret key, is able to do
so under adversarial influence. The definitions of secrecy,
uniformity and robustness follow the correctness definitions
C3 and C1’ from Gennaro et al. We also add a definition for
liveness, which was not explicitly stated in Gennaro et al.’s
work.

a) Secrecy.: No information about the master secret key
msk can be learned by the adversary except for what is implied
by the value of the master public key mpk = hmsk.

b) Correctness.: All sets of t + 1 correct key shares
define the same unique master secret key msk and all honest
parties agree on the common value of the master public key
mpk = hmsk.

c) Uniformity.: The master secret key msk is uniformly
distributed in Zq , and hence the master public key mpk is
uniformly distributed in Gq .

d) Robustness.: There is an efficient procedure that, on
input of the public information of the DKG protocol and n
submitted shares, outputs msk, even if up to t invalid shares
have been submitted by malicious or faulty participants.

e) Liveness.: As long t + 1 nodes are controlled by
correct parties, an adversary cannot prevent the protocol from
completing successfully.

IV. PROTOCOL DESCRIPTION

In this section, we present our generalized DKG protocol
design for discrete logarithm based cryptosystems. We start

by giving a brief overview of our three consecutive protocol
phases, and then describe each phase in detail in sections IV-A,
IV-B and IV-C. For implementation specific details we refer
to Section VI.

a) Sharing Phase.: During the first phase, each partici-
pant in Pi ∈ P selects a randomly chosen secret si ∈R Zq and
subsequently uses Feldman’s VSS to share this secret among
all parties, such that t+ 1 collaborating parties can recover si,
in case a malicious party withholds the required information
during the key derivation phase. The verification procedure of
Feldman’s protocol enables the parties to check that received
shares are indeed valid.

b) Dispute Phase.: During the dispute phase, each party
that received one or more invalid shares in the previous phase
uses a non-interactive proof technique to convince other parties
about the fact that the issuer violated the protocol.

c) Key Derivation Phase.: At the beginning of the
last phase, a set of qualified parties Q ⊆ P is formed. A
party Pi is part of Q if and only if it (i) broadcasted the
required information during the sharing phase and (ii) no party
broadcasted a valid dispute against Pi during the dispute phase.
In other words, the set Q contains all parties which correctly
shared their secret and should thus contribute to form the
master key pair 〈msk,mpk〉. Finally, for all parties Pi ∈ Q
the values hsi , related to the randomly chosen secrets si, are
either revealed or recovered and used to derive the master
public key mpk. Using Lagrange interpolation, msk can be
computed after pooling the shares from t+1 parties. However,
depending on the use case scenario, it may not be desirable or
necessary to ever obtain msk.

A. Sharing Phase

a) Share Generation.: At the beginning of the sharing
phase, each party Pi ∈ P executes the first step of the Joint-
Feldman DKG protocol [1]. In order to share a randomly
chosen secret si ∈R Zq among all5 registered parties, Pi acts
as the dealer in a (n, t) Feldman VSS protocol [11]. For this
purpose it picks a secret polynomial fi : Zq → Zq with
coefficients ci0 = si and ci1, ci2, ..., cit drawn uniformly at
random from Zq:

fi(x) = ci0 + ci1x+ ci2x
2 + ...+ citx

t (mod q) (1)

Then Pi computes the shares si→j = fi(j) for all Pj ∈ P ,
and the commitments Ci0 = gci0 , Ci1 = gci1 , ..., Cit = gcit to
the coefficients of fi(·). These commitments are used in the
verification process for the shares and implicitly define Pi’s
public polynomial Fi : Zq → Gq:

Fi(x) = Ci0 · Cx
i1 · Cx2

i2 · ... · Cxt

it (2)

b) Share Transmission.: Next, each Pi has to securely
send its shares si→j to all other parties Pj ∈ P . Contrary
to the original description of the Joint-Feldman DKG, we do
not assume access to private communication channels between
parties, but rather realize the secure sending of the shares
using encryption over our public broadcast channel. We use
a symmetric key encryption algorithm Enckij

(·) to ensure

5For ease of exposition, we assume that Pi also provides one share for
itself.

secrecy of a sent share from Pi to Pj . The corresponding
encryption key kij can be derived non-interactively by both
parties:

kij = pkj
ski = pki

skj = gskiskj (3)

Notice that this approach is inspired by the techniques used
in the Diffie Hellman key exchange protocol [19] and the
ElGamal encryption scheme [20].

Finally, Pi broadcasts the encrypted shares si→j =
Enckij (si→j) for all i 6= j as well as the commitments
Ci0, Ci1, ..., Cit from Feldman’s VSS. Each party Pj mon-
itors the communication channel for messages broadcasted
by other participants. Upon receiving encrypted shares and
commitments from Pi, Pj decrypts its share to obtain si→j =
Deckij

(si→j).

c) Share Verification.: Pj employs the verification pro-
cedure of Feldman’s VSS to check the validity of each share
si→j . A share is valid if and only if the following share
verification condition holds:

gsi→j = Fi(j) (4)

In case si→j is found invalid, further actions are required
in the dispute phase. As Pi only expects to receive a single
message from each party, only the first message is processed,
any additional messages from the same sender are ignored. In
our smart contract based implementation (see Section VI), the
smart contract itself ensures that parties can only broadcast a
single message during the sharing phase.

B. Dispute Phase

In case a party Pj notices that it received an invalid share
si→j from Pi in the previous phase, Pj must broadcast a
dispute claim in order to ensure that Pi is excluded from
further steps of the protocol execution. Intuitively, Pi must
be excluded because its secret si may not be recoverable by a
collaboration of t+ 1 correct parties.

In the original description of the Joint-Feldman DKG
protocol, an adversarial Pj can always issue an (unsupported)
claim stating that it received an invalid share from a correct
Pi, requiring Pi to prove adherence to the protocol rules. We
flip this notion in the sense that it is Pj’s obligation to show
that Pi indeed violated the protocol. To accomplish this we
use a non-interactive proof technique described below, and
can consequently reduce the required number of interactions
between parties.

a) Issuing a Dispute Claim.: The key idea how Pj is
able to prove that Pi provided an invalid share si→j is to
publish the key kij used for encryption and decryption of the
share. Using this key, other parties are able to decrypt the
previously distributed share si→j and can, in the same way as
Pj did, verify that si→j is indeed invalid. To ensure that an
adversarial Pj cannot just publish an invalid key k′ij , which
would again lead to a false accusation of Pi, it is required
that Pj proves the correctness of kij . We use a common
non-interactive zero-knowledge (NIZK) proof technique for
showing the equality of the two discrete logarithms [21], [22]
to show the correctness of kij . The corresponding proving and
verification procedures are denoted by DLEQ(x1, y1, x2, y2, α)
and DLEQ-verify(x1, y1, x2, y2, π).

Procedure 1: DLEQ(x1, y1, x2, y2, α).
To show that dlogx1(y1) = dlogx2(y2) holds without reveal-
ing the discrete logarithm α, a prover proceeds as follows:

1) compute t1 = xw1 adding t2 = xw2 for w ∈R Zq

2) compute c = H(x1, y1, x2, y2, t1, t2)
3) compute r = w − αc (mod q)
4) output π = 〈c, r〉

Instantiating the above procedure, Pj can prove the cor-
rectness of the decryption key kij by providing π(kij) =
DLEQ(g, pkj , pki, kij , skj) in addition to kij .

b) Verifying a Dispute Claim.: Upon receiving a dispute
claim 〈kij , π(kij)〉 against Pi, issued by Pj , one can use
DLEQ-verify(g, pkj , pki, kij , π(kij)) to check the validity of
the received key kij .

