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Abstract. This paper proposes various optimizations for lattice-based
key-encapsulation mechanisms (KEM) using the Number Theoretic
Transform (NTT) on the popular ARM Cortex-M4 microcontroller.
Improvements come in the form of a faster code using more efficient
modular reductions, small polynomial multiplications and more aggres-
sive layer merging in the NTT but also reduced stack usage. We test those
optimizations in software implementations of Kyber and NewHope,
both round 2 candidates in the NIST post-quantum project and also
NewHope-Compact, a recently proposed derivative of NewHope
with smaller parameters. Our software is the first implementation of
NewHope-Compact on Cortex-M4 and shows speed improvements over
previous high-speed implementations on the same platform for Kyber
and NewHope. Moreover, it gives a common framework to compare
those algorithms with the same level of optimization. Our results show
that NewHope-Compact is the faster algorithm, followed by Kyber
and finally NewHope that seems to suffer from its large modulus and
error distribution for small dimensions.

1 Introduction

Post-quantum cryptography, i.e., cryptography resisting adversaries equipped
with both classical and quantum computers, has grown significantly among
the research community in the last few years. This growth is partially driven
by the NIST post-quantum standardization project aiming to create a formal
environment in which concrete instantiations of several post-quantum techniques
for signature and key encapsulation can be analyzed and compared to each other
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with respect to several metrics. The first round of the project took place mainly
during the year 2018 with the goal of assessing the different possible quantum-
safe algorithms. In early 2019, 26 out of the 69 initial algorithms advanced to
the second round of the project. In the meantime, it has been announced that,
in this second round, practical performances of the candidates will play a more
important role in the selection for a hypothetical future standardization.
While part of the candidates already had an optimized version of their code
targeting instruction sets of large CPU such as AVX2, such piece of software
often live in an environment where they are not the bottleneck in term of
computation time or memory usage. On the other hand, small embedded devices
are the ones that risk to be the most impacted by the switch toward a post-
quantum paradigm. Indeed, they often offer low memory, low computing power
and even have the drawback to be more exposed to side-channel attacks. Hence,
in recent papers, researchers focused more and more on small devices such has
the popular ARM Cortex-M4 to assess performances in an embedded world. This
microcontroller has the advantage of being large enough to support public-key
algorithms while being still reasonably small and cheap in the grand scheme
of computing. From its popularity was born a library called pqm4 [16] aiming
to offer a common framework to benchmark implementations of post-quantum
algorithms on this platform.

Contributions: In this paper, we describe an optimized Cortex-M4 implementa-
tion of NewHope, Kyber, and a recently proposed derivative of those schemes
called NewHope-Compact. We present various optimizations, mainly in terms
of speed and stack usage on the ARM microcontroller. Since those schemes
naturally share structural similarities, general improvements are applicable to
all of them. Our implementation outperforms the current state-of-the art for
Kyber and NewHope and gives a unified framework to compare the three
schemes since they use the same level of optimization, which was not the case
in previous works [16]. Our contributions are listed as follows:

– We propose 2 cycles modular reduction implementation for Montgomery
arithmetic, which translates subtraction to addition to be able to use special
instructions.

– We show that small polynomial multiplications can be implemented effi-
ciently using lazy reduction techniques. Hence, we show that early ter-
mination of NTT can be implemented more efficiently when the base
multiplication has degree more than 2.

– We show that even the target architecture has only 13 usable registers, 16
coefficients can be used during butterfly layers. This allowed us to merge up
to 4 layers of the NTT and reduce the number of load and store instructions.

– We provide trade-offs between stack usage and speed of the implementation
for computing addition of two polynomials after an NTT based polynomial
multiplication.

Availability of the software: All source codes are available at https://github.
com/erdemalkim/NewHope-Compact-M4

https://github.com/erdemalkim/NewHope-Compact-M4
https://github.com/erdemalkim/NewHope-Compact-M4


Organization of this paper: Section 2 gives a background information on key
encapsulation schemes NewHope, NewHope-Compact, and Kyber. It also
describes the recent advances on NTT, and the reduction algorithms mostly
preferred for constant time and efficient implementation of reductions inside the
NTT. Section 3 provides our implementation details and optimizations to achieve
a faster implementation while using as few as possible stack space. It also gives
a tradeoff between secret key size and speed. Finally, our performance results for
NewHope, NewHope-Compact, and Kyber and a comparison with previous
implementations of those schemes are presented in Section 4.

2 Preliminaries

2.1 Notation

Let R be the ring of integer polynomials modulo Xn + 1 and denoted as R =
Z[X]/(Xn + 1). Then, we define Rq = Zq[X]/(Xn + 1) as a special case of R
such that every coefficient is reduced modulo q. Note that n and q are selected
in such a way that performing an efficient NTT to an element in Rq is possible.
For that reason, n is selected as a power of 2 such that Xn + 1 is the 2n-th
cyclotomic polynomial and q is selected as a prime. We represent an element
a ∈ Rq as a =

∑n−1
i=0 aiX

i where ai is in Zq. Moreover, the bold lower-case
letters such as v denote a column vector and the bold upper-case letters such
as A denote a matrix with entries in Rq. The representations of polynomials,

vectors and matrices in NTT domain are denoted as â, v̂, and Â, respectively.

2.2 NewHope

NewHope [1,4] is one of the NIST post-quantum standardization candidates
whose security is based on the hardness of solving ring learning with errors
(RLWE) problem [19,20]. This cryptosystem includes both adaptive chosen
plaintext attacks (CPA) secure key encapsulation mechanism (KEM), referred
to as NewHope-CPA-KEM, and adaptive chosen ciphertext attacks (CCA)
secure KEM, referred to as NewHope-CCA-KEM, which are based on
previously proposed NewHope-Simple [3] designed as semantically secure
public-key encryption (PKE) scheme with respect to CPA that is referred to as
NewHope-CPA-PKE. Key generation, encryption, and decryption functions
of NewHope-CPA-PKE are represented in Algorithm 1, 2, and 3. The
constructions of NewHope-CPA-KEM and NewHope-CCA-KEM by using
NewHope-CPA-PKE are out of the scope of this work, so we refer to [1, Alg.
16-21] for more information.

