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Abstract. In order to obtain an efficient elliptic curve with 128-bit security and a
prime order, we explore the use of finite fields GF (pn), with p a small modulus (less
than 216) and n a prime. Such finite fields allow for an efficient inversion algorithmdue
to Itoh and Tsujii, which we can leverage to make computations on an ordinary curve
(shortWeierstraß equation) in affine coordinates.We describe a very efficient variant of
Montgomery reduction for computations modulo p, and choose p = 9767 and n = 19
to better map the abilities of small microcontrollers of the ARM Cortex-M0+ class.
Inversion cost is only six times the cost of multiplication. Our fully constant-time im-
plementation of curve point multiplication runs in about 4.5 million cycles (only 1.29
times slower than the best reportedCurve25519 implementations); it also allows for ef-
ficient key pair generation (about 1.9 million cycles) and Schnorr signature verification
(about 5.6million cycles).Moreover, we describe variants of the Itoh-Tsujii algorithms
that allow fast computations of square roots and cube roots (in less than twenty times
the cost of a multiplication), leading to efficient point compression and constant-time
hash-to-curve operations with Icart’s map.

1 Introduction
This article explores the use of affine coordinates for fast and secure implementation of an
elliptic curve defined over a carefully chosen finite field.

A�ine Coordinates. In a finite field GF (pn) with characteristic p ≥ 5 and extension
degree n ≥ 1, all elliptic curves can be expressed as sets of points (x, y) ∈ GF (pn) × GF (pn)
that fulfill the short Weierstraß equation:

y2 = x3 + ax + b

for two constants a and b in GF (pn) such that 4a3 + 27b2 , 0; an extra point (denoted O),
called the “point at infinity” and with no defined coordinates, is adjoined to the curve and
serves as neutral element for the group law on the curve. The formulas for point addition are



well-known: for points Q1 = (x1, y1) and Q2 = (x2, y2), we have:

−Q1 = (x1,−y1)
Q1 + Q2 = (x3, y3)

= (λ2 − x1 − x2, λ(x1 − x3) − y1),where:

λ =


y2 − y1
x2 − x1

if Q1 , ±Q2

3x21 + a
2y1

if Q1 = Q2

The quantity λ is the slope of the line that containsQ1 andQ2. The representation of a point
Q as two field elements x and y is called affine coordinates.

Fractions and Coordinate Systems. Computing a point addition with these formu-
las involves a division in GF (pn). This operation is usually quite expensive, traditionally es-
timated at about 80 times the cost of a multiplication in the field. For much better perfor-
mance, it is customary to replace coordinates with fractions, which makes inversion free (the
numerator and denominator are swapped) but increases the cost ofmultiplications (both nu-
merators and denominators must be multiplied), and greatly increases the cost of additions
(in all generality, the addition of two fractions involves threemultiplications and one addition
in the field). The idea is that if a large number of curve point additions are to be computed
(e.g. as part of a pointmultiplication routine), then the whole computation can be donewith
fractions, and only at the end are divisions needed to obtain the affine result.

The fractions are often expressed as systems of coordinates, such as projective coordinates,
in which point (x, y) is represented by the triplet (X :Y :Z) such that x = X/Z and y = Y/Z;
in essence, these are fractions such that the same denominator is used for x and y. Another
popular choice is Jacobian coordinates that instead use x = X/Z2 and y = Y/Z3. Vast
amounts of research efforts have been invested in finding systems of coordinates and point
addition formulas that minimize cost (see [10] for a database of such formulas)1.

Alternate Curve Types and Cofactors. An additional strategy to optimize perfor-
mance of elliptic curve operations has been to seek alternate curve equations that, combined
with an adequate system of coordinates, yield formulas with fewermultiplications and squar-
ings. In particular, Montgomery curves (by2 = x3 + ax2 + x) and twisted Edwards curves
(ax2 + y2 = 1 + dx2y2) offer better performance than short Weierstraß curves. However,
this comes at a price: these faster curves cannot have a prime order, since they necessarily con-
tain points of order 2. These curves are chosen to have order hm, where m is a large prime,
and h is the cofactor. For the well-known curves Curve25519 (Montgomery curve) and Ed-
wards25519 (a twisted Edwards curve which is birationally equivalent to Curve25519), the
cofactor is h = 8.

1Coordinate systems can also be interpreted geometrically; e.g. projective coordinates are part of the
generic treatment of projective geometry, while Jacobian coordinates can be seen as jumps between iso-
morphic curves.However, froman implementationperformancepoint of view,what ultimatelymatters
is that most divisions are avoided, and the number of multiplications is minimized.
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An unfortunate consequence is that some extra complexity is induced in protocols that
use such curves, in order to avoid subtle weaknesses. For instance, in the EdDSA algorithm,
as specified in RFC 8032[36] (and following the original definition paper [9], which already
contains that assertion), the verification process of a signature ends with the following item:

Check the group equation 8sB = 8R+8kA′. It’s sufficient, but not required, to instead
check sB = R + kA′.

This means that it is possible to (maliciously) craft a public/private key pair, and a signa-
ture on somemessage, such that some implementations will use the first equation and accept
the signature, and others will use the second equation and reject it. This does not contradict
the core properties of signature algorithms, but it is sufficient to induce forks in distributed
applications that rely on several systems following consensus rules and accepting or rejecting
exactly the same data elements.

More severe issues coming from non-trivial cofactors have also been reported (e.g. [41];
see also [20]). In general, most if not all protocols that use elliptic curves can be made safe
against such issues by sprinkling somemultiplications by the cofactor here and there, but the
exact analysis is complex and fraught with subtle details. It follows that, all other things being
equal, having a prime order (i.e. cofactor h = 1) is a much desirable property.

Prime Order Curve Strategies. From a twisted Edwards curvewith order 8m (for a big
primem), a group of orderm can be obtained with the Ristretto map, designed byM.Ham-
burg (see [4] for details). Group elements are internally represented by points on the curve,
but the map encoding and decoding processes ensure proper filtering and normalization.
Compared to operations on the curve itself, the map implies a small but nonnegligible com-
putational overhead.

In [54], Schwabe and Sprenkels explore the overhead implied by the use of a prime-order
short Weierstraß curve, through performing benchmarks on such a curve defined over the
same field as Curve25519 and Edwards25519. They rely on traditional projective coordinates,
alongwith formulas described in [53]; these formulas are not the fastest available, but they are
complete, i.e. they produce the correct results on all inputs with no special cases. They obtain,
as expected, worse performance than Curve25519 and Edwards25519.

In this paper, we explore an alternate avenue. As explained above, all the efforts on for-
mulas, coordinate systems and curve equations take place under the assumption that field
inversions are desperately inefficient and only one or two such inversions may happen over a
full curve point multiplication. Here, we instead focus on finding a finite field where opera-
tions are efficient, and in particular such that inversions are not especially slow.We will show
in the following sections a finite field appropriate for defining secure curves, such that addi-
tions, multiplications and inversions are fast. Our chosen field is GF (976719); on our target
implementation platform (theARMCortex-M0+),multiplications and squarings are of sim-
ilar performance to the best reported implementations in finite fieldGF (2255− 19) (the finite
field used in Curve25519), while inversion cost is about six times the cost of multiplication
(6M). We also obtain fast quadratic residue test (5.9M), square root extraction (17.1M) and
cube root extraction (19.8M), allowing for very efficient point compression and hash-to-curve
operations.

3



Yet Another Curve? Elliptic-curve cryptography is already rich with many curves, in
fact toomany for comfort. Implementing elliptic curve operations generically is possible, but
usually yields substantially lower performance than implementations optimized for a spe-
cific finite field, and a specific curve equation. Generic curve implementations are also rarely
constant-time, i.e. they may leak information on secret elements through timing-based side
channels (including cache attacks). Specialized implementations, however, are specific to a
single curve; supporting many different curves securely and efficiently thus requires large
amounts of code. Consequently, there is a push for the reduction of the number of “stan-
dard curves”. For instance, in the context of TLS, client and server negotiate elliptic curves
with a handshake extension which initially contained no fewer than 25 possible curves, not
counting the possibility of sending arbitrary curve equation parameters explicitly[13]. A later
revision of the standard reduced that number to just 5, deprecating use of all other curves, as
well as the ability to send explicit curve equation parameters[46].

In that respect, defining another curve is counterproductive. The goal of this paper is
not to push for immediate adoption and standardisation of our curve; rather, it is an explo-
ration of the concept of keeping to affine coordinates on a field where inversions (and also
square roots and cube roots) are efficient.We see this new curve as a starting point for further
research, especially beyond the basic curve point multiplication operations; for instance, as
will be detailed in this article, fast square and cube roots allow for very efficient hash-to-curve
operations, making more attractive protocols that entail many such hashing operations.

We still took care towrite our implementationswith a cleanAPI, amenable to integration
in applications, andwithwell-defined encoding anddecoding rules, for the following reasons:

– Making the effort of writing full implementations guarantees that we did not forget any
part that would be required in practice.

– The closer to production-ready structure implementations get, themoremeaningful and
precise benchmarks become.

– Creations often escape from their creator, and once code has been published, especially
with an open-source license, there is no way to prevent it from being reused by anybody.
A responsible cryptographic code writer should ensure that any such published code is
harmless, i.e. secure enough not to induce catastrophic weaknesses if deployed by the
unwary.

Target Platform. In the current article, we focus on low-end platforms, in particular the
ARMCortex-M0+CPU, a popularmicrocontroller core because of its compactness and very
low energy usage2. The techniques we develop are specially meant to map well to what that
CPU offers. However, we will see that such optimization does not necessarily forfeit perfor-
mance on larger systems, especially since, for instance, modern large CPU have SIMD units
that can performmany “small” operations (e.g. 16-bit multiplications) in parallel.

Baseline for any talk about performance is Curve25519 (and its twisted Edwards coun-
terpart Edwards25519). Curve25519 was described in [8] and is aMontgomery curve defined
over fieldGF (2255 − 19).

2TheARMCortex-M0+ is an improvement over the previous ARMCortex-M0; however, they do
not differ in their timing characteristics for the operations described here. We also consider the variant
with the 1-cycle fast multiplier, not the smaller 32-cycle slow multiplier.
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It should be noted that there are recent works that claim much better performance than
Curve25519 on small systems, in particular the FourQ curve[19]. In [58], a point multiplica-
tion cost under 2 million cycles on an ARMCortex-M0+ is reported, about 55% of the cost
of the best reported Curve25519 implementation on the same CPU.However, this particular
curve has some extra structure (a low-degree endomorphism) which speeds up the computa-
tion but is slightly controversial, because cryptographers are often wary of extra structures,
especially in elliptic curves (historically, many attacks on special curves exploited their extra
structure), and because of the unclear intellectual property status of that endomorphism.
Research on FourQ should be closely followed, but it is still too recent to serve as a reliable
comparison point.

Article Organization. The article outline is the following:

– Section 2 describes the criteria we used for finding the finite field in which we will define
a curve.

– In section 3, we explain how operations in the finite field, in particular inversions and
square roots, can be implemented efficiently.

– Section 4 includes the definition our new elliptic curve, Curve9767; we explain how op-
erations are optimized. We provide a generic, constant-time, complete point addition
routine, as well as optimized constant-time point multiplication functions, for the three
situations commonly encountered in cryptographic protocols (multiplying the conven-
tional generatorG,multiplying a dynamically obtainedpointQ, and a combineddouble-
multiplication uG + vQ used in ECDSA and Schnorr signature verification). Efficient
routines for point compression and decompression, and hash-to-curve operations, are
also provided.

– Implementation issues, including performance benchmarks, side channel attacks and
countermeasures, and ideas for optimizations on other architectures, are detailed in sec-
tion 5.

– In appendix A, we list a few extra facts and ideas that turned out not to work as well as
expected, or have redhibitory flaws, but are still worth exposing because they could lead
to useful results in other contexts.

All of our source code (referenceC code,ARMassembly, test vectors, and support scripts)
is available on:

https://github.com/pornin/curve9767

2 Finding The Field
2.1 Field Type
A finite field has cardinal pn for a prime p (the field characteristic).Mostmodern elliptic curves
use a prime field (i.e. n = 1). Here, we focus on extension fields (n > 1). We furthermore in-
vestigate only characteristics p ≥ 5 (when p = 2 or p = 3, curve equations are different; more-
over, an ordinary curve overGF (2n)must have an even order, and hence cannot have cofactor
h = 1). Use of extension fields for defining elliptic curves with efficient implementations has
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been described under the name “optimal extension fields”[44,6]; however, we diverge from
OEF in some aspects, explained below.

When n > 1, GF (pn) is defined by first considering the polynomial ring GF (p)[z] (in all
of this article, z denotes the symbolic variable for polynomials).We thenmake a quotient ring
by computing operations on polynomials modulo a givenmonic polynomialM of degree n.
WhenM is irreducible overGF (p), this defines a field of cardinal pn. Two finite fieldswith the
same cardinal are isomorphic to eachother, and the isomorphisms canbe efficiently computed
in both directions; therefore, the choice of the exact field (i.e. of themodulusM ) is irrelevant
to security, and we are free to use a modulus that favours efficient implementation.

For fast inversion and square roots, as will be explained in section 3, we prefer to have
M = zn − c for some constant c ∈ GF (p). SinceM must be irreducible, c cannot be 0, 1 or
−1.

2.2 Extension Degree
The extension degreen can be any integer.However, if the degree is very small, or is composite
with a very small divisor, then attacks on elliptic curves based on Weil descent may apply.
Weil descent is a generic process through which a discrete logarithm problem (DLP) on an
algebraic curve over a field K is transformed into a DLP on another curve of higher degree,
over a subfieldK ′ ofK . The latter problemmay be easier to solve.

Gaudry, Hess and Smart[29] have applied that idea to elliptic curves over GF (2n); the
GHS attack solves DLP on ordinary elliptic curves faster than generic attacks provided that
the degree n is composite and with small factors. Application of the GHS attack to curve
fields with odd characteristic is non-trivial[5]. Gaudry[28] has shown that if n = 0 mod 4
(i.e. GF (pn) is a quartic extension) then there exists an algorithm that solves DLP in asymp-
totic timeO(p3n/8), i.e. faster than the generic attack (Pollard’s Rho algorithm,O(pn/2)). Con-
versely, Diem[21] showed that if the n is prime and not lower than 11, then the GHS attack
cannot work.

It should be noted that the GHS attack is not necessarily the only way to leverage Weil
descent in order to break DLP on elliptic curves. Moreover, most known results are asymp-
totic in nature, and the extent of their applicability to practical cases (with curve order sizes
of about 256 bits) is not fully known at this point. However, it seems that using a prime ex-
tension degree n ≥ 11 provides adequate protection against Weil descent attacks. We will use
this criterion for our field selection. In that respect, we diverge fromOEF, which typically use
smaller and/or composite degrees.

2.3 Delayed Modular Reduction
Our main target system is the ARM Cortex-M0+. That CPU has a very fast multiplier on
32-bit operands, working in a single clock cycle. However, it returns only the low 32 bits of
the result, i.e. it computes modulo 232. There is no opcode yielding the upper 32 bits of the
product. Sincewewill need to performmultiplications inGF (p), this seems to limit the range
of p to values of at most 16 bits3.

3This is not entirely true, as will be explained in section A.1.
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Moreover, computations in GF (p) also involve reduction modulo p, which will be sub-
stantially more expensive than the product itself. It is thus advantageous tomutualize modu-
lar reductions. Consider the productw = uvwhere u and v are elements ofGF (pn). Elements
of GF (pn) are polynomials of degree less than n, and we denote the coefficients of u as (ui)
(for i = 0 to n − 1). The modulus for the definition ofGF (pn) isM = zn − c. We then have
the following:

w0 = u0v0 + c(u1vn−1 + u2vn−2 + u3vn−3 + · · · + un−1v1)
w1 = u0v1 + u1v0 + c(u2vn−1 + u3vn−2 + · · · + un−1v2)
w2 = u0v2 + u1v1 + u2v0 + c(u3vn−1 + · · · + un−1v3)
. . .