Procedure 2: DLEQ-verify(x1, y1, x2, y2, π).
To check the correctness of a proof π = 〈c, r〉, showing
that dlogx1(y1) = dlogx2(y2) holds, a verifier proceeds as
follows:

1) compute t′1 = xr1y
c
1 and t′2 = xr2y

c
2

2) output VALID if c = H(x1, y1, x2, y2, t
′
1, t
′
2) holds

output INVALID otherwise

If the key is found invalid, the dispute claim is invalid.
Otherwise, the verification procedure continues by decrypting
the corresponding share si→j = Deckij

(si→j) and checking
its correctness according to the share verification condition
specified in Equation 4. The dispute is valid if and only if kij
is found valid but the verification condition does not hold.

The protocol ensures that: (i) In case a correct participant
received an invalid share from another party, the share issuer
is considered disqualified by all (correct) parties at the end of
the dispute phase. (ii) An adversary cannot wrongly accuse
any correct party of providing it with an invalid share. (iii)
The adversary does not gain any additional information when
a party Pj reveals the values kij and π(kij), because the adver-
sary can always compute (and therefore publish) kij = pkj

ski

using Pi’s secret key, and the NIZK proof π(kij) does not
reveal additional information apart from the correctness of the
statement.

C. Key Derivation

a) Deriving the Set of Qualified Nodes.: The first step
in the key derivation phase is determining the set of qualified
parties Q ⊆ P , describing which parties should contribute to
the resulting key pair 〈msk,mpk〉. If we recall the current
protocol state at the beginning of the key derivation phase, we
observe that each Pi ∈ P has either:

1) correctly shared its secret si with all other parties.
2) incorrectly shared its secret si.
3) did not share its secret si at all.

We say a secret was correctly shared by Pi, if and only if
no valid dispute claim against Pi was filed during the dispute
phase. Parties which incorrectly shared their secrets, or did not
share their secrets at all, are disqualified and excluded from

the upcoming protocol steps. The remaining parties form the
set Q. In other words, a node Pi ∈ P is only part of Q if
(i) it published the values Ci0, Ci1, ..., Cit and si→j for all
i 6= j during the sharing phase and (ii) no node Pj filed a
valid dispute against Pi during the dispute phase.

b) Bias when Computing the Keys Directly.: Using this
definition of the set Q, the resulting group public key mpk
could be derived by following the description of the Joint-
Feldman protocol:

mpk =
∏

Pi∈Q
Ci0 =

∏
Pi∈Q

gsi (5)

However, as described in great detail by the works of Gennaro
et al. [1], [6], the above approach does not ensure that the
resulting key pair is uniformly distributed. An adversary can
bias bits of the resulting key by selectively denouncing one
or more of its nodes, which influences the set Q and thus the
resulting key. The critical6 issue here is, that all information
required to compute the resulting public key is known to the
adversary before the set Q is fixed.

c) Protection against Biasing of the Generated Keys.:
We adopt a recent countermeasure described by Neji et al. [9]
to ensure the resulting key is uniformly distributed. The key
idea to ensure uniformity is to instead compute mpk as
follows:

mpk =
∏

Pi∈Q
hsi (6)

Here, h is used to denote an additional generator of the group
Gq , such that dlogg(h) is unknown. The required values hsi
used to compute mpk are published by the parties in Q after
this set is fixed. Each value Pi shows the correspondence
between the values hsi and Ci0 = gsi using the NIZK
proof π(hsi) = DLEQ(g, gsi , h, hsi , si) as introduced in
Section IV-B. In case any (adversarial) party Pi ∈ Q does
not reveal its value hsi and a valid proof π(hsi) by the end
of the key derivation phase, a set of t + 1 correct parties is
always able to use the recovery procedure of Feldman’s VSS
to obtain si and consequently hsi anyway. Without loss of
generally, let R ⊆ Q denote a set of t + 1 correct parties.
Then, si is obtained via Lagrange interpolation:

si =
∑

Pj∈R
si→j

∏
Pk∈R
j 6=k

k

k − j
(7)

d) Deriving the Keys.: Finally, the common master
public key mpk can be derived as specified in Equation 6 using
the published or recovered values hsi | Pi ∈ Q. Additionally,
each Pj ∈ Q can compute its individual group key pair
〈gskj , gpkj〉:

gskj =
∑
Pi∈Q

si→j gpkj = hgskj (8)

In order to enable a third party to verify gpkj , Pj pro-
vides the values ggskj as well as a correctness proof
DLEQ(g, ggskj , h, gpkj , gskj). The verifier accepts gpkj as
valid if checking of the proof via DLEQ-verify(·) succeeds,

6See [6], [12] for an in-depth discussion on the implications of non-uniform
distribution.

and the verification of ggskj using the previously committed
public polynomials is successful:

ggskj =
∏

Pi∈Q
Fi(j) (9)

The corresponding master secret key msk is shared among all
nodes in Q and can be obtained as follows:

msk =
∑
Pi∈Q

si (10)

In case Pi does not reveal its secret si, it can always be
computed by t+ 1 collaborating parties, because each Pi ∈ Q
has correctly shared si among the parties during the first
protocol phase. Alternatively, a set of t + 1 collaborating
parties, denoted by R, can also derive the master secret key
msk via Lagrange interpolation from their group secret keys:

msk =
∑

Pj∈R
gskj

∏
Pk∈R
j 6=k

k

k − j
(11)

However, for many threshold cryptographic applications msk
might never be computed at a single location. Considering,
e.g. BLS threshold signatures, t+1 collaborating parties might
produce a signature σ on message m which verifies under the
public key mpk. For this purpose, each of these parties Pj

uses its individual group signing key gskj to issue a partial
signature for m, which upon aggregation form σ. There is no
need to compute the master secret key msk in order to issue
the signature in this scenario.

V. SECURITY ANALYSIS

For brevity, we omit a detailed analysis of the guarantees
in regard to correctness and uniformity in this paper, as the
corresponding security proofs provided by Gennaro et al. [1]
and Neji et al. [9] directly apply to our protocol. We hence
refer the reader to the aforementioned publications for further
details.

a) Secrecy.: In order to show that the original security
proof regarding secrecy still applies, we show that the dispute
process we introduce as alternative to the steps described by
Neji et al. [9] does not provide the adversary with any addi-
tional information, and hence preserves secrecy. Specifically,
any information a correct node Pi secretly transfers to another
correct node Pj must remain hidden from the adversary to
ensure it cannot reconstruct the master secret key msk from
those messages. The only point in time when information
is exchanged secretly, is the share transmission step (see
Section IV-A). Here a correct party Pi always encrypts the
share si→j it sends to Pj using a symmetric key encryption
algorithm Enckij

(·). Under the Computational Diffie-Hellman
assumption, the shared key kij used for en-/decryption can
only be derived using secret information ski or skj from node
Pi or Pj . However, neither Pi nor Pj reveal this information or
kij itself during the protocol execution if they are both honest.