The most time-consuming parts of all learning with errors (LWE) variant
cryptosystems are the randomness generation and hashing. These are vastly
used inside GenA and Sample functions. Moreover, CPA-KEM and CCA-KEM
constructions also require hashing. Note that encode, decode, compress and
decompress functions perform bits or bytes manipulation. Thus, they do not cost



Algorithm 1 NewHope-CPA-PKE key
generation

Output: public key pk = (b̂′, ρ)
Output: secret key sk = ŝ

1: seed
$← {0, · · · , 255}32

2: ρ, σ ← SHAKE256(64, seed)
3: â← GenA(ρ)
4: s← Sample(σ, 0)
5: e← Sample(σ, 1)
6: b̂← â ◦ NTT(s) + NTT(e)
7: return pk = (b̂, ρ), sk = ŝ

Algorithm 3 Decryption of NewHope-
CPA-PKE decryption

Input: ciphertext c = (û, h)
Input: secret key sk = ŝ
Output: message µ ∈ {0, · · · , 255}32

1: v′ ← Decompress(h)
2: return µ = Decode(v′ − NTT−1(û ◦ ŝ))

Algorithm 2 NewHope-CPA-
PKE encryption

Input: public key pk = (b̂, ρ)
Input: message µ encoded in Rq
Input: seed coin ∈ {0, · · · , 255}32
Output: ciphertext (û′, h)

1: â← GenA(ρ)
2: s′ ← Sample(coin, 0)
3: e′ ← Sample(coin, 1)
4: e′′ ← Sample(coin, 2)
5: t̂← NTT(s′)
6: û← â ◦ t̂+ NTT(e′)
7: v′ ← NTT−1(b̂ ◦ t̂) + e′′ + µ
8: return c = (û,Compress(v′))

much. Apart from these operations, the main cost of NewHope is multiplication
in Rq. NewHope selects its parameters n and q to enable a fast polynomial
multiplication in Rq by utilizing NTT. The parameter sets are provided in Table
1. As can be seen, q is selected such that q ≡ 1 (mod 2n) so that n-th root of
unity ω and 2n-th root of unity γ =

√
ω exist, and a fast NTT is possible.

Table 1. Parameters of NewHope512 and NewHope1024 and derived high level
properties [1]

Parameter Set NewHope512 NewHope1024

Dimension n 512 1024

Modulus q 12289 12289

Noise Parameter k 8 8

NTT parameter γ 10968 7

Decryption error probability 2−213 2−216

Claimed post-quantum bit security 101 233

NIST Security Strength Category 1 5

Polynomial Multiplication Utilizing NTT: The forward NTT is performed to
transform all of the coefficients to NTT domain, and the inverse of this operation



NTT−1 is performed to carry all coefficents to normal domain again. The
formulae for these two operations are given as follows:

NTT(a) = â =

n−1∑
i=0

âiX
i, where âi =

n−1∑
j=0

ajω
ij mod q,

NTT−1(â) = a =

n−1∑
i=0

aiX
i, where ai =

(
n−1

n−1∑
j=0

âjω
−ij) mod q.

The multiplication of a, b ∈ Rq can be computed as ab = NTT−1(NTT(a) ◦
NTT(b)) where ◦ denotes the coefficient-wise multiplication. To perform NTT
and NTT−1 operations faster, there are two commonly used approaches that
utilize so-called butterfly. The first approach makes use of Cooley-Tukey
butterflies [12] in NTT and Gentleman-Sande butterflies [14] in NTT−1, while
the other one exploits Gentleman-Sande butterflies in both ways. However, the
second approach requires an extra bit-reversal. NewHope selects the second
one since it allows more lazy reductions when unsigned integers are used in the
implementation.

NewHope-Compact: Alkim, Bilgin, and Cenk proposed a compact and fast
instantiation of NewHope which is called as NewHope-Compact in [2]. They
presented three new parameter sets which are shown in Table 2. As can be seen
from the new parameter sets, they reduced the modulus q from 12289 to 3329 by
preserving the same security level with the adjustment of the noise parameter
k. Due to the change in q, 2n-th root of unity γ does not exist anymore, i.e.,
q 6≡ 1 (mod 2n). However, even in this situation the works in [2,7,21,27] show
that a fast NTT is possible. The use of NTT in this situation is achieved in [2] by
selecting γ as the 256-th root of unity so that a 7-level NTT is possible. Then,
at the end, instead of having 512 (for n = 512) or 1024 (for n = 1024) integer
coeffcients, i.e., degree zero polynomials, NewHope-Compact has 128 degree
three (for n = 512) or degree seven (for n = 1024) polynomials. Then, coefficient-
wise multiplications in NTT domain are performed on small polynomials (degree
three for n = 512 or degree seven for n = 1024) in modulo (X4 − r) (n = 512)
or (X8 − r) (n = 1024) where r is a power of γ instead of integers coefficients.
They used a one-iterative Karatsuba method [26] for the multiplication of small
polynomials whose pseducode can be found in [2, Alg. 5]. Note that the only
changing parts of the NewHope are the definition of NTT and the coefficient-
wise multiplication. Therefore, one can still refer to Algorithm 1, 2, and 3 for the
definition of key generation, encryption and decryption respectfully, since these
algorithms are written in a high-level perspective, and the mentioned changes
are hidden inside internal functions.

Another contribution of [2], as can be seen in Table 2, the proposal of a new
security level for NewHope which is referred to as NewHope-Compact768.
This is possible by using a different ring structure that is Zq[X]/(X768−x384+1),
firstly proposed by [21]. NewHope-Compact selects q as 3457 which allows a



Table 2. Parameters of NewHope-Compact512, NewHope-Compact768 and
NewHope-Compact1024 derived high level properties [2]

Parameter Set NH-Compact512 NH-Compact768 NH-Compact1024

Dimension n 512 768 1024

Modulus q 3329 3457 3329

Noise Parameter k 2 2 2

NTT parameter γ 17 55 17

Decryption error
probability

2−256 2−170 2−181

Claimed post-quantum
bit security

100 163 230

NIST Security
Strength Category

1 3 5

similar implementation with other parameter sets. They applied a trick at the
first level of NTT to switch the regular ring structure Rq and a similar one at
the last level of NTT−1. This trick can be viewed by factorizing (X2 −X + 1)
as (X − ζ1) and (X − ζ2) where ζ1 and ζ2 are both sixth roots of unity. We refer
to [2, Appendix A] or [21, Sec. 4.1] for more details. At the end, one-iterative
Karatsuba method is applied to perform coefficient-wise multiplications for the
small polynomials at degree five in modulo (X6 − r) where r is a power of γ.

