Faster point compression for elliptic curves of j-invariant 0

Dmitrii Koshelev

Versailles Saint-Quentin-en-Yvelines University, France Infotecs, Russia Institute for Information Transmission Problems, Russia

dimitri.koshelev@gmail.com
https://www.researchgate.net/profile/Dimitri-Koshelev

Abstract

The article provides a new double point compression method (to $2\lceil \log_2(q) \rceil + 4$ bits) for an elliptic curve $E_b: y^2 = x^3 + b$ of *j*-invariant 0 over a finite field \mathbb{F}_q such that $q \equiv 1 \pmod{3}$. More precisely, we obtain explicit simple formulas transforming the coordinates x_0, y_0, x_1, y_1 of two points $P_0, P_1 \in E_b(\mathbb{F}_q)$ to some two elements of \mathbb{F}_q with four auxiliary bits. In order to recover (in the decompression stage) the points P_0, P_1 it is proposed to extract a sixth root $\sqrt[6]{Z} \in \mathbb{F}_q$ of some element $Z \in \mathbb{F}_q$. It is known that for $q \equiv 3 \pmod{4}, q \not\equiv 1 \pmod{27}$ this can be implemented by means of just one exponentiation in \mathbb{F}_q . Therefore the new compression method seems to be much faster than the classical one with the coordinates x_0, x_1 , whose decompression stage requires two exponentiations in \mathbb{F}_q . We also successfully adapt the new approach for compressing one \mathbb{F}_{q^2} -point on a curve E_b with $b \in \mathbb{F}_{q^2}^*$.

Keywords: finite fields, pairing-based cryptography, elliptic curves of j-invariant 0, point compression.

1 Introduction

In many protocols of elliptic cryptography one needs a compression method for points of an elliptic curve E over a finite field \mathbb{F}_q of characteristic p. This is done for quick transmission of the information over a communication channel or for its compact storage in a memory. There exists a classical method, which considers an \mathbb{F}_q -point on $E \subset \mathbb{A}^2_{(x,y)}$ as the x-coordinate with one auxiliary bit to uniquely recover the y-coordinate by solving the quadratic equation over \mathbb{F}_q .

Consider an elliptic curve $E_b: y^2 = x^3 + b$ for $b \in \mathbb{F}_q^*$, which is of *j*-invariant 0. Ordinary curves of such the form have become very useful in

elliptic cryptography, especially in *pairing-based cryptography* [1]. This is due to the existence of (maximally possible) degree 6 twists for them, leading to faster pairing computation [1, §3.3]. One of the latest reviews of standards, commercial products and libraries for this type of cryptography is given in [2, §5]. Today, the most popular choice for the 128-bit security level is the so-called Barreto-Lynn-Scott \mathbb{F}_p -curve BLS12-381 [3], where $p \equiv 3 \pmod{4}$, $p \equiv 10 \pmod{27}$, and $\lceil \log_2(p) \rceil = 381$.

The simultaneous compression of two points $(x_0, y_0), (x_1, y_1)$ from $E(\mathbb{F}_q)$ (so-called *double point compression*) is also an important task. It occurs, for example, in pairing-based protocols of succinct *non-interactive zeroknowledge proof (NIZK)*. One of the most notable recent works in this field is [4].

Double point compression has already been discussed in [5] not only for j(E) = 0, but in a slightly different way. In that article authors do not try to compress points as compact as possible. Instead, they find formulas transforming the coordinates x_0, y_0, x_1, y_1 to some three elements of the field \mathbb{F}_q . The advantage of their approach is the speed, because it should not solve any equations in the decompression stage.

By virtue of [6, Example V.4.4] the ordinariness of the curve E_b means that $p \equiv 1 \pmod{3}$ or, equivalently, $\omega := \sqrt[3]{1} \in \mathbb{F}_p$, where $\omega \neq 1$. There is on E_b the order 6 automorphism $[-\omega]: (x, y) \mapsto (\omega x, -y)$. Consider the geometric quotient $GK'_b := E_b^2/[-\omega]^{\times 2}$, which is an example of so-called *generalized Kummer surface* [7, §1.3].