If we instead consider the case where Pi is honest but
Pj is controlled by the adversary, the adversary also does
not gain any additional information. In this case, the only
point in time a honest node Pi would publish additional
information, namely kij and the corresponding correctness

proof π(kij) = DLEQ(g, pki, pkj , kij , ski), is during the
process of issuing a dispute claim (Section IV-B). However,
being the intended communication partner, the adversary was
already able to derive kij = pki

skj (and thus obtain si→j)
as part of the protocol. Hence, no additional information is
revealed when Pi publishes kij , Furthermore, e.g. as outlined
by Camenisch and Stadler [22], the NIZK proof π(kij) does
not reveal any information in addition to correctness of kij , in
particular does not reveal any information about ski.

b) Robustness.: Robustness requires an efficient proce-
dure, that recovers the master secret key msk from a set of at
least t + 1 correct shares. However, this set may additionally
contain up to t invalid shares provided by the adversary. We
obtain such a procedure, by first checking the validity of a
provided share gski using the verification condition specified
in Equation 9. Lagrange interpolation is then used to compute
msk from any set of t+ 1 valid shares (see Equation 11).

c) Liveness.: In our synchronous system model, the
protocol always reaches the beginning of the key derivation
phase, as the sharing and dispute phases always end after a
fixed amount of steps (the respective number of blocks per
phase). Consequently, the completion of the key derivation
phase (and thus the completion of the protocol), depends on the
nodes’ ability to gather all the information required to compute
mpk from the values hsi provided by all Pi ∈ Q. Each correct
node in the set of qualified nodes Q, publishes this value at
the beginning of the phase. However, up to t adversarial nodes,
which completed the sharing and dispute phase successfully,
and are thus part of Q, might not reveal the respective values.
In this case, the correct parties obtain all missing values hsi by
recovering si using Lagrange interpolation from their shares
for si (see Section IV-C for additional details). This process
requires the collaboration of at least t + 1 correct nodes,
and thus completes successfully for configurations where the
adversary controls at most n− t− 1 nodes.

VI. IMPLEMENTATION

To highlight the feasibility and practicality of our approach,
we present a prototype implementation. It consists of two parts:
(i) an Ethereum smart contract serving as the communication
and verification platform, and (ii) a client application written
in Python and executed locally by each participant. Both
implementations are open source and publicly available on
Github https://github.com/PhilippSchindler/EthDKG/.

In the following, we describe the steps required to apply
our generalized protocol description for the concrete use case
of deriving key pairs to be used with the BLS signature
scheme. Thereby, we outline (i) how our communication
model can be realized, (ii) which techniques are necessary
to efficiently implement the required cryptographic primitives,
and (iii) how the protocol execution can be verified at the smart
contract level, despite the limitations of the Ethereum platform.
The BLS signature scheme was chosen not only because
Ethereum has built-in support for a pairing friendly elliptic
curve which can be used with BLS, but also due to the wide
range of desirable properties this signature scheme provides
for different application scenarios. These properties include
short signature size, non-interactive aggregation capabilities as
well as signature uniqueness. For additional details on BLS

signatures, their properties and use cases we refer the reader
to the original descriptions [16], [23], [24].

When using our protocol for BLS signatures, a set of
parties first executes our DKG protocol to compute a master
BLS key pair 〈msk,mpk〉. The public key mpk is published
and verified within the smart contract, whereas the (virtual)
secret key msk is shared among the parties. Each party Pi

is then capable of using its individual signing key gski to
sign messages with BLS. Any set of t + 1 valid7 signatures
on a common message can be combined to form a threshold
signature, which verifies under mpk, for that message. This
aggregation process can be performed without necessitating
on-chain transactions within Ethereum. Furthermore, the cost
of verifying the resulting threshold signature within the smart
contract does not depend on the number of participants or
signers.

A. Realizing our Communication Model

Revisiting the assumptions from our protocol description
(see Section III-A), we require a shared agreed-upon authen-
ticated broadcast channel and adherence to certain synchrony
assumptions to separate the different protocol phases. These
assumptions are realized as follows:

a) Ethereum as a Broadcast Channel.: In our imple-
mentation, each participant of the DKG protocol actively mon-
itors the Ethereum blockchain. In particular, clients monitor all
transactions to the address of the pre-deployed DKG contract.
A message is broadcast by issuing a transaction that calls a
function within the DKG smart contract when the transaction
is mined within a block in the Ethereum network. Upon being
called successfully, the contract triggers Ethereum events,
which are processed by the client implementation.

b) Agreement.: After detecting the emission of a new
event, the client software of each participant waits for a
sufficient number8 of confirming blocks. This ensures that all
nodes agree on a common history of blocks, and consequently
on the triggered events and their order w.h.p, before they react
to the events. This requirement is a direct consequence of the
fact that the Ethereum blockchain may fork and thus does not
provide immediate agreement on newly mined blocks.

c) Message Authentication.: The requirements in re-
gard to message authenticity are directly supported by
Ethereum. In fact, Ethereum enforces that all transactions are
cryptographically signed by the issuer in order to be processed.

d) Synchrony Assumptions.: Our synchrony assump-
tions can be realized by specifying the start and end of each
protocol phase based on appropriate relative Ethereum block
heights. Liveness, i.e. ensuring the protocol completes success-
fully even under adversarial conditions, critically depends on
the ability of correct nodes to timely disseminate information.
Consequently, it has to be ensured that any transaction a node
issues at the beginning of a protocol phase is confirmed, and

7The process is robust in the sense that the validity of an individual signature
can also be checked using the issuer’s public key.

8For an in depth discussion on the required number of confirmations we
refer to the works of Gervais et al. [25] and Sompolinsky and Zohar [26]. We
furthermore provide concrete values for this manner in our evaluation (see
Appendix C).

consequently received by all other correct nodes, by the begin-
ning of the next phase. The required phase durations depend
on a range of factors including: the number of participants, the
state of the Ethereum network, and the amount of transaction
fees the participants are willing to pay. Thus they need to be
analysed on a case by case basis or selected conservatively.
We provide an evaluation in regards to the required durations,
considering the network conditions at the time of writing as
well as a general description, in Section VII.

B. Cryptographic Primitives

When leveraging a smart contract-based DKG implemen-
tation that is capable of performing the verification steps on-
chain, an efficient implementation of the underlying crypto-
graphic primitives can be crucial for a low cost protocol design.
Within the Ethereum platform, only a limited range of so
called pre-compiled contracts for elliptic curve cryptography
are available currently. The supported operations target the
groups G1, G2 and GT of prime order q, defined on the el-
liptic curve BN254 [27], [28] and include point/point addition
(G1×G1 → G1), point/scalar multiplication (G1×Zq → G1)
and a verification procedure for the pairing e : G1×G2 → GT .
We rely upon these operations to efficiently implement the
verification procedures for our DKG, targeting the generation
of keys for the BLS signature scheme.

As BLS public keys reside in G2, most of the operations
required for our protocol would use group G2, if we directly
apply our general protocol description. However, as of the
current Ethereum release, computations in G2 are not natively
supported, and implementing the required operations using
available Ethereum Virtual Machine (EVM) opcodes would
lead to very high gas consumption and thus render the ap-
proach inefficient.9 Fortunately, the corresponding operations
in group G1 and a verification procedure for the pairing e
exist as pre-compiled contracts in Ethereum [30], [31]. This
allows us to efficiently perform operations in G1 and verify the
corresponding element in G2 using the pairing check within the
smart contract. In the following sections VI-C, VI-D and VI-E,
we outline the details for incorporating this approach into our
protocol design.

C. Sharing Phase

During the sharing phase, each participant Pi ∈ P pro-
ceeds as specified in our general protocol description (see
Section IV-A). In particular, Pi shares a secret si ∈R Zq

among all parties in P using Feldman’s VSS protocol. The
commitments Ci0, Ci1, ..., Cit are group elements from G1:
Cik = gcik1 | 0 ≤ k ≤ t, where g1 denotes a generator of
G1. Because there are no primitives for symmetric encryption
available within Ethereum, we realize the encryption and
decryption algorithms Enckij (·) and Deckij (·) using a one
time pad, where we derive a unique key from kij and j by
using a cryptographic hash function10 H(·):

Enckij
(si→j) = si→j ⊕ H(kij || j)

Deckij
(si→j) = si→j ⊕ H(kij || j)

9A Solidity implementation of a single multiplication of a group element
from G2 with a 256 bit scalar requires approximately 2 000 000 gas [29],

10In our implementation, the value si→j and the output of the used
cryptographic hash function are 256 bits each.