2.3 Kyber

Kyber [7,9] is a post-quantum KEM whose security relies on the hardness of
module learning with errors (MLWE) problem [18]. Kyber constructs a CCA
secure KEM Kyber.CCAKEM by using a CPA secure PKE, which is referred
to as Kyber.CPAPKE, with a variant of the Fujisaki-Okamoto transform [13].
We refer to [7, Alg. 7-9] for Kyber.CCAKEM. The key generation, encryption,
and decryption functions of Kyber.CPAPKE are presented in Algorithm 4, 5,
and 6 from a high-level perspective.

The most time-consuming parts of Kyber are the randomness generation
and hashing similar to other LWE variants such as NewHope. Aside from them,
the most costly operation is the multiplication in Rq. Kyber also utilizes NTT
in order to speed up this operation. The modulus q and the dimension n are
selected as 3329 and 256 for all parameter sets of Kyber. This enables a 7-level
NTT with the parameter γ = 17. After performing 7-level NTT, there are 128
degree one polynomials. Therefore, coefficient-wise multiplications are performed
on these 128 degree one polynomials in modulo (X2 − r) where r is a power of
γ by using schoolbook method.



Algorithm 4 Kyber.CPAPKE key
generation

Output: public key pk = (b̂, ρ)
Output: secret key sk = ŝ

1: seed
$← {0, · · · , 255}32

2: ρ, σ ← SHAKE256(64, seed)
3: Â← GenMatrixA(ρ)
4: s← SampleVec(σ, 0)
5: e← SampleVec(σ, 1)
6: b̂← Â ◦ NTT(s) + NTT(e)
7: return pk = (b̂, ρ), sk = ŝ

Algorithm 6 Kyber.CPAPKE decryp-
tion
Input: ciphertext c = (u′, h)
Input: secret key sk = ŝ
Output: message µ ∈ Rq

1: u← Decompress(u′)
2: v′ ← Decompress(h)
3: return µ = v′ − NTT−1(ŝT ◦ NTT(u))

Algorithm 5 Kyber.CPAPKE en-
cryption

Input: public key pk = (b̂, ρ)
Input: message µ ∈ Rq
Input: seed coin ∈ {0, · · · , 255}32
Output: ciphertext (û′, h)

1: Â← GenMatrixA(ρ)
2: s′ ← SampleVec(coin, 0)
3: e′ ← SampleVec(coin, 1)
4: e′′ ← SampleVec(coin, 2)
5: t̂← NTT(s′)
6: u← NTT−1(ÂT ◦ t̂) + e′

7: v′ ← NTT−1((b̂T ◦ t̂) + e′′ + µ
8: return (Compress(u),Compress(v′))

2.4 FFT Trick

The NTT used in this work is known in the recent literature as the FFT trick
[24]. The idea is to map the ring

Zq[X]/〈Xn − γn〉

to
Zq[X]/〈Xn/2 − γn/2〉 × Zq[X]/〈Xn/2 + γn/2〉

by computing the straightforward CRT map

p 7→ (p mod Xn/2 − γn/2, p mod Xn/2 + γn/2).

Since Xn/2 + γn/2 = Xn/2 − γn+n/2, the same map can be computed again
on both components until reaching a product of rings in which the base
multiplication is cheap.

The core operation to reduce a polynomial p modulo Xn/2±ζ (for ζ a specific
power of γ) is called a butterfly and is depicted in Figure 1. The computation
of the NTT consists in applying n/2 butterflies to pairs of coefficients of the
whole polynomial iteratively between 1 and log2 n times, each iteration being
referred to as a layer. Figure 2 in appendix A pictures a full NTT consisting of
9 layers mapping the ring Zq[X]/〈X512 + 1〉 to a product of rings of the form



Zq[X]/〈X−ζ〉. In NewHope-Compact and Kyber, the NTT is stopped earlier
because Zq does not offer high order enough roots of unity to compute all the
layers. This means that the NTT itself is less expensive but the base operation
in the product of rings is more computationally intensive. This base operation
being polynomial multiplication in rings of the form Zq[X]/〈Xa − b〉 for a in
{2, 4, 6, 8}, depending on the algorithm and parameter set used.

Fig. 1. Cooley-Tukey Butterfly

pi

pi+n/2

pi − ζ · pi+n/2

pi + ζ · pi+n/2

2.5 Montgomery and Barrett Reductions

Montgomery [22] and Barrett [8] reductions are very useful for efficient and
constant time implementation of reductions in Rq. Efficient versions for signed
integers of these reduction algorithms were presented in [24, Alg. 3, 5], and
they are recalled in Algorithms 12 and 13, in Appendix B. Moreover, assembly
implementations of these reduction algorithms on Cortex-M4 are provided in
Algorithm 7, [11, Alg. 7], and 8. Note that there are two important things
to consider while using these efficient reduction algorithms. Firstly, while
Montgomery reduction gives output between −q and q, Barrett reduction gives
output between 0 and q. Secondly, Montgomery reduction can not handle all
signed words. It accepts input in the range of −β2 q to β

2 q where β is selected as
216 for efficient implementation.

