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Abstract—Network Function Virtualisation (NFV) advances
the development of composable software middleboxes. Accord-
ingly, cloud data centres become major NFV vendors for
enterprise traffic processing. Due to the privacy concern of
traffic redirection to the cloud, secure middlebox systems (e.g.,
BlindBox) draw much attention; they can process encrypted
packets against encrypted rules directly. However, most of the
existing systems supporting pattern matching based network
functions require tokenisation of packet payloads via sliding
windows at the enterprise gateway. Such tokenisation introduces
a considerable communication overhead, which can be over 100×
to the packet size. To overcome the above bottleneck, in this
paper, we propose the first bandwidth-efficient encrypted pattern
matching protocols for secure middleboxes. We start from a
primitive called symmetric hidden vector encryption (SHVE), and
propose a variant of it, aka SHVE+, to enable encrypted pattern
matching with constant, moderate communication overhead. To
speed up, we devise encrypted filters to further reduce the
number of accesses to SHVE+ during matching. We formalise the
security of our proposed protocols, and implement a prototype
and conduct comprehensive evaluations over real-world rulesets
and traffic dumps. The results show that our design can inspect
a packet over 20k rules within 100 µs. Compared to prior work,
it brings a saving of 94% in bandwidth consumption.

I. INTRODUCTION

Large-scale adoption of Network Function Virtualisation
(NFV) facilitates easy realisation, deployment, and manage-
ment of advanced network functions (aka middleboxes) for
enterprises. Under this paradigm, cloud data centres become
major NFV vendors [1]. Traditionally dedicated and tightly
coupled hardware/software is transformed into composable
software middlebox modules, which can run on commodity
cloud instances with unlimited scalability. Such a significant
technology shift also raises crucial privacy concerns because
the traffic of enterprises is re-directed and exposed to cloud
data centres [2], [3]. Even HTTPS is widely adopted nowa-
days, commercial middlebox services intercept and decrypt
the encrypted traffic in the middle to retain advanced network
functions like deep packet inspection (DPI) [4], [5].

To address this privacy concern and promote secure adop-
tion of NFV, privacy-preserving middlebox systems [6]–[13]
have received much attention; these middleboxes can process
encrypted traffic against encrypted processing rules without
decryption. As a result, both sensitive traffic payloads and
proprietary middlebox rules are protected without sacrificing
the underlying operations of network functions, such as pattern
matching, header inspection, and regular expression. Existing
studies in this field can be classified into two categories,

i.e., software-based solutions [6]–[9] and hardware-based solu-
tions [10]–[13]. Unfortunately, solutions in neither categories
are practically deployable due to efficiency or security issues.

Mainstream software-based solutions [6]–[9] adapt a cryp-
tographic technique named searchable encryption [14], which
allows middleboxes to match the encrypted patterns extracted
from the rules against the encrypted string streams (i.e.,
tokens) parsed from traffic payloads. However, those designs
are communication inefficient. The fundamental reason is that
traffic payloads need to be tokenised into string streams via
sliding windows with varied sizes (i.e., enumerating the sizes
of all patterns). As shown in prior work [6], [7], such cost
can be tens of times to the original packet size. Consequently,
long latency will be introduced in token transmission, which is
not acceptable in wide networked applications. Besides, high
I/O consumption between the enterprise and cloud will greatly
increase the capital cost of data transfer.

Hardware-based solutions [10]–[13] rely on hardware en-
clave (i.e., Intel SGX) to execute middlebox functions in
a trusted environment. Traffic is fed into the enclave and
processed within it. Although using SGX brings benefits on
efficiency and functionality for secure middleboxes, recent
side-channel attacks against SGX [15]–[17] raise a serious
doubt – whether SGX is satisfactory to be deployed in practice.

In order to tackle the above limitations, in this paper, we aim
to propose practical cryptographic protocols for a wide range
of pattern matching-based secure middleboxes. Our design
expects to offer convincing performance in both time and
communication towards network environments while ensuring
strong protection for rules and traffic payloads.

As mentioned, existing designs based on searchable encryp-
tion fall short of achieving bandwidth efficiency. To overcome
this bottleneck, we observe that a cryptographic primitive
named hidden vector encryption (HVE) [18] is suitable to be
a starting point of building a bandwidth-efficient protocol for
encrypted network traffic pattern matching. Specifically, HVE
generates the key and ciphertext from two same-sized vectors,
respectively; HVE decryption can be performed only if the
non-wildcard positions of the two vectors are the same. In
our context, the packet payload is encrypted from a vector
of payload byte stream (b1, ..., bn), while the rule pattern
is encrypted from a predicate vector (∗, . . . , ∗, p1, ..., pm,
∗, . . . , ∗) with wildcard (∗) positions. The offset of the pattern
in the above vector is specified by the inspection rule. Later,
the middlebox can perform HVE decryption on the encrypted



payload and pattern to check if there is a match. As a result, the
communication overhead with HVE becomes constant because
traffic is encrypted in byte-wise. For efficiency, we exclude
public-key HVE scheme and resort to symmetric-key HVE
scheme, aka SHVE [19].