To ensure that such a simple approach is secure in practice,
it is crucial that (i) the pads used for encryption of messages
between honest parties are indeed used only once, and (ii) the
encrypted data is additionally protected against malleability.
For two distinct honest parties Pi and Pj , the value of kij is
defined by the values of the randomly generated private keys
ski and skj , and is thus unique. Combining this unique value
with the index of the share receiver j further ensures that the
one time pads used to encrypt the single message from Pi to Pj

and the single message from Pj to Pi are encrypted with differ-
ent pads. Consequently, criterion (i) is met. Also criterion (ii)
is fulfilled, as the encrypted values are transmitted as part of
Ethereum transactions, which are signed and published on the
broadcast channel and thus protected against malleability. To
publish the required information, namely the encrypted shares
si→j for all i 6= j and the commitments Ci0, Ci1, ..., Cit, the
client constructs and broadcasts the corresponding Ethereum
transaction, invoking the pre-deployed smart contract.

The smart contract ensures that only eligible parties, i.e.
Pi ∈ P may provide a single, well-formed message. The set
of eligible parties is either specified statically at the time of
creation of the smart contract, or via a dynamic registration
process as described in Section VI-F. A message is considered
well-formed, if it contains exactly n−1 encrypted shares, and
t + 1 commitments to the coefficients of the secret sharing
polynomial. Upon receiving a well-formed transaction from an
eligible party, the smart contract notifies all other participants
about the published information using an Ethereum event.
The contents of the encrypted shares and the validity of the
commitments are not verified at this point in time. Instead,
the verification is only performed on demand, i.e. in case a
dispute is submitted in the next protocol phase. In order to
verify a potential dispute in the next phase, the smart contract
stores a cryptographic hash of the message content. As we
see in Section VI-D, the hash is sufficient to fully verify a
potential dispute. It would also be possible to store the entire
message instead of the digest. However, storing only the hash
significantly reduces the amount of on-chain storage required,
and thus lowers transactions fees, in particular for large n.

D. Dispute Phase

In case a party Pj finds that Pi provided an invalid share
for si, Pj follows our general protocol description to publish a
dispute. For this purpose, it constructs a transaction which, in
addition to kij and π(kij), includes the message content sent
by Pi in the previous protocol phase. This enables the smart
contract to recompute and compare the hash of Pi’s message
with the stored value. If the hashes do not match, the dispute
is found invalid and the smart contract aborts. Otherwise the
smart contract has all information required to perform a full
verification. In particular, it can verify that the encrypted share
si→j present in the dispute transaction is indeed the share Pi

previously distributed. The verification continues as stated in
Section IV-A. The corresponding computations can efficiently
be performed using the Ethereum pre-compiled contracts [30]
for arithmetic in G1. If the dispute is considered valid, the
share issuer is flagged as adversarial and thus excluded from
the set Q in the key derivation phase. Additionally, the smart
contract triggers a corresponding event to notify all parties
about the successful dispute. Optionally the issuer may be
economically punished, and a security deposit could be used

to refund the disputer for its transaction fees. Similarly, an
adversarial disputer could be penalized for submitting an
invalid dispute. In either case, the contract may not process a
dispute transaction against an already disqualified participant.
In fact, in this scenario, our implementation of the smart
contract aborts immediately in order to save transaction fees.

E. Key Derivation Phase

Again, we closely follow our protocol specification from
Section IV-C to implement the key derivation phase. Similar
to the definition of h, we use h1 ∈ G1 and h2 ∈ G2 to denote
independently selected generators for the groups G1 and G2.

As a first step, each Pi ∈ Q computes the values h1si
and the corresponding NIZK proof π(h1

si) showing its cor-
rectness. The corresponding computations are performed in
group G1. However, as the master public key mpk = h2

msk

is an element of G2, Pi is also required to map its key share
h1

si to G2, i.e. compute hsi2 . Then, Pi crafts and publishes a
transaction, containing h1si , π(h1

si) and hsi2 . As described, a
collaboration of t+1 parties recovers si (and thus h1si , π(h1

si)
and hsi2) in case Pi does no publish the required information
by the end of the key derivation phase. This recovery process
can be performed either with or without interaction with
the Ethereum platform. We opted for using Ethereum for
this purpose, instead of adding complexity to the design by
implementing an additional off-chain communication channel.
After completing the recovery, any one of the involved parties
can issue the corresponding transaction on behalf of Pi. Either
way, it is ensured that h1si , π(h1

si) and hsi2 become public
and available for the smart contract for all Pi ∈ Q. The
smart contract can verify the provided information with the
DLEQ-verify(·) procedure and use the precompiled pairing
contract [31] to check the validity of h2si . The value h2si is
considered correct if e(h1si , h2) = e(h1, h2

si) holds.

Finally, any party can compute and publish the master
public key mpk =

∏
Pi∈Q h

si
2 and mpk∗ =

∏
Pi∈Q h

si
1 . The

smart contract can recompute mpk∗ and use the pairing e(·)
to verify the correctness of mpk.

F. Dynamic Participation

The utilization of an open smart contract platform such
as Ethereum also enables us to readily implement dynamic
participation strategies. If the choice is made to employ this
protocol feature, the set of participants P which run the DKG
protocol is not defined a priori, but rather obtained in an
additional registration phase, executed at the beginning of the
protocol. For this purpose, the creator of the corresponding
smart contract specifies a set of participation rules at the
time of contract creation. A participation rule specifies under
which condition a particular Ethereum account is allowed
to “join” the set P . Within the limitations of the Ethereum
platform, arbitrary smart contract code can be used to define
participation rules. In the following, we provide basic examples
for participation rules while more elaborate and robust schemes
against adversarial behavior are left to future work.

1) First come, first serve: Only the first N parties to register
are allowed to join the protocol.

2) Security deposit: Only parties, which provide a security
deposit of at least X Ether are allowed to join the
protocol.

3) Highest bidding: The N parties, which provided the
highest amount of security deposit are allowed to join
the protocol.

For conditions 1 and 2 the participation rules are checked as
soon as a registration transaction is included in an Ethereum
block. Only upon success is the issuer of the transaction added
to the set P , tracked within the smart contract. The implemen-
tation of condition 3 is rendered slightly more complex. In this
case, the smart contract keeps track of the set P consisting of
up to N participants and their provided security deposits. Upon
registration of party PN+1, the registration is accepted if the
deposit provided is bigger than the smallest deposit received
so far. If this is the case, the registration is accepted by adding
PN+1 to the set P and removing the participant with the
smallest deposit from P . Otherwise the registration is rejected
and P remains unchanged.

VII. EVALUATION

Due to space constraints, this section only provides a brief
overview of our findings, while the detailed evaluation results
are provided in appendices: A (computational costs for all
interaction between the parties and the smart contract), B
(communication complexity), and C (execution time).

Even in demanding scenarios (tested with up to 256 nodes),
each step in our implementation the DKG protocol can be
verified at the smart contract level well within the Ethereum
block gas limit. However, the overall costs of running the DKG
protocol depends on various highly fluctuating factors such
as the exchange rate of ETH to, e.g., USD, or the gas price
depending on the current network load. Therefore, it is difficult
to provide accurate execution cost estimates. For example, at
the time we initially performed our evaluation, Ethereum gas
prices of 2 GWei11 were recommended, whereas at the time
of writing 50 GWei are common. Combining the increase in
gas prices with the increase in the ETH to USD exchange
rate, our approach, while technically feasible, is currently
rendered costly for scenarios with a high number of nodes,
whereas our original estimate of $1.68 per participant in a
256 node scenario, was of little practical concern. We note that
our solution can also be deployed on other EVM compatible
ledgers that currently offer markedly lower transaction fees
compared to Ethereum.