Algorithm 7 Signed Montgomery reduction [11]; using Montgomery factor β =
216

Input: a where −β
2
q ≤ a < β

2
q

Output: reduced a → r′ where r′ = β−1a (mod q), and −q < r′ < q

1: smulbb t, a, q−1 . t← (a mod β) · q−1

2: smulbb t, t, q . t← (t mod β) · q
3: usub16 a, a, t . atop ←

⌊
a

216

⌋
−
⌊
t

216

⌋

2.6 ARM Cortex-M4

Our target platform is STM32F4DISCOVERY [25], featuring 32-bit ARM
Cortex-M4 [6] with FPU core, which is the selected platform by NIST in order



Algorithm 8 Barrett reduction on packed argument; using β = 216

Input: a (32 bit signed integer where atop and abottom contains two different coefficents)
Output: r = rtop | rbottom where rtop ≡ atop (mod q), rbottom ≡ abottom (mod q),
0 ≤ rtop, rbottom ≤ q and 0 ≤ q < 215

1: v ←
⌊
2blog(q)c−1·2β

q

⌉
. precomputed

2: smulbb t1, a, v . t1 ← abottom · v
3: smultb t2, a, v . t2 ← atop · v
4: asr t1, t1, #(log(β) + blog(q)c − 1) . t1 ← t1 >> (log(β) + blog(q)c − 1)
5: asr t2, t2, #(log(β) + blog(q)c − 1) . t2 ← t2 >> (log(β) + blog(q)c − 1)
6: smulbb t1, t1, q . t1 ← t1 · q
7: smulbb t2, t2, q . t2 ← t2 · q
8: pkhbt t, t1, t2, lsl#16 . t← (t1&0xFFFFu)|(t2 << 16)
9: usub16 r, a, t . rtop ← atop − ttop and rbottom ← abottom − tbottom

to evaluate the post-quantum candidates on microcontrollers. It implements
ARMv7E-M instruction sets, which provide Digital Signal Processing (DSP)
instructions. These instructions include saturating and unsigned Single Instruc-
tion Multiple Data (SIMD) instructions that can perform arithmetic operations
on two halfwords or four bytes in parallel. These instructions have been shown
to be very beneficial to speed up post-quantum algorithms [5,10,11,15,16,17,23],
although this architecture comes with the restriction of a limited number of
registers, which is 16 general purpose 32-bit registers and only 14 of them are
available for the developer. This platform is also used by the benchmarking and
testing framework pqm4 [16].

3 Implementation Details

This section first describes our optimizations to speed up the computation of
polynomial multiplication in Rq that includes both the computation of NTT
and NTT−1, and coefficient-wise multiplication for NewHope, corresponding to
multiplications of integers, Kyber, corresponding to multiplications of degree
one polynomials modulo (X2 − r), and NewHope-Compact, corresponding to
multiplications of degree three polynomials modulo (X4 − r) (for n = 512),
degree five modulo (X6− r) (for n = 768) or degree seven modulo (X8− r) (for
n = 1024). Then, we present the implementation techniques in order to decrease
the stack usage of NewHope and NewHope-Compact by following a similar
approach to the Kyber implementation of [11]. Finally, we provide a tradeoff
between secret key size and performance for Kyber and NewHope-Compact.

3.1 Optimization of Polynomial Multiplication for Speed

Polynomial multiplication inRq is one of the most time-consuming part of KEMs
whose security relies on RLWE/RLWR or MLWE/MLWR problems. Some of
them, specifically NewHope and Kyber, utilize NTT for ring arithmetic in



order to have a fast and efficient implementation. We present an optimized
assembly implementation of polynomial multiplication on Cortex-M4, which can
be used by all RLWE/RLWR-MLWE/MLWR schemes utilizing NTT for ring
arithmetic and have a modulus smaller than 215. Although some of the techniques
described in this section are specific to the ring presented in NewHope,
NewHope-Compact or Kyber, adapting the implementation of one to another
with some minor changes is possible. We indicate such points when appropriate.

Representation of Polynomials and Packing: We represent polynomials in Rq
as an array composed of signed 16-bit integers similar to [11], which was firstly
introduced in AVX2 implementation of Kyber by [24]. Signed representation
frees us from adding a multiple of q after subtraction of two coefficients. Hence,
using Cooley-Tukey butterflies in forward NTT does not have the downside
coming from the subtraction anymore. It already has an advantage in addition
over Gentleman-Sande butterflies since the coefficients grow by q after each
additions while they doubled in Gentleman-Sande butterflies. Moreover, Cooley-
Tukey butterflies do not need a bit-reversal while we need to perform bit-reversal
permutation before and after Gentleman-Sande butterflies, i.e., Cooley-Tukey
butterflies take input in normal order and give result in bit-reversed order while
Gentleman-Sande butterflies take input in bit-reversed order and give result
in normal order. However, using Cooley-Tukey butterflies increases the code
size, since different methods are used for NTT and NTT−1. By considering
these, we decided to use Cooley-Tukey butterfly in forward NTT, unlike the
optimized implementation of NewHope in [5]. Moreover, Cortex-M4 is a 32-bit
architecture and polynomial coefficients are below 16 bits. Therefore, in order to
utilize the properties of the Cortex-M4 platform as much as possible, we packed
two coefficients into one register. Thereby, we can utilize SIMD instructions and
perform addition/subtraction on two halfwords in parallel by using uadd16 or
usub16. Moreover, similar to [11], we implement double butterfly which takes a
packed register as input and returns a packed butterfly result.

Montgomery, Barrett and Lazy Reductions: Montgomery reduction of [11], which
is given in Algorithm 7, is implemented in three clock cycles. In this work,
we reduce the implementation of Montgomery reduction such that it can be
performed in only two clock cycles by storing −q−1 instead of q−1 and using
the smlabb instruction which multiplies two halfwords and adds the 32-bit
result to another 32-bit value in one clock cycle. This implementation is given
in Algorithm 9. Kyber implementation of [11] performs 1856 Montgomery
reductions (896 in the two NTT, 448 in NTT−1, 512 in base multiplication)
in a full polynomial multiplication (NTT−1(NTT(a) ◦ NTT(b))). Therefore, this
change saves 1856 clock cycles for a full polynomial multiplication in Rq.

Similarly to [11], we used Barrett reduction given by [24, Alg. 5]. The
assembly implementation of this reduction on packed argument is given in
Algorithm 8. We can see that it requires nine clock cycles on our Cortex-
M4 microcontroller. We also implemented a Montgomery reduction on packed
argument that is provided in Algorithm 10. It is implemented in eight clock



Algorithm 9 Signed Montgomery reduction; using Montgomery factor β = 216

Input: a where −β
2
q ≤ a < β

2
q

Output: reduced a → r′ where r′ = β−1a (mod q), and −q < r′ < q

1: smulbb t, a, -q−1 . t← (a mod β) · (−q−1)

2: smlabb a, t, q, a . atop ←
⌊ (t mod β)·q

216

⌋
+
⌊
a

216

⌋

cycles, which is slightly faster than Barrett reduction. Note that their outputs
are not in the same range. Hence, when we need our output to be between 0
and q, we use Barrett reduction. In other case, we use the faster Montgomery
reduction.