The original SHVE scheme [19] is designed for encrypted
membership testing only, where the message is not embedded
in the SHVE ciphertext. Thus, it cannot be directly applied to
pattern matching-based middlebox functions like DPI, because
a DPI rule contains patterns and the corresponding action
(e.g., alert, drop), and the entire rule should fully be protected
without matching [7], [20]. To solve this problem, we pro-
pose a variant of SHVE called SHVE+ which supports both
encrypted byte-wise matching and message encryption. Our
new primitive preserves the same security guarantees of the
existing secure middlebox systems [6], [7]. The equality of
byte strings in a packet payload is fully hidden, and the action
can be triggered only if a match is found in the encrypted
payload at the specified positions in the DPI rules.

To improve efficiency, we design a fine-grained progress
filtering protocol to reduce the number of accesses on SHVE+
during the matching process: if a packet is filtered out,
i.e., being identified as a mismatch, the middlebox will not
continue to process it. As a result, our middlebox saves pro-
cessing time significantly as most of the packets are commonly
legitimate [7], [21], [22]. To apply filtering to encrypted traffic,
we propose an encrypted filter structure via SHVE. It is
carefully designed in a way that the encrypted packet payload
can be used for both filtering and pattern matching. Namely,
introducing the filters does not incur extra bandwidth cost.

For completeness, we formalise the security of our pro-
posed protocols. First, we formally capture the capabilities
of adversaries considered in the targeted middlebox system.
One adversarial model aims to infer sensitive information from
encrypted packets. The other aims to deduce information from
encrypted rulesets. We note that security analysis of existing
designs [6], [7], [9], [23] falls short of capturing the above
adversaries at the same time. To bridge the gap, we adapt
the real/ideal paradigm to define two groups of games under
the above two adversarial models. We prove that even if an
adversary is capable of selecting the packet or ruleset to be
challenged in advance, she only learns a controlled leakage
profile regarding the packet and ruleset.

We implement a prototype and deploy it on a commodity
machine. We use real-world patterns (Snort and ETOpen)
and network traffic (iCTF08) to evaluate its performance.
Regarding latency, our middlebox system can inspect a packet
for ETOpen ruleset (20k+ rules) within 100 µs and Snort
ruleset (1.5k rules) within 60 µs. In a multi-session scenario
(100 concurrent connections), the throughput per connection
reaches 5000 packets per second for Snort ruleset and 3000
packets per second for ETOpen ruleset. The overall throughput
is over 1 GBps and 500 MBps, respectively. Regarding band-
width consumption, our design consumes the least bandwidth
among all prior arts (including the one in [24] also with
constant complexity): it only costs 5 times more bandwidth

in terms of the original packet size, which saves more than
94% comparing the designs [6]–[8] using tokenisation. Our
approach significantly saves the cost of deploying pattern
matching middleboxes in the cloud. The cost estimation based
on AWS pricing information demonstrates that the monthly
maintenance cost of our middlebox is $460.8, which is only
one-fourth of the tokenisation-based approaches.

Our contributions can be summarised as follows:
• We design a new variant of the SHVE scheme called

SHVE+, which preserves the functionality, efficiency, and
security properties of SHVE while additionally support-
ing message encryption.

• We propose the first bandwidth-efficient encrypted pattern
matching protocol built from SHVE+, which enables
middleboxes to perform pattern matching over encrypted
traffic with constant, moderate bandwidth overhead.

• We propose a secure filter to filter out legitimate packets,
and it further improves the efficiency of middleboxes by
5× to 8×. Meanwhile, it does not incur extra bandwidth
cost as it reuses the encrypted traffic for pattern matching.

• We are the first to comprehensively formalise the security
of encrypted pattern matching protocols for secure mid-
dleboxes. We formally prove that our protocol protects
against the adversary who wants to compromise traffic
and rules throughout pattern matching, respectively.

• We implement a system prototype and evaluate it with
real-world rulesets and a traffic dump. We evaluate the
setup time, storage overhead, inspection delay, bandwidth
overhead, throughput, and deployment cost of our system,
and compare them with two prior encrypted pattern
matching protocols (i.e., BlindBox [6] and SEST [24]).