VIII. DISCUSSION

a) Model.: In our DKG protocol, we follow the model
described in the theoretical works of Gennaro et al. [1].
Consequently, we inherit three important characteristics for
our protocol: (i) the synchronous communication model, (ii)
the separation of the underlying consensus platform and the
DKG protocol itself, (iii) the optimal threshold t, i.e. secrecy
and liveness for all t < n/2. These are in contrast to the
properties of the more recent works by Kate et al. [7], [8],
which consider an asynchronous communication model. While
these works still require a weak synchrony assumption [32] to

111 GWei = 10−9 ETH

ensure liveness, the protocol’s safety guarantees do not depend
on timing assumptions of the underlying message delivery
network. To mitigate this risk in a synchronous protocol
design, the corresponding timings, i.e. the number blocks in
each protocol phase for our protocol, have to be selected
appropriately.

A drawback of moving to the asynchronous model, is a
reduced resilience against Byzantine adversaries. In the hybrid
failure model (n = 3t + 2f + 1), described by Kate et
al., the protocol can only tolerate less than 1/3 Byzantine
parties (t), and less than 1/2 crashed participants (f). Here,
our protocol design can prove advantageous as it ensures the
desired security properties, in particular secrecy and liveness,
with up to n = 2t+ 1 participants.

b) Secrecy / Liveness Trade-off.: Our protocol design
enables the use of different values for the parameter t, speci-
fying the threshold for the underlying secret sharing protocol,
depending on the specific application scenario. The choice of
t directly incurs a trade-off between liveness and secrecy. If an
adversary controls at most t nodes, secrecy is ensured, whereas
at least t+ 1 honest nodes are required to guarantee liveness.
For example, setting t = n, ensures that as long as there
is at least one honest participant, the master secret key msk
cannot be learned by the adversary. On the contrary, even a
single adversarial node can prevent successful completion of
the protocol. In practice the choice of t is directly related
to the application scenario. If we consider, for example, a
synchronous BFT protocol in a setting with n = 2f + 1
participants, t is set to equal f , whereas a typical requirement
in asynchronous or particularly synchronous BFT protocols,
i.e. that more than 2/3 of the parties have to sign a particular
state or message, is supported by setting t = d2/3ne − 1.

c) Uniform Key Distribution.: During the key deriva-
tion phase, we follow Neji et al. [9] to implement a protection
mechanism, which prevents the adversary from biasing bits of
the generated key pair. While the implemented countermeasure
does not require a full additional secret sharing round, it
requires up to two12 additional transactions issued by all
participants. To save these costs and reduce the protocol’s
complexity, one might decide to omit the additional steps
required to ensure uniform distribution of the key pair. Instead,
each party Pi publishes a commitment H(Ci0) to the value
Ci0 prior to the sharing phase. The values Ci0, published
during the sharing phase, are only accepted if they match the
corresponding commitment. During the key derivation phase,
the master public key mpk is directly computed as described
for the Joint-Feldman protocol (see Equation 5). Such a design
decision may be useful e.g. in a deployment scenario, where
we expect the DKG protocol to complete without any errors,
i.e. in a scenario where we assume that it is very likely that
all participants follow the protocol accordingly. However, as
described in Appendix A, the additional costs required to
achieve uniformity do not add much overhead to the overall
protocol execution. Consequently, we recommend to use our
protocol design without this modification for most practical
scenarios.

12one transaction for publishing the key share hsi and proof π(hsi), and
potentially an additional message for recovering any missing key shares

d) Ethereum as Communication Infrastructure.: As de-
scribed in Section III-A, a key component necessary for the
implementation of our DKG protocol is a suitable communi-
cation layer. Using an existing distributed ledger that provides
Byzantine fault tolerance and agreed upon total ordering of
exchanged messages. Although our approach may also be
used on top of traditional BFT protocols or other available
blockchain platforms, we decided to use an existing blockchain
platform, namely Ethereum, instead of deploying our own
communication infrastructure. If we compare our solution
to the protocol described by Kate et al. we observe a key
difference in the design approach: whereas in our protocol,
the core functions of the DKG protocol are separated from
the the underlying consensus mechanism, Kate et al. describe
their protocol in a standalone setting, intertwining a custom
BFT protocol with the DKG logic. We see advantages in both
approaches, depending on the application scenario. While the
technique we present can benefit from an easier deployment
and a simplified protocol design due to the separation of
concerns, the security of Kate et al.’s approach does not depend
on an external consensus mechanism and can hence operate in
a stand-alone setting.

e) On-Chain Verification.: While on-chain verification
is not required for the core functionality of the protocol, it im-
mediately provides a range of benefits: e.g. other applications
on the Ethereum platform can be assured that the master public
key was correctly computed, and can thus safely use this key
to verify threshold signatures issued under the corresponding
(shared) secret key. Furthermore, including monetary incentive
mechanisms allows us to define a wide range of interesting
dynamic and possibly open participation models. It is no longer
required to define the set of parties P , executing the protocol,
prior to the protocol start. Instead, the smart contract logic
can be used to specify under which conditions a party is
allowed to join the protocol. When on-chain verification is
not used, clients can still fully verify the protocol execution.
However, the lack of on-chain verification also comes with
the disadvantage, that seizing a security deposit becomes more
difficult and potentially places honest clients at risk. It is no
longer possible to seize the deposit automatically during the
submission process of a dispute, as the smart contract does
not perform the corresponding verification steps. A partial
mitigation strategy is that a majority of the participants of
the DKG verify a dispute off-chain and confirm its validity.
However, this leads to the issue that a honest party’s security
deposit may be seized if the DKG protocol is run by an
adversarial majority. This is in contrast to the approach with
on-chain verification, which always ensures that the deposit of
correct party remains safe.

f) Implementation and Scalability.: To the best of our
knowledge, there exist no implementations of a DKG protocol
following Gennaro et al.’s design, despite the extensive the-
oretical research in this direction. Our protocol can be seen
as a first realization of this theoretical line of research. It is
implemented and evaluated using the Ethereum platform as a
communication layer. Consequently, the scalability of our ap-
proach is limited by the computational capacities available and
transaction fees required to execute transactions on Ethereum.
Our measurements (see Appendix A) show that even in a
demanding scenario with 256 participants, all transactions can
be executed well within Ethereum’s current block gas limit.

However, at the time of writing, the recent steep increase in
gas cost in Ethereum due to its rise in popularity and price
speculation has increased transaction the overall recommended
network fees, introducing economic limitations especially for
scenarios with a large number of nodes. Nevertheless, we
expect fees to eventually return to lower levels as protocol
improvements increase scalability and furthermore outline that
our solution can be deployed on other EVM compatible ledgers
with lower transaction fees.

The protocol design by Kate and Goldberg [7] was im-
plemented and evaluated in subsequent work [8], performing
tests of their implementation with up to 70 nodes on the
PlanetLab platform. While in terms of execution time for small
numbers of nodes, our solution is one order of magnitude
slower than the completion times reported by Kate et al. [8],
the parameters we use in our evaluation (see Appendix C) are
selected conservatively, and only use 10% of Ethereum’s block
capacity. Kate et al.’s protocol execution time increases sharply
with an increasing number of nodes as the communication
complexity of their protocol is O(n4). Our evaluation shows
that the communication complexity of our protocol is within
O(n3), while the amount of data processed on Ethereum is
O(n2). This leads to an approximate doubling in execution
time when increasing the number of participants from 128 to
256.

