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Abstract

The article provides a new double point compression method (to 2dlog2(q)e+ 4
bits) for an elliptic curve Eb : y

2 = x3 + b of j-invariant 0 over a finite field Fq such
that q ≡ 1 (mod 3). More precisely, we obtain explicit simple formulas transforming
the coordinates x0, y0, x1, y1 of two points P0, P1 ∈ Eb(Fq) to some two elements of
Fq with four auxiliary bits. In order to recover (in the decompression stage) the
points P0, P1 it is proposed to extract a sixth root 6

√
Z ∈ Fq of some element Z ∈ Fq.

It is known that for q ≡ 3 (mod 4), q 6≡ 1 (mod 27) this can be implemented by
means of just one exponentiation in Fq. Therefore the new compression method
seems to be much faster than the classical one with the coordinates x0, x1, whose
decompression stage requires two exponentiations in Fq. We also successfully adapt
the new approach for compressing one Fq2-point on a curve Eb with b ∈ F∗

q2 .

Keywords: finite fields, pairing-based cryptography, elliptic curves of j-invariant 0, point
compression.

1 Introduction

In many protocols of elliptic cryptography one needs a compression
method for points of an elliptic curve E over a finite field Fq of characteristic
p. This is done for quick transmission of the information over a communica-
tion channel or for its compact storage in a memory. There exists a classical
method, which considers an Fq-point on E ⊂ A2

(x,y) as the x-coordinate with
one auxiliary bit to uniquely recover the y-coordinate by solving the quadratic
equation over Fq.

Consider an elliptic curve Eb : y
2 = x3 + b for b ∈ F∗q , which is of j-

invariant 0. Ordinary curves of such the form have become very useful in
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elliptic cryptography, especially in pairing-based cryptography [1]. This is due
to the existence of (maximally possible) degree 6 twists for them, leading to
faster pairing computation [1, §3.3]. One of the latest reviews of standards,
commercial products and libraries for this type of cryptography is given in
[2, §5]. Today, the most popular choice for the 128-bit security level is the
so-called Barreto-Lynn-Scott Fp-curve BLS12-381 [3], where p ≡ 3 (mod 4),
p ≡ 10 (mod 27), and dlog2(p)e = 381.

The simultaneous compression of two points (x0, y0), (x1, y1) from E(Fq)
(so-called double point compression) is also an important task. It occurs,
for example, in pairing-based protocols of succinct non-interactive zero-
knowledge proof (NIZK). One of the most notable recent works in this field
is [4].

Double point compression has already been discussed in [5] not only for
j(E) = 0, but in a slightly different way. In that article authors do not try
to compress points as compact as possible. Instead, they find formulas trans-
forming the coordinates x0, y0, x1, y1 to some three elements of the field Fq.
The advantage of their approach is the speed, because it should not solve
any equations in the decompression stage.

By virtue of [6, Example V.4.4] the ordinariness of the curve Eb means
that p ≡ 1 (mod 3) or, equivalently, ω := 3

√
1 ∈ Fp, where ω 6= 1. There is on

Eb the order 6 automorphism [−ω] : (x, y) 7→ (ωx,−y). Consider the geomet-
ric quotient GK ′b := E2

b/[−ω]×2, which is an example of so-called generalized
Kummer surface [7, §1.3].

Our double compression is based on Fq-rationality ofGK ′b, which is almost
obvious (see §3). This concept of algebraic geometry means that for almost all
(in some topological sense) points of GK ′b their compression (and subsequent
decompression) can be accomplished by computing some rational functions
defined over Fq. To recover the original point belonging to E2

b (Fq) from a given
Fq-point on GK ′b we find an inverse image of the natural map E2

b → GK ′b
of degree 6. Since ω ∈ Fq, it is a Kummer map, that is the field Fq(E2

b ) is
generated by a sixth root of some rational function from Fq(GK ′b).

In the article [7] the author solves a similar task (almost in the same way),
namely the compression task of points from Eb(Fq2), where q ≡ 1 (mod 3),
q ≡ 3 (mod 4), and b ∈ F∗q2. Its actuality for pairing-based cryptography is
explained in the introduction of [7]. There we use so-called Weil restriction
(descent) Rb of Eb with respect to the extension Fq2/Fq (see [8, Chapter
7]). For this Fq-surface we have Rb(Fq) = Eb(Fq2). Besides, the map [−ω] is
naturally induced to the order 6 automorphism [−ω]2 : Rb

∼−→ Rb.
We next consider the generalized Kummer surface GKb := Rb/[ω]2 under
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the order 3 automorphism [ω]2 := ([−ω]2)2. In order to prove Fq-rationality
of GKb we use quite complicated algebraic geometry (unlike GK ′b). In ac-
cordance with [9, §8] from Fq-rationality of GKb it follows Fq-rationality
of the generalized Kummer surface Rb/[−ω]2 'Fq GKb/[−1]. However, this
fact does not provide explicit formulas of a birational Fq-isomorphism
Rb/[−ω]2 ∼99K A2. Nevertheless, such formulas can be easily derived in the
same way as for GK ′b (for details see §4).