II. RELATED WORK

Software-based secure middleboxes. Our work is related to
software-based (aka cryptographic) solutions for secure mid-
dleboxes. Blindbox [6] is the first system that supports pattern
matching based network functions over the encrypted traffic
payloads. It is also the first to use searchable encryption for
encrypted pattern matching. Later, a line of work is proposed
to improve the design of Blindbox, including the realisation of
header matching [8], [23], dedicated inspection rule [7] and
regular expression [9] support. As mentioned, these designs
built from searchable encryption require tokenisation of the
payloads, which is a critical performance bottleneck of the
system (can lead 77 – 120× bandwidth overhead in terms of
the original traffic size). There are some other studies which
are built from advanced cryptographic tools. Splitbox [20] uses
secure multi-party computation techniques for rule matching,
which is also not communication efficient.
Hardware-based secure middleboxes. There are also so-
lutions based on trusted hardware, i.e., Intel SGX. These
designs [10]–[13] aim to achieve the same goal of processing
encrypted traffic, yet using trusted hardware enclave. As
mentioned, Intel SGX is currently vulnerable to side-channel
attacks [15]–[17], which can break the security guarantee of
the trusted enclave. Besides, deploying those systems requires



TABLE I: Summary of the performance of representative
software-based secure pattern matching middleboxes.

Scheme Communication Cost Storage Cost Inspection delay
SEST [24] High Medium ms level

Splitbox [20] High Medium ms level
Tokenisation [6]–[9] High Low µs level

Our middlebox Low High µs level

the cloud servers to be equipped with SGX and enforces the
enterprises to trust the hardware vendor. The above constraints
would limit the adoption of these SGX-based systems.
Pattern matching on encrypted data. In the literature,
some theoretical work also investigates pattern matching on
encrypted data. A recent scheme [24] based on cryptographic
pairing achieves a constant communication overhead to the
packet size. Unfortunately, such a theoretical design still
introduces unaffordable bandwidth overhead in practice, i.e.,
64× larger than the original traffic. Besides, the pairing based
matching operation is too slow to be deployed in traffic
processing. A detailed comparison can be found in Section VI.

Some early studies are working on substring matching [25],
[26]. Those studies focus on different application scenarios,
where a long string is encrypted and stored at the server, and
later a substring (pattern) query will be issued to be processed
against the long string for matching.

To summarise, we present a comparison table (Table I).
It shows that our proposed design outperforms the existing
cryptographic works [20], [24] in terms of the communication
cost and inspection delay. It highly reduces the communication
cost in tokenisation-based approaches [6]–[9] while preserving
a microsecond-level inspection delay. Although its storage cost
is higher than the other solutions, it is not an issue for in-cloud
middleboxes. In networked applications, latency is crucial to
user experience and quality of service. The latency of traffic
processing is more sensitive to bandwidth, while rule encryp-
tion and upload is one-time setup cost. Besides, bandwidth is
much more expensive than storage in the modern cloud (see
Section VI). Our solution offers a significant maintenance cost
saving in the real-world deployment.

III. OVERVIEW

A. System Architecture

Our proposed design employs the same architecture as
existing secure middleboxes [2], [7], [8], [27] (just to list
a few); it redirects an enterprise’s traffic from the enter-
prise gateway to a third-party middlebox service for pattern
matching-based packet processing. During this process, the
enterprise leverages the middlebox to thoroughly inspect all
traffic and enforce its security rules to defend against malicious
activities. In addition, the enterprise aims to protect the ruleset
in the outsourced environment, because this can either be
proprietary ruleset subscribed from professional vendors [6] or
customised open-sourced ruleset with private information [7],
e.g., enterprise’s trade secrets, or intellectual property.

Fig. 1 presents the system architecture1. It has two parties:

1If an enterprise endpoint connects to an external network, the processed
traffic from the middlebox is sent back to the gateway, then sent out [8], [27].

DPI 
Middlebox

Gateway 1 Gateway 2

Fig. 1: System Architecture. The arrows indicate traffic from
the sender network to the receiver network; the response traffic
follows the reverse direction.

the gateway (GW) maintained by the enterprise and the
middlebox (MB) deployed in the service provider, like public
clouds. We also use the term “endpoint” to denote the server
within the enterprise. The system flow involves three phases:
Initialisation. Before initiating any connection, GW randomly
chooses a key msk and uses it to generate encrypted rules to
be used by MB for detecting malicious packet payloads. In
practice, each rule describes an attack via its representative
patterns, which may include suspicious strings in the payload
and the offset information for the string [28]. Each rule also
indicates the corresponding actions (e.g., alert, drop) once a
match is found. Thus, GW creates an encrypted list for the
pattern-action list extracted from the ruleset, which is later
used for MB to match those strings in the encrypted payload
and perform the associated action. Meanwhile, GW builds an
encrypted filter, which can quickly process the mismatches in
traffic, and it accelerates the pattern matching process. The
generated encrypted filter and pattern list are uploaded to MB.
Later, MB can perform packet inspection for all incoming
traffic through the encrypted filter and pattern list.
Preprocessing. GW should preprocess the packet payload
before sending it for inspection. Specifically, GW scans the
packet payload in byte-wise and uses msk to generate en-
crypted traffic dedicated to the pattern matching service like
DPI. Then, GW will send the encrypted traffic from the
enterprise network to MB.
Inspection. Upon receiving the encrypted traffic, MB with-
holds the incoming traffic and executes the proposed encrypted
pattern matching protocol to inspect the traffic with the pre-
computed encrypted pattern list. If an action can be recovered
after checking the encrypted patterns, MB will apply the action
to the packet; otherwise, the packet is considered as legitimate,
and MB then sends it out to the external network. To improve
the efficiency of the above process, MB exploits a secure
filtering protocol. In specific, for each packet, MB utilises
the pre-built encrypted filter to quickly evaluate whether the
current position in the encrypted traffic is a possible matching
position. As a result, MB separates the innocuous input from
the possible malicious traffic, and it only runs the pattern
matching protocol for those possible matching positions in-
stead of checking the whole traffic with the encrypted patterns.
Remark. Following prior studies [6], [7] that support pattern
matching over the encrypted traffic, the real network traffic
is protected by SSL. That is, the sender gateway initialises a
normal SSL connection with the receiver and sends the SSL
traffic with encrypted traffic to MB for inspection. The receiver