Our double compression is based on \mathbb{F}_q -rationality of GK'_b , which is almost obvious (see §3). This concept of algebraic geometry means that for almost all (in some topological sense) points of GK'_b their compression (and subsequent decompression) can be accomplished by computing some rational functions defined over \mathbb{F}_q . To recover the original point belonging to $E_b^2(\mathbb{F}_q)$ from a given \mathbb{F}_q -point on GK'_b we find an inverse image of the natural map $E_b^2 \to GK'_b$ of degree 6. Since $\omega \in \mathbb{F}_q$, it is a *Kummer map*, that is the field $\mathbb{F}_q(E_b^2)$ is generated by a sixth root of some rational function from $\mathbb{F}_q(GK'_b)$.

In the article [7] the author solves a similar task (almost in the same way), namely the compression task of points from $E_b(\mathbb{F}_{q^2})$, where $q \equiv 1 \pmod{3}$, $q \equiv 3 \pmod{4}$, and $b \in \mathbb{F}_{q^2}^*$. Its actuality for pairing-based cryptography is explained in the introduction of [7]. There we use so-called *Weil restriction* (*descent*) R_b of E_b with respect to the extension $\mathbb{F}_{q^2}/\mathbb{F}_q$ (see [8, Chapter 7]). For this \mathbb{F}_q -surface we have $R_b(\mathbb{F}_q) = E_b(\mathbb{F}_{q^2})$. Besides, the map $[-\omega]$ is naturally induced to the order 6 automorphism $[-\omega]_2 \colon R_b \xrightarrow{\sim} R_b$.

We next consider the generalized Kummer surface $GK_b := R_b/[\omega]_2$ under

the order 3 automorphism $[\omega]_2 := ([-\omega]_2)^2$. In order to prove \mathbb{F}_q -rationality of GK_b we use quite complicated algebraic geometry (unlike GK'_b). In accordance with [9, §8] from \mathbb{F}_q -rationality of GK_b it follows \mathbb{F}_q -rationality of the generalized Kummer surface $R_b/[-\omega]_2 \simeq_{\mathbb{F}_q} GK_b/[-1]$. However, this fact does not provide explicit formulas of a birational \mathbb{F}_q -isomorphism $R_b/[-\omega]_2 \simeq A^2$. Nevertheless, such formulas can be easily derived in the same way as for GK'_b (for details see §4).

2 Double compression

For the sake of generality we will consider any pair of elliptic \mathbb{F}_q -curves of *j*-invariant 0, but for $q \equiv 1 \pmod{3}$, i.e., $\omega \in \mathbb{F}_q$. Namely, for i = 0, 1 let $E_i: y_i^2 = x_i^3 + b_i$, that is E_{b_i} in our old notation. These curves are isomorphic at most over \mathbb{F}_{q^6} by the map

$$\varphi \colon E_0 \xrightarrow{\sim} E_1, \qquad (x_0, y_0) \mapsto \left(\sqrt[3]{\beta x_0}, \sqrt{\beta y_0}\right),$$

where $\beta := b_1/b_0$. Also, for $k \in \mathbb{Z}/6$ let $\varphi_k := \varphi \circ [-\omega]^k = [-\omega]^k \circ \varphi$. Finally,

$$S_i := \{ (x_i, y_i) \in E_i \mid x_i y_i = 0 \} \cup \{ (0 : 1 : 0) \} \subset E_i[2] \cup E_i[3],$$
$$S := E_0 \times S_1 \cup S_0 \times E_1.$$