There is a quadratic4 number of products inGF (p); however, we can also compute each
wi over plain integers, and making only one final reduction for each wi, thereby lowering the
number of reductions to n. This strategy is valid as long as the intermediate values (each wi
before reduction) fits in a machine word, i.e. 32 bits. We see that the largest potential pre-
reduction value is for the computation of w0; if each ui and vi is an integer less than p, then
the intermediate value may range up to (1 + c(n − 1))(p − 1)2. We will therefore look for a
prime p and degree n such that (1 + c(n − 1))(p − 1)2 < 232.

2.4 Fast Modular Reduction
Even if delayingmodular reduction allows us to performonly n such operations for a product
of two elements inGF (pn), they still constitute a nonnegligible cost; thus, reductionmodulo
p should bemade as efficient as possible. In theOEF analysis[6], moduli very close to a power
of 2 are favoured; however, this restricts the number of candidate moduli. In order to have a
larger range of potential values for p, we instead use Montgomery reduction[45].

Let s ∈ N such that p < 2s. We define R = 2s, and f = −1/p mod 2s. For an integer
x ∈ N, we can compute x/R mod p as follows:

1. Let t = xf mod 2s.
2. Let t ′ = x + tp mod 2s.
3. Return t ′/2s.

Indeed, we can see that x + tp = 0 mod 2s; hence, the division by 2s in the third step is exact.
Since p is relatively prime to 2s, it follows that the result is correct.Morever, if x < p2, then the
result t2 is less than 2p and can be reduced down to the 0..p− 1 range with a single conditional
subtraction.

Montgomery multiplication is a plain product, followed by aMontgomery reduction; the
Montgomery multiplication of x and y computes xy/R mod p. It is convenient to use val-
ues inMontgomery representation, i.e. value x is stored as xR mod p. Additions and subtrac-
tions are unchanged (xR + yR = (x + y)R), and the Montgomery product of xR with yR
is (xR)(yR)/R = (xy)R, i.e. the Montgomery representation of xy. We can keep all values in
that representation, converting back to integers only for encoding purposes.

4As will be explained in section 3.5, this can be done in a sub-quadratic number of products, but
still vastly larger than n.

7



Traditionally, s is chosen to be close to theminimal value, sincewe perform computations
modulo 2s. On an ARM Cortex-M0+, using s = 16 for a modulus p less than 216 would
lead to a reduction using about 15 clock cycles. However, we can do much better, since the
multiplication opcode actually works over 32-bit inputs.

Suppose that a value x ∈ Nmust be reduced modulo p. Suppose moreover that 0 < x <
232. We apply Montgomery reduction with s = 32; but modulus p is smaller than 216. This
has the following consequences:

– Value t is computed with a single mul opcode. It is a 32-bit value; we can split it into a
low and high halves, i.e. t = t0 + 216t1.

– We then have: t ′ = x + t0p + 216t1p. Since t1 and p are both lower than 216, the value t1p
will fit on 32 bits, and we can also split it into a low and high halves: t1p = t2 + 216t3.

– This implies that t ′ = x + t0p + 216t2 + 232t3. But we know that t ′ is a multiple of 232.
Therefore, the three values x, t0p and 216t2 add up to a value V whose low 32 bits are
zero.

Suppose that 0 < x < 232 + 216 − (216 − 1)p. In that case:

0 < x + t0p + 216t2 < (232 + 216 − (216 − 1)p) + (216 − 1)p + 216(216 − 1) = 233

Since value V is a multiple of 232, greater than 0 and lower than 233, it follows that V must
be equal to 232. Therefore, the result of the reduction is necessarily equal to t3 + 1. We do
not have to compute other intermediate values at all!Moreover, t3 is the high half of t1p, with
t1 < 216; this implies that t3 < p.

This leads to the following algorithm:

– We represent elements ofGF (p)withMontgomery representation in the 1..p range: value
a is stored as aR mod p, and if a = 0, then we store the value as p, not 0.

– We perform additions and plain integer multiplications, resulting in a value x that must
be reduced. That value fits on a 32-bit word. Since we started with non-zero integers and
only performed additions and multiplications (not subtractions), we have x > 0. We
assume that x < 232 + 216 − (216 − 1)p.

– To perform aMontgomery reduction of value x, we apply the following steps:
1. t = xf mod p (where f = −1/p mod 232 is precomputed).
2. t1 = bt/216c (a “right shift” operation).
3. t3 = b(t1p)/216c (a multiplication by the constant p, followed by a right shift).
4. Reduced value is t3 + 1, and is already in the 1..p range; no conditional subtraction

is needed.

This implementation of Montgomery reduction uses only 5 cycles on an ARM Cortex-
M0+; it requires two constants but no extra scratch register:

muls r0, r7 @ r0 <- r0 * r7
lsrs r0, #16 @ r0 <- r0 >> 16
muls r0, r6 @ r0 <- r0 * r6
lsrs r0, #16 @ r0 <- r0 >> 16
adds r0, #1 @ r0 <- r0 + 1
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In this code, registers r6 and r7 must have been loaded with the constants p and −1/p mod
232, respectively. Since they are not modified, they can be reused for further Montgomery
reductions with no reloading cost.

For this algorithm to work properly in our case (implementation of multiplications in
GF (pn)), we need the pre-reduction values to fit in the acceptable range for Montgomery
reduction. In the previous section, we assumed that polynomial coefficients were integers
strictly less than p, but our representation nowallows the value p itself (which stands for zero).
Moreover, the range for fast Montgomery reduction is somewhat smaller than 232. We will
therefore require the following:

(1 + c(n − 1))p2 + (216 − 1)p < 232 + 216

2.5 Field Selection Criteria
Weneed a fieldGF (pn) of a sufficient size to achieve a given security level. The order of a curve
defined over a field of cardinal q is close to q (by Hasse’s theorem, it differs from q + 1 by at
most 2√q). Since Pollard’s Rho algorithm solves DLP in a group of order q in time O(√q),
we need a 256-bit q in order to achieve the traditional 128-bit security level.

The choice of “128 bits” is not very rational. In general, we want a security level which is
such that attacks are not practically feasible, and on top of that some “securitymargin”, an ill-
definednotion. “128” is a powerof two, i.e. a nicenumber for somebodywho thinks inbinary;
thismakes it psychologically powerful.However, in practice, some deviations are allowed. For
instance, Curve25519 uses a 255-bit field and has cofactor h = 8, leading to a group order
close to 2252. This would technically make it a 126-bit curve, two bits short of the target 128-
bit level. Curve25519 is still widely accepted to offer “128-bit security” for the official reason
that the level is really about equivalence to AES-128 against brute force attacks and each step
in Pollard’s Rho algorithm will involve substantially more work than one AES encryption;
and, officiously, ditching Curve25519 because of a failure to reach a totally arbitrary level by
only two bits would be too inconvenient.

For the same reasons, in our own field selection process, we will be content with any field
that has cardinal close to 2250 or greater.

Taking all criteria listed so far, we end up with the following list:

– p < 216, and is prime.
– n ≥ 11, and is prime.
– Polynomial zn−c is irreducible overGF (p) for some constant c (this requires thatn|p−1).
– pn ≥ 2250.
– (1 + c(n − 1))p2 + (216 − 1)p < 232 + 216.

Wewant tominimize the degreen, since that parameter iswhatwill drive performance.There-
fore, for each potential n value, we want to find the largest possible p that satisfies the criteria
above. Note that since n divides p − 1, the criteria imply that n3 < 231, i.e. n < 1291.

We enumerated all primes n from 11 to 1289, and obtained the optimal values listed on
table 1.

All of these solutions use polynomial zn − 2 (i.e. c = 2 yields the best results). The list is
exhaustive in the following sense: for any line in the table, corresponding to a solution (n, c, p),
there is no triplet (n′, c′, p′) that fulfills the criteria and such that n′ ≤ n and p′n′ > pn. With
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degree n modulus p field size log2(p
n)

11 12739 150.007
13 11831 175.894
17 10337 226.704
19 9767 251.820
23 8971 302.014
29 7541 373.536
31 7193 397.184
37 6883 471.706
41 6397 518.370
43 6709 546.611
47 6299 593.183
53 6043 665.736
59 5783 737.359

Table 1: Optimal field degrees and base field modulus. All solutions useM = zn − 2.

larger degrees, we can get to increasingly larger fields, up to n = 761 for a 8045.83-bit field
(with p = 1523).

For our target goal of “128-bit security”, the best choice appears to be n = 19 and p =
9767: this yields a field size (and thus, a curve order) of about 251.82 bits, very close to the 252
bits of Curve25519.

3 E�icient Field Operations
3.1 Platform Details
The ARMCortex-M0+ is a small, low-power core that implements the ARMv6-M architec-
ture. This follows the “Thumb” instruction set, in which almost all instructions are encoded
over 16 bits; this instruction set is muchmore limited thanwhat is offered by larger cores such
as the ARMCortex-M3 andM4, that use the ARMv7-M architecture. The following points
are most relevant to implementation:

– There are 16 registers (r0 to r15); however, the program counter (r15) and the stack
pointer (r13) cannot practically be used to store any state values. Register r9 is reserved
(e.g. to support position-independent code, or thread-local storage) and is best left un-
touched. There are thus 13 usable registers.

– Very few operations can use the “high” registers (r8 to r15): only simple copies (mov)
and additions (add). Moreover, the additions are of the two-operand kind: one of the
source operands is the destination; thus, that operand is consumed.

– A few operations on the “low” registers (r0 to r7) can have an output distinct from
the operands, e.g. additions (adds) and subtractions (subs). Multiplications (muls),
however, are two-operand: when a product is computed, one of the source values is con-
sumed. If both source operandsmust be retained for further computations, then an extra
copy will be needed.
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– All computation opcodes execute in 1 cycle each, with no special latency (the result of an
opcode canbeused as source in thenext onewithnopenalty).However,memory accesses
take 2 cycles, both for reading and forwriting. Theldm andstm opcodes can respectively
read andwrite severalwords in a fasterway (1+N cycles forN 32-bitwords), furthermore
incrementing accordingly the register used as pointer for that access. The destination or
source registers must be among the low registers, and are used in ascending order.

– Unaligned accesses are not tolerated (they trigger CPU exceptions). 8-bit and 16-bit ac-
cesses can be performed, but cannot use addressing based on the stack pointer, contrary
to 32-bit accesses.

Since arithmetic operations are fast, but memory accesses are slow, and the number of
available registers is limited, most of the computation time will not be spent in actual com-
putations, but when moving data. Optimization efforts consist mostly in finding the algo-
rithmic data flow that will minimize the number of memory accesses, and will allow the use
of the relatively faster ldm and stm opcodes with two or more words per opcode.

Performance of any routine written in assembly can be obtained in two ways:

– by measuring it on a test microcontroller that has a precise cycle counter;
– by painstakingly counting instructions manually.

We applied both methods to our code, and they match perfectly. The test system is an Atmel
(now Microchip) SAM D20 Xplained Pro board, using an ATSAMD20J18 microcontrol-
ler[43]. That microcontroller can be configured to run on several clock sources; moreover,
it also has some internal counters that can also be configured to use these clock sources. By
using the same source (the internal 8 MHz oscillator) for both, an accurate cycle counter is
obtained.

It shall be noted that while the SAM D20 board can run at up to 48 MHz, the Flash
element that stores the code cannot provide 1-cycle access time at high frequencies; extra wait
states are generated, that slow down execution. By running tests at 8 MHz, we can avoid any
wait state. This is the usual way of providing benchmark values, and all figures in this article
assume zero-wait state RAM and ROM accesses5.

Counting instructions manually is a valid method, since the timing rules are simple (no
hidden penalty or optimizations). In our code, we obtain the exact same cycle counts as what
the measures show. This allows making most of the optimization work while working only
with a non-accurate software simulator. In practice, development was donemostly against an
embedded Linux libc (libc and compiler were obtained through the Buildroot project[16])
and executed with QEMU[52] in user-only mode (no full system emulation). This combi-
nation provides a great ease of debugging, but tests must still be ultimately performed on
actual hardware, because QEMU does not trap on unaligned accesses. Tests on hardware use
the cryptographic routines alone, with no libc, and only minimal boot code to configure the
clocks and serial line (for measure reporting).

The exact definition of the performance of a software routine is subject to some semi-
arbitrary choices: a routine must receive parameters, and returns results. The callee must pre-
serve some register values, as per the used ABI; the caller must then save all values that are not

5It is also possible to copy code into RAM and then executed it from RAM, allowing high-
frequency execution with no wait state; however, RAM is normally a scarce resource on microcon-
trollers, thus making that trick rarely worth it.
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in preserved registers, but that must still be retained. Which of these saving costs should be
accounted as part of the routine cost is a matter of definition.

In our implementations,we found that formost “expensive” routines (e.g.multiplication
of two elements), callers usually do not have many values to retain, and it is wasteful to force
the callee to save registers that the caller will not need. Indeed, saving registers r4 to r8, r10
and r11, as per the standard ARM ABI, and restoring them on exit, requires 22 cycles in
addition to the normal function entry (saving of the link register r12 on the stack) and exit
(restoring of that value into the program counter pc). Our internal routines (which are not
callable from C code) therefore use a modified ABI in which these registers are not saved.
For such routines, the figures reported below include all opcodes that constitute the function
body (including the initial “push { lr }” and the final “pop { pc }”) but not the cost
of the bl opcode that calls the routine (3 cycles) nor any value-saving costs on the caller side.

3.2 Baseline Performance
In [22], an implementation of Curve25519 point multiplication (with theMontgomery lad-
der) is reported, with the following performance:

– field multiplication: 1 469 cycles
– field squaring: 1 032 cycles
– curve point multiplication: 3 589 850 cycles

More recently, Haase and Labrique[31] reported slight improvements on the same oper-
ations:

– field multiplication: 1 478 cycles
– field squaring: 998 cycles
– curve point multiplication: 3 474 201 cycles

In [47], Nishinaga and Mambo claim a faster field multiplication, at only 1 350 cycles;
however, the performance of the complete curve point multiplication routine is worse than
above, at 4 209 843 cycles. Chances are that while they have a faster multiplication routine,
they do not have a dedicated routine for squarings, making the latter substantially slower
than they could. Moreover, they report substantially longer times for the ARM Cortex-M0
when compared with the M0+ (about +23% cycles), which is not consistent with known
instruction timings: theM0 andM0+ should differ only in rare corner cases, such as the cost
of a taken conditional branch (this costs one extra cycle on the M0). It is possible that their
test platform for the ARMCortex-M0 was used at a frequency that induced extra wait states
when reading fromROM/Flash. Since their codewas not published, such hypotheses cannot
be verified. We consequently disregard these figures in our evaluation.

We did not find any published benchmark for curve Edwards25519 on an ARMCortex-
M0 or M0+. We can make some rough estimates, based on the figures for Curve25519. The
Montgomery ladder implementation needs 5 multiplications and 4 squarings per multiplier
bit (using the formulas in [38] and ignoring the multiplication by the constant a24which is
much faster than a normal multiplication because the constant is a small integer). Since the
result is obtained as a fraction, and extra inversion is needed, normally implemented with a
modular exponentiation for a cost of about one squaring per modulus bit. The total cost per
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bit is then 5 multiplications and 5 squarings (denoted: “5M+5S”), plus some lighter opera-
tions (field additions and subtractions, conditional swap).We note that with the figures listed
above, the multiplications and squarings account for about 90% of the total cost.

For Edwards25519, a typical point multiplication will need about 251 doublings, and
some point additions. Amicrocontroller usually has limitedRAM, thereby preventing use of
large windows; a 4-bit window, storing 8 precomputed points in extended coordinates, will
need 1 kB of temporary RAM space, and imply one point addition every 4 point doublings6.
Using the formulas in [36], we find that:

– point doubling uses 4M+4S;
– point addition uses 8M (ignoring the multiplication by the curve constant d);
– decoding an input point (e.g. a Diffie-Hellman public key) from its encoded (compres-
sed) format requires a combined inversion and square root, normally done with a mod-
ular exponentiation (1S per modulus bit);

– obtaining the final point in affine coordinates implies an inversion, hence an extra 1S per
modulus bit.