can use its SSL session key to recover the real network traffic.

B. Threat Assumption

We assume that GW in the enterprise network is a trust-
worthy party. It follows the proposed protocol and does not
disclose the ruleset to other parties. On the other hand, the
MB service provider is assumed to be semi-honest. It also fol-
lows the protocol to offer pattern matching service but attempts
to extract sensitive data from the encrypted traffic passing
through the middlebox and infer the private ruleset owned by
the enterprise. Also, the middlebox can be compromised or
eavesdropped as it is deployed in an untrusted environment [6].
Therefore, the main goal of the proposed system is to hide both
the content of traffic and the ruleset from MB while allowing
MB to perform pattern matching over the encrypted traffic.

We also assume that at least one endpoint in the commu-
nication is honest. This is consistent with the threat model in
existing privacy-preserving pattern matching middleboxes [6],
[7], [9]. Note that detecting two malicious endpoints is an
orthogonal work, and we do not consider this case in our paper.

C. Building Blocks

Basic cryptographic tools. We leverage pseudo-random func-
tion PRF, which is a polynomial-time computable function
family that is computationally indistinguishable from random
functions to any probabilistic polynomial-time adversary. Be-
sides, we make use of symmetric key encryption scheme
Sym, which consists of three probabilistic polynomial-time
algorithms (KeyGen,Enc,Dec). KeyGen(·) generates the se-
cret key k. A message m can be encrypted as a ciphertext
c← Enc(k,m) and decrypted by m← Dec(k, c). The formal
definitions of the PRF and Sym can be found in [19].
SHVE. SHVE [19] is a predicate encryption scheme that
supports conjunctive, equality, comparison and subset mem-
bership queries over the encrypted data. Compared to the
public-key HVE schemes [18], SHVE is much faster as it only
relies on the PRF and symmetric key encryption. We present
a brief definition of SHVE on below.

Let Σ be an attribute set and ∗ be a wildcard symbol (“don’t
care” value). We define Σ∗ = Σ ∪ {∗}. Let x = (x1, ..., xn)
with xi ∈ Σ be an attribute vector, and v = (v1, ..., vn)
with vi ∈ Σ∗ be a predicate vector. The predicate function
Pv(x) = 1 if and only if for each i ∈ [1, n], we have
xi = vi or vi = ∗. In other words, the predicate function
returns “1” only when the vector x matches v in all non-
wildcard positions. The SHVE scheme uses a PRF F0 and
the symmetric key encryption Sym as described above. It
comprises four probabilistic polynomial-time algorithms:
• SHVE.Setup(λ): On input the security parameter λ, the

algorithm outputs the master secret key msk $←− {0, 1}λ.
• SHVE.KeyGen(msk,v): On input the master secret key
msk and a predicate vector v = (v1, ..., vn), the algo-
rithm outputs the query trapdoor s = (d0, d1, S), where
d0 is a masked random key, d1 is a symmetric ciphertext
and S keeps all non-wildcard positions in v.

• SHVE.Enc(msk,x): On input the master secret key msk
and an attribute vector x = (x1, ..., xn), this algorithm
sets cl = F0(msk, xl||l) for each l ∈ [n], and outputs the
ciphertext c = ({cl}l∈[n]).

• SHVE.Query(s, c): The query algorithm takes as input a
trapdoor s and a ciphertext c. If the algorithm recovers
0 from s and c, the query algorithm outputs “True”
(indicating Pv(x) = 1) else it outputs ⊥.