Using the fractions

$$X := \frac{x_0}{x_1}, \qquad Y := \frac{y_0}{y_1}$$

we obtain the compression map

$$\operatorname{com}: (E_0 \times E_1)(\mathbb{F}_q) \setminus S \quad \hookrightarrow \quad \mathbb{F}_q^2 \times \mathbb{Z}/6 \times \mathbb{Z}/2,$$
$$\operatorname{com}(P_0, P_1) := \begin{cases} (X, Y, n, 0) & \text{if} \quad \forall k \in \mathbb{Z}/6 \colon \varphi_k(P_0) \neq P_1, \\ (x_0, y_0, k, 1) & \text{if} \quad \exists k \in \mathbb{Z}/6 \colon \varphi_k(P_0) = P_1, \end{cases}$$

where $n \in \mathbb{Z}/6$ is the position number of the element $z := x_1 y_1 \in \mathbb{F}_q^*$ in the set $\{(-1)^i \omega^j z\}_{i=0,j=0}^{1,2}$ ordered with respect to some order in \mathbb{F}_q^* . For example, in the case q = p this can be the usual numerical one.

Note that the condition $\varphi_k(P_0) = P_1$ is possible only if the isomorphism φ is defined over \mathbb{F}_q , that is $\sqrt[6]{\beta} \in \mathbb{F}_q$. Finally, if it is necessary, points from $S(\mathbb{F}_q)$ can be separately worked out, using few additional bits. However they do not arise in practice, because, as is well known, from $E_i(\mathbb{F}_q)$ points of large prime order are only utilized for security reasons.

3 Double decompression

Let $u := x_1^3$, $v := y_1^2$, and $Z := u^2 v^3 = z^6$. Since $x_0 = X x_1$, we have $x_0^3 = X^3 u$. Hence

$$Y^{2} = \frac{y_{0}^{2}}{y_{1}^{2}} = \frac{x_{0}^{3} + b_{0}}{x_{1}^{3} + b_{1}} = \frac{X^{3}u + b_{0}}{u + b_{1}}$$

and

$$u = \frac{b_0 - b_1 Y^2}{Y^2 - X^3}, \qquad v = u + b_1.$$

Using the number $n \in \mathbb{Z}/6$, we can extract the original sixth root

$$z = x_1 y_1 = \sqrt[3]{u} \sqrt{v} = \sqrt[6]{Z} = \sqrt[3]{\sqrt{Z}}$$

For $q \equiv 3 \pmod{4}$, $q \not\equiv 1 \pmod{27}$ according to $[1, \S{5}.1.7]$, $[10, \S{4}]$

$$a := \sqrt{Z} = \pm Z^{\frac{q+1}{4}}, \qquad \sqrt[3]{a} = \theta a^e, \qquad \text{hence} \qquad z = \pm \theta Z^{e^{\frac{q+1}{4}}}$$

for some $\theta \in \mathbb{F}_q^*$, $\theta^9 = 1$ and $e \in \mathbb{Z}/(q-1)$. Besides, e has an explicit simple expression depending only on q. In the case $q \not\equiv 1 \pmod{9}$, moreover, $\theta^3 = 1$. In the opposite case a suitable θ can be found with the help of at most two supplementary multiplications of $Z^{e^{\frac{q+1}{4}}}$ by representatives of the quotient group μ_9/μ_3 .

We eventually obtain the equalities

$$x_1 = f_n(X, Y) := \frac{uv}{z^2}, \qquad y_1 = g_n(X, Y) := \frac{z}{x_1}$$

making sense when the denominator of u is not zero, i.e., $Y^2 \neq X^3$. Otherwise

$$\frac{x_0^3 + b_0}{x_1^3 + b_1} = \frac{x_0^3}{x_1^3} \quad \Leftrightarrow \quad b_0 x_1^3 = b_1 x_0^3 \quad \Leftrightarrow \quad \exists j \in \mathbb{Z}/3 \colon x_1 = \omega^j \sqrt[3]{\beta} x_0.$$

This means that $\varphi_k(P_0) = P_1$ for $k \in \{j, j+3\}$.