This brings the total cost at 6M+6S per bit, i.e. about 20% more expensive than the Mont-
gomery ladder, but more versatile: since curve Edwards25519 offers generic complete point
addition formulas, it supportsmany cases beyondplainDiffie-Hellman, e.g. optimizing point
multiplication for a conventional generator (as used in key pair generation, and signature
generation), performing combinedmultiplications (as in EdDSA signature verification), and
more generally supporting any protocol.

The Ristretto map does not substantially change these figures: decoding and encoding
imply a modular exponentiation each, which replace the exponentiations involved in point
decompression and in conversion back to affine coordinates.

This estimate thus rates the “multiplication by a scalar” operation on the prime-order
Ristretto255 group at about 4.2 million cycles on an ARMCortex-M0+. Keep in mind that
it is only an estimate that cannot replace actual benchmarks:

– The “+20%” expression assumes that operations other than multiplications and squar-
ings add up to about 10% of the total cost, as is the case in Curve25519 implementations.

– Any particular usage context may have more available RAM and thus allow for larger
windows in the point multiplication algorithm.

– Decoding and encoding normally occur at the boundaries of the protocol, when per-
forming I/O. If a given protocol calls for several operations (e.g. several point multipli-
cations, and operations between the results), then the encoding and decoding could be
mutualized, thereby reducing their relative cost.

3.3 Element Representation
A field element is a polynomial with coefficients inGF (p), with degree at most 18. The repre-
sentation inmemorymust thus use 19 elements, each being an integermodulo p. As explained

6For the purposes of this paragraph, we are considering a constant-time point multiplication, suit-
able for all purposes, thus without wNAF optimizations that can be applied when processing public
values, e.g. for signature verification.
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in section 2, we useMontgomery representation for elements inGF (p), with values in the 1..p
range.

We use 16 bits per GF (p) element. To allow for accessing multiple elements at once, es-
pecially with the ldm and stm opcodes, we enforce 32-bit alignment for the whole array (i.e.
array elements with even indices are guaranteed to be 32-bit aligned).

Packing two elements in a single 32-bit wordmakes the representation relatively compact
(40 bytes per field element, including a dummy slot for alignment purposes), which saves
RAMand improves efficiency of bulk transfer operations. This also allowsmaking two (non-
modular) additions in one operation: 16-bit low halves addwith each other without inducing
extra carries into the high halves, since 2p < 216. On the other hand, use of the compact
format makes some operations somewhat harder, notably stack-based direct access to a 16-bit
value: there is no opcode that can read orwrite a single 16-bit element using sp as base address
register. We still found in our implementations that the compact format yields slightly better
performance, and much lower RAM usage, than the 32-bits-per-value format.

A simple way to express things is that since, on an ARM Cortex-M0+, operations are 1
cycle but memory accesses are 2 cycles each, the biggest cost is not computations but moving
the data around.Anything that reducesmemory exchanges tends to be good for performance.

3.4 Additions and Subtractions
When adding field elements, the individual polynomial coefficients must be added pairwise.
The addition or subtraction itself can be done on the packed format, but reducing the result
into the expected range (1..p) requires splitting words into individual elements, and perform-
ing a conditional subtraction of the modulus p. This last operation can be performed in 4
cycles on an ARMCortex-M0+:

subs r1, r7, r0 @ r1 <- r7 - r0
asrs r1, #31 @ r1 <- r1 >> 31 (with sign extension)
ands r1, r7 @ r1 <- r1 & r7
subs r0, r1 @ r0 <- r0 - r1

This code snippet reduces value in r0, using r1 as scratch register. The register r7must have
been loaded with the constant value p = 9767 (r7 is not modified and can be reused for
further reductions). This code subtracts p from r0 only if the reverse operation (subtracting
r0 from p) would have yielded a strictly negative value (sign bit set); thus, values in 1..p are
unchanged, and values in p + 1..2p are reduced by subtracting p. The result is in the expected
range (1..p).

Subtractions can be done in a similar way, but with an extra detail to take into account:
the subtraction can yield a negative value. Thus, when subtracting two 32-bit words, a carry
bit from the low halves may impact the high halves; the splitting of the word into two 16-bit
values will then need to compensate for this potential carry:

subs r3, r5 @ r3 <- r3 - r5
sxth r4, r3 @ sign-extend low half of r3 into r4
subs r3, r4 @ r3 <- r3 - r4
asrs r3, #16 @ r3 <- r3 >> 16 (with sign extension)
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The sxth opcode sign-extends the low half of r3, thus interpreting these 16 bits as a signed
representation; then, the second subs opcode subtracts that sign-extended value from the
source: this clears the low half and removes the action of the carry resulting from the initial
subtraction, if therewas one.The arithmetic right shift then recovers the highhalfwith signed
interpretation.Once the twohalves have thus been separated, the reduction is done by adding
p to the value x if and only if x + 1 < 0 (the +1 is needed because we want x = p to remain
equal to p, and not replace it with 0).

In the course of computations on elliptic curve points, it often happens that several addi-
tions or subtractionsmust be applied successively, sometimeswith small factors. For instance,
given field elements u, v andw, 2(u− v−w)must be computed. It is then efficient to combine
the operations, in order tomutualize the RAM accesses and themodular reductions. The in-
termediate value range is greater, though, preventing use of the 4-cycle conditional additions
or subtractions explained above. Instead, we can use a derivative of Montgomery reduction;
namely, to reduce value x, we apply Montgomery reduction on xR, where R = 232 mod p.
Moreover, the first step ofMontgomery reduction is a multiplication by a constant (modulo
232); we canmerge thatmultiplicationwith themultiplication byR. This yields the following
code sequence:

muls r0, r7 @ r0 <- r0 * r7
lsrs r0, #16 @ r0 <- r0 >> 16
muls r0, r6 @ r0 <- r0 * r6
lsrs r0, #16 @ r0 <- r0 >> 16
adds r0, #1 @ r0 <- r0 + 1

which is identical to the one used for Montgomery reduction (see section 2.4), but the con-
stants are different: we set r6 to p = 9767, and r7 to −(232 mod p)/p mod 232 = 439 742.
Exhaustive experiments show that for all inputs x in the 1..509 232 range, the correct reduced
value in the 1..p range is obtained.

We implemented dedicated unrolled routines for all such “linear” operations that are
needed in our curve point operation routines, with individual costs ranging between 173 and
275 cycles.

3.5 Multiplication
Consider amutiplication of field elements u and v, each consisting in 19 elements. The generic
“schoolbook” multiplication routine, using the formulas in section 2.3, leads to 361 multi-
plications and 361 additions (since the field modulus is z19 − c with c = 2, multiplications
by c are equivalent to additions). Moreover, extra copies are needed, because the muls op-
code consumes one of its operands; at the very least, all but 19 of the multiplications must
involve an extra copy. The total bare minimum cost of a schoolbook multiplication is then
3× 361− 19 = 1064 cycles. This is not attainable, since this count ignores all the costs of read-
ing data from RAM and writing it back. Also, the Montgomery reductions must be applied
on top of that.

Karatsuba multiplication[37] reduces the cost of a multiplication of polynomials. Sup-
pose that two polynomials u and v, of degree less than m, must be multiplied together. We
split the polynomial u into a “low” and “high” halves:

u = ul + zm/2uh

15



where ul and uh are polynomials of degree less thanm/2. We similarly split v into vl and vh.
We then have:

uv = (ul + zm/2uh)(vl + zm/2vh)
= ulvl + zm/2(ulvh + uhvl) + zmuhvh
= ulvl + zm/2((ul + uh)(vl + vh) − ulvl − uhvh) + zmuhvh

We can thus multiply twom-element polynomials by computing three products of polyno-
mials with m/2 elements: ulvl , uhvh, and (ul + uh)(vl + vh). Applied recursively on these
sub-products, Karatsuba multiplication leads to sub-quadratic asymptotic costO(mlog2 3) ≈

m1.585.
The description above assumes thatm is even, and that the splits are even. Uneven splits

are also possible, although usually less efficient. If you start with m = 19, and split into low
halves of 10 elements (degree less than 10) and high halves of 9 elements, then the three sub-
products are:

– ulvl : two polynomials of degree less than 10, result of degree less than 19;
– uhvh: two polynomials of degree less than 9, result of degree less than 17;
– (ul + uh)(vl + vh): two polynomials of degree less than 10, result of degree less than 19.
However, since uh and vh are one element shorter than ul and vl , the top element (degree
18) of this product is necessarily equal to the top element of ulvl , and the subsequent
polynomial subtraction will cancel out these values. We can thus content ourselves with
computing the low 18 elements of (ul + uh)(vl + vh) (degrees 0 to 17) and ignore the top
one.

Asymptotic behaviour is an approximation of the cost for sufficiently large inputs; but
our inputs are not necessarily large enough for that approximation to be accurate. Karatsuba
split reduces the number of multiplications but increases the number of additions; for small
enough inputs, the extra additions overtake the cost savings from doing fewer multiplica-
tions. The threshold depends on the relative costs of additions and multiplications. In our
case, multiplications are inexpensive, since Montgomery reduction is delayed. Moreover, as
was pointed out previously, the costs of exchanging data between registers and RAM tend
to be higher than the costs of computations. Thus, estimates based on operation counts that
assume ideally free data movements may lead to the wrong conclusions, and only actual ex-
periments will yield proper results.

In our implementation, we found that, on theARMCortex-M0+, one level ofKaratsuba
split is optimal; the operands are split into a low half of 10 elements, and a high half of 9
elements. The computation of ul + uh can be done two elements at a time, since elements are
expressed over 16 bits and packed by pairs into 32-bit words. Performing further splits yields
only worse performance.

The additions and subtractions that follow the three sub-products (the “Karastuba fix-
up”) must operate on the 32-bit intermediate words (Montgomery reduction has not been
applied yet at this point). We combine these operations with the reduction modulo z19 − 2,
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and withMontgomery reductions. If we define the following:

α = ulvl
β = uhvh
γ = (ul + uh)(vl + vh)
w = uv mod z19 − 2

then the output words are computed as:

wi = αi + γi−10 − αi−10 − βi−10 + 2(βi−1 + γi+9 − αi+9 − βi+9)

with the convention that out-of-range coefficients are zero (i.e. αj = 0when j < 0 or j ≥ 19).
In the expression above, γi−10, αi−10 and βi−10 can be non-zero only if γi+9, αi+9 and βi+9 are
zero, and vice versa. Each wi would then entail reading five 32-bit words, but some of these
read operations can be shared if we produce the outputwords in the order:w9,w0,w10,w1,. . . ,
i.e. computationofwj is followedby computationofwj−9 mod 19.Only threememory reads are
then needed for each output word on average. Some of these words can be further optimized
by noticing that, for instance, βj = 0 for j ≥ 17, and γ19 = α19.

Putting all together, we obtain the individual costs detailed in table 2, for a total cost of
1 574 cycles. Compared to the baseline performance (section 3.2), this is about 7.1% higher
than the field multiplication cost reported in [22]. Thus, while the use of the finite field
GF (976719) does not yield a faster multiplication routine than with the fieldGF (2255 − 19),
it is still competitive, the difference in performance being slight.

Operation Cost (cycles)
function prologue 5
ul + uh and vl + vh 63
ulvl 410
uhvh 345
(ul + uh)(vl + vh) 405
Karatsuba fix-up andMontgomery reduction 337
function exit 5
Total 1 574

Table 2: Field multiplication cost.

Squarings. Squarings can be optimized by noticing that:

u2 = (ul + z10uh)2

= u2l + 2z
10uluh + z20u2h
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reducing the 19-element squaring to a 10-element squaring, a 9-element squaring, and a 10×9-
elementmultiplication.However, in our experiments, we found that squarings of polynomi-
als of 10 elements or fewer are almost twice faster than genericmultiplications,mostly because
all operands can then fit into registers and avoid almost all read and write accesses to RAM.
Therefore, better performance is achieved by using Karatsuba multiplication:

u2 = (ul + z10uh)2

= u2l + z
10((ul + uh)2 − u2l − u

2
h) + z

20u2h

Weobtain the cycle counts detailed in table 3, for a total of 994 cycles. This is very slightly
faster than the best reported baseline squaring inGF (2255 − 19) (998 cycles, in [31]). A note-
worthy point is that squaring costs are only about 63.2% of multiplication costs; in elliptic
curve computations, this makes it worthwhile to replace 2 multiplications with 3 squarings.
This impacts analysis of elliptic curve formulas; e.g. [10] ranks formulas under the assump-
tion that a squaring cost is 80% of a multiplication cost.

Operation Cost (cycles)
function prologue 5
ul + uh 30
u2l 219
u2h 182
(ul + uh)2 216
Karatsuba fix-up andMontgomery reduction 337
function exit 5
Total 994

Table 3: Field squaring cost.

Another important remark is that additions and subtractions are relatively expensive: an
addition in the field is 173 cycles, i.e. about 11% of the cost of a multiplication, and 17.4%
of the cost of a squaring. This highlights that counting multiplications and squarings is not
sufficient to get an accurate estimate of a complete operation on elliptic curve points.

3.6 Inversion
Modular inversion can be computed in several ways. The main recommended method is to
use Fermat’s little theorem; namely, the inverse of u in a finite field of cardinal q is uq−2. Nomi-
nally, u = 0 does not have an inverse, but the exponentiation yields a result of 0 if the operand
is 0, and that turns out to be convenient in some edge cases. For anm-bit exponent q−2,m−1
squarings will be needed, alongwith some extramultiplications; since the exponent is known
in advance and not secret, the number of extra multiplications can be quite small by using an
optimized addition chain on the exponent. In [22], inversion inGF (2255 − 19) is performed
with 254 squarings, and 11 extra multiplications.
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OnGF (976719), we can use amuch fastermethod, which computes an inversion in a cost
equivalent to only 6multiplications. Themethodwas initially described by Itoh andTsujii in
the context of binary fields[35], then adapted to other finite field extensions (e.g. see [32]). It
uses the following remark:

pn − 1 = (p − 1)(1 + p + p2 + p3 + · · · + pn−1)

Let r = 1 + p + p2 + · · · + pn−1, and let x , 0 a field element to invert. By Fermat’s little
theorem, we have:

(xr)p−1 = xp
n−1

= 1

Therefore, xr is a root of thepolynomialX p−1−1over the finite fieldGF (pn). That polynomial
can have atmost p−1 roots, and all elements ofGF (p) are roots, therefore the roots ofX p−1−1
overGF (pn) are exactly the elements of the sub-fieldGF (p). It follows that xr ∈ GF (p).

We can thus compute the inverse of x as:

x−1 =
xr−1

xr

The division by xr is easy since it requires only an inversion inGF (p), followed by a multipli-
cation of xr−1 by that inverse, which is also inGF (p).

The values xr−1 and then xr can be efficiently computed through application of the Frobe-
nius automorphism. In a finite field GF (pn), we define the j-th Frobenius operator (for 0 ≤
j < n) as:

Φj : GF (pn) −→ GF (pn)

x 7−→ xp
j

Since GF (pn) has characteristic p, these operators are automorphisms: Φj(xy) = Φj(x)Φj(y)
and Φj(x + y) = Φj(x) + Φj(y) for all x and y in GF (pn). Moreover, when the finite field is
defined as the quotient ringGF (p)[z]/(zn − c), then we have:

Φj(zi) = cij(p−1)/nzi

This means that computing Φj(x) over a field element x is a simple matter of term-by-term
multiplication with the values cij(p−1)/n in GF (p); these values can be precomputed. In our
implementation, applicationof a Frobenius operator costs 211 cycles, i.e. slightlymore than an
addition, butmuch less so than amultiplication. Suchoptimizationof theFrobenius operator
is the main reason why we wanted the field extensionmodulus with the form zn − c for some
constant c inGF (p), and not, for instance, zn − z − 1 (which would also have supported base
primes p in an adequate range).