Algorithm 10 Signed Montgomery reduction on packed argument; using
Montgomery factor β = 216

Input: a (32 bit signed integer where atop and abottom contains two different
coefficients)
Output: r = rtop | rbottom where rtop ≡ β−1atop (mod q), rbottom ≡ β−1abottom (mod
q)

1: v ← β (mod q) . precomputed
2: smulbb t1, a, v
3: smulbb r1, t1, -q−1 . r1 ← (t1 mod β) · (−q−1)

4: smlabb r1, r1, q, t1 . r1top ←
⌊ (r1 mod β)·q

216

⌋
+
⌊
t1
216

⌋
5: smultb t2, a, v
6: smulbb r2, t2, -q−1 . r2 ← (t2 mod β) · (−q−1)

7: smlabb r2, r2, q, t2 . r2top ←
⌊ (r2 mod β)·q

216

⌋
+
⌊
t2
216

⌋
8: pkhtb r, r2, r1, asr #16 . r ← (r2top |(r1top >> 16))

Depending on the size of the modulus and the register size of the underlying
architecture, it is not always necessary to reduce the results after an addition or
subtraction. Skipping unnecessary reductions is called lazy reductions. It is usual
that optimized NTT implementations heavily use this technique to speed up the
code. However, those lazy reductions are mostly performed after an addition
or subtraction as stated before. In this work, we also perform lazy reductions
after component-wise multiplications, also referred to as base multiplications,
for modulus 3329 and 3457 used in Kyber and NewHope-Compact. Base
multiplication for Kyber is given in Algorithm 11. Each (mod q) in Algorithm
11 corresponds to Montgomery reduction. As we can see from Algorithm 11,
five Montgomery reductions are needed in one base multiplication function.
We noticed that if both of the coefficients that are multiplied are already
reduced modulo q, then the result is way lower than the value that Montgomery
reduction can handle which is 215 · q, (See Proposition 1). Then, we can add the
results of several multiplications before performing a Montgomery reduction.



Hence, we can compute (c[0] ← ((a[0] · b[0]) + ((a[1] · b[1]) mod q) · r) mod q)
instead of applying line 2 of Algorithm 11. Therefore, we save one Montgomery
reduction per coefficient so two per one base multiplication. In total, there are
128 base multiplications in a polynomial multiplication in Rq. Thus, we save 256
Montgomery reductions, that is to say 768 clock cycles for the implementation of
[11] and 512 clock cycles for our implementation, for a polynomial multiplication
of Kyber. We can also use these lazy reductions for NewHope-Compact. The
base multiplications for NewHope-Compact512, NewHope-Compact768,
and NewHope-Compact1024 require 4, 6, and 8 sequential additions of the
multiplication results which can be handled as shown in Proposition 1. Therefore,
we can skip 3, 5, or 7 Montgomery reductions per coefficient so 1536, 3840, or
7168 Montgomery reductions in total for NewHope-Compact512, NewHope-
Compact768 or NewHope-Compact1024, respectively. Note that we can also
omit the Montgomery reductions after the multiplications in the first Cooley-
Tukey butterflies where the inputs are small secret or error polynomials sampled
from centered binomial distribution. The results of the first multiplications can
only grow up to −2q or 2q for Kyber and NewHope-Compact and −q or q
for NewHope. However, this technique can not be used if the input polynomial
is not a small polynomial, i.e., not sampled from centered binomial distribution.
We have such cases mainly due to the stack usage optimization explained in
Section 3.2 for Kyber, NewHope, and NewHope-Compact. Therefore, we
prefer not to use this lazy reduction to prevent having two very similar NTT
implementations.

Algorithm 11 Multiplication of polynomials in Zq[X]/(X2 − r) for Kyber

Input: a and b ∈ Zq[X]/(X2 − r) where r is a power of γ.
Output: c ∈ Zq[X]/(X2 − r).

1: function basemul(a, b)
2: c[0]← (a[0] · b[0]) mod q + ((a[1] · b[1]) mod q) · r) mod q
3: c[1]← (a[0] · b[1]) mod q + (a[1] · b[0]) mod q
4: return c
5: end function

Proposition 1. Let −3329 < ai, bi < 3329 where 0 ≤ i ≤ 8, and c =
∑8
i=0 ai·bi.

c is in the range of (−215 · 3329) to (215 · 3329)

Proof. Let ai = 3328 and bi = 3328 for 0 ≤ i ≤ 8 be the maximum allowed
values. Then,

∑8
i=0 ai · bi = 99680256. This is very close to 215 · 3329 which is

the maximum value for the input of Montgomery reduction. In fact, if we add
3328 · 3328 to the sum (99680256), it will be (110755840) and it will exceed
215 · 3329 = 109084672.

Merging NTT Layers: Merging multiple NTT layers reduces loads and stores
and gives a noticeable performance improvement on Cortex-M4 [5,11]. While



[5] uses eight registers for eight coefficients and performs three layers of NTT,
[11] uses only four registers for eight coefficients and performs two layers of
NTT without storing and reloading. They use the remaining registers to keep
the constants required in Montgomery and Barrett reductions, and the loop
counter to keep track of the loop rolling. In this work, we use eight registers
to keep 16 coefficients and perform three or four layers of NTT, depending on
the distance between the coefficients being used in the same butterfly on the
next layer. In other words, we load coefficients to these eight registers in such a
way that a maximum level of NTT can be performed. Thanks to the structure
of the NTT of NewHope and NewHope-Compact, we can merge four layers
together, since on the last layers, we need coefficients with distance one, and
having distance one coefficients on the memory is free with ldr instruction.
Note that NewHope512 does not need four layers merging since it contains
nine layers that can be merged efficiently as 3+3+3. Moreover, Kyber includes
seven layers of 256-point NTT, which is different from NewHope-Compact
having seven layers of 128-point NTT. Consequently, while NewHope-Compact
performs NTT with distance one coefficients on the last layer, Kyber requires
distance two coefficients. Thus, the last four layers can not be merged. Therefore,
we merged seven layers as 3+3+1 for Kyber. Although eight registers are used
to store coefficients, we can still spare some registers to store the constants
required for Montgomery reductions, specifically for q and −q−1. However, we
have to reload Barrett constant (line 1 of Algorithm 8) or Montgomery constant
(line 1 of Algorithm 10) at every use, but note that we do not need them heavily
thanks to lazy reductions. We follow a different approach for loop counter which
will be described in the loop unrolling paragraph. Hence, we save more than we
lose, i.e. loading more coefficients and performing more layers in every loop is
better than loading Barrett constant only once and keeping it in the memory to
be used for all Barrett reductions.