Thus the decompression map has the form

$$\operatorname{com}^{-1} \colon \operatorname{Im}(\operatorname{com}) \xrightarrow{\simeq} (E_0 \times E_1)(\mathbb{F}_q) \setminus S,$$
$$\operatorname{com}^{-1}(t, s, m, bit) = \begin{cases} (tf_m, sg_m, f_m, g_m) & \text{if } bit = 0, \\ ((t, s), \varphi_m(t, s)) & \text{if } bit = 1, \end{cases}$$

where $f_m := f_m(t, s), g_m := g_m(t, s).$

4 Compression-decompression over \mathbb{F}_{q^2}

Our approach still works well for compressing \mathbb{F}_{q^2} -points on the curve $E_b: y^2 = x^3 + b$, where $b \in \mathbb{F}_{q^2}^*$ and $q \equiv 1 \pmod{3}$ as earlier. For simplicity we also suppose that $q \equiv 3 \pmod{4}$, i.e., $i := \sqrt{-1} \notin \mathbb{F}_q$. Let $b = b_0 + b_1 i$ (such that $b_0, b_1 \in \mathbb{F}_q$) and

$$x = x_0 + x_1 i,$$
 $y = y_0 + y_1 i,$ $z := x_1 y_1,$ $X := \frac{x_0}{x_1},$ $Y := \frac{y_0}{y_1}.$

Due to [7, Remark 2] the elements $b_0, b_1 \neq 0$ in practice, hence let us assume this condition, to be definite. We will focus on general \mathbb{F}_{q^2} -points, that is on those outside the set

$$S := \{ (x, y) \in E_b(\mathbb{F}_{q^2}) \mid x_0 y_0 x_1 y_1 = 0 \} \cup \{ (0 : 1 : 0) \}.$$

Consider the equations

$$R_b = \begin{cases} y_0^2 - y_1^2 = \rho_1(x_0, x_1) := x_0^3 - 3x_0x_1^2 + b_0, \\ 2y_0y_1 = \rho_i(x_0, x_1) := -x_1^3 + 3x_0^2x_1 + b_1 \end{cases} \subset \mathbb{A}^4_{(x_0, y_0, x_1, y_1)}$$

of the Weil restriction $R_b := \mathbb{R}_{\mathbb{F}_{q^2}/\mathbb{F}_q}(E_b)$ (cf. [7, §1.2.1]). Similarly as in §3 we obtain the formulas (verified in [11])

$$u := x_1^3 = \frac{2b_0 Y - b_1 \gamma(Y)}{\alpha(X)\gamma(Y) - 2\beta(X)Y}, \qquad v := y_1^2 = \frac{\beta(X)u + b_0}{\gamma(Y)},$$

where

$$\alpha(X) := 3X^2 - 1, \qquad \beta(X) := X(X^2 - 3), \qquad \gamma(Y) := Y^2 - 1.$$

We eventually obtain the equalities

$$x_1 = f_n(X, Y) := \frac{uv}{z^2}, \qquad y_1 = g_n(X, Y) := \frac{z}{x_1},$$

where z is computed as a sixth root of $Z := u^2 v^3$ and the index $n \in \mathbb{Z}/6$ plays the same role as in §2, §3.

It remains to handle degenerate cases. It is readily checked (e.g., in [11]) that

$$\alpha(X)\gamma(Y) - 2\beta(X)Y = 0 \quad \Leftrightarrow \quad F := b_1 x_0^3 - 3b_0 x_0^2 x_1 - 3b_1 x_0 x_1^2 + b_0 x_1^3 = 0,$$

$$\gamma(Y) = 0 \quad \Leftrightarrow \quad y_1 = \pm y_0 \quad \Leftrightarrow \quad x_1 = h_\ell(x_0) := \sqrt{\frac{x_0^3 + b_0}{3x_0}},$$

where $\ell \in \mathbb{Z}/2$ is the position number of x_1 among $\pm x_1$ with respect to some order in \mathbb{F}_q^* . For example, in the case q = p this can be the usual numerical one, that is $\ell = 1$ if and only if $x_1 > (p-1)/2$.