The inversion algorithm (see algorithm 1) leverages these facts to compute xr−1 in only 5
multiplications, and 6 applications of a Frobenius operator.
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Algorithm 1 Fast inversion inGF (976719)
Require: x ∈ GF (pn), x , 0, p = 9767, n = 19
Ensure: 1/x
1: t1 ← x · Φ1(x) . t1 = x1+p

2: t1 ← t1 · Φ2(t1) . t1 = x1+p+p
2+p3

3: t1 ← t1 · Φ4(t1) . t1 = x1+p+p
2+· · ·+p7

4: t1 ← x · Φ1(t1) . t1 = x1+p+p
2+· · ·+p8

5: t1 ← t1 · Φ9(t1) . t1 = x1+p+p
2+· · ·+p17

6: t1 ← Φ1(t1) . t1 = xp+p
2+p3+· · ·+p18 = xr−1

7: t2 ← xt1 . t2 = xr ∈ GF (p)
8: t2 ← tp−22 . Inversion inGF (p)
9: t1 ← t1t2 . t1 = xr−1/xr = 1/x
10: return t1

In algorithm 1, the following remarks apply:

– Four of the fieldmultiplications are between u andΦj(u) for some element u. The Frobe-
nius operator and the multiplication can be combined to avoid some write operations
that are then read again immediately. In our implementation, this saves about 36 cycles
each time, i.e. 144 cycles over the complete inversion.

– Themultiplication in step 7 is fast because the result is known to be an element ofGF (p);
thus, only one polynomial coefficient needs to be computed.

– Inversion of t2 inGF (p) (step 8) can be done with Fermat’s little theorem, i.e. by raising
the input to the power p − 2. With p = 9767, this is a matter of only 17 Montgomery
multiplications. In our implementation, this step costs only 107 cycles.

– Multiplication by t2 in step 9 is a simple coefficient-wisemultiplication, thusmuchmore
efficient than a normal multiplication.

Our implementation achieves the costs listed in table 4, for a total of 9 508 cycles. This
is 6.04 times the cost of a single multiplication. Since the algorithm itself involves 5 generic
multiplications, thismeans that the 6 Frobenius operators, the specializedmultiplication that
yields xr , the inversion in GF (p), and the final multiplication by x−r , collectively cost about
the same as a 6th generic multiplication.
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Operation Cost (cycles)
function prologue 7
combined Frobenius and multiplication (step 1) 1 762
combined Frobenius and multiplication (step 2) 1 763
combined Frobenius and multiplication (step 3) 1 763
Frobenius and multiplication (step 4) 1 798
combined Frobenius and multiplication (step 5) 1 763
Frobenius (step 6) 217
xr 130
x−r 110
xr−1x−r 190
function exit 5
Total 9 508

Table 4: Field inversion cost.

3.7 Square Root
Using techniques similar to the fast inversion algorithm exposed in section 3.6, we can obtain
a fast square root extraction algorithm, and an even faster quadratic residue test.

Our field has cardinal q = 976719. Since q = 3 mod 4, square roots of element x ∈ GF (q)
are obtained as:

√
x = ±x(q+1)/4

If x is not a quadratic residue, then−x is a quadratic residue, and thismodular exponentiation
returns a square root of −x.

The exponent can be written as:

p19 + 1
4
= (2e − r)

p + 1
4

where:
d = 1 + p2 + p4 + · · · + p14 + p16
e = 1 + dp2 = 1 + p2 + p4 + · · · + p14 + p16 + p18
f = pd = p + p3 + p5 + · · · + p15 + p17
r = e + f = 1 + p + p2 + p3 + · · · + p17 + p18

This allows performing the square root computations as:

√
x = ±

(
(xe)2

xr

) (p+1)/4
As in the case of the inversion algorithm, xr is an element of the sub-field GF (p), hence in-
expensive to invert; and ae can be computed with a few multiplications and applications of
Frobenius operators. The final exponentiation, with exponent (p+ 1)/4, can be done with 10
squarings and 4 multiplications.
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The algorithm can also return whether the operand is a quadratic residue. Indeed, x , 0
is a quadratic residue if and only if x(q−1)/2 = 1. This exponent can be written as:

p19 − 1
2
= r
p − 1
2

Therefore, x(q−1)/2 = (xr)(p−1)/2. In other words, x is a quadratic residue inGF (q) if and only
if xr is a quadratic residue inGF (p) (this also applies for x = 0). Since we compute xr as part
of the algorithm, we can also check whether it is a quadratic residue for fewer than 100 extra
cycles. Moreover, if we are only interested in whether x is a quadratic residue, we can stop
there and avoid the final raise to power (p + 1)/4.

The exact process is described in algorithm 2. The operation costs are detailed in table 5,
for a total cost of 26 962 cycles. If the square root is not requested, only the quadratic residue
status, then that status is obtained in 9 341 cycles.

Algorithm 2 Fast square root inGF (976719)
Require: x ∈ GF (pn), p = 9767, n = 19
Ensure: QR status of x;

√
x if QR,

√
−x otherwise

1: t1 ← x · Φ2(x) . t1 = x1+p
2

2: t1 ← t1 · Φ4(t1) . t1 = x1+p
2+p4+p6

3: t1 ← t1 · Φ8(t1) . t1 = x1+p
2+p4+· · ·+p14

4: t1 ← x · Φ2(t1) . t1 = x1+p
2+p4+· · ·+p16

5: t2 ← Φ1(t1) . t2 = xp+p
3+p5+· · ·+p17 = xf

6: t1 ← x · Φ1(t2) . t1 = x1+p
2+p4+· · ·+p18 = xe

7: t3 ← t1t2 . t3 = xr ∈ GF (p)
8: t4 ← t(p−1)/23 . t4 = 0, 1 or −1
9: if only QR status is requested then return (t4 , −1)
10: t3 ← tp−23 . Inversion inGF (p)
11: t1 ← t21 . t1 = x2e

12: t1 ← t1t3 . t1 = x2e/xr

13: t1 ← t(p+1)/41 . t1 =
√
x or
√
−x

14: return (t4 , −1) and t1
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Operation Cost (cycles)
function prologue 7
combined Frobenius and multiplication (step 1) 1 762
combined Frobenius and multiplication (step 2) 1 763
combined Frobenius and multiplication (step 3) 1 763
Frobenius and multiplication (step 4) 1 798
Frobenius (step 5) 217
Frobenius and multiplication (step 6) 1 798
xr 129
QR status 100
exit if only QR status requested 4
x−r 113
(xe)2 999
(xe)2x−r 195
raise to power (p + 1)/4 16 311
function exit 7
Total 26 962
(if only QR status requested) 9 341

Table 5: Field square root cost.

3.8 Cube Root
Since q = 976719 = 2 mod 3, every element in GF (q) has a unique cube root, which is
obtained with a modular exponentiation:

3√x = x(2q−1)/3

As in the case of square roots, this exponentiation canbe greatly optimizedwith theFrobenius
operator. The exponent is rewritten as:

2p19 − 1
3

= e
2p − 1
3
+ f
p − 2
3

with e and f defined as in section 3.7. We then compute the cube root as:

3√x = (xe)(2p−1)/3(xf )(p−2)/3

= xe(x2e+f )(p−2)/3

This yields algorithm 3 with costs detailed in table 6 and a total cost of 31 163 cycles.
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Algorithm 3 Fast cube root inGF (976719)
Require: x ∈ GF (pn), p = 9767, n = 19
Ensure: 3√x
1: t1 ← x · Φ2(x) . t1 = x1+p

2

2: t1 ← t1 · Φ4(t1) . t1 = x1+p
2+p4+p6

3: t1 ← t1 · Φ8(t1) . t1 = x1+p
2+p4+· · ·+p14

4: t1 ← x · Φ2(t1) . t1 = x1+p
2+p4+· · ·+p16

5: t2 ← Φ1(t1) . t2 = xp+p
3+p5+· · ·+p17 = xf

6: t1 ← x · Φ1(t2) . t1 = x1+p
2+p4+· · ·+p18 = xe

7: t2 ← t21 t2 . t2 = x2e+f

8: t2 ← t(p−2)/32 . t2 = (x2e+f )(p−2)/3
9: t1 ← t1t2 . t1 = 3√x
10: return t1

Operation Cost (cycles)
function prologue 7
combined Frobenius and multiplication (step 1) 1 762
combined Frobenius and multiplication (step 2) 1 763
combined Frobenius and multiplication (step 3) 1 763
Frobenius and multiplication (step 4) 1 798
Frobenius (step 5) 217
Frobenius and multiplication (step 6) 1 798
x2e+f 2 579
raise to power (p − 2)/3 17 890
final multiplication (step 9) 1 581
function exit 5
Total 31 163

Table 6: Field cube root cost.

Other root computations can benefit from such optimizations. In general, every expo-
nentiation inGF (pn) can be optimized by representing the exponent in base p, and splitting
the exponentiation into n exponentiations with short exponents (less than p) over theΦj(x)
and whose results are multiplied together; with classic square-and-multiply algorithms, this
allows mutualizing all the squaring operations. When the exponentiation is for a k-th root
with k small, the various small exponents tend to have common parts, leading to further op-
timizations, as we just saw for inversions, square roots and cube roots.
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4 Curve9767
Using the finite field GF (976719) we defined in section 2 and for which efficient operations
were described in section 3, we now proceed to define an elliptic curve over this field. Follow-
ing the current fashion of naming curves with the concatenation of the term “Curve” and a
sequence of seemingly random digits, we call our new curve “Curve9767”, the digits being,
of course, the decimal representation of the base modulus p.

4.1 Choosing The Curve
The choice of the exact curve to use was the result of a process taking into account known
criteria for security, and with as few arbitrary choices as possible. We describe the steps here.

In all of the following, we keep using the notations used previously: the base field modu-
lus is p = 9767, and the field cardinal is q = p19.

Curve Equation. Since we want a prime-order curve, we cannot useMontgomery or Ed-
wards curves (which always have an even order). Instead, we concentrate on the short Weier-
straß equation y2 = x3 + ax + b. The choice is then really about the two constants a and b,
which are elements ofGF (q).

We cannot choose a = 0: since the field cardinal q = 2 mod 3, this would lead to a curve
with exactly q + 1 elements, which is an even number. Moreover, it would be supersingu-
lar, implying in particular a quadratic embedding degree and consequently severe weakness
against pairing-based attacks such as MOV[42] and FR[25,26].

Similarly, we cannot choose b = 0: since q = 3 mod 4, this would again yield a supersin-
gular curve with q + 1 elements.

There are known curve point addition formulas that can leverage the specific choice a =
−3 for slightly better performance in some cases, e.g. for point doubling with Jacobian coor-
dinates[10]7. Moreover, for any non-zero u, the mapping (x, y) 7→ (xu−2, yu−3) is an isomor-
phism between curve y2 = x3 + ax + b and curve y2 = x3 + au4x + bu6, which implies that
we can choose the constant amostly arbitrarily: about half of all possible curves can be trans-
formed efficiently through such an isomorphism into a curve whose equation has a = −3.

In all generality, if a is fixed, then b should be chosen pseudorandomly, if wewant to claim
that a large fraction of possible curves could have been chosen. However, there is no known
weakness induced by any specific choice of b; we can set it to a low Hamming weight value
bizi for some integer i ∈ [1..18] (as explained above, we need b < GF (p), hence i , 0). This
should not be a controversial optimization, since it is commonly done for other curves. For
instance, a similar optimization was done in the choice of Curve25519: the curve equation
is By2 = x3 + Ax2 + x, but the constant B is fixed to 1 (which does not unduly shrink the
space of possible curves, thanks to isomorphisms) and the constantA is chosen to be a small
integer so as to promote performance[8].

7In our specific case, even when using Jacobian coordinates, these formulas don’t actually lead to
better performance on the ARM Cortex-M0+ because field squarings are substantially more efficient
thanmultiplications,making 1M+8Sgeneric doubling formulas a better choice than specialized 3M+5S.
However, thismight not be true of other target architectures, andwe’d like to keep our implementation
options as open as possible.
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Twist Security. The concept of “twist security” is introduced in [8], in the context of
a specialized point multiplication routine for Curve25519, based on a Montgomery ladder,
in which only the x coordinates of points are used. For any x such that Q = (x, y) is a curve
point, there is exactly one other point−Q = (x,−y)with the same x coordinate; therefore, the
x coordinate is sufficient to represent Q, up to the sign of y. Since usual Diffie-Hellman uses
only the x coordinate of the result as shared secret, this is sufficient for some cryptographic
applications: public points Q and −Q lead to the same output, and thus the sign of y is not
used. This allows efficient implementations, because the y coordinate needs not be transmit-
ted, and the ladder computes the x coordinates only. However, a consequence is that since y
is not available, there is no easy (cheap) way to validate incoming points, i.e. that a received x
really corresponds to a point on the curve.

Analysis shows that any field element is either the x coordinate of a point on the intended
curveE, or the x coordinate of a point on the quadratic twist, i.e. another curveE ′ such thatE
andE ′ become the same curve in a quadratic field extensionGF (q2). If the order ofE ′ admits
small prime factors, then this would allow invalid curve attacks[12], in which the attacker
sends invalid points (i.e. points on the twisted curve) with a small order, allowing an easier
break of Diffie-Hellman in that case, leading to partial information on the victim’s private
key. Twist security is about choosing the curve E such that both E and E ′ have prime order
(or close to prime order, with very small cofactors): in a nutshell, it does not matter whether
computations are done on E or E ′, as long as both are “safe”.

In our case, twist security is not really required; even when using an x-only implementa-
tion, input point validation is inexpensive thanks to the efficient quadratic residue test (see
section 3.7): for a given x, we can compute x3 + ax + b; x is valid if and only if that quantity
is a quadratic residue. However, ensuring twist security is “free”: it is only an extra parameter
to the curve selection, thus with no runtime cost, as long as requiring twist security does not
prevent us from using a particularly efficient curve constant. We will then try to obtain twist
security in our curve choice.

When using the short Weierstraß equation y2 = x3 + ax + b on a field GF (q) where
q = 3 mod 4, the quadratic twist has equation−y2 = x3 + ax+ b, which is isomorphic to the
curve of equation y2 = x3+ax−b (with the isomorphism (x, y) 7→ (−x, y)). Therefore, if a is
fixed to a given value (e.g. −3) and we look for b with a minimal Hamming weight, then the
twisted curvewill use the same a, and a constant−bwith the sameminimalHammingweight.
When enumerating possible curves, we will naturally cover the twisted curves at the same
time. In that sense, when E and E ′ both have prime order, we are free to choose either as our
curve. In that case, we will use the one with the smallest order: in a Diffie-Hellman context,
when receiving point Q, the defender computes sQ for a secret non-zero scalar s modulo the
curve order E; choosing E to be smaller than its twist E ′ ensures that the computation sQ
does not yield the point at infinity O, either as a result or an intermediate value, even if Q is
really a point on E ′ instead of E.

Curve Parameters. Given the criteria explained above, we enumerated all curves y2 =
x3 + ax + b overGF (976719), with a = −3 (i.e. p − 3, an element ofGF (p)) and b = bizi for
bi ∈ GF (p), bi , 0, and 1 ≤ i ≤ 18, looking for curves with prime order.

Application of the Frobenius operatorΦj maps curve y2 = x3 − 3x + bizi to curve y2 =
x3−3x+2ij(p−1)/19bizi, which is also in the set of evaluated curves. Therefore, each considered
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curve is really a set of 19 isomorphic curves.We can thus restrict ourselves to only one curve in
each set, which speeds up the search by a factor 19. We (arbitrarily) choose the representative
as the one with the smallest value bi when expressed as an integer in the 0..p − 1 range.

Up to Frobenius isomorphism, there are 18(p − 1)/19 = 9252 curves to consider. Using
PARI/GP[48], along with the optional seadata-small package (to speed up point count-
ing), we found that exactly 23 of them have a prime order8. As luck would have it, exactly
two of them are twists of each other; as per our criteria, we then choose as Curve9767 the one
with the smallest order, corresponding to b = 2048z9 (the set of 19 isomorphic curves for the
twisted curve then corresponds to b = 359z9).