IV. THE PROPOSED SYSTEM

A. Construction of SHVE+
SHVE [19] can be adapted to achieve efficient encrypted

pattern matching for network traffic. However, it cannot be
directly used for middlebox functions like DPI. As mentioned
in Section III-A, the inspection rule consists of the inspec-
tion patterns and corresponding action. To fully protect the
rules during the matching process, both of them should be
encrypted. Also, to preserve the functionality, the action needs
to be recovered for MB further processing when the pattern
is matched. To this end, the action should be considered as a
message encrypted with the pattern in SHVE. Similar to the
design in prior work [7], [20], the above design encrypts both
the rule and action to minimise the leakage in the outsourced
middlebox. Nonetheless, we also take the performance into
consideration and choose to reveal the action for those matched
patterns. This trade-off enables our middlebox to efficiently
and securely handle a large volume of packets at a moderate
cost and well-defined leakage. We note that the original SHVE
construction [19] can only be used for membership testing,
whereas the message encryption is yet to be supported. To
address this issue, this section presents a new SHVE scheme,
dubbed SHVE+, which enables message encryption on SHVE.
Construction. The original SHVE (see Section III-C) lever-
ages a random key K to encrypt “0” in the SHVE trapdoor (d1
in the trapdoor), and it refers to the predicate vector v to masks
the random key and keeps the masked key in d0. If v matches
the attribute vector encrypted in the ciphertext c at all non-
wildcard positions, the encrypted “0” can be recovered from
the trapdoor after SHVE.Query, and SHVE outputs “True”.
Intuitively, we can exploit the d1 term in the trapdoor to store
the other encrypted message. Then, SHVE+.Query is changed
to return the decryption of d1 after decrypting d1 successfully.

We now present the details of our SHVE+ construction.
Note that only the modified algorithms are given here, the
other algorithms remain the same as in Section III-C.
• SHVE+.KeyGen(msk,v,m): On input the master secret

key msk, a predicate vector v = (v1, ..., vn) and a mes-
sage m, the algorithm extracts all non-wildcard positions
S = {l ∈ [n]|vl 6= ∗} from v. Let these positions be
l1 < . . . < l|S|, the algorithm samples K $←− {0, 1}λ
and computes: d0 = ⊕j∈[|S|]

(
F0(msk, vlj ||lj)

)
⊕ K,

d1 = Sym.Enc (K,m) Finally, it outputs the trapdoor
s = (d0, d1, S) corresponding to the predicate vector v.

• SHVE+.Query(s, c): The query algorithm takes as input
a trapdoor s and a ciphertext c. Then, it computes K ′ =(
⊕j∈[|S|]clj

)
⊕ d0 and returns µ = Sym.Dec (K ′, d1).



Pattern String: 00 01 86 A0,
Action: alert, depth: 8, offset: 12

* … * 00 01 86 A0 …

…

{𝐹#(𝑚𝑠𝑘, 00|12)⨁…⨁𝐹(𝑚𝑠𝑘,𝐴0|15)⨁𝐾34, 4, Sym.Enc(𝐾34, alert)}

{𝐹#(𝑚𝑠𝑘, 00|13)⨁…⨁𝐹(𝑚𝑠𝑘,𝐴0|16)⨁𝐾37, 4, Sym.Enc(𝐾37, alert)}

…

{𝐹#(𝑚𝑠𝑘, 00|17)⨁…⨁𝐹(𝑚𝑠𝑘,𝐴0|20)⨁𝐾39, 4, Sym.Enc(𝐾39, alert)}

Encrypted Pattern List

Matching 00 01 86 A0 starting from the 12nd, 13rd, …, 17th byte

* … * 00 01 86 A0 …

* … * 00 01 86 A0 …

11 bytes

12 bytes

16 bytes

Fig. 2: An example of the encrypted pattern generation: each
pattern string is inserted into multiple matching arrays to
match the pattern in every possible position in the payload.
Algorithm 1 Encrypted Rule Generation
Input: The master secret key msk from SHVE+.Setup; the ruleset

R
Output: The encrypted pattern list E

1: function GENERATE(msk, R)
2: Parse R as a pattern-action list T = {(pat, act)}
3: for each (pat, act) in T do
4: start← pat.offset > 0?pat.offset : 1
5: end← pat.depth > 0?start+ pat.depth : 1500
6: for i = start : end− pat.string.len+ 1 do
7: vi ← ∗1500
8: Insert pat.string at vi[i]
9: ti ← SHVE+.KeyGen(msk,vi, act)

10: Store ti in E
11: return E

Under the SHVE+ scheme, the proposed system can encrypt
the pattern as a SHVE+ trapdoor and then encrypt traffic as the
SHVE+ ciphertext to make the inspection. In specific, GW in
the proposed system generates a pattern array initialised with
wildcard character ‘∗’ in all positions. Then it inserts each byte
of the pattern string into the pattern array according to the rule
(string content, start/end position), and uses the array as the
predicate vector and the action as the message to compute the
encrypted pattern via SHVE+.KeyGen. Later, GW parses the
traffic into a byte array and uses it as the attribute vector to
get the encrypted traffic by SHVE+.Enc. Finally, on MB, the
encrypted pattern can examine traffic in the form of SHVE+
ciphertext and properly recover the action if a match is found
according to the definition of SHVE [19].
Security. SHVE+ retains SHVE’s security properties for mem-
bership testing, which guarantees that the pattern matching
process only reveals whether the encrypted traffic includes the
pattern in the position specified by rules, but nothing more.
Moreover, it ensures that the message can only be recovered
when the traffic matches the pattern, which is consistent with
the security requirement of the proposed middlebox service.
A detailed analysis is given in Section V.