The polynomial F is the homogenization of one from [7, §1.3.1]. Therefore F is decomposed over \mathbb{F}_q into linear L and irreducible quadratic Q homogeneous polynomials. Of course, Q is the product of two different \mathbb{F}_q conjugate linear factors having the unique common point (0,0). As a result, $F(x_0, x_1) = 0$ if and only if $L(x_0, x_1) = 0$ whenever $(x_0, x_1) \in \mathbb{F}_q^2$. Since $b_0, b_1 \neq 0$, we see that (up to a constant) $L = -cx_0 + x_1$ for some $c \in \mathbb{F}_q^*$. For instance, in the case $b_0 = b_1$ (including the \mathbb{F}_{p^2} -curve BLS12-381) we have c = -1 and $Q = b_0(x_0^2 - 4x_0x_1 + x_1^2)$ (cf. [7, §3.1]).

The compression map is given as follows:

$$\operatorname{com}: E_b(\mathbb{F}_{q^2}) \setminus S \quad \hookrightarrow \quad \mathbb{F}_q^2 \times \mathbb{Z}/6 \times \mathbb{Z}/3,$$
$$\operatorname{com}(x, y) := \begin{cases} (x_0, y_0, 0, 0) & \text{if} \quad x_1 = cx_0, \\ (x_0, y_0, 2k + \ell, 1) & \text{if} \quad y_1 = (-1)^k y_0, \\ (X, Y, n, 2) & \text{otherwise}, \end{cases}$$

where $k \in \mathbb{Z}/2$ and $2k + \ell \in \mathbb{Z}/4$. Be careful that here \mathbb{Z}/j (for $j \in \{2, 4, 6\}$) denotes only the set (without the group structure) of the first j non-negative integers and + is the addition in \mathbb{Z} .

The corresponding decompression map has the form

$$\operatorname{com}^{-1} : \operatorname{Im}(\operatorname{com}) \xrightarrow{\simeq} E_b(\mathbb{F}_{q^2}) \setminus S,$$
$$\operatorname{com}^{-1}(t, s, m, bits) = \begin{cases} \left((t, s, ct, \frac{\rho_i(t, ct)}{2s}\right) & \text{if } bits = 0, \\ (t, s, h_\ell(t), (-1)^k s) & \text{if } bits = 1, \\ (tf_m, sg_m, f_m, g_m) & \text{if } bits = 2, \end{cases}$$

where $f_m := f_m(t, s)$, $g_m := g_m(t, s)$. In order not to complicate the exposition we leave to the reader to process the remaining simple cases when at least one of the coordinates x_0, y_0, x_1, y_1 is zero.

5 Complexity comparison

Tables 1, 2 display the worst-case complexity in terms of the number of the most cumbersome operations in the field \mathbb{F}_q . The inversion (resp. exponen-

	two \mathbb{F}_q -points one \mathbb{F}_{q^2} -point		
compression	there's nothing to do		
decompression	2 exp.	1 inv., 1 Legendre symbol, 2 exp. [1, Algorithm 5.18]	

Table 1: Worst-case complexity of the classical method with x-coordinate(s)

	two \mathbb{F}_q -points	one \mathbb{F}_{q^2} -point
compression	2 inv.	2 inv.
decompression	3 inv., 1 exp.	4 inv., 1 exp.

Table 2: Worst-case complexity of the new method

tiation) operation is indicated as inv. (resp. exp.) for the sake of compactness.

Although the new point compression-decompression method contains a little more inversions than the classical one, this does not significantly affect the performance for q of a cryptographic size. The point is that compression is mainly applied to public data, which are not vulnerable to timing attacks [1, §8.2.2, §12.1.1]. Therefore all inversions (as well as the Legendre symbol) can be safely implemented via (an algorithm very close to) the extended Euclidean one (see, e.g., [1, §5.1.6, Algorithm 2.3]). And the latter is much faster than a general exponentiation in \mathbb{F}_q^* even if an exponent is fixed and of small Hamming weight. A good survey of the exponentiation technique (not necessarily in \mathbb{F}_q^*) is represented in [8, Chapter 9].