A conventional generator should be selected for the curve. Since the curve has prime or-
der, any point (other than the point at infinity) generates the whole curve; moreover, the
ability to solve discrete logarithm relatively to a specific generator is equivalent to the abil-
ity to solve it relatively to any other generator. We can thus choose any generator we want.
Usually, the choice won’t have any impact on performance, but one can imagine some edge
cases where coordinates with low Hamming weight are preferable. The value with the low-
est Hamming weight is zero. There is no point on Curve9767 with coordinate y = 0 (since
this would be a point of order 2), but there are two points with x = 0: these are the two
points (0,±

√
b). Both have a y coordinate withHamming weight 1. As in the case of bwithin

its Frobenius isomorphism class, we arbitrarily choose the point whose y coordinate is the
lowest when expressed as an integer in the 0..p − 1 range.

The resulting Curve9767 parameters are summarized in table 7.

Field GF (9767)[z]/(z19 − 2)

Field order 976719

Equation y2 = x3 − 3x + 2048z9

Order 6389436622109970582043832278503799542449455630003248488928817956373993578097

Generator G = (0, 32z14)

Table 7: Curve9767 definition parameters.

Embedding Degree. For an elliptic curve defined over a finite field GF (q), and a prime
r that divides the curve order, such that r is not the field characteristic and r2 does not divide
the curve order, the curve contains r points of order r. The embedding degree is theminimum
integer k > 0 such that the same curve over the extension field GF (qk) contains r2 points of
order r. It has been shown by Balasubramanian and Koblitz[7] that k is the smallest positive
integer such that r divides qk − 1; in other words, k is the multiplicative order of qmodulo r.
k is always a divisor of r − 1.

Pairing-based attacks likeMOV[42] and FR[25,26] rely on transferring the elliptic curve
discrete logarithmproblem into the the discrete logarithmproblem in themultiplicative sub-

8The search script is provided with the Curve9767 source code. Enumeration took 1 hour and 40
minutes on a 3.1 GHz x86 server, using a single core.
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group ofGF (qk). Therefore, these attacks are possible only if k is small enough that the best
known sub-exponential algorithms for the latter problem are faster than generic attacks on
the elliptic curve. For an ordinary curve which has not been chosen to be especially pairing-
friendly, we expect k to be a very large integer. Various bodies have emitted recommendations
that insist on kbeing larger than a given threshold; for instance,ANSIX9.62:2005[1] requires
k ≥ 100, while SafeCurves[11] goes much beyond (in their words, the “overkill approach”)
and requires k ≥ (r − 1)/100.

In the case of Curve9767, the curve order itself is prime, hence the only possible value for
r is the curve order. The embedding degree then happens to be k = r − 1 ≈ 2251.82, i.e. the
maximum possible value. This makes Curve9767 as immune to MOV and FR attacks as it is
possible for an elliptic curve to be.

Complex Multiplication Discriminant. For an elliptic curve defined over a finite field
GF (q) and with order r, the trace is the value t = q + 1 − r. By Hasse’s theorem, |t | ≤
2√q; thus, t2 − 4q is a negative integer. Write that quantity asDV 2, whereD is a square-free
negative integer, and V is a positive integer. The value D is the complex multiplication field
discriminant9.

When |D| is very small, it may accept low-degree (i.e. efficiently computable) curve en-
domorphisms that can be used to speed up point multiplications[27,40]. This has been used
in curves specially designed to that effect, e.g. secp256k1[18] and FourQ[19]. However, when
a curve has not been specifically chosen for a small discriminant, it is expected that the value
of |D| is large. Curves with a small discriminant are certainly not broken, but an unexpected
small discriminant would be indicative of some unaccounted for underlying structure, which
would be suspicious.

In Curve9767, the t2 − 4q quantity is already square-free (i.e. V = 1) leading to a very
large discriminantD ≈ −2253.82, as is expected of most ordinary curves.

4.2 Point Representation
In our implementation, a pointQ on the curve is the combination of three elements (x, y,N ):

– x and y are the affine coordinates ofQ; they are elements ofGF (q), in the representation
used in section 3.3 (40 bytes each, including the dummy slot for 32-bit alignment).

– N is the “neutral flag”: an integer with value 1 (if Q = O) or 0 (if Q , O).

We encodeN over a 32-bit field, again for alignmentpurposes.WhenN = 1, the contents
of x and y are unspecified; since we use the exact-width type uint16_t, access does not lead
to “undefined behavior” in the C standard sense, even if not explicitly set in the code10, but
these values are ultimately ignored since the point at infinity does not have coordinates. A
consequence is that O has multiple representations, while all other points have a unique in-
memory representation.

9Strictly speaking, whenD is a multiple of 4, the actual discriminant is defined to be 4D. But this
cannot happen for an odd-order curve over an odd-characteristic field, because then t must be odd,
implying thatD = 1 mod 4.

10Exact-width types are not allowed to have any padding bits or trap representations, therefore they
always have a readable value, even if it is not specified.
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4.3 Point Addition
We implementpoint additionby applying the affine equations, as shown in section 1.Wewant
a complete, constant-time routine, i.e. one that works on all combinations of inputs, with an
execution time and memory access pattern independent of input values (see section 5.1 for
details). This is achieved with the process described in algorithm 4.

Algorithm 4 Point addition for Curve9767
Require: Q1 = (x1, y1, N1) and Q2 = (x2, y2, N2) points on Curve9767
Ensure: Q3 = Q1 + Q2
1: ex ← EQ(x1, x2) . ex = 1 if x1 = x2, 0 otherwise
2: ey ← EQ(y1, y2) . ey = 1 if y1 = y2, 0 otherwise
3: t1 ← x2 − x1
4: t3 ← 2y1
5: CONDCOPY(&t1, t3, ex) . t1 is the denominator of λ
6: t2 ← y2 − y1
7: t3 ← 3x21 − 3
8: CONDCOPY(&t2, t3, ex) . t2 is the numerator of λ
9: t1 ← t2/t1 . t1 = λ
10: x3 ← λ2 − x1 − x2
11: y3 ← λ(x1 − x3) − y1
12: CONDCOPY(&x3, x2, N1)
13: CONDCOPY(&x3, x1, N2)
14: CONDCOPY(&y3, y2, N1)
15: CONDCOPY(&y3, y1, N2)
16: N3 ← (N1N2) + (1 −N1)(1 −N2)ex(1 − ey)
17: return Q3 = (x3, y3, N3)

In algorithm 4, two helper functions are used:

– EQ(u, v) returns 1 if u = v, 0 if u , v.
– CONDCOPY(&u, v, F ) overwrites uwith v if F = 1, but leaves u unmodified if F = 0.

Both functions are implemented with constant-time code: for instance, inCONDCOPY, all
words of u and v are read, and all words of uwritten to, regardless of whether F is 0 or 1.

This description is formal; in the actual implementation, some operations are combined
to lowermemory traffic. Typically, the conditional copies in step 12 and 13 are done in a single
loop; similarly for steps 14 and 15.

We can see that the algorithm implements all edge cases properly:

– If Q1 = O and Q2 = O, thenN1 = 1 andN2 = 1, leading toN3 = 1, i.e. Q1 + Q2 = O.
– IfQ1 = O andQ2 , O, then (x3, y3) is set to (x2, y2) in steps 12 and 14, but not modified
in steps 13 and 15. Also,N3 is set to 0. The result is thus point Q2, as expected.

– IfQ1 , O andQ2 = O, then (x3, y3) is set to (x1, y1) in steps 13 and 15, but not modified
in steps 12 and 14. Also,N3 is set to 0. The result is thus point Q1, as expected.

– Otherwise, Q1 , O and Q2 , O, i.e.N1 = 0 andN2 = 0. The following sub-cases may
happen:
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• If Q1 = Q2 then ex = 1 and ey = 1. The numerator and denominator of λ are
computed to be 3x21 + a and 2y1, respectively, as befits a point doubling operation.
The result neutral flag N3 is properly set to 0: there is no point of order 2 on the
curve, thus the result cannot be the point at infinity.
• If Q1 = −Q2, then ex = 1 and ey = 0; this leads toN3 = 1 in the final step, i.e. the
point at infinity is properly returned.
• Otherwise, Q1 , Q2 and Q1 , −Q2; this implies that x1 , x2, hence ex = 0.
The numerator and denominator of λ are set to y2 − y1 and x2 − x1, respectively, in
application of the generic point addition formula.N3 is set to 0: the result cannot
be the point at infinity.

Our optimized implementation for ARM Cortex-M0+ computes a point addition in a
total of 16 331 cycles, i.e. about 10.4 times the cost a field multiplication. This cost is detailed
in table 8. We may notice that since the process involves one inversion (9 508 cycles), two
multiplications (1 574 cycles each) and two squarings (994 cycles each), the overhead for all
“linear” operations (subtractions, conditional copies...) is 1 687 cycles, i.e. about 10.3% of the
total. This function furthermore follows the C ABI: it saves and restores registers properly
and thus can be called from external application code.

Operation Cost (cycles)
function prologue 20
ex and ey 116
denominator of λ 285
x21 999
numerator of λ 300
division t2/t1 (inversion + multiplication) 11 093
x3 1 253
y3 1 958
conditional copy of (x1, y1) or (x2, y2) 269
N3 22
function exit 16
Total 16 331

Table 8: Point addition cost.

Completeness. In the context of elliptic curves, complete formulas are formulas thatwork
in all cases, including edge cases such as adding a point to itself, or to the point at infinity. In
practice, applications that use elliptic curves in various cryptographic protocols need complete
routines that can add points without edge cases (that could lead to incorrect results) andwith-
out timing variations when an internally handled edge-case is encountered. Complete formu-
las are a means through which a complete routine can be obtained. Here, we implemented a
complete routinewhich is not based on complete formulas, but is still efficient.Notably,mak-
ing the point addition function complete does not require difficult trade-offs with regard to
performance. An incomplete addition routine that cannot handle doublings (when adding a
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point to itself) would save about 1 500 cycles (it would avoid computing 3x21 + a and 2y1, as
well as someCONDCOPY calls), less than 10% of the point addition cost.

We argue that obtention of a complete routine whose efficiency is close to that of any po-
tential incomplete routine is sufficient for security in all generality. A developer who is intent
on reimplementing curve operations in an incomplete or non-timing-resistant way will be
able to do so, but will also succeed in ruining the best complete formulas. In that sense, com-
plete formulas are a nice but not strictly requiredmechanism for achieving complete constant-
time routines, and do not in themselves provide absolute protection against implementation
mishaps.

4.4 Repeated Doublings
In order to speed up point multiplication, we implemented an optimized function for mul-
tiple point doublings. That function takes as input parameters a point Q1 = (x1, y1) and an
integer k ≥ 0; it returns the point 2kQ1. The parameter k is not secret.

The two special cases k = 0 and k = 1 are first handled, by copying the input into the out-
put (66 cycles) or tail-calling the generic point addition routine (16 337 cycles), respectively.
When k ≥ 2, the doublings are performed by using Jacobian coordinates. This is only an
internal use: the result is converted to affine coordinates after the k-th doubling. It should
be noted that point doublings are “safe” in Curve9767, because its order is odd: if the input
point Q1 is the point at infinity, then 2kQ1 is the point at infinity, but if Q1 is not the point
at infinity, then none of the successive 2jQ1 values is the point at infinity. Therefore, the only
edge case to cover is Q1 = O, and it is handled in a very simple way: the “neutral flag”N1 is
simply copied to the result.

For point (x, y), the Jacobian coordinates (X :Y :Z) are such that x = X/Z2 and y =
Y/Z3. Since the input point is in affine coordinates, we can optimize the first two doublings.
Following an idea of [39], we can implement the first doubling in only four squarings, and
some linear operations; if Q2 = (X2:Y2:Z2) = 2Q1, then the following holds:

X2 = x41 − 2ax
2
1 + a

2 − 8bx1
Y2 = y41 + 18by

2
1 + 3ax

2
1 − 6a

2x21 − 24abx1 − 27b
2 − a3

Z2 = 2y1

Thanks to our choice of curve constants a = −3 and b = 2048z9 with very low Hamming
weight, multiplications by a and by b are inexpensive.

Remaining doublings use the 1M+8S formulas from [10], which are valid for all short
Weierstraß curves in Jacobian coordinates (we donot use the 3M+5S or 4M+4S formulas that
leverage a = −3, since that does not yield any performance benefit on theARMCortex-M0+,
thanks to the high speed of squarings relatively to multiplications). We recall these formulas

31



here, for the doubling of point (X :Y :Z) into point (X ′:Y ′:Z ′):

T1 = X2

T2 = Y 2

T3 = T 2
2

T4 = Z2

T5 = 2((X + T2)2 − T1 − T3)
T6 = 3T1 + aT 2

4

X ′ = T 2
6 − 2T5

Y ′ = T6(T5 − X ′) − 8T3
Z ′ = (Y + Z)2 − T2 − T4

Note that the first doubling set Z = 2y1; therefore, the computations of T4 = Z2 and T 2
4

(as part of the computation of T6) really compute 4y21 and 16y
4
1 . Since y

2
1 and y

4
1 were already

computed as part of the first doubling, we can save two squarings in the second doubling.
The total function cost for k ≥ 2 is 7 584 + 11 392k; this includes the cost of converting

back the result to affine coordinates. Table 9 details the cost items. For k = 4, this means a
cost of 53 152 cycles, i.e. about 81.3% of the 65 348 cycles that would have been used to call
the generic point addition routine four times (this optimization saves 756 152 cycles from a
complete point multiplication by a scalar, which is not negligible).

Operation Cost (cycles)
function prologue 28
first doubling 5 675
second doubling 9 394
subsequent doublings (k − 2 times) 11 392
conversion to affine coordinates 15 255
function exit 16
Total 7 584 + 11 392k

Table 9: Point multiplication by 2k cost.

4.5 Point Multiplication By A Scalar
Generic Point Multiplication. Generic point multiplication receives a point Q and
multiplies it by the scalar s. In our implementation, scalars are integers modulo r (where r
is the curve prime order); scalars are decoded from sequences of bytes using unsigned little-
endian convention. Two scalar decoding methods are provided, one that ensures that the
value is in the 0 to r − 1 range, the other reducing the source value modulo r. In either case,
the scalar value for point multiplication is less than r. Operations on scalars are not critical
for performance; therefore, we use a simple, generic and compact routine in C. For multi-
plications and modular reductions, Montgomery multiplication is used. The total compiled
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code footprint for all scalar operations is 1 064 bytes (when compiled with GCC 7.3.0 for an
ARMCortex-M0+ target with “-Os” optimization flag). Like the rest of our code, the scalar
implementation is fully constant-time.

To compute sQ, we used a simple four-bit window. For a window of w bits, the process is
the following:

1. Let k = b(log r)/wc. We will use the binary representation of the scalar by chunks of w
bits, and there will be exactly k chunks (the last chunk might be incomplete).

2. Compute and store in a dedicated RAM space (the window, usually on the stack) the
points iQ for i = 1 to 2w−1. This can use the generic point addition routine, calling it
2w−1 − 1 times.

3. Add 2w−1
∑k−1
i=0 2wi to s (modulo r).

4. Start with Q′ = O.
5. For i = 0 to k − 1:

(a) Extract the i-th w-bit chunk from the scalar: j = bs/2wic mod 2w.
(b) Look up point T = |j − 2w−1 |Q from the window; if j = 2w−1, the lookup returns
T = O.

(c) If j < 2w, set T ← −T (i.e. negating the y coordinate of T ).
(d) Set Q′ ← 2wQ′ + T . The multiplication by 2w uses the optimized repeated dou-

blings procedure described in section 4.4, and the addition with T uses the generic
point addition routine. When i = 0, the doublings can be skipped, since it is stati-
cally known that Q′ = O at this point.

6. Return Q′.

Note that for a window of w bits, we only store 2w−1 points. We then use a lookup index
skewed by 2w−1, and obtain the actual point to add with a conditional negation. For instance,
if using a 4-bit windoww = 4, we store pointsQ, 2Q, 3Q,. . .8Q; the lookup index j is between
0 and 8 (inclusive); and the final point T will range from −8Q to +7Q, instead of 0Q to 15Q.
The addition of the specific constant to the scalar (in step 3) counterbalances this skew.