B. The Proposed Encrypted Pattern Matching Protocol

In order to support secure pattern matching over the en-
crypted traffic, the existing work [6], [7] leverages an en-
crypted index built from the pattern-action list. More specif-
ically, the encrypted index is indexed by the encryption of
each pattern string. When a given inspection token matches
the encrypted indexing term, MB can recover the action from
the index and execute it. However, due to the complexity of
matching patterns (various size, matching position, etc.), this
approach has to tokenise the original packet payload into a

Algorithm 2 Rule Matching
Input: GW inputs the master secret key msk, the payload P ;

MB inputs the encrypted pattern list E ;
1: function MATCH(msk, E , P )
2: On GW:
3: Parse P as a byte array and compute the encrypted traffic

c← SHVE+.Enc(msk, P )
4: Send c to MB
5: On MB:
6: for each encrypted pattern t in E do
7: act′ ← SHVE+.Query(t, c)
8: Execute act′ if it is valid

large number of tokens, and it can blow up the bandwidth
consumption (24× as reported in [6]). To enable pattern
matching in a bandwidth-saving manner, our system is built
from SHVE+ because it does not rely on any tokenise algo-
rithm. Instead, it encrypts the payload and queries the pattern
in byte-wise. Consequently, its bandwidth consumption is a
constant no matter how long the pattern is (see Section IV-A).
Pattern matching for arbitrary pattern strings. Algorithm 1
summarises the detailed encrypted rule generation procedure
run by GW. As mentioned, each inspection rule is parsed as a
pattern-action tuple, and our protocol generates the encrypted
pattern list from it. In practice, the inspection rules often
involve qualifiers that specific a range of positions to be
checked in the packet payload. For example, the following
Snort rule [28] specifies the “depth” (only search 8 bytes
instead of 1500 bytes for the pattern) and “offset” (start to
search the pattern from the 12th byte of the payload).
alert udp $EXTERNAL_NET any -> $HOME_NET 111
(flow:to_server; content:"|00 01 86 A0|",
depth 8,offset 12)

Thus, our protocol takes the above two qualifiers into consid-
eration when generating pattern arrays and encrypted patterns.
As shown in Fig. 2, our protocol first generates offset −
string.len+1 pattern arrays with wildcard character ‘∗’. Then,
it inserts the pattern string into the pattern arrays at each
possible starting positions, which is 12 to 17 in our example.
For each pattern array, our protocol inputs the action and runs
SHVE+.KeyGen to encrypt the pattern string and position after
concatenating them together (see Section IV-A). This ensures
that matches only happen on the positions specified by the rule.
The result encrypted pattern list is able to match the pattern
in the specific positions over any incoming traffic from GW.

The above protocol supports encrypted pattern matching in
wildcard positions, i.e., the pattern can be found in all positions
in a packet. For this case, our protocol generates encrypted
patterns for all positions to find matches in traffic. Due to the
MTU restriction, the maximum payload size is 1500 bytes,
which means that each rule needs 1500 encrypted patterns at
most to match all position. Note that the size of each encrypted
pattern is a constant (see Fig. 2) without regarding the length
of original pattern strings. Moreover, it is a tiny data structure:
each encrypted pattern is only 23 bytes (see Section VI).

The matching process is outlined in Algorithm 2. After
uploading the encrypted pattern list to MB, GW generates
the encrypted traffic from the packet payload via SHVE+.Enc.



A c t
A c t i v e
A d m i n

Pattern List
{𝐹#(𝑚𝑠𝑘, 𝐴|1)⨁𝐹(𝑚𝑠𝑘, 𝑐|2)⨁𝐾11, 1, Sym.Enc(𝐾11, 0)}
{𝐹#(𝑚𝑠𝑘, 𝐴|2)⨁𝐹(𝑚𝑠𝑘, 𝑐|3)⨁𝐾13, 2, Sym.Enc(𝐾13, 0)}

…
Filter 1
(1 - 3B)

{𝐹#(𝑚𝑠𝑘, 𝐴|1)⨁𝐹(𝑚𝑠𝑘, 𝑐|2)⨁𝐾31, 1, Sym.Enc(𝐾31, 0)}
…

{𝐹#(𝑚𝑠𝑘, 𝐴|1)⨁𝐹(𝑚𝑠𝑘, 𝑑|2)⨁𝐾33, 1, Sym.Enc(𝐾33, 0)}
…

Filter 2
(> 3B)