6 Extension of the compression technique

At least theoretically, pairing-based cryptography also deals with the elliptic \mathbb{F}_{q^2} -curves $E_a: y^2 = x^3 + ax$ of *j*-invariant 1728, where $q \equiv 1 \pmod{4}$. According to [1, Example 2.28] the latter condition is necessary for the ordinariness of E_a . Our technique remains valid for compressing \mathbb{F}_q -points of E_a^2 (if $a \in \mathbb{F}_q^*$) and \mathbb{F}_{q^2} -points of E_a , because there is on E_a the \mathbb{F}_q -automorphism $[i]: (x, y) \mapsto (-x, iy)$ of order 4. However in the second case one needs to remember that $\{1, i\}$ is obviously no longer a basis of the extension $\mathbb{F}_{q^2}/\mathbb{F}_q$.

Further, given m > 2 it is very natural to think about compressing points from $E_b^m(\mathbb{F}_q)$ or $E_a^m(\mathbb{F}_q)$, where $b, a \in \mathbb{F}_q^*$. This so-called *multiple point compression* is discussed in [12] by analogy with double one in [5]. If m is large, then that approach is expected to be the best trade-off between compactness and efficiency of compression-decompression stages. In turn, one can try to generalize the idea of this article to other small values m. As is known [13, §1], for m > 6 (resp. m > 4) the generalized Kummer variety $GK'_{b,m} := E_b^m/[-\omega]^{\times m}$ (resp. $GK'_{a,m} := E_a^m/[i]^{\times m}$) is no longer rational even over the algebraic closure $\overline{\mathbb{F}}_q$. Nevertheless, for b = -1 the \mathbb{F}_q -rationality of $GK'_{b,3}$ is proved in [14, §2] and for a = -1 the \mathbb{F}_q -rationality of $GK'_{a,3}$ is shown in [15], based on [16]. The geometrical rationality of $GK'_{b,4}$, $GK'_{b,5}$ is conjectured in [13, Questions 1.3, 1.4].

It turns out that the \mathbb{F}_q -formulas of a birational isomorphism $GK'_{b,3} \simeq A^3$, derived in [14, §2] for b = -1, are immediately extended to \mathbb{F}_q -formulas for any $b \in \mathbb{F}_q^*$. In turn, the \mathbb{F}_q -formulas of [16], established for a = -1, are also valid for any $a \in \mathbb{F}_q^*$ and hence the proof of [15] is so. Although the latter does not provide explicit formulas for $GK'_{a,3} \simeq A^3$, in our view, such \mathbb{F}_q -formulas can be obtained if desired.

In pairing-based cryptography the embedding degree k (see, e.g., [1, §1.2.3]) will probably exceed in the near future the value 12, which is popular today for the 128-bit security level. Therefore we will have to use elliptic curve twists (of degree $d \in \{6, 4\}$) defined over the field \mathbb{F}_{q^m} , where $m = k/d \in \mathbb{N}_{>2}$. Thus given $b, a \in \mathbb{F}_{q^m}^*$ the compression task of points from $E_b(\mathbb{F}_{q^m})$ or $E_a(\mathbb{F}_{q^m})$ is quite important.

More formally, introduce the order 6 automorphism $[-\omega]_m := \operatorname{R}_{\mathbb{F}_{q^m}/\mathbb{F}_q}([-\omega])$ on the Weil restriction $R_{b,m} := \operatorname{R}_{\mathbb{F}_{q^m}/\mathbb{F}_q}(E_b)$. Similarly, $[i]_m := \operatorname{R}_{\mathbb{F}_{q^m}/\mathbb{F}_q}([i])$ is an order 4 automorphism on the Weil restriction $R_{a,m} := \operatorname{R}_{\mathbb{F}_{q^m}/\mathbb{F}_q}(E_a)$. As is well known [8, §7.3], there are $\overline{\mathbb{F}_q}$ -isomorphisms $\psi_{b,m} : R_{b,m} \cong E_b^m$ and $\psi_{a,m} : R_{a,m} \cong E_a^m$. Moreover, it is readily checked that

$$[-\omega]^m \circ \psi_{b,m} = \psi_{b,m} \circ [-\omega]_m, \qquad [i]^m \circ \psi_{a,m} = \psi_{a,m} \circ [i]_m.$$