IX. CONCLUSION

We present EthDKG, a new state of the art protocol for
distributed key generation, that demonstrates how to efficiently
implement an improved variant of Gennaro et al.’s [1] the-
oretical work. Our enhancements include a new mechanism
to resolve disputes, which arise if certain parties violate the
protocol rules, as well as a range of techniques improving the
performance of our implementation in practice. We outline
that our tailored protocol design can readily be executed on
existing blockchain infrastructures. In particular, we show that
all verification steps required during the protocol execution can
be performed efficiently within the constrained EVM environ-
ment of the Ethereum platform. By leveraging the Ethereum
blockchain, or an alternative platforms with similar guarantees,
we are able to decouple the implementation of the underlying
consensus protocol and the cryptographic components at the
core of the DKG protocol itself. This approach simplifies the
protocol design and security analysis, while at the same time
enabling novel features, such as dynamic participation and
support for economic incentives, by utilizing the capabilities
of the Ethereum smart contract platform. As such, our protocol
provides a versatile building block for a range of designs within
and beyond the Ethereum ecosystem.

ACKNOWLEDGEMENTS

This material is based upon work partially supported by
(1) the Christian-Doppler-Laboratory for Security and Quality
Improvement in the Production System Lifecycle; The finan-
cial support by the Austrian Federal Ministry for Digital and
Economic Affairs, the Nation Foundation for Research, Tech-
nology and Development and University of Vienna, Faculty
of Computer Science, Security & Privacy Group is gratefully
acknowledged; (2) SBA Research; the competence center SBA
Research (SBA-K1) funded within the framework of COMET

Competence Centers for Excellent Technologies by BMVIT,
BMDW, and the federal state of Vienna, managed by the FFG;
(3) the FFG Industrial PhD projects 878835 and 878736; (4)
the FFG Bridge 1 project 864738 PR4DLT; (5) the FFG ICT of
the Future project 874019 dIdentity & dApps; (6) the European
Union’s Horizon 2020 research and innovation programme
under grant agreement No 826078 (FeatureCloud). We would
also like to thank our anonymous reviewers for their valuable
feedback and suggestions.

REFERENCES

[1] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin, “Secure distributed
key generation for discrete-log based cryptosystems,” in International
Conference on the Theory and Applications of Cryptographic Tech-
niques. Springer, 1999, pp. 295–310.

[2] A. Shamir, “How to share a secret,” Communications of the ACM,
vol. 22, no. 11, pp. 612–613, 1979.

[3] G. R. Blakley, “Safeguarding cryptographic keys,” Proc. of the National
Computer Conference, vol. 48, pp. 313–317, 1979.

[4] T. P. Pedersen, “A threshold cryptosystem without a trusted party,”
in Workshop on the Theory and Application of of Cryptographic
Techniques. Springer, 1991, pp. 522–526.

[5] D. Boneh and M. Franklin, “Efficient generation of shared rsa keys,”
in Annual International Cryptology Conference. Springer, 1997, pp.
425–439. [Online]. Available: https://link.springer.com/content/pdf/10.
1007/BFb0052253.pdf

[6] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin, “Revisiting the
distributed key generation for discrete-log based cryptosystems,” RSA
Security’03, pp. 89–104, 2003.

[7] A. Kate and I. Goldberg, “Distributed key generation for the internet,”
in 2009 29th IEEE International Conference on Distributed Computing
Systems. IEEE, 2009, pp. 119–128.

[8] A. Kate, Y. Huang, and I. Goldberg, “Distributed key generation in the
wild.” IACR Cryptology ePrint Archive, vol. 2012, p. 377, 2012.

[9] W. Neji, K. Blibech, and N. Ben Rajeb, “Distributed key generation
protocol with a new complaint management strategy,” Security and
communication networks, vol. 9, no. 17, pp. 4585–4595, 2016.

[10] C. Troncoso, G. Danezis, M. Isaakidis, and H. Halpin, “Systematizing
decentralization and privacy: Lessons from 15 years of research
and deployments,” in Proceedings on Privacy Enhancing Technologies,
2017, pp. 307–329. [Online]. Available: https://petsymposium.org/
2017/papers/issue4/paper87-2017-4-source.pdf

[11] P. Feldman, “A Practical Scheme for Non-interactive Verifiable Secret
Sharing,” in Foundations of Computer Science, 1987., 28th Annual
Symposium on. IEEE, 1987, pp. 427–438.

[12] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin, “Secure applica-
tions of pedersen’s distributed key generation protocol,” in Cryptogra-
phers’ Track at the RSA Conference. Springer, 2003, pp. 373–390.

[13] T. P. Pedersen, “Non-interactive and information-theoretic secure veri-
fiable secret sharing,” in Annual International Cryptology Conference.
Springer, 1991, pp. 129–140.

[14] R. Canetti, R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin,
“Adaptive security for threshold cryptosystems,” in Annual International
Cryptology Conference. Springer, 1999, pp. 98–116.

[15] Orbs Network, “DKG for BLS threshold signature scheme on
the EVM using solidity,” https://github.com/orbs-network/dkg-on-evm,
2018, Accessed: 2021-05-11. [Online]. Available: https://github.com/
orbs-network/dkg-on-evm

[16] D. Boneh, B. Lynn, and H. Shacham, “Short signatures from the weil
pairing,” in International Conference on the Theory and Application of
Cryptology and Information Security. Springer, 2001, pp. 514–532.

[17] A. R. Choudhuri, M. Green, A. Jain, G. Kaptchuk, and I. Miers,
“Fairness in an unfair world: Fair multiparty computation from public
bulletin boards,” in Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security. ACM, 2017, pp. 719–728.
[Online]. Available: http://delivery.acm.org/10.1145/3140000/3134092/
p719-choudhuri.pdf

[18] J. Garay, A. Kiayias, and N. Leonardos, “The bitcoin backbone protocol:
Analysis and applications,” in Advances in Cryptology-EUROCRYPT
2015. Springer, 2015, pp. 281–310. [Online]. Available: http://courses.
cs.washington.edu/courses/cse454/15wi/papers/bitcoin-765.pdf

[19] E. Rescorla, “Rfc 2631: Diffie-hellman key agreement method,” RFC,
IETF, June, Tech. Rep., 1999.

[20] T. ElGamal, “A public key cryptosystem and a signature scheme
based on discrete logarithms,” IEEE transactions on information theory,
vol. 31, no. 4, pp. 469–472, 1985.

[21] D. Chaum and T. P. Pedersen, “Wallet databases with observers,” in
Annual International Cryptology Conference. Springer, 1992, pp. 89–
105.

[22] J. Camenisch and M. Stadler, “Proof systems for general statements
about discrete logarithms,” Technical report/Dept. of Computer Science,
ETH Zürich, vol. 260, 1997.

[23] D. Boneh, C. Gentry, B. Lynn, and H. Shacham, “Aggregate and
verifiably encrypted signatures from bilinear maps,” in International
Conference on the Theory and Applications of Cryptographic Tech-
niques. Springer, 2003, pp. 416–432.

[24] D. Boneh, M. Drijvers, and G. Neven, “Compact multi-signatures for
smaller blockchains,” in International Conference on the Theory and
Application of Cryptology and Information Security. Springer, 2018,
pp. 435–464. [Online]. Available: https://eprint.iacr.org/2018/483.pdf

[25] A. Gervais, G. O. Karame, K. Wüst, V. Glykantzis, H. Ritzdo rf,
and S. Capkun, “On the security and performance of proof of work
blockchains,” in Proceedings of the 2016 ACM SIGSAC. ACM, 2016,
pp. 3–16.