{𝐹#(𝑚𝑠𝑘, 𝑡|3)	⨁𝐹(𝑚𝑠𝑘, 𝑖|4)⨁𝐾91, 3, Sym.Enc(𝐾91, 0)}
…

{𝐹#(𝑚𝑠𝑘,𝑚|3)⨁𝐹(𝑚𝑠𝑘, 𝑖|4)⨁𝐾93, 3, Sym.Enc(𝐾93, 0)}
…

Filter 3
(> 3B)

Fig. 3: The proposed filter structure

Later, MB uses the pattern list to check the traffic from GW via
SHVE+.Query. If a target packet includes a required pattern,
MB can recover an action and apply it to the packet.
Matching packet header and regular expression. The pro-
tocol can be extended to support packet header inspection.
In particular, the header inspection focuses on the field in-
formation (e.g., HTTP header, HTTP method), which can
only be found in the specific place in the header. Thus, the
protocol can parse the field information by extracting the field
value as the pattern string and referring the header structure
to compute the positional information. Finally, the processed
header inspection rule can be used by the original protocol to
tackle with patterns that appear in the header.

For regular expression matching, it is common for the
real-world pattern matching system like Snort to parse the
regular expression as sub-strings and apply pattern matching
algorithms to check those sub-string respectively [21], [22].
For instance, the regular expression “ap*e” aims to find the
string start with ‘ap’ and end with ‘e’. The pattern matching
system checks ‘ap’ and ‘e’ separately and returns match if the
matching position of ‘e’ is behind the one for ‘ap’. Therefore,
our protocol can follow the same strategy to check the regular
expression for the encrypted traffic. That is, the protocol
generates encrypted patterns for ‘ap’ and ‘e’ separately and
leverages the secret sharing scheme in [7] to share the action
into two encrypted patterns, and the action can only be
recovered when two encrypted patterns are matched orderly.
Remark. The security properties of SHVE+ guarantee that
the action can only be recovered if the encrypted payload
includes the pattern (i.e. both the position and string should
be matched). Also, SHVE+ ensures that the equality of byte
strings in the packet is not revealed to MB, because the SHVE+
combines the packet payload and positions when generating
the encrypted payload. Thus, the ciphertext of two identical
bytes is different if they are in the different position of the
payload. A detailed security proof is given in Section V.

Regarding the efficiency of the basic matching protocol,
for each pattern, it performs a byte-to-byte match on the
incoming traffic. Recall that the protocol generates multiple
encrypted patterns to match all specified starting positions of
patterns in the traffic, its performance can be optimised via
parallel processing. In particular, the middlebox can use those
independent encrypted patterns to perform pattern matching
in specified positions concurrently on the encrypted traffic.
However, the drawback of this basic matching protocol is that
its performance may degrade rapidly with the increasing size
of the ruleset. That is because each newly-added rule can have

Algorithm 3 Encrypted Filter Generation
Input: The master secret key msk from SHVE.Setup; the ruleset R
Output: The encrypted filter F = {F1,F2,F3}

1: function FILTERGENERATE(msk, R)
2: Parse R as a pattern-action list T = {(pat, act)}
3: for each pat.string in T do
4: start← pat.offset > 0?pat.offset : 1
5: end← pat.depth > 0?start+ pat.depth : 1500
6: s1 ← pat.string.substring(1, 2)
7: for i = start : end− pat.string.len+ 1 do
8: vi ← ∗1500
9: Insert s1 at vi[i]

10: ti ← SHVE.KeyGen(msk,vi)
11: if pat.string.len ≤ 3 then
12: Store ti in F1

13: else
14: Store ti in F2

15: s2 ← pat.string.substring(3, 2)
16: j = i+ 2
17: vj ← ∗1500
18: Insert s2 at vj [j]
19: Store SHVE.KeyGen(msk,vj) in F3

20: return F

up to 1500 more corresponding encrypted patterns. It indicates
that MB may need to perform 1500 more SHVE+.Query on a
given packet if the size of the ruleset increased by one. Next,
we will introduce a secure filter to address the above issue.

C. Secure Filtering

One key observation is that only a small fraction of the
traffic includes malicious payloads (less than 0.01% as shown
in [21]). Consequently, if we can efficiently distinguish the
innocuous traffic from the malicious one, and only do pattern
matching on the malicious traffic, the performance of the
overall middlebox system can be highly improved. To achieve
our goal, we propose a secure filter system that can quickly
evaluate whether the packet includes a match and where is the
possible starting position to match. Also, the filter is encrypted
to prevent MB from learning any private information about the
traffic and ruleset as in Section III-B.

The proposed filter consists of three filters that run in two-
level (see Fig. 3). The first level has two filters: Filter 1 stores
information about the pattern strings that less than 4 characters
(bytes), while Filter 2 accounts for the longer patterns. Both
of them keep an encrypted pattern list of the beginning two
bytes of each pattern string; it also combines the position
information to check all position in the packet. The filter in
the second level (Filter 3) works together with Filter 2; it is a
progressive filter generated from the next 2 bytes in the pattern
string. The progressive filter matches the following two bytes
in each pattern string if it matched in Filter 2, and it reduces the
false positive rate when matching a longer pattern. Note that
similar design philosophy is also adapted in plaintext traffic
pattern matching systems [21], [22].