2 Double compression

For the sake of generality we will consider any pair of elliptic Fq-curves
of j-invariant 0, but for q ≡ 1 (mod 3), i.e., ω ∈ Fq. Namely, for i = 0, 1 let
Ei : y

2
i = x3i + bi, that is Ebi in our old notation. These curves are isomorphic

at most over Fq6 by the map

ϕ : E0
∼−→ E1, (x0, y0) 7→

(
3
√
βx0,

√
βy0
)
,

where β := b1/b0. Also, for k ∈ Z/6 let ϕk := ϕ ◦ [−ω]k = [−ω]k ◦ ϕ. Finally,

Si :=
{
(xi, yi) ∈ Ei | xiyi = 0

}
∪
{
(0 : 1 : 0)

}
⊂ Ei[2] ∪ Ei[3],

S := E0×S1 ∪ S0×E1.

Using the fractions

X :=
x0
x1
, Y :=

y0
y1
,

we obtain the compression map

com: (E0×E1)(Fq) \ S ↪→ F2
q ×Z/6×Z/2,

com(P0, P1) :=


(
X, Y, n, 0

)
if ∀k ∈ Z/6: ϕk(P0) 6= P1,(

x0, y0, k, 1
)

if ∃k ∈ Z/6: ϕk(P0) = P1,

where n ∈ Z/6 is the position number of the element z := x1y1 ∈ F∗q in the
set
{
(−1)iωjz

}1,2
i=0,j=0

ordered with respect to some order in F∗q . For example,
in the case q = p this can be the usual numerical one.

Note that the condition ϕk(P0) = P1 is possible only if the isomorphism
ϕ is defined over Fq, that is 6

√
β ∈ Fq. Finally, if it is necessary, points from

S(Fq) can be separately worked out, using few additional bits. However they
do not arise in practice, because, as is well known, from Ei(Fq) points of large
prime order are only utilized for security reasons.
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3 Double decompression

Let u := x31, v := y21, and Z := u2v3 = z6. Since x0 = Xx1, we have x30 =
X3u. Hence

Y 2 =
y20
y21

=
x30 + b0
x31 + b1

=
X3u+ b0
u+ b1

and
u =

b0 − b1Y 2

Y 2 −X3
, v = u+ b1.

Using the number n ∈ Z/6, we can extract the original sixth root

z = x1y1 =
3
√
u
√
v =

6
√
Z =

3

√√
Z.

For q ≡ 3 (mod 4), q 6≡ 1 (mod 27) according to [1, §5.1.7], [10, §4]

a :=
√
Z = ±Z

q+1
4 , 3

√
a = θae, hence z = ±θZe q+1

4

for some θ ∈ F∗q , θ9 = 1 and e ∈ Z/(q − 1). Besides, e has an explicit simple
expression depending only on q. In the case q 6≡ 1 (mod 9), moreover, θ3 = 1.
In the opposite case a suitable θ can be found with the help of at most two
supplementary multiplications of Ze q+1

4 by representatives of the quotient
group µ9/µ3.

We eventually obtain the equalities

x1 = fn(X, Y ) :=
uv

z2
, y1 = gn(X, Y ) :=

z

x1

making sense when the denominator of u is not zero, i.e., Y 2 6= X3. Otherwise

x30 + b0
x31 + b1

=
x30
x31

⇔ b0x
3
1 = b1x

3
0 ⇔ ∃j ∈ Z/3: x1 = ωj 3

√
βx0.

This means that ϕk(P0) = P1 for k ∈ {j, j + 3}.
Thus the decompression map has the form

com−1 : Im(com) ∼−→ (E0×E1)(Fq) \ S,

com−1
(
t, s,m, bit

)
=


(
tfm, sgm, fm, gm

)
if bit = 0,(

(t, s), ϕm(t, s)
)

if bit = 1,

where fm := fm(t, s), gm := gm(t, s).
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4 Compression-decompression over Fq2

Our approach still works well for compressing Fq2-points on the curve
Eb : y

2 = x3 + b, where b ∈ F∗q2 and q ≡ 1 (mod 3) as earlier. For simplicity
we also suppose that q ≡ 3 (mod 4), i.e., i :=

√
−1 /∈ Fq. Let b = b0 + b1i

(such that b0, b1 ∈ Fq) and

x = x0 + x1i, y = y0 + y1i, z := x1y1, X :=
x0
x1
, Y :=

y0
y1
.