[26] Y. Sompolinsky and A. Zohar, “Bitcoin’s security model revisited,”
arXiv preprint arXiv:1605.09193, 2016. [Online]. Available: http:
//arxiv.org/pdf/1605.09193.pdf

[27] J.-L. Beuchat, J. E. González-Díaz, S. Mitsunari, E. Okamoto,
F. Rodríguez-Henríquez, and T. Teruya, “High-speed software
implementation of the optimal ate pairing over barreto–naehrig
curves,” in International Conference on Pairing-Based Cryptography.
Springer, 2010, pp. 21–39. [Online]. Available: https://eprint.iacr.org/
2010/354.pdf

[28] D. F. Aranha, K. Karabina, P. Longa, C. H. Gebotys, and
J. López, “Faster explicit formulas for computing pairings over
ordinary curves,” in Annual International Conference on the Theory
and Applications of Cryptographic Techniques. Springer, 2011, pp.
48–68. [Online]. Available: https://link.springer.com/content/pdf/10.
1007/978-3-642-20465-4_5.pdf

[29] M. Al-Bassam, “Implementation of elliptic curve operations on G2 for
alt_bn128 in Solidity,” https://github.com/musalbas/solidity-BN256G2,
2019, Accessed: 2021-05-11. [Online]. Available: https://github.com/
musalbas/solidity-BN256G2

[30] C. Reitwiessner, “EIP 196: Precompiled contracts for addition
and scalar multiplication on the elliptic curve alt_bn128,”
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-196.md, 2017,
Accessed: 2021-05-11. [Online]. Available: https://github.com/
ethereum/EIPs/blob/master/EIPS/eip-196.md

[31] V. Buterin and C. Reitwiessner, “EIP 197: Precompiled contracts
for optimal ate pairing check on the elliptic curve alt_bn128,”
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-197.md, 2017,
Accessed: 2021-05-11. [Online]. Available: https://github.com/
ethereum/EIPs/blob/master/EIPS/eip-197.md

[32] M. Castro and B. Liskov, “Practical byzantine fault tolerance and
proactive recovery,” ACM Transactions on Computer Systems (TOCS),
vol. 20, no. 4, pp. 398–461, 2002.

[33] A. S. Cardozo and Z. Williamson, “EIP 1108: Reduce alt_bn128
precompile gas costs,” https://github.com/ethereum/EIPs/blob/master/
EIPS/eip-1108.md, 2018, Accessed: 2021-05-11. [Online]. Available:
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-1108.md

[34] “Ethereum Network Status,” https://ethstats.net/, 2021, Accessed:
2021-08-22. [Online]. Available: https://ethstats.net/

[35] J. Poon and V. Buterin, “Plasma: Scalable autonomous smart
contracts,” Aug 2017, accessed: 2017-08-10. [Online]. Available:
https://plasma.io/plasma.pdf

[36] H. Kalodner, S. Goldfeder, X. Chen, S. M. Weinberg, and E. W.

Felten, “Arbitrum: Scalable, private smart contracts,” in 27th {USENIX}
Security Symposium ({USENIX} Security 18), 2018, pp. 1353–1370.

[37] “Matic Network - Scalable and instant blockchain transactions,” https:
//matic.network/, 2021, Accessed: 2021-05-11. [Online]. Available:
https://matic.network/

[38] “Matic Network | Documentation | Matic Gas Station,”
https://docs.matic.network/docs/develop/tools/matic-gas-station/, 2021,
Accessed: 2021-05-11. [Online]. Available: https://docs.matic.network/
docs/develop/tools/matic-gas-station/

[39] Vitalik Buterin, “How should I handle blockchain
forks in my DApp?” https://ethereum.stackexchange.com/
questions/183/how-should-i-handle-blockchain-forks-in-my-dapp/203,
2016, Accessed: 2021-05-11. [Online]. Avail-
able: https://ethereum.stackexchange.com/questions/183/
how-should-i-handle-blockchain-forks-in-my-dapp/203

[40] ——, “On Slow and Fast Block Times,” https://blog.ethereum.
org/2015/09/14/on-slow-and-fast-block-times/, 2015, Accessed: 2021-
05-11. [Online]. Available: https://blog.ethereum.org/2015/09/14/
on-slow-and-fast-block-times/

APPENDIX A
COMPUTATIONAL COSTS

Figure 1, provides the measured gas consumption per
executed transaction for different numbers of parties partic-
ipating in the DKG protocol. We observe that (i) gas costs
for contract deployment (2 551 221), for registration (106 385),
and (recovered) key share submission (222 510) do not depend
on the number of participants, (ii) costs for recovery linearly
depend on the number of recovered parties, whereas (iii) the
costs for the other operations increase linearly with increasing
numbers of participants. Figure 1 reports the measured costs
for (ii) and (iii) in the worst case for different numbers of
participants (n). We use a setup with n = 2t+ 1 participants,
where t parties are executing adversarial actions, i.e. they either
provide invalid shares, handled by issuing dispute transactions,
or they withhold the required values during the key generation
phase, leading to a recovery of the missing information.

64 128 192 256
Number of Participants (n)

0

250,000

500,000

750,000

1,000,000

1,250,000

1,500,000

1,750,000

2,000,000

Ga
s R

eq
ui

re
d

share distribution
dispute
key share recovery
master key submission

Figure 1. Computational costs, measured in gas per transaction, for the
different types of interactions with the smart contract

The most critical operations in terms of gas consumption
are the execution of a dispute transaction (potentially executed
once per adversarial node), and the submission and verification
of the master public key (once at protocol end). In the most
demanding scenario with n = 256 participants we evaluated,
a dispute consumes approximately 1.5 million gas, whereas
the master key submission requires around 1.7 million gas. In
both cases, the costs are largely dominated by the internal ver-
ification procedures, relying on elliptic curve multiplications.

Compared to the evaluation of the previous version of this
paper, the gas costs for these operations have been significantly
reduced due to implementation of the EIP-1108 proposal [33]
as part of Ethereum’s Istanbul hardfork. With these reductions,
we tested our implementation with up to 256 participants and
find that our protocol is able to perform all required operations
well within the current Ethereum block gas limit of 15 000 000
gas [34].

In case all participants behave according to the protocol, no
transactions for dispute, and key share recovery are executed.
In the worst case, a dispute transaction has to be executed for
each adversarial party in order to prove that the respective party
violated the protocol rules. To avoid that correct parties need
to cover the costs for the dispute transactions, a recommended
mitigation strategy is to require security deposits during reg-
istration. The deposit from an adversarial party is then seized
when a valid dispute is submitted, and used to refund the
disputing party for the expenses incurred by publishing the
dispute transaction. In case dispute transactions against the
same party are issued concurrently, the fees for all but the first
processed transaction are much cheaper, as the contract aborts
prematurely. However, also in this case the additional costs
may be covered by the adversary’s security deposit. A different
mitigation strategy is to reduce the likelihood of concurrent
submission of transactions by continuously monitoring for
dispute transactions. In this case, dispute transactions are only
issued on demand, i.e. in case there was no dispute against
the specific party submitted yet, at randomized points in time
within the bounds of the dispute phase. For many real world
scenarios, in particular when the DKG is run between known
entities, we expect the number of disputes to be very low if not
zero. In this case, a high number of disputes would likely be
addressed at an organization level and not within the protocol
itself.

In order to keep costs for the share distribution low, we
minimize the amount of data stored within the smart contract.
In particular, we do not store the transaction data, i.e. n − 1
encrypted shares and t+ 1 commitments to the secret sharing
polynomial, in the smart contract. Instead, a cryptographic
hash of the above information is stored, whereas triggering
a corresponding Ethereum event renders the full data easily
accessible to all clients. During the verification of a dispute,
this cryptographic hash is recomputed and compared to the
stored value to ensure that the disputer’s information is correct.