Precomputation of Twiddle Factors: The powers of the NTT constant γ are often
referred to as twiddle factors. It is a common approach to precompute all of these
twiddle factors in the Montgomery domain and store them in flash memory. In
this work, we use Montgomery factor β = 216 similar to [11,24]. We reorder these
constants before storing them in flash to have them appearing in memory in the
same order as they are used. Hence, we can easily load the next one without
computing its address. The loading instruction on Cortex-M4 has the ability to
move the pointer to the next twiddle factor while fetching the current value from
memory. Thus moving to the next one has no extra cost. Moreover, we perform
half of the division with n during the last butterfly by just multiplying the last
twiddle factor with n−1.

Unrolling: We unroll the outer loop of NTT and iterate over the layers as usual.
[5,11] spare one register for the loop counter. While [5] uses this loop counter
both to check the remaining loop and to decide which precomputed twiddle
factor to use, [11] uses it only to detect when to end the loop. We decided not
to spare a register for this loop counter and instead use this freed register to



load more coefficients in every loop and merge more NTT layers. Then, we can
naively use .rept directive instead of this loop counter. However, since .rept

only repeats the same code, it increases the code size dramatically. Hence, we
went back to the loop counter idea again. But instead of keeping it in a register,
we spill it to the stack. Consequently, the code size stays reasonable, and we can
still load more coefficients in every loop. As an obvious observation, using .rept

directive is faster, but again it increases the code-size. Hence, it might be useful
for some applications where there is plenty of empty memory space.

Link-time Optimization: Link-time optimization is an important option to
control optimization, although it may increase the code size. The usual approach
without link-time optimization to form an executable file is that each source files
is compiled with some optimization level to generate different object files. Then,
these optimized object files are linked together to compose an executable file.
Although this approach does a good job optimizing source codes, it turns out
that linker can perform even better optimization when link-time optimization
(-flto) is enabled and can give a performance boost of around 10%. The key
performance gain is achieved from cross-module function inlining, which is not
directly possible without -flto. Hence, it will tend to increase the code size
since inlining functions across source files introduces code duplication. However,
it should also be noted that link-time optimization is more effective at identifying
unused codes or codes which have no impact on the output.

pqm4 platform does not have -flto as default option since it increases stack
consumption or results in a slower computation of some schemes as stated by [11].
However, they showed that it improves the performance of Kyber. Therefore,
we have also tested the effect of -flto on performance for our implementations
of Kyber, NewHope, and NewHope-Compact and realized that they all
benefit from it and have a performance boost. However, since assembly optimized
polynomial multiplication was already implemented carefully by inlining all
necessary functions such as modular reductions, adding -flto has no effect on
its performance.

3.2 Optimization of NewHope and NewHope-Compact for Stack
Usage

On embedded devices, it is often the case that memory usage is a real bottleneck.
Outside of real-time systems, one can always wait for a slow algorithm, but if
the algorithm needs more memory than what can be found on the device, it
is completely unusable. While the Cortex-M4 on our board offers quite a large
amount of memory, we decided to optimize for stack usage as well.

The approach we took was to reduce the minimum amount of stack space
required to compute the cipher while keeping performances mostly unaffected.
One looking to reduce stack usage to the bare minimum aggressively would
write an implementation considerably slower than ours. The three main metrics
regarding implementation are speed, stack usage, and code size. The one to



optimize severely depends on the context in which the cipher will be used. In
our work, we tried to optimize the two firsts while keeping the last one reasonable.

Key generation: The core of the key generation (Algorithm 1) is the computation

of b̂ ← â ◦ NTT(s) + NTT(e). Since each coefficient of the output of the NTT
depends on all the coefficients of the input, all the coefficients of s and e must
have been generated before proceeding the addition. Hence, at least two full
polynomials should be stored in memory. To reduce the memory usage, we used
the observation that polynomial multiplication can be performed on-the-fly in
the NTT domain and, likewise, adding error to a polynomial can be performed
on-the-fly in normal domain. Indeed, the operation ◦ works sequentially on parts
of its inputs (one coefficient at the time for NewHope and four, six or eight for
NewHope-Compact depending on the parameter set used) and do not need
all of them in memory at the same time. Similarly, the error polynomial can be
computed coefficient by coefficient and added directly but only if the addition
considered is in normal domain. This is why instead of computing

b̂← â ◦ NTT(s) + NTT(e),

we computed
b̂← NTT(NTT−1(â ◦ NTT(s)) + e)

and performed the multiplication and the addition on-the-fly. This requires one
more NTT−1 but allows to only store one polynomial in memory, containing s
and b̂ subsequently. Doing this way reduced significantly stack usage and since
our benchmarks showed that computing one extra optimized NTT−1 would only
increase the key generation time by around 5%, we decided that this was a good
trade-off. This trick can be similarly applied to Kyber. Note that the small
relative cost of this technique is specific to our context and is mainly due to the
fact that hashing is the main performance bottleneck 6. One using a faster hash
function would have a decrease in performance higher than 5%. That being said,
the absolute cost of the trick is always the same and is one NTT−1.

Encryption: The encryption procedure (Algorithm 2) is mainly driven by the
following computations:

1. t̂← NTT(s′)
2. û← â ◦ t̂+ NTT(e′)

3. v′ ← NTT−1(DecodePoly(b̂′) ◦ t̂) + e′′ + Encode(µ)

The two firsts yield a situation similar as the key generation but unfortunately
require two polynomials in the stack frame. Indeed, since t̂ appears in the second
and last computation, the result of â ◦ t̂ cannot be stored in the same memory
space as t̂ (and since it would need to go through a NTT−1, it does need to be
fully stored). Once û is computed, it can be packed in the ciphertext and free one
of the two polynomials. The last computation is quite friendly for stack usage.