Due to [7, Remark 2] the elements b0, b1 6= 0 in practice, hence let us assume
this condition, to be definite. We will focus on general Fq2-points, that is on
those outside the set

S :=
{
(x, y) ∈ Eb(Fq2) | x0y0x1y1 = 0

}
∪
{
(0 : 1 : 0)

}
.

Consider the equations

Rb =

{
y20 − y21 = ρ1(x0, x1) := x30 − 3x0x

2
1 + b0,

2y0y1 = ρi(x0, x1) := −x31 + 3x20x1 + b1
⊂ A4

(x0,y0,x1,y1)

of the Weil restriction Rb := RFq2/Fq(Eb) (cf. [7, §1.2.1]). Similarly as in §3 we
obtain the formulas (verified in [11])

u := x31 =
2b0Y − b1γ(Y )

α(X)γ(Y )− 2β(X)Y
, v := y21 =

β(X)u+ b0
γ(Y )

,

where

α(X) := 3X2 − 1, β(X) := X(X2 − 3), γ(Y ) := Y 2 − 1.

We eventually obtain the equalities

x1 = fn(X, Y ) :=
uv

z2
, y1 = gn(X, Y ) :=

z

x1
,

where z is computed as a sixth root of Z := u2v3 and the index n ∈ Z/6
plays the same role as in §2, §3.

It remains to handle degenerate cases. It is readily checked (e.g., in [11])
that

α(X)γ(Y )− 2β(X)Y = 0 ⇔ F := b1x
3
0 − 3b0x

2
0x1 − 3b1x0x

2
1 + b0x

3
1 = 0,

γ(Y ) = 0 ⇔ y1 = ±y0 ⇔ x1 = h`(x0) :=

√
x30 + b0
3x0

,
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where ` ∈ Z/2 is the position number of x1 among ±x1 with respect to some
order in F∗q . For example, in the case q = p this can be the usual numerical
one, that is ` = 1 if and only if x1 > (p− 1)/2.

The polynomial F is the homogenization of one from [7, §1.3.1]. There-
fore F is decomposed over Fq into linear L and irreducible quadratic Q ho-
mogeneous polynomials. Of course, Q is the product of two different Fq-
conjugate linear factors having the unique common point (0, 0). As a re-
sult, F (x0, x1) = 0 if and only if L(x0, x1) = 0 whenever (x0, x1) ∈ F2

q . Since
b0, b1 6= 0, we see that (up to a constant) L = −cx0 + x1 for some c ∈ F∗q .
For instance, in the case b0 = b1 (including the Fp2-curve BLS12-381) we
have c = −1 and Q = b0(x

2
0 − 4x0x1 + x21) (cf. [7, §3.1]).

The compression map is given as follows:

com: Eb(Fq2) \ S ↪→ F2
q ×Z/6×Z/3,

com(x, y) :=



(
x0, y0, 0, 0

)
if x1 = cx0,(

x0, y0, 2k + `, 1
)

if y1 = (−1)ky0,(
X, Y, n, 2

)
otherwise,

where k ∈ Z/2 and 2k + ` ∈ Z/4. Be careful that here Z/j (for j ∈ {2, 4, 6})
denotes only the set (without the group structure) of the first j non-negative
integers and + is the addition in Z.

The corresponding decompression map has the form

com−1 : Im(com) ∼−→ Eb(Fq2) \ S,

com−1
(
t, s,m, bits

)
=



(
(t, s, ct,

ρi(t, ct)

2s

)
if bits = 0,

(
t, s, h`(t), (−1)ks

)
if bits = 1,(

tfm, sgm, fm, gm
)

if bits = 2,

where fm := fm(t, s), gm := gm(t, s). In order not to complicate the exposi-
tion we leave to the reader to process the remaining simple cases when at
least one of the coordinates x0, y0, x1, y1 is zero.