To further illustrate the costs in practice, tables I and II
provide a costs overview for running our protocol on the
Ethereum platform by converting the gas consumption into
USD. Hereby we group the estimated base costs (covering
the registration, share distribution and key share submission
steps) each joining party has to cover, and list the costs for
a dispute (per adversarial participant), a key share recovery
(per failed participant after successful key sharing), as well as
one-time costs (per DKG execution) for contract deployment
and master key verification separately. Note that the costs are
highly depended on the current gas price and Ethereum to USD
exchange rate.

To reduce transaction fees, aside from choosing an alter-
native EVM compatible ledger with lower transaction fees,
our protocol may also be adapted for layer 2 scaling solutions
such as Plasma [35] and Arbitrum [36]. As a concrete example,

the Matic/Polygon network [37] (a already deployed Plasma
variant), reports current gas prices of 1 GWei at the time of
writing [38]. This leads to greatly reduced transaction fees
compared to a native execution on Ethereum.

APPENDIX B
COMMUNICATION COMPLEXITY

Table III, describes the size, the number of invocations,
th total amount of data processed within the Ethereum
blockchain, as well as the total amount of data transferred
trough the network, for all the different transactions executed
throughout a protocol execution. The reported values consider
the worst case scenario, where the adversary sends invalid
shares and fails to provide the required information during the
key derivation phase. Overall, the communication complexity
of our protocol is O(n3), that is considering the network
traffic generated by broadcasted all transactions. For the smart
contract this is equivalent to a communication complexity
of O(n2), as the Ethereum client transparently handles the
network communication. This distinction is crucial, as gas
costs costs are only paid for the smart contract execution and
are not dependent on the actual network traffic.

APPENDIX C
EXECUTION TIME

In the following, we estimate the total (worst case) ex-
ecution time required to run our protocol. In practice, this
execution time depends on a range of factors, including:

1) the number of confirmation required ∆c, before a trans-
action is considered confirmed: ≈ 12 blocks [39]

2) Ethereum’s (average) time between two subsequent
blocks ∆b: 13− 17 seconds [34], [40]

3) Ethereum’s block gas limit cblock: ≈ 15 000 000 gas [34]
4) the current load on the Ethereum network
5) the gas price participants are willing to pay
6) the number of parties executing the DKG protocol

Since all three protocol phases are executed subsequently, the
total time required to execute the protocol T is the sum of
the times required to execute each protocol phase. We use
br, bs, bd and bk to denote the number of blocks required
to execute the protocol phases, registration, sharing, dispute
and key derivation respectively. Consequently, we obtain T as
follows:

T = ∆b · (br + bs + bd + bk) (12)

To compute the number of blocks required for each proto-
col phase, in particular br, bs and bd, we consider a consensus
stabilization period at the end of each phase (∆c blocks), a
safe upper bound for the number of blocks to wait until a
transaction is included in the Ethereum blockchain (∆i), the
capacity required to fit all transactions of the specific phase
(cr, cs, cd), as well as the maximum capacity cmax the DKG
protocol should use on the Ethereum platform during execution
(e.g. 10% of the block gas limit).

bx = ∆c+ ∆i+

⌈
cx
cmax

⌉
x ∈ r, s, d (13)

number of nodes 8 16 32 64 128 192 256

base 0.14 $ 0.15 $ 0.16 $ 0.18 $ 0.23 $ 0.28 $ 0.32 $
dispute 0.03 $ 0.05 $ 0.08 $ 0.14 $ 0.26 $ 0.38 $ 0.50 $
key share recovery 0.01 $ 0.01 $ 0.01 $ 0.01 $ 0.01 $ 0.01 $ 0.01 $
master key verification 0.09 $ 0.10 $ 0.13 $ 0.20 $ 0.32 $ 0.45 $ 0.57 $
deployment 0.84 $ 0.84 $ 0.84 $ 0.84 $ 0.84 $ 0.84 $ 0.84 $

Table I. ESTIMATED TRANSACTION FEES AT THE TIME OF INITIAL EVALUATION (2020-04-12; GAS PRICE: 2 GWEI, EXCHANGE RATE: 165 $ / ETH)

number of nodes 8 16 32 64 128 192 256

base 68.99 $ 71.76 $ 77.29 $ 88.40 $ 110.68 $ 133.06 $ 155.55 $
dispute 16.77 $ 23.89 $ 38.10 $ 66.60 $ 123.79 $ 181.21 $ 238.95 $
key share recovery 5.16 $ 5.16 $ 5.16 $ 5.16 $ 5.16 $ 5.16 $ 5.16 $
master key verification 42.14 $ 49.60 $ 64.51 $ 94.37 $ 154.22 $ 214.23 $ 274.40 $
deployment 405.01 $ 405.01 $ 405.01 $ 405.01 $ 405.01 $ 405.01 $ 405.01 $

Table II. ESTIMATED TRANSACTION FEES AT THE TIME OF WRITING (2021-08-22; GAS PRICE: 50 GWEI; EXCHANGE RATE: 3 175 $ / ETH)

transaction
size

number of
invocations

communication
complexity

(smart contract)

communication
complexity
(broadcast)

register O(1) O(n) O(n) O(n2)
sharing O(n) O(n) O(n2) O(n3)
dispute O(n) O(n) O(n2) O(n3)
key share submission O(1) O(n) O(n) O(n2)
key share recovery O(n) O(n) O(n2) O(n3)

recovered key share O(1) O(n) O(n) O(n2)
submission

master key submission O(n) O(1) O(n) O(n2)

Table III. COMMUNICATION COMPLEXITY FOR THE DIFFERENT TYPES OF INTERACTIONS WITH THE SMART CONTRACT

number of participants 64 128 192 256

estimated lower bound 61 min 73 min 91 min 115 min
estimated upper bound 85 min 100 min 123 min 153 min

Table IV. PROTOCOL EXECUTION TIMES FOR DIFFERENT NUMBERS OF PARTICIPANTS

Here, the capacities cx are derived from the required gas for
the specific transaction type, as given in Appendix A and the
number of transactions executed. Similarly, the values ck1,
ck2 and ck3 used below represent the capacities for the key
share submission, key share recovery, and recovered key share
submission transactions, respectively. As the key derivation
phase requires multiple steps, bk is computed by considering:

• the number of blocks required for the submission of
key shares:
∆c+ ∆i+

⌈
ck1

cmax

⌉
• the number of blocks required for a potential key share

recovery: ∆c∆i
⌈

ck2

cmax

⌉
• the number of blocks required for submission of the

recovered key shares: ∆c∆i
⌈

ck2

cmax

⌉
• as well as the number of blocks required for publishing

the resulting master public key: ∆c∆i.

In the following, we distinguish between the optimal case (no
recovery) and the worst case (49% of all nodes need to be

recovered) to get and lower and upper bound for bk:

bk,min = 2∆c+ 2∆i+

⌈
ck1
cmax

⌉
(14)

bk,max = 4∆c+ 4∆i+

⌈
ck1
cmax

⌉
+

⌈
ck2
cmax

⌉
+

⌈
ck3
cmax

⌉
(15)

If we consider a worst case scenario with n = 2t + 1
participants, and select conservative values for the parameters
above, i.e., we wait for ∆c = 20 confirmations (≈ 4.4
minutes) before considered a transaction confirmed, assume
the latency for transaction inclusion in a block is ∆i = 30
blocks (≈ 6.6 minutes) and target a network load of 10%
of Ethereum capacity (cmax = 15 000 000), and use Ethereum
current block interval of ∆b = 13 seconds [34] we obtain table
IV, summarizing the estimated execution times for different
numbers of nodes.