6 This issue will be discussed in more details in the result section



Indeed, since both the base multiplication and the addition operate on small
portions of the polynomial, that e′′ + Encode(µ) can be computed coefficient

by coefficient, and that b̂ can be partially unpacked from the inputs, it could
technically be computed with one polynomial plus a small overhead in the stack
frame. Since two polynomials where already allocated previously, we actually
fully unpack b̂ as only maximal stack usage is relevant. Finally, the stack usage
is greater than the one of the key generation because of the extra polynomial
stored.

Decryption: The decryption of NewHope (Algorithm 3) is quite lightweight
in terms of stack usage. Unfortunately, the algorithms introduced in the
preliminaries are the CPA version of the cipher. Since the CCA transform
is running the encryption procedure during decryption, the stack usage is
essentially the same as for encryption.

3.3 Tradeoffs between Secret Key Size and Speed

There are different tradeoffs between secret key size and the performance of
the algorithm. Some of these tradeoffs are also discussed in [7,9]. If the secret
key size critical, one can only store the seed used for all randomness in key
generation. However, this requires to perform key generation again during
decapsulation and gives a significant performance penalty. As also stated by
[7,9], another optimization could be storing the secret key in the normal domain
instead of the NTT domain. Hence, each coefficients can be compressed to
3 bits, since their possible values are in between -2 and 2. Note that NTT
used in Kyber and NewHope-Compact are fast on Cortex-M4 so that we
decided such optimizations are good trade-offs. We also observed that sampling
the secret polynomial s is fast enough, although it is usually stated that the
most time consuming part of such algorithms is the randomness generation
and hashing. Note that sampling the secret key from the centered binomial
distribution is lightweight in comparison to generation of the public parameter
a, since we can extract two coefficients from only one byte by using the centered
binomial distribution while uniform sampling needs two bytes to extract only
one coefficients. Hence, we decided to store only the seed, whose size is 32
bytes, to sample the secret key. Then, the secret key is sampled again during
decapsulation, and it is transformed to NTT domain. These operations reduce
the secret key size by 736 bytes for Kyber512 and NewHope-Compact512,
1120 bytes for Kyber768 and NewHope-Compact768, and 1504 bytes for
Kyber1024 and NewHope-Compact1024. On the other hand, they increase
the decapsulation time by around 7% for Kyber and 9% for NewHope-
Compact while decreasing the key generation time slightly.

4 Results and Comparison

Our optimizations were implemented in the three siblings schemes NewHope,
NewHope-Compact, and Kyber. Comparing different schemes across pa-



rameter sets is often complicated because performances are always strongly
correlated with the targeted security. We decided to group them in security levels
corresponding roughly to what NIST refers to as security levels 1, 3 and 5 which
themselves correspond to 128, 192 and 256 bits of security. Fortunately, since
all the schemes involved in our tests are similar and based on {R,M}LWE, the
dimension of the underlying lattice problem can be roughly translated into NIST
security levels. Hence, we compare them for dimensions 512, 768 (if available)
and 1024, which correspond to the three security levels aforementioned.

Scheme Dimension KeyGen Encaps Decaps

NewHope
(This work)

512 2 056 2 872 2 888
1024 3 088 4 928 4 944

([16])
512 5 960 9 168 10 296
1024 11 080 17 360 19 576

NewHope-Compact
512 2 168 2 984 3 000
768 2 616 3 952 3 960
1024 3 200 5 048 5 056

Table 3. Stack usage.

Scheme Dimension 512 Dimension 768 Dimension 1024

NewHope

(This work)
G: 578 890
E: 858 982
D: 806 300

-
G: 1 157 222
E: 1 674 899
D: 1 587 107

[16]
G: 588 683
E: 918 558
D: 904 800

-
G: 1 161 112
E: 1 777 918
D: 1 760 470

NewHope-Compact (This work)
G: 343 196
E: 524 840
D: 478 135

G: 516 762
E: 775 393
D: 710 457

G: 673 499
E: 1 010 961
D: 926 801

Kyber

(This work)
G: 455 191
E: 586 334
D: 543 500

G: 864 008
E: 1 032 540
D: 969 867

G: 1 404 695
E: 1 605 707
D: 1 525 805

[11]
G: 514 291
E: 652 769
D: 621 245

G: 976 757
E: 1 146 556
D: 1 094 849

G: 1 575 052
E: 1 779 848
D: 1 709 348

Table 4. Cycle counts comparison for the {R,M}LWE schemes improved by our work.
G: key generation, E: encapsulation, D: decapsulation



4.1 Speed comparison

The results of our benchmarks in terms of speed can be found in Table 4. The
code was compiled and run in the same conditions as the schemes benchmarked
in pqm4 [16]. We compare the two candidates NewHope and Kyber against
themselves in their previous Cortex-M4 optimized version available in pqm4

and also add the newcomer NewHope-Compact. One can see that NewHope
and Kyber perform around 10% better with our optimizations. Furthermore,
NewHope-Compact is more than 40% faster when comparing with NewHope
and more than 25% faster when comparing with Kyber for all security levels.
This is explained by the two following observations:

– NewHope-Compact is a derivative of NewHope using a smaller modulus
and distribution, which means increased performances during polynomial
multiplication because of lazy reductions and less hashing need to sample
the error distribution.

– NewHope-Compact is based on RLWE while Kyber is based on MLWE.
Hence, even though they share similar parameter sets, the inherent perfor-
mance penalty of using the less structured version of LWE hurts Kyber.

Scheme Dimension 512 Dimension 768 Dimension 1024

NewHope
G: 75%
E: 80%
D: 73%

-
G: 74%
E: 79%
D: 71%

NewHope-Compact
G: 75%
E: 79%
D: 68%

G: 74%
E: 78%
D: 67%

G: 74%
E: 78%
D: 67%

Kyber
G: 76%
E: 79%
D: 69%

G: 77%
E: 80%
D: 72%

G: 78%
E: 80%
D: 73%

Table 5. Time spent hashing. G: key generation, E: encapsulation, D: decapsulation.

4.2 Dominance of hashing

The speed difference showed in Table 4 might look slim at first sight. Actually,
this is due to the fact that, as pointed out by previous works, those schemes have
been optimized so much that the bottleneck is now the generation of random
numbers through hashing instead of the polynomial multiplication procedure.
Table 5 shows the time spent hashing for all algorithms and parameter sets. As we
can see, with a minimum of 67% for the decapsulation of NewHope-Compact,



all the algorithms are severely dominated by hashing. Even if polynomial
multiplications were somehow instantaneous, the results of Table 4 would be
somewhat similar.