Within the window, we only store the x and y coordinates of the points iQ. The “neutral
flag” of the looked-up point T is adjusted afterwards (it is set to 1 if Q = O or if the lookup
index j = 0).

The window size is a trade-off. With a larger window, fewer iterations are needed, thus
reducing the number of window lookups and point additions; large windows also make re-
peated doublings slightlymore efficient (since our repeated doublings procedure has a 11 392-
cycle cost for each doubling plus a fixed 7 584-cycle overhead). On the other hand, larger win-
dows increase the lookup time (we use a constant-time lookup with a cost proportional to
the number of stored points) and, more importantly, increase temporary RAM usage. Sys-
tems that use the ARM Cortex-M0+ usually have severe RAM constraints. Each point in
the window uses 80 bytes (40 bytes per coordinate, including the two extra bytes for 32-bit
alignment); a 4-bit window thus implies 640 bytes of (temporary) storage. Depending on the
usage context, a larger windowmay or may not be tolerable.

We might note that typical point multiplication routines on Edwards25519 store win-
dows with points in projective, inverted or extended coordinates, using three or four field
elements per point, hence at least 96 or 128 bytes. Since our Curve9767 points are in affine
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coordinates, they use less RAM, and may thus allow larger windows for a given RAM bud-
get. Of course, the Montgomery ladder (on Curve25519) does not use a window and is even
more compact in RAM.

Our generic point multiplication routine has been measured to work in 4 493 999 cycles.
During development, we also wrote another version that was keeping the intermediate point
Q′ in Jacobian coordinates; doublingswe thusmore efficient (we avoided the 7 584-cycle over-
head for eachmultiplication by 16), through point additions (adding an affine point from the
windowto the currentpoint in Jacobian coordinates)were slightlymore expensive (aboutone
thousand extra cycles per addition). This yielded a pointmultiplication routine in about 4.07
million cycles, i.e. 9.4% fewer than our current implementation.We did not keep that variant
for the following reasons:

– The addition routine in Jacobian coordinates required a nonnegligible amount of extra
code, mostly for all the “linear” operations.

– Handling of edge cases (when the current pointQ′ is the point at infinity) required extra
flags and more conditional copies.

– The method could not scale to combined multiplications, as described below (comput-
ing s1Q+ s2G).Whenmultiplying a single pointQ by a scalar swhich is such that 0 ≤ s <
r, it can be shown that none of the point additions in the main loop is in fact a doubling
(adding a point to itself). However, this is not true when doing a combined multiplica-
tion: intermediate values may lead to a hidden doubling, and the pure Jacobian point
addition routine does not handle that edge case correctly.

We thus prefer sticking to affine coordinates, even though they lead to a slightly slower
point multiplication routine. Compared to the baseline (Curve25519), Curve9767 then pro-
vides a pointmultiplication routine which is about 1.29 times slower. Depending on context,
this may or may not be tolerable. However, this slowdown factor is less than the “1.5 to 2.9
factor” from the analysis in [54]; in that sense, this result shows that the design strategy of
Curve9767 is worth some attention.

Combined Point Multiplications. Some cryptographic protocols require computing
s1Q1 + s2Q2 for two pointsQ1 andQ2. In particular, verification of ECDSA or Schnorr signa-
tures uses that operation, with Q1 being the public key, and Q2 the conventional curve gen-
erator point. Instead of doing both point multiplications separately and adding the results
together, we can mutualize the doublings, using “Shamir’s trick” (originally described in the
context of ElGamal signature verification and credited by ElGamal to a private communica-
tion from Shamir[23]). Namely:

– Two windows are computed, for points Q1 and Q2.
– A single accumulator point Q′ is kept.
– At each loop iteration, two lookups are performed, using indices from each scalar, and
resulting in pointsT1 andT2. The doubling-and-add computation is thenQ′← 2wQ′+
T1 + T2.

It is also possible to compute a combined windowwith all points i1Q1 + i2Q2 for 0 ≤ i1 <
2w−1 and 0 ≤ i2 < 2w, but for a given RAM budget, this is usually not worth the effort, the
RAM being better spent on two individual windows with twice as many bits.
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This process naturally extends tomore than two points. Each extra point requires its own
window, but all doublings are mutualized.

Our implementation of the combined point multiplication routine, with source point
Q2 being the conventional curve generator (this is the operation needed for Schnorr signature
verification), computes s1Q1 + s2G in 5 590 769 cycles. Since the curve generator is fixed, its
window can be precomputed and stored in ROM (Flash), so that RAM usage is no more
than with the generic point multiplication routine.

Generator Multiplication. Multiplying a point which is known in advance (normally
the conventional curve generatorG) is the operation used in key pair generation, and also for
each signature generation. Several optimizations are possible:

– Since the point is known at compile-time, its window can be precomputed and stored in
ROM/Flash. This saves the dynamic computation time.

– ROM size constaints are usually less strict in embedded systems than RAM constraints,
because ROM is cheaper11. This allows the use of larger windows.

– A process similar to combined point multiplications can be used: the multiplier s can
be split into several chunks. For instance, if s is split into two halves s1 and s2, with s =
s1 + 2128s2, and s1 and s2 being each less than 2128, then sG = s1G + s22128G, which can
leverage themutualization of doublings, provided that 2128G is precomputed and stored
(preferably along with its precomputed window). Since the sub-scalars s1 and s2 are half-
width, the number of iterations is halved.

In our implementation, to compute sG, we split s into four 64-bit chunks, and we store
precomputed 4-bit windows for G, 264G, 2128G and 2192G. Only 16 internal iterations are
used, each involving a multiplication by 16, four lookups, and four point additions (for the
first iteration, the accumulator point Q′ is the point at infinity, and we can avoid the multi-
plication by 16 and one of the point additions). In total we compute a multiplication of the
generatorG by a scalar in 1 877 847 cycles.

We used a four-way scalar split and 4-bit windows for implementation convenience; how-
ever, both the number of scalar chunks and the size of the windows can be adjusted, for vari-
ous trade-offs between implementation speed andROMusage. In our case, the four precom-
puted windows add up to 2560 bytes of ROM.

4.6 Point Compression
The in-RAM format for a point uses 84 bytes (including the “neutral flag”, and alignment
padding). However, curve points can be encoded in a muchmore compact format, over only
32 bytes (specifically, 255 bits, the last bit is not used).

Field Element Encoding. For a field element u =
∑19
i=0 uizi, there are 19 polynomial

coefficients to encode. Each coefficient is an integer in the 0 to p − 1 = 9766 range. The
in-RAM values use Montgomery representation and furthermore encode 0 as the integer p;

11As a rule of thumb, each SRAM bit needs 6 transistors, but a ROMbit only requires 1 transistor-
equivalent space.
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however, we convert back the coefficients to non-Montgomery representation and into the
0..p − 1 range so that encoding formats do not force a specific implementation strategy.

For a compact encoding, we encode the first 18 coefficients by groups of three. Each group
(u3i, u3i+1, u3i+2) uses exactly 40 bits (5 bytes):

– Each coefficient is split into an 11-bit low part lj = uj mod 211), and a high part hj =
buj/211c. This is implemented with simple masks and shifts. Since uj < 9767, the high
part hj is lower than 5.

– The low and high parts of the three coefficients are assembled into value:

vi = l3i + 211l3i+1 + 222l3i+2 + 233(h3i + 5h3i+1 + 25h3i+2)

Note that since lj < 211 and hj < 5, it is guaranteed that vi < 240.
– The value vi is encoded over 5 bytes in unsigned little-endian convention.

The 18 coefficients u0 to u17 yield 6 groups of three, hence a total of 30 bytes. The last coeffi-
cient (u18) is then encoded in unsigned little-endian convention over the last two bytes. Since
u18 < 9767, it uses at most 14 bits, and the two most significant bits of the last byte are free.

Decodingmust recover the lj and hj elements from the received bytes. Obtaining the high
parts (hj) entails divisions by 5; for constant-time implementations, one can use the fact that
bx/5c = b(103x)/29c for all integers x in at least the 0..127 range12.

The decoding routine should detect and report invalid encodings, i.e. encodings that lead
to coefficients not in the 0..9766 range.

Point Encoding. Since each point (x, y) on the curve fulfills the curve equation y2 =
x3 + ax + b, knowledge of x is sufficient to recompute y2, fromwhich y can be obtained with
a square root extraction. The fast square root extraction algorithm described in section 3.7
makes this process efficient. Since y2 admits two square roots, an extra bit is needed to desig-
nate a specific y value.

We define the sign of a field element u as follows:

– If u = 0 then its sign is zero.
– Otherwise, let i be the largest index such that ui , 0. We define that the sign of u is one
if ui > p/2, zero otherwise. (This uses the normalized ui value in the 0..p − 1 range, not
in Montgomery representation).

It is easily seen that if u , 0, then u and −u have opposite signs (i.e. exactly one of u and −u
has sign 1, the other having sign 0).

The encoding of a Curve9767 point (x, y) into 32 bytes then consists of the encoding of
x, with the sign of y inserted into the next-to-top bit of the last byte (i.e. the bit of numerical
value 64 within the 32nd byte of the encoding); the top bit of the last byte (of numerical
value 128 within that byte) is cleared. The decoding process then entails decoding the value
of x (masking out the two top bits of the last byte), computing y2, extracting the square root

12Division opcodes are not constant-time on many CPU. Optimizing compilers can implement di-
visions by constants through multiplications and shifts, using the techniques from [30], but they may
prefer to use division opcodes, especially when optimizing for code size instead of raw speed. Expliciting
the use of multiplications and shifts avoids such issues.
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y, and finally replacing ywith−y if the sign bit of the recomputed y does not match the next-
to-top bit in the last byte of the encoding13.

The decoding function reports an error in the following cases:

– The top bit of the last byte is not zero.
– The first 254 bits do not encode a valid field element (at least one coefficient is out-of-
range).

– A value x is validly encoded, but x3 + ax + b is not a quadratic residue, and there is thus
no curve point with that value as x coordinate.

There is no formally defined encoding for the point at infinity. However, if requested to
encodeO, the encoding function produces an all-ones pattern (all bytes of value 0xFF, except
the last byte which is set to 0x7F). This is not a valid encoding (it would yield out-of-range
coefficients). Similarly, when the decoding function detects an invalid encoding, it reliably
sets the destination point to the point-at-infinity in addition to reporting the error. In that
sense, it is possible to use that invalid all-ones pattern as the encoding of the point at infinity.
It is up to the calling application to decide whether neutral points should be allowed or not;
most protocols don’t tolerate neutral points.

In our implementation, point encoding takes 1 527 cycles, while decoding uses 32 228 cy-
cles (field multiplication, squaring, and square roots use our assembly routines, but the rest
of the code is written in C).

4.7 Hash-To-Curve
The hash-to-curve functionality maps arbitrary input bit sequences to curve points in a way
which is indifferentiable from a random oracle. Some cryptographic protocols can tolerate
weaker properties, but in general we want the resulting point to be such that, informally,
all curve points could have been obtained with quasi-uniform probability, and no informa-
tion is leaked about the discrete logarithm of the result relatively to a given base point. We
moreover require constant-time hashing, i.e. not leaking any information on the source value
through timing-based side channels; this, in particular, prevents us from using rejection sam-
pling methods in which pseudorandom x values are generated from the input with a strong
pseudorandom generator until one is found such that x3 + ax + b is a quadratic residue14.

Since we work with field GF (q) with q = 2 mod 3, we can use a process based on Icart’s
map[33] and formally proven[15] to be indifferentiable from a random oracle, when the un-
derlying hash function is itself modeled as a random oracle. It consists of three elements:

– MapToField: an input sequence of bytes is mapped to a field element u by interpreting
the sequence as an integerU (using unsigned little-endian convention) then converting
it to base p:U =

∑
i Uipi. The first (least significant) 19 digitsU0 toU18 are then used as

the polynomial coefficients of u.

13Since Curve9767’s order is odd, there is no point with coordinate y = 0; therefore, there exists no
value x such that x3 + ax + b = 0, avoiding the edge case of y = 0 but a requested sign bit of 1.

14With our fast square root and quadratic residue tests, such a process would hash an arbitrary input
in an average cost under 60 000 cycles, but occasionally much higher.
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– IcartMap: from a given field element u, a curve point is obtained. If u = 0 then the
point at infinityO is produced; otherwise, the point (x, y) is producedwith the following
formulas:

v =
3a − u4

6u

x =
(
v2 − b −

u6

27

) 1/3
+
u2

3
y = ux + v

– HashToCurve: a message m is used as input to an extendable-output function (XOF)
such as SHAKE[34]; a 96-byte output is obtained, split into two 48-byte halves d1 and
d2. We then define:

HashToCurve(m) = IcartMap(MapToField(d1)) + IcartMap(MapToField(d2))

Using 48 bytes (i.e. 384 bits) for each half implies that MapToField’s output is quasi-
uniform with bias lower than 2−132 (since the field cardinal is lower than 2252), i.e. appro-
priate for the “128-bit” security level that Curve9767 provides. The conversion to base 9767
is done with repeated divisions by 9767, themselves implemented with multiplications and
shifts only, using the techniques described in [30].

OurCurve9767 implementation comeswith aperfunctory SHAKE implementation; our
hash-to-curve function takes as input the SHAKE context, pre-loadedwith the inputmessage
m and ready to produce bytes. It is up to the caller to organize the injection ofm into SHAKE,
preferably with a domain separation header to avoid unwanted interactions with other pro-
tocols and operations that use SHAKE on the same inputm. The hash-to-curve operation is
computed in 195 211 cycles. Out of these, eachMapToField uses 20 082 cycles; this function
was written in C and compiled with code size optimizations (“-Os”) and could probably be
made to run faster with handmade assembly optimizations. The SHAKE invocation itself,
with our C implementation also compiled with code size optimizations, amounts to about
34 000 cycles. Icart’s map is evaluated in 50 976 cycles.

Maps other than Icart’s could have been used. In particular, the Shallue-Woestijne-Ulas
map[55,57], as simplified in [15] for curves defined over fields GF (q) with q = 3 mod 4
(which is the case of Curve9767), can be implemented with a few operations, mostly one
inversion, one quadratic residue test, one square root extraction, and a few multiplications
and squarings. In our case, it is slightlymore expensive than Icart’smap, though the difference
is slight.

More discussion on the practical implementation of hash-to-curve procedures can be
found in [24].

4.8 Higher-Level Protocols
In order to have benchmarks for Curve9767 when applied in realistic protocols, we defined
and implemented Diffie-Hellman key exchange and Schnorr signatures. When a XOF is re-
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quired, we use SHAKE25615. All uses of SHAKE include “domain separation strings”, i.e.
conventional headers for the XOF input that avoid the same output occurring in different
contexts. All our domain separation strings start with “curve9767-” and end with a colon
character “:”. When a string is specified below, e.g. as “curve9767-keygen:”, the ASCII
encoding of the string as a sequence of bytes, without the double-quote characters and with-
out any terminating NUL byte, is used.

Key Pair Generation. From a given random seed (presumably obtained from a crypto-
graphically strongRNG,with entropy at least 128 bits), we generate a private key s (an integer
modulo the curve order r), an additional secret t used for signature generation (32 bytes), and
the public keyQ = sG withG being the curve conventional generator. The process is the fol-
lowing:

– The concatenation of the domain separation string “curve9767-keygen:” and the
seed is injected into a new SHAKE256 instance.

– SHAKE256 is used to produce 96 bytes of output. The first 64 bytes are interpreted as an
integer with unsigned little-endian convention; that integer is reducedmodulo the curve
order r, yielding the secret scalar s. The remaining 32 bytes from the SHAKE256 output
are the additional secret t. It may theoretically happen that we obtain s = 0; in that case,
we set s = 1. This is only a theoretical concern, since there is no known seed value that
results in such an outcome, andwhile it makes the value 1 conceptually twice as probable
as any other, the bias is negligible.

– The public key Q = sG is computed.