5 Complexity comparison

Tables 1, 2 display the worst-case complexity in terms of the number of
the most cumbersome operations in the field Fq. The inversion (resp. exponen-
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two Fq-points one Fq2-point

compression there’s nothing to do

decompression 2 exp. 1 inv., 1 Legendre symbol, 2 exp. [1, Algorithm 5.18]

Table 1: Worst-case complexity of the classical method with x-coordinate(s)

two Fq-points one Fq2-point

compression 2 inv. 2 inv.

decompression 3 inv., 1 exp. 4 inv., 1 exp.

Table 2: Worst-case complexity of the new method

tiation) operation is indicated as inv. (resp. exp.) for the sake of compactness.
Although the new point compression-decompression method contains a

little more inversions than the classical one, this does not significantly affect
the performance for q of a cryptographic size. The point is that compression
is mainly applied to public data, which are not vulnerable to timing attacks
[1, §8.2.2, §12.1.1]. Therefore all inversions (as well as the Legendre symbol)
can be safely implemented via (an algorithm very close to) the extended
Euclidean one (see, e.g., [1, §5.1.6, Algorithm 2.3]). And the latter is much
faster than a general exponentiation in F∗q even if an exponent is fixed and of
small Hamming weight. A good survey of the exponentiation technique (not
necessarily in F∗q ) is represented in [8, Chapter 9].

6 Extension of the compression technique

At least theoretically, pairing-based cryptography also deals with the el-
liptic Fq2-curves Ea : y

2 = x3 + ax of j-invariant 1728, where q ≡ 1 (mod 4).
According to [1, Example 2.28] the latter condition is necessary for the ordi-
nariness of Ea. Our technique remains valid for compressing Fq-points of E2

a

(if a ∈ F∗q ) and Fq2-points of Ea, because there is on Ea the Fq-automorphism
[i] : (x, y) 7→ (−x, iy) of order 4. However in the second case one needs to
remember that {1, i} is obviously no longer a basis of the extension Fq2/Fq.

Further, givenm > 2 it is very natural to think about compressing points
from Em

b (Fq) or Em
a (Fq), where b, a ∈ F∗q . This so-called multiple point com-

pression is discussed in [12] by analogy with double one in [5]. If m is large,
then that approach is expected to be the best trade-off between compactness
and efficiency of compression-decompression stages. In turn, one can try to
generalize the idea of this article to other small values m.
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As is known [13, §1], form > 6 (resp.m > 4) the generalized Kummer va-
riety GK ′b,m := Em

b /[−ω]×m (resp. GK ′a,m := Em
a /[i]

×m) is no longer rational
even over the algebraic closure Fq. Nevertheless, for b = −1 the Fq-rationality
of GK ′b,3 is proved in [14, §2] and for a = −1 the Fq-rationality of GK ′a,3 is
shown in [15], based on [16]. The geometrical rationality of GK ′b,4, GK

′
b,5 is

conjectured in [13, Questions 1.3, 1.4].
It turns out that the Fq-formulas of a birational isomorphism GK ′b,3 ∼99K

A3, derived in [14, §2] for b = −1, are immediately extended to Fq-formulas
for any b ∈ F∗q . In turn, the Fq-formulas of [16], established for a = −1, are
also valid for any a ∈ F∗q and hence the proof of [15] is so. Although the
latter does not provide explicit formulas for GK ′a,3 ∼99K A3, in our view, such
Fq-formulas can be obtained if desired.

In pairing-based cryptography the embedding degree k (see, e.g., [1,
§1.2.3]) will probably exceed in the near future the value 12, which is popular
today for the 128-bit security level. Therefore we will have to use elliptic curve
twists (of degree d ∈ {6, 4}) defined over the field Fqm, wherem = k/d ∈ N>2.
Thus given b, a ∈ F∗qm the compression task of points from Eb(Fqm) or Ea(Fqm)
is quite important.

More formally, introduce the order 6 automorphism [−ω]m :=
RFqm/Fq([−ω]) on the Weil restriction Rb,m := RFqm/Fq(Eb). Similarly, [i]m :=
RFqm/Fq([i]) is an order 4 automorphism on the Weil restriction Ra,m :=

RFqm/Fq(Ea). As is well known [8, §7.3], there are Fq-isomorphisms ψb,m :
Rb,m

∼−→ Em
b and ψa,m : Ra,m

∼−→ Em
a . Moreover, it is readily checked that

[−ω]m ◦ ψb,m = ψb,m ◦ [−ω]m, [i]m ◦ ψa,m = ψa,m ◦ [i]m.

Hence in view of the above, it is sufficient to focus on m = 3. In our opinion,
the Fq-rationality questions of Rb,3/[−ω]3 and Ra,3/[i]3 seem difficult, but
solvable.
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