Hence in view of the above, it is sufficient to focus on m = 3. In our opinion, the \mathbb{F}_q -rationality questions of $R_{b,3}/[-\omega]_3$ and $R_{a,3}/[i]_3$ seem difficult, but solvable.

7 Acknowledgements

The author expresses his deep gratitude to his scientific advisor M. Ts-fasman.

8 Funding

This work was supported by a public grant as part of the FMJH project.

References

- [1] El Mrabet N., Joye M., *Guide to Pairing-Based Cryptography*, Cryptography and Network Security Series, Chapman and Hall/CRC, New York, 2016.
- [2] Sakemi Y., Kobayashi T., Saito T., Wahby R., Pairing-friendly curves, 2021, IETF draft.
- [3] Bowe S., *BLS12-381: New zk-SNARK elliptic curve construction*, Zcash Company blog: https://z.cash/blog/new-snark-curve/, 2017.
- [4] Groth J., "On the size of pairing-based non-interactive arguments", Eurocrypt 2016, LNCS, 9665, eds. Fischlin M., Coron J.-S., Springer, Berlin, Heidelberg, 2016, 305–326.
- [5] Khabbazian M., Gulliver T., Bhargava V., "Double point compression with applications to speeding up random point multiplication", *IEEE Transactions on Computers*, 56:3 (2007), 305–313.
- [6] Silverman J., The Arithmetic of Elliptic Curves, Graduate Texts in Mathematics, 106, Springer, New York, 2009.
- [7] Koshelev D., "New point compression method for elliptic \mathbb{F}_{q^2} -curves of *j*-invariant 0", *Finite Fields and Their Applications*, **69** (2021), Article 101774.
- [8] Cohen H. et al., *Handbook of elliptic and hyperelliptic curve cryptography*, Discrete Mathematics and Its Applications, **34**, Chapman and Hall/CRC, New York, 2005.
- [9] Liedtke C., "Algebraic surfaces in positive characteristic", Birational Geometry, Rational Curves, and Arithmetic, Simons Symposia, eds. Bogomolov F., Hassett B., Tschinkel Y., Springer, New York, 2013, 229–292.
- [10] Cho G. at al., "New cube root algorithm based on the third order linear recurrence relations in finite fields", *Designs, Codes and Cryptography*, 75:3 (2015), 483–495.
- [11] Koshelev D., Magma code, https://github.com/dishport/Faster-point-compression-forelliptic-curves-of-j-invariant-0, 2021.
- [12] Fan X., Otemissov A., Sica F., Sidorenko A., "Multiple point compression on elliptic curves", Designs, Codes and Cryptography, 83:3 (2017), 565–588.
- [13] Catanese F., Oguiso K., Verra A., "On the unirationality of higher dimensional Ueno-type manifolds", Revue Roumaine de Mathématiques Pures et Appliquées, 60:3 (2015), 337–353.
- [14] Oguiso K., Truong T., "Explicit examples of rational and Calabi–Yau threefolds with primitive automorphisms of positive entropy", *Journal of Mathematical Sciences, the University* of Tokyo, 22 (2015), 361–385.
- [15] Colliot-Thélene J.-L., "Rationalité d'un fibré en coniques", Manuscripta Mathematica, 147:3 (2015), 305–310.
- [16] Catanese F., Oguiso K., Truong T., "Unirationality of Ueno-Campana's threefold", Manuscripta Mathematica, 145:3 (2014), 399–406.