The same process is used for Diffie-Hellman key pairs and signature key pairs. In the for-
mer case, the t value may be skipped, since it is used only for signatures (but SHAKE256
produces output by chunks of 136 bytes, so there is no saving in performance obtained by
not generating t). Note that in all generality, key exchange key pairs and signature key pairs
should be separate; they have different lifecycles and it is never recommended to use the same
private key in two different cryptographic algorithms. Nothing prevents us, though, fromus-
ing the same process (hence the same implementation code) for generating both kinds of key
pairs, provided that they work on different seeds.

The cost of keypair generation is almost entirely that of the computationof thepublic key
Q = sG, at least on an ARMCortex-M0+, where SHAKE is inexpensive compared to curve
point multiplications. The public key computation uses the “multiplication of the generator
by a scalar”.

Di�ie-Hellman Key Exchange. Each party in a Diffie-Hellman key exchange executes
the following steps:

– A new key pair (s, Q) is generated, if using ephemeral Diffie-Hellman. For static Diffie-
Hellman, the key pair is recovered from storage, and used for multiple Diffie-Hellman
instances.

15Nominally, we only target the 128-bit security level, and SHAKE128would be sufficient.However,
using SHAKE256 makes no difference in performance in our case, and the “256” figure has a greater
marketing power.
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– The public key Q is encoded and sent to the peer.
– A public key (32 bytes) is received from the peer, and decoded as a point Q′.
– The point sQ′ is computed, then its x coordinate is encoded as a sequence of 32 bytes; this
is the pre-master secret. We use only the x coordinate, without the sign bit from the y co-
ordinate, in order to follow traditionalDiffie-Hellman on elliptic curves[2], and tomake
the process compatible with x-only ladder implementations of point multiplication.

– The concatenation of the domain separation string “curve9767-ecdh:” and the pre-
master secret are input into a newSHAKE256 instance,whose output is the shared secret
between the two peers participating to the exchange. Since SHAKE256 is a XOF, the
two parties can obtain unbounded amounts of shared key material, e.g. to power both
symmetric encryption andMAC for two unidirectional data tunnels.

The decoding of the received point Q′may fail. In usual contexts, it is acceptable to sim-
ply abort the protocol in such a case. In order to support unusual usage contexts in which
the key exchange is used as part of a larger protocol in which points are not observable and
attackers should not be able to observe which key exchanges succeed or fail, an alternate pre-
master secret is used when Q′ fails to decode properly. The alternate pre-master secret is the
32-byte SHAKE256 output computed over an input consisting of the concatenation of the
domain separation string “curve9767-ecdh-failed:”, the encoding (over 32 bytes, un-
signed little-endian convention) of the secret scalar s, and the 32 bytes received as purported
encoded Q′ point. Our implementation always computes both the normal pre-master secret
and the alternate one, and selects the latter in case the decoding failed (and the point multi-
plication was performed over invalid data). This process ensures that, from the outside, the
ECDHprocess always results in someunpredictable key that is still deterministically obtained
for a given 32-byte sequence purportedly encoding Q′.

Almost all of the computation time in Diffie-Hellman is spent in the two point multipli-
cations, for computing Q = sG (as part of key pair generation) and sQ′, the latter requiring
the generic point multiplication routine.

Schnorr Signatures. We define Schnorr signatures in a process similar to EdDSA[9,36].
The message to sign or to verify is provided as a hash value h, obtained from some collision-
resistant hash function16. Whenever h is used, we really use the concatenation of an identifier
for the hash function, and the value h itself. The identifier is the ASCII encoding of the deci-
mal representation of the standardOID for the hash function, followed by a colon character.
For instance, if using SHA3-256, the identifier string is: “2.16.840.1.101.3.4.2.8:”

To generate a signature, using the public/private key pair (s, t, Q):

1. Concatenate the domain separation string “curve9767-sign-k:”, the additional se-
cret t, the hash function identifier string, and the hash value h. This is the input for a
new SHAKE256 instance. 64 bytes of output are obtained from SHAKE256, and inter-
preted as an integer (unsigned little-endian encoding) which is then reduced modulo r

16This “hash function” may be the identity function, as for the “Pure EdDSA” mode. This avoids
relyingon the collision resistance of a hash function; however, suchhash-less processing requires verifiers
to already know the public key and the signature value when the beginning of the data is being known,
which prevents streamed processing and is a problem for some tasks on memory-constrained devices,
e.g. X.509 certificate chain validation as part of TLS. We therefore recommend always using a proper
hash function first, e.g. SHA3.
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(the curve order), yielding the scalar k. For completeness, if k = 0, it is replaced with 1
(this happens only with negligible probability).

2. Compute the curve point C = kG and encode it as value c (32 bytes). This is the full
point encoding, including the sign bit for the y coordinate.

3. Concatenate the domain separation string “curve9767-sign-e:”, the value c, the en-
coding of the public keyQ, the hash function identifier and the hash value h. This is the
input for a new SHAKE256 instance. Generate 64 bytes of output, interpret them as
an integer (unsigned little-endian encoding), and reduce that integer modulo the curve
order r. This yields the scalar e.

4. Compute d = k + es mod r.
5. The signature is the concatenation of c (32 bytes) and d (encoded over exactly 32 bytes

with unsigned little-endian convention).

This signature generation process is deterministic: for the same input (hashed) message h
and private key, the same signature is obtained. It is not strictly required that this process is
used to generate k; any mechanism that selects k uniformly and unpredictably in the 1..r − 1
range can be used. However, the deterministic process described above has the advantage of
not requiring a strong random source, and its determinism makes it testable against known-
answer vectors.Conversely, determinismmay increase vulnerability to some classes of physical
attacks, especially fault attacks. See section 5.1 for more details.

To verify a signature, the following process is used:

1. Split the signature (64 bytes) into its two halves c and d (32 bytes each).
2. Decode d as an integer (unsigned little-endian convention). If d ≥ r, the signature is

invalid.
3. Recompute the challenge value e as in step 3 of the signature generation process.
4. Compute the point C = dG − eQ, using the alleged signer’s public key e.
5. Encode point C . The signature is valid if that encoding matches c (the first half of the

signature), invalid otherwise.

The signature generation cost consists almost entirely of the computation of kG (multi-
plication of the curve generator by a scalar). The signature verification cost is dominated by
dG − eQ, which is a combined point multiplication process.

5 Implementation Issues and Benchmarks
5.1 Side Channel A�acks
Constant-Time Code. Among side channel attacks, a well-known category consists of
timing attacks, or, more generally, side channel attacks that exploits measures based on time
(but not necessarily of the execution time of the target system itself). These attacks include all
sorts of cache attacks, that try to obtain information on secret values based on the memory
access pattern of the attacked system and its effect on various cache memories. Timing-based
side channels are “special” because they can often be exercised remotely: either the timing
differences can bemeasured over a high-speed network, or the attacker has control of a generic
system close to the target (e.g. another VM co-hosted on the same hardware) and can use
the abilities of such systems at measuring very short amounts of time. All other side channel
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attacks require some special measuring hardware in the physical vicinity of the target system,
and can often be ruled out based on usage context.

Constant-time coding is a relatively confusing terminology that designates code which
does not necessarily execute in a fixed amount of time, but such that any timing-related mea-
sures yield no information whatsoever on secret values. Constant-time code makes no mem-
ory access at secret-dependent values, performs no conditional jump based on secret boolean
values, and avoidsuse of anyhardwareopcodewith a varying execution time (a categorywhich
includes some multiplication opcodes on some platforms[50]).

It shall be noted that the twoCurve25519 implementationsweuse as baseline arenot truly
constant-time: when performing the conditional swap in each iteration of the Montgomery
ladder, they only exchange the pointers to the relevant field elements, not the values. Subse-
quent memory accesses then happen at addresses that depend on the conditional boolean,
which is a private key bit. It is asserted in [31] that:

Note that for internal memories of CortexM4 andM0 access timing is deterministic.

This is not true in all generality. The ARM Cortex-M0 and M4 cores do not include any
cache by themselves and issue read and write requests with timings that do not depend on
the target address. However, the system in which these cores are integrated may induce tim-
ing differences. These cores are not full CPUs in their own right; they are hardware designs
that a CPU designer uses in a larger chip, along with extra pieces such as amemory controller.
In general, RAM is provided with a SRAM block that offers deterministic and uniform ac-
cess timing, but this is not always the case. Memory controller designs with cache capabilities
commercially exist[17]. Other potential sources of address-dependent timing differences in-
clude automatic arbitration of concurrentmemory accesses (when other cores, or peripherals,
access RAM concurrently to the CPU) or refresh cycles for DRAM.Accesses to ROM/Flash
may also have caches and other wait states (for instance, STM32F407 boards with an ARM
Cortex-M4 implement both data and instruction caches for all accesses to Flash).

Therefore, while on a specificmicrocontroller, a not-truly constant-time implementation
may get away with making memory accesses at secret-dependent addresses, this is a relatively
fragile assertion, and a generic software implementation should use true constant-time code
by default.

Our implementation is truly constant-time. In particular, all lookups in the windows for
point multiplication use a constant-time implementation that reads all values from the win-
dow, and combines themwith bitwise operations to extract the right one. For a 4-bit window
(containing eight pre-computed points), the lookup process executed in 777 cycles. Since the
generic point multiplication entails 63 such lookups, true constant-time discipline implies an
overhead of 48 591 cycles, which is not large in practice (about 1.1% of the total time) but
should conceptually be taken into account when comparing Curve9767 with the baseline
Curve25519 implementations that are not truly constant-time in that sense (i.e. a fair com-
parison would first deduce these 48 591 cycles from our code’s performance, or add a similar
amount to the baseline implementation performance).

We also applied constant-time discipline more generally; all our functions are constant-
time, including code paths that are usually safe. For instance, public keys or signature values
are normally exchanged publicly; we still decode them in constant-time and do not even leak
(through timings) whether the decodingwas successful or not.While thismaniacal insistence
on full constant-time is useless in most contexts, we feel that it may matter in some unusual
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cases and thus should be the default for any generic-purpose implementation. Moreover, the
runtimeoverhead is usually negligible or very small; following constant-timedisciplinemostly
implies forfeiting conditional jumps (“if” clauses) and propagating an error status through
the call tree.

Power Analysis. Side channel attacks can rarely be addressed in all generality, since they
rely on specific hardware properties and usage context.We can have a generic “constant-time”
implementation because most CPUs have similar timing-related properties (namely, caches
whose behaviour depends on the accessed address, not on the stored value), and also because
timing attacks that can be enacted remotely use measures that are amenable to an abstract
description, owing to the fact that the measuring apparatus is itself a generic computer with
merely a cycle counter. This simple context does not extend to other side channel attacks, e.g.
power analysis attacks. Consequently, it is not usually feasible to make a software implemen-
tation that can be said to be immune to side channel attacks in abstracto.

However, it is known that some “generic” mitigations can help with a nonnegligible pro-
portion of particular situations. In the case of elliptic curve implementations, projective co-
ordinates can be randomized: given a point (X :Y :Z), one can always generate a random non-
zero field element µ and multiply it with all three coordinates, since (µX :µY :µZ) represents
the exact same curve point17. If randomization is applied regularly throughout a curve opera-
tion (e.g. after each doubling in a double-and-add point multiplication algorithm), then the
extra randomness is expected to somehow blur the information leaking through side chan-
nels and make analysis more expensive, especially in terms of number of required traces. The
effectiveness of this countermeasure varies widely depending on context, but in most it will
help defenders.

Using affine coordinates prevents applying that kind of randomization. In order to use
randomization, one has to use redundant coordinate systems. On short Weierstraß curves,
Jacobian coordinates provide in general the best performance for point multiplication, but
not for combinedmultiplications or other operations since they are incomplete formulas and
don’t handle edge cases properly. If a Curve9767 implementation must be made resistant to
side channel attacks such as power analysis, in the sense explained above, thenwe recommend
using projective coordinates with the complete formulas from [53]. With these formulas, on
a short Weierstraß curve with a = −3, doublings cost 8M+3S, along with a number of “lin-
ear” operations (including somemultiplications by b, which are fast onCurve9767 since b has
low Hamming weight). The number of such extra operations is known to be relatively high
(21 additions and 2 multiplications by b) and we estimate that they collectively add an over-
head of 20%; this would put the cost of a point doubling at close to 19 000 cycles on anARM
Cortex-M0+. Similarly, for generic point additions (12M and 31 “linear” operations), we es-
timate the cost around 23 000 cycles. Each randomization is an extra 5 000 cycles, assuming a
very fast randomgenerator18. In total, assuming a 4-bit window, extra randomization for each

17Other coordinate systems, e.g. Jacobian coordinates, can also be randomized in a similar way.
18The random µ can be slightly biased, allowing generation of the 19 coefficients by generating ran-

dom31-bit values and applyingMontgomery reductionon eachof them; if the 31-bit values are obtained
from dedicated hardware or a very fast process, the reduction themselves won’t cost more than a basic
field addition.
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doubling, and a 1 100-cycle window lookup operation19, we can estimate a total side-channel-
resistant pointmultiplication cost of about 7.5million cycles. This is only an estimate; we did
not implement it.

Fault A�acks. Fault attacks are a kind of side channel attack where the attacker forces
the computation to derail in some way, through a well-targeted physical intervention, such
as sending a short-time voltage glitch (abnormally high or low voltage for a small amount of
time) or chip alteration (cutting or bridging specific chip wires with lasers under microscopic
inspection).

Deterministic algorithms are known to be more vulnerable to fault attacks, since they
allow attackers to repeat experiments with the same intermediate values in all computation
steps; this has been applied in particular to signature algorithms[3,49].The Schnorr signature
schemewhichwedescribed in section4.8 is deterministic: for a given signature key (s, t, Q) and
hashed message h, the per-signature secret scalar k is generated with a deterministic pseudo-
random process. Having a fully specified deterministic process has quality assurance benefits:
the signature scheme can be tested against known-answer test vectors[51].However, random-
ization can be applied nonetheless: the signature verification process does not (and cannot)
rely on such deterministic generation. In order to capture both the immunity to random gen-
erators of poor quality20 and to still randomize data to make fault attacks harder, the genera-
tion of k can be amendedby appending a newly-generated randomvalue to the concatenation
of the domain separation string, the additional secret t, the hash function identifier string and
the hash value h; this extra input to SHAKE256 will make the process non-repeatable, thus
increasing the difficulty of fault exploitation by attackers.

5.2 Benchmarks
As described in section 3.1, all measures were performed on a SAMD20Xplained Pro board.
Themicrocontroller is configured to use the internal 8MHz oscillator, with no wait state for
reading Flashmemory.The internal oscillator is also configured topower a 32-bit counter.No
interrupts are used; the counter value is read directly21. The benchmark code runs a target
function in a loop; the loop is invoked three times, with 1, 10 and 100 iterations. The cycle
count is measured three times. The same loop is used for all functions, to avoid variability (7
pointer-sized arguments are passed to the target function; as part of the ABI, the callee can
ignore extra arguments, since the caller is responsible for removing them afterwards).

The loop overhead depends on the C compiler version and compilation options; in our
tests (GCC 6.3.1, optimization flags “-Os”), it appears that the loop has a fixed 38 cycles over-
head, and an additional 29 cycles per iteration. We could thus obtain the exact cycle counts
for each function call. Since the board is used without any interrupts, measures are perfectly
reproducible.

19Points in projective coordinates are larger than in affine coordinates, hence constant-time lookup
is more expensive.

20Notably, fault attacks can also impact hardware RNGs and force them to produce predictable
output.

21This gives about 9 minutes after boot to make measures, before the counter overflows.
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The table 10 lists allmeasured execution times; they are reported both in raw cycle counts,
and as a cost relative to the cost of a multiplication. For the low-level field operations, the im-
plementation uses an internalABI that does not save registers; themeasurewasmade through
awrapper that adds 31 cycles of overhead per call (these 31 cycles were subtracted to obtain the
values in the table). For all operations implemented in assembly, the measured cycle counts
match manual counting exactly.