Scheme Dimension NTT NTT−1 ◦

NewHope
512 31217 23439 3157
1024 68131 51231 6229

NewHope-Compact
512 13319 13059 7060
768 20424 21235 12756
1024 26568 26048 18517

Kyber
256 6855 6983 2325

256 ([11]) 7754 9377 3076
Table 6. Comparison of the polynomial multiplication functions of all the schemes.
Kyber actually uses the exact same NTT code for all dimensions.

Scheme Dimension KeyGen Encaps Decaps

NewHope
512 89030 92187 26596
1024 193722 199951 57460

NewHope-Compact
512 46757 53817 20119
768 74839 87595 33991
1024 97701 116218 44565

Kyber
512 50686 48609 25343
768 83004 76397 34523
1024 119972 108835 43703

Table 7. Total time spent in polynomial multiplication subroutines (NTT, NTT−1 and
◦).

4.3 Comparing polynomial multiplications

The reader might wonder why to bother optimizing polynomial multiplications
further if it is not the bottleneck anymore. The reason is twofold: first, Keccak
is used to expand the seed in every algorithm as it is the default choice since
the end of the SHA-3 competition. However, the choice of the seed expansion
algorithm is somewhat orthogonal to the scheme and does not affect post-
quantum assumptions. Hence, using a faster hash function would reduce the
impact of hashing on speed performances. Furthermore, it might be unnecessary
to use a cryptographic hash function to generate the public parameter. For
instance, [10] uses a faster, non-cryptographic RNG to speed-up a scheme base
on LWE. Second, even if Keccak is used, since its usage will likely grow in all
future cryptographic applications, we will eventually see hardware accelerations



for it on a lot of architecture. This would naturally drastically decrease the time
spent hashing in our schemes and make polynomial multiplication the most
important optimization target again. Recall that, as stated in Section 3.2, this
would increase the relative cost of the reduced stack usage trick used in the key
generation. Nevertheless, we think that outside of unrealistically fast polynomial
generation, the trade-off can still be useful.

Since our work is the first Cortex-M4 implementation of NewHope-
Compact, we do not have any point of comparison for our technique for
this scheme. Table 6 shows the speed-up for the dimension 256 NTT used in
all parameter sets of Kyber and the cycle counts of all subroutines of the
polynomial multiplication for each algorithm and dimension. The total cost of
multiplication operations for each scheme is presented in Table 7. This table was
obtained by summing all the time spent in the three multiplication subroutines:
NTT, NTT−1 and ◦. It can be seen that for dimension 512, both Kyber
and NewHope perform similarly while NewHope-Compact is sensibly faster,
whilst for dimension 1024 Kyber and NewHope-Compact became similar
while NewHope is slower. This is mainly due to the extra layers of NTT and
the increased number of reductions caused by the larger modulus.
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4. Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe. Post-
quantum key exchange - A new hope. In Thorsten Holz and Stefan Savage, editors,
USENIX Security 2016: 25th USENIX Security Symposium, pages 327–343, Austin,
TX, USA, August 10–12 2016. USENIX Association. https://eprint.iacr.org/
2015/1092.

5. Erdem Alkim, Philipp Jakubeit, and Peter Schwabe. Newhope on ARM cortex-
m. In Claude Carlet, M. Anwar Hasan, and Vishal Saraswat, editors, Security,
Privacy, and Applied Cryptography Engineering - 6th International Conference,
SPACE 2016, Hyderabad, India, December 14-18, 2016, Proceedings, volume 10076

https://newhopecrypto.org/
https://doi.org/10.1007/978-3-030-30530-7_12
https://doi.org/10.1007/978-3-030-30530-7_12
http://eprint.iacr.org/2016/1157
http://eprint.iacr.org/2016/1157
https://eprint.iacr.org/2015/1092
https://eprint.iacr.org/2015/1092


of Lecture Notes in Computer Science, pages 332–349. Springer, 2016. https:

//eprint.iacr.org/2016/758.

6. ARM. ARM Cortex-M4. https://www.arm.com/products/silicon-ip-cpu/

cortex-m/cortex-m4.
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John M. Schanck, Peter Schwabe, Gregor Seiler, and Damien Stehlé. CRYSTALS
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A NTT on dimension 512 polynomial

(X512 + 1)
∏1
i=0(X256 + f1(ζ, i))

∏127
i=0(X4 + f7(ζ, i))

∏255
i=0(X2 + f8(ζ, i))

∏511
i=0(X + f9(ζ, i))

...
...

...
...

...

...
...

...
...

. . .p259 p̂259

. . .p258 p̂258

. . .p257 p̂257

. . .p256 p̂256

. . .p3 p̂3

. . .p2 p̂2

. . .p1 p̂1

. . .p0 p̂0

Fig. 2. Full NTT on a dimension 512 polynomial. The function fj(ζ, i) = ζbrv(2
j−1+i)

selects the correct root to compute the isomorphism. All those roots are usually
precomputed and correctly ordered in a table. Techniques to reduce q skip some levels:
for example, using q = 3329 as in NewHope-Compact requires to skip the two lasts
(gray) layers.



B Montgomery and Barrett reductions

Algorithm 12 Signed Montgomery reduction [24]; using Montgomery factor
β = 216

Input: odd q where 0 < q < β
2

, and a where −β
2
q ≤ a = a1β+a0 <

β
2
q and 0 < a0 < β

Output: r′ where r′ = β−1a (mod q), and −q < r′ < q

1: m← a0q
−1 (mod± β) . signed low product, q−1 precomputed

2: t1 ←
⌊
mq
β

⌋
. signed high product

3: r′ ← a1 − t1

Algorithm 13 Signed Barrett reduction [24]; using β = 216

Input: odd q where 0 < q < β
2

, and a where −β
2
≤ a < β

2

Output: r where r = a (mod q), and 0 ≤ r ≤ q

1: v ←
⌊

2log(q)−1·β
q

⌉
. precomputed

2: t←
⌊

av

2log(q)−1·β

⌋
. signed high product and arithmetic right shift

3: t← tq mod β . signed low product
4: r ← a− t
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