Operation Cost (cycles) Cost (rel. to mul)
Field: multiplication (∗) 1 574 1.00M
Field: squaring (∗) 994 0.63M
Field: inversion (∗) 9 508 6.04M
Field: square root extraction (∗) 26 962 17.13M
Field: test quadratic residue status (∗) 9 341 5.93M
Field: cube root extraction (∗) 31 163 19.80M
Generic curve point addition 16 331 10.38M
Curve point ×2 (doubling) 16 337 10.38M
Curve point ×4 30 368 19.29M
Curve point ×8 41 760 26.53M
Curve point ×16 53 152 33.77M
Constant-time lookup in 8-point window 777 0.49M
Curve point decoding (point decompression) 32 228 20.48M
Curve point encoding (compression) 1 527 0.97M
Generic point multiplication by a scalar 4 493 999 2 855.15M
Generator multiplication by a scalar 1 877 847 1 193.04M
Two combined point multiplications 5 590 769 3 551.95M
MapToField 20 082 12.76M
Icart’s map 50 976 32.39M
Hash 48 bytes to a curve point 195 211 124.02M
ECDH: key pair generation 1 937 792 1 231.13M
ECDH: compute shared secret from peer data 4 598 756 2 921.70M
Schnorr signature: generate 2 054 110 1 305.03M
Schnorr signature: verify 5 688 642 3 614.13M

Table 10: All benchmarks. Operations tagged with (∗) use the internal non-standard ABI
that does not preserve registers.

5.3 Other Architectures
While we concentrated on improving performance on the ARMCortex-M0+, Curve9767 is
not necessarily slow on other architectures. Use of a small 14-bit modulus p does not exercise
abilities of bigger CPUs at computing multiplications on larger operands. However, many
modern CPUs have SIMD units that can compute several operations on small operands in
parallel; such units should prove effective at implementing operations on GF (976719) ele-
ments.
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ARM Cortex-M4. The ARM Cortex-M4 implements the ARMv7-M architecture. It is
backward compatible with the ARMv6-M architecture; thus, our implementation should
run just fine, with very similar timings, on the M4. However, that CPU offers many extra
instructions, including some from the “DSP extension” that incarnate some SIMD abilities.
Most interesting are the smlad and smladx opcodes, that can perform two 16× 16multipli-
cations and add both 32-bit results to a given accumulator register, all in a single cycle; on the
M0+, the equivalent operations take 6 cycles (4 cycles for the twomultiplications and two ad-
ditions, and 2 cycles for copies to avoid consuming the multiplication inputs). Moreover, the
ARMv7-M instruction set allows full access to all registers, as well as many non-consuming
operations, and various literal operands. We expect considerable speed-ups on the M4, com-
pared with the M0+, when optimized assembly leveraging the M4 abilities is written.

x86 with SSE2 and AVX2. The x86 instruction set now includes extensive SIMD in-
structions. The SSE2 instructions operate on 128-bit registers. The pmullw and pmulhuw
opcodes compute eight 16×16 unsignedmultiplications in parallel, returning the low or high
16-bit halves, respectively. On an Intel Skylake core, each instruction has a latency of 5 cycles,
but a reciprocal throughput of 0.5 cycles per instruction,meaning that eight full 16×16→ 32
multiplications can be performed at each cycle. Since polynomial multiplications do not have
any carry propagation, considerable internal parallelism can be leveraged. AVX2 opcodes fur-
ther improve that situation, by offering 256-bit registers and basically doubling all operations:
the vpmullw and vpmulhuw have the same timing characteristics as their SSE2 counterparts,
but compute sixteen 16 × 16 unsigned multiplications in parallel.

Conversely, the inversion in GF (p) to compute x−r from xr is not parallel, and we sup-
pose that its relative cost within the inversion routine will grow. On the ARMCortex-M0+,
its cost is mostly negligible (110 cycles out of a total of 9 508), but this might not be true in
an optimized inversion routine that leverages SSE2 or AVX2 for multiplications and Frobe-
nius operators. In that case, it is possible that for such architectures, more classic projective
coordinate systems becomemore attractive than affine coordinates for point multiplications.
Inversion, square roots and cube roots would still be fast enough to provide benefits, when
compared with prime-order fields, for conversion to affine coordinates, point compression,
and hash-to-curve operations.

6 Conclusion And Future Work
In this article, we presented Curve9767, a new elliptic curve defined over a finite field exten-
sion GF (pn), where both the modulus p and the extension degree n where specially chosen
to promote performance on small architectures such as the ARM Cortex-M0+. Our novel
results include in particular the following:

– an optimization of Montgomery reduction for a small modulus;
– choosing a modulus p such that these fast reductions can be used but also mutualized as
part of a multiplication of polynomials;

– using a finite field extension GF (pn) to leverage fast Itoh-Tsujii inversion for efficient
constant-time curve computations in affine coordinates;

– fast square root and cube root inGF (pn).
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In total, generic curve point multiplication is about 1.29 times slower with Curve9767
than the optimized Curve25519 Montgomery ladder, on the ARM Cortex-M0+. On the
other hand, our curve offers very fast routines for a number of other operations (e.g. point
compression, or hash-to-curve); maybe more importantly, it has prime order, which simpli-
fies analysis for use in larger protocols. The relatively small difference in performance shows
that affine coordinates and fast inversion can be a viable implementation strategy for an el-
liptic curve, offering an alternate path to the projective coordinate systems that have been
prevalent in elliptic curve implementation research over the last two decades.

Future work on Curve9767 will include the following:

– Making optimized implementations for other architectures, notably the ARM Cortex-
M4, and x86 systems with SSE2/AVX2. Whether SIMD opcodes will allow competitive
performance on “big CPUs” is as yet an open question.

– Exploring formal validation of the correctness of the implementations. Computations
inGF (pn) have some informal advantages in that respect: since they don’t have carries to
propagate, they don’t suffer from rare carry propagation bugs. Moreover, a small mod-
ulus p allows for exhaustive tests: for instance, the correction of our fast Montgomery
reduction routine modulo p has been exhaustively tested for all inputs x such that 1 ≤
x ≤ 3 654 952 486.

– Exploring other field choices, in particular smaller moduli p for use in 8-bit systems that
can only do 8× 8→ 16multiplications. This might be combined with other field exten-
sions such as GF (p)[z]/(zn − z − c) for some constant c. Such an extension polynomial
would increase the cost of Frobenius operators, but also expand the set of usable values
for p.
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A Unused or Failed Ideas
It is uncommon in scientific articles to describe failures. However, we feel that the ideas de-
scribed in this section, while not applicable or not interesting enough in our case, might be
of interest in other contexts.

A.1 Signed Integers
All our computations with integersmodulo p used nonnegative integers.When such integers
are represented as values in the 0..p− 1 range, we need the product of two such values to fit in
the output operand size; when our largest multiplication opcode produces a 32-bit output,
this limits themodulus p to 216. In particular, that implementation strategy cannot copewith
modulus p = 65 537 (a Mersenne prime) since multiplying p − 1 with itself would yield 232,
truncated to 0 because of the limited range of the multiplier output.

This limitation can be worked around by using signed integers. For instance, valuesmod-
ulo 65 537 can be represented by integers in the −32 768..+32 768 range. In that case, the
maximum absolute value of a product of two such integers will be 230, well within the repre-
sentation limit of signed integers on 32-bit words (−231 to 231 − 1).

In our case, wewant tomutualizemodular reductions, meaning that we need to accumu-
late intermediate results without overflowing the representable range of values. With an un-
signed representation ofGF (p) and an extension polynomial zn−2, this requires (2n−1)p2 <
232 (here we only consider representability, not the specificities of the fast Montgomery re-
duction). If using a signed representation of GF (p), then values are only up to dp/2e in ab-
solute value; the representable range is halved (231) to account for the sign bit, leading to the
new requirement: (2n− 1)p2/4 < 231. Generally speaking, using signed integers increases the
possible range of prime moduli p by a factor

√
2.

We did not use signed integers for Curve9767, for the following reasons:

– Signed integers make some operations, in particular Montgomery reduction, but also
combined additions or subtractions of two elements at a time, more complicated and
expensive.
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– Conversely, the main parameter for performance is the field extension degree n, and the
larger range is not enough to allow us to obtain a field of at least 250 bits with a prime
degree n smaller than 19. The largest prime p such that 33(dp/2e)2 < 231 and z17 − 2 is
irreducible in GF (p)[z] is p = 15 913 and leads to a field of size p17 ≈ 2237.28, which falls
too short of the target “128-bit security level”, even taking into account the traditional
allowance for small multiplicative constants to cost estimates.

Therefore, there was no benefit to using signed representation in our case.
The technique may still be useful in other contexts, in particular when working with

Mersenne primes, such as 17, 257 or 65 537. The internal representation range of values can
even be slightly extended to allow for easier and faster reduction. For instance, the following
routine computes a multiplication of two integers modulo 65 537:

int32_t
mul_mod_65537(int32_t x, int32_t y)
{

x *= y;
x = (x & 0xFFFF) - (x >> 16);
x += 32767;
x = (x & 0xFFFF) - (x >> 16);
return x - 32767;

}

If the two inputs are in the −46 340 to +46 340 range, then the intermediate product will
fit in the representable range (no overflow); then the first reduction step brings it down to
the −32 767 to +98 302 range. With the addition of the 32 767 constant, the range becomes
0..+131 069, and the second reduction step brings it down to −1..+65 535. The final subtrac-
tion of 32 767 (compensating the addition of the same constant two lines before) makes the
final range −32 768..+32 768, i.e. fully reduced.

A.2 Towers of Fields
Apreliminary idea for this work was to useGF (pn)with p being a prime with easy reduction,
and n = 2m a power of two. In particular, one could take p = 65 537, and n = 16 (using the
“signed integer” representation detailed in the previous section). The field GF (p16) can be
defined as a quadratic extension ofGF (p8), itself a quadratic extension ofGF (p4), and so on.
InGF (p), we can choose a non-quadratic residue d0. Then, we recursively defineGF (p2

i+1
) as

involving di+1, a formal square root of di. Operations in such a tower of fields are inexpensive;
there are natural analogs to Karatsuba multiplication. Inversion is efficient:

1
u0 + diu1

=
u0 − diu1
u20 + di−1u

2
1

We can thus compute inversion inGF (p2i+1 ) at the cost of two squarings, twomultiplications
and one inversion in GF (p2i ); this last operation then applies the same method recursively,
down the tower.At the lowest level, only an inversion inGF (p) is required. Exact performance
depends on the implementation architecture (notably its abilities are parallel evaluation, with
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SIMD units) but getting inversion cost down to only three times that of a multiplication is
plausible.

We abandoned that idea because curves based on field towers with quartic extension de-
grees seem vulnerable to Weil descent attacks; an attack with asymptotic cost O(p3n/8) has
been described[28]. Using such a field for our curve would have required a complex argu-
mentation to explain that the attack cost would be still too high in practice for a specific size;
this would have been a “hard sale”.

Using field towers may still be useful in different contexts, e.g. to build universal hash
functions for MAC-building purposes, especially with small Mersenne primes such as p =
257, for some lightweight architectures.

A.3 Alternate Inverse Computations
The Itoh-Tsujii inversion algorithm that we used in section 3.6 is an optimization on Fermat’s
little theorem. There are other strategies for computing inversions in a finite field; we present
two here, which work, but have worse performance than Itoh-Tsujii.

Binary GCD. The binary GCD algorithm was introduced under the name plus-minus
by Brent and Kung[14]. Nominally for inverting integers against an odd modulus, it can be
adapted to polynomials, and is in general a division algorithm.Consider the problemof divid-
ing x by y in finite field GF (pn), the finite field being defined with the extension polynomial
M (crucially, the coefficient of degree zero ofM is not equal to zero). We have y , 0. We
consider four variables a, b, u and v which are polynomials in GF (p)[z] (all will have degree
less than n, except for the starting value of b, which is equal toM ), and an extra small integer
δ. The process is described in algorithm 5.

Algorithm 5 Division inGF (pn)with binary GCD
Require: x, y ∈ GF (pn), y , 0,GF (pn) = GF (p)[z]/M
Ensure: x/y
1: a← y, b←M , u← x, v← 0
2: δ← 0
3: for 1 ≤ i ≤ 2n do
4: if a0 = 0 then
5: (a, u) ← (a/z, u/z modM )
6: δ← δ − 1
7: else if δ ≥ 0 then
8: (a, u) ← ((b0a − a0b)/z, (b0u − a0v)/z modM )
9: else
10: (b, v) ← ((a0b − b0a)/z, (a0v − b0u)/z modM )
11: (a, b, u, v) ← (b, a, v, u)
12: δ← −δ
13: return v/b0

The following invariants are maintained throughout the algorithm:
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– ax = uy modM and bx = vy modM .
– b0 , 0.
– If the maximum possible size of a is na (i.e. the highest degree of a non-zero coefficient is
at most na − 1) and the maximum size of b is nb, then δ = na − nb, and every iteration
decreases na + nb by 1.

The algorithm converges after a maximum of 2n iterations on a = 0 and b a polynomial of
degree 0; at that point, we have b0x = vy modM , hence the result. Classical descriptions of
this algorithm use a test on a to stop when it reaches 0; here, we use a constant number of
iterations to help with constant-time implementations.

In a constant-time implementation, each iteration involves reading and rewriting four
polynomials (a, b, u and v, with multipliers in GF (p)). Some optimizations can be obtained
with the following remarks:

– The decisions for k consecutive iterations depend only on δ and the k low degree coef-
ficients of a and b. It is possible to aggregate k iterations working only on these values
(which might fit all in registers) and mutualize the updates on a, b, u and v into a multi-
plication of each by polynomials of degree less than k (with some divisions by zk).

– If computing an inversion (i.e. x = 1) instead of a division, u is initially small and some
of the first iterations can be made slightly faster.

– In the last iteration, since we are interested only in v, we can avoid updating a, b and u.

Nevertheless, our attempts at optimizing this algorithm did not yield a cost lower than 12
times the cost of a multiplication, hence not competitive with Itoh-Tsujii.

Thomas-Keller-Larsen. In 1986, Thomas, Keller and Larsen described different inver-
sion algorithms for modular integers[56]; their main algorithm was dedicated to Mersenne
primes, but another one was more generic and can be adapted to polynomials when working
moduloM = zn − c. Themain idea is to repeatedly multiply the value to invert with custom
factors of increasing degree, each shrinking the value by one element. Algorithm 6 describes
the process.

Algorithm 6 Inversion inGF (pn)with the Thomas-Keller-Larsen algorithm
Require: y ∈ GF (pn), y , 0,GF (pn) = GF (p)[z]/(zn − c)
Ensure: 1/y
1: a← y, r ← 1
2: for i = n − 1 down to 1 do
3: if ai , 0 then
4: qn−i ← 1/ai
5: for j = n − 1 − i down to 0 do
6: qj = (1/ai)

∑min(n−i,i+j)
k=j+1 qkai+j−k

7: a← qa + c mod zi (where q =
∑n−i
j=0 qjz

j)
8: r ← qr
9: return r/r0
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The algorithm works on the following invariants:

– ar = y.
– At the entry of each iteration of the outer loop, the degree of a is at most i; upon exit, it
is at most i − 1.

The polynomial q which is computed in each loop iteration (when ai , 0) is the unique
polynomial such that qa = zn + t for a polynomial t of degree at most i − 1. In the finite
field, we have qa = t + c mod (zn − c), hence multiplying a by q (and r by q too, to maintain
the first invariant) yields t + c, of degree at most i − 1. Since t has degree less than i, it can be
obtained by considering the product qamodulo zi.

In a constant-time implementation, q is always computed even if ai = 0: the constant-
time inversion of 0 is assumed to yield some value, which we ignore, and a fixing step is added
to avoid modifying a and r in such a case. This fixing step is only linear in the degree n, thus
inexpensive relatively to the rest of the algorithm.

We can avoid computing an inversion in GF (p) at each iteration by multiplying an−ii q
instead of q; however, this implies computing the powers of ai and saving them, increasing
memory traffic. Depending on the implementation platform, this may decrease or increase
overall cost.

Computing each q grows in cost as i approaches n/2, then decreases afterwards, because
then the degree of a becomes smaller and smaller. However, the value r is the product of n− 1
polynomials q of degrees 1 to n − 1, and cannot really be made less expensive than the cost of
(n− 1)/2multiplications in the field, making this algorithm less efficient than the Itoh-Tsujii
method.
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