Algorithm 3 presents the steps of building the encrypted
filter. For each pattern string, GW extracts the first two
characters and generates encrypted patterns via SHVE. Then, it
inserts the encrypted patterns into either F1 or F2 by referring
the length of the pattern string. For those longer patterns



Algorithm 4 Secure Filtering
Input: GW inputs the master secret key msk, the payload P ;

MB inputs the encrypted filter F
Output: A list of possible matching positions M

1: function FILTERING(msk, F , R)
2: On GW:
3: Parse P as a byte array and compute the encrypted traffic

c← SHVE.Enc(msk, P )
4: Send c to MB
5: On MB:
6: for i = 0 to F1.len do
7: if SHVE.Query(F1[i], c) =“True” then
8: Add F1[i].S to M
9: if c.len > 3 then

10: for i = 0 to F2.len do
11: if SHVE.Query(F2[i], c) =“True” then
12: for j = 0 to F3.len do
13: if SHVE.Query(F3[j], c) =“True” then
14: Add F2[i].S to M
15: return M

(more than 3 bytes), the next two bytes are also generated
as encrypted patterns and stored in F3. Finally, GW uploads
F with the above three sub-filters to MB as the encrypted filter.

To execute the secure filtering algorithm (cf. Algorithm 4),
MB reuses the encrypted traffic to check the encrypted filter.
In specific, as SHVE supports secure membership testing,
MB is capable of recovering a “True” after SHVE.Query if the
upcoming payload has two bytes that match the ruleset pattern.
After applying the secure filtering, MB only requires to check
the position that returns “True” when running the following
pattern matching process. Hence, the secure filtering can
highly boost the overall pattern matching procedure, because
for each rule, instead of using all encrypted patterns to check
the whole encrypted traffic, only a few patterns corresponding
to the filtered positions need to be checked.
Filtering in parallel. The secure filtering relies on two
separate groups of filters (filters for pattern ≤ 3 bytes and > 3
bytes). Therefore, we can use the output to check the encrypted
pattern corresponding to the pattern string ≤ 3 bytes and > 3
bytes, respectively. This can reduce the workload in the pattern
matching process further because only the pattern that fits
the size requirement needs to be checked after adopting this
optimisation. To achieve this, we slightly modify Algorithm 4:
The matching positions output from F1 and F3 are kept in two
matching position lists (M1 and M2). Also, we employ two
separate buckets to store the encrypted patterns for the pattern
strings ≤ 3 bytes and > 3 bytes separately. As a result, MB can
use the position information in M1 to check the short patterns
while utilising M2 to check those longer patterns.

V. SECURITY ANALYSIS

We give a security analysis to demonstrate that MB cannot
learn the sensitive data in the ruleset as well as traffic during
the pattern matching process. We are the first to formalise
the adversary capability in two aspects: 1) The adversary
can select the packet to be challenged and get the encrypted
patterns and filter selected by himself/herself. The goal of the
adversary is to learn the sensitive data in the packet; 2) The

adversary can select the ruleset to be challenged and get the
encrypted packet chosen by himself/herself. The adversary
aims to learn information about the ruleset other than the
pattern matching result. Note that the existing work only
considers either the security of the packet [6], [9] or the
security of the ruleset [7], [23].

We follow the simulation-based security [19] to define a
leakage function L for our encrypted pattern matching protocol
P and then construct a simulator to show that P is L-secure
against adversaries as described in above. More specifically,
we construct a simulator S and prove that S can simulate P
by using the leakage function L only. This implies that the
proposed protocol does not reveal any information about the
packet payload and rules beyond the leakage function.
Security of SHVE+. SHVE+ has a similar security model
as SHVE [19] except that SHVE+ has a non-empty message
space to support message encryption. Recall that the security
model of SHVE defines the attribute-hiding property, which
indicates that the adversary can only learn two leakage func-
tions: α(v) representing the wildcard pattern (positions) of a
given predicate vector v, and β(v,x) describing the leakage
after queries (i.e., leaking whether v and x are matched or
not). An adversary can arbitrarily request the HVE trapdoors
given the above two leakage functions to SSHVE. However, no
more information about v and x will be leaked. The following
theorem from [19] states the security of SHVE:

Theorem 1: SHVE is attribute-hiding in the ideal cipher
model under the security model defined in above.
We keep the α(v) unchanged because the wildcard pattern of
SHVE+ is exactly the same as in SHVE, while the definition
of β(v,x) is modified as follows: β

′
(v,x) = m if Pv(x) = 1,

otherwise β
′
(v,x)

$←− {0, 1}λ. The following theorem states
the security of SHVE+:

Theorem 2: SHVE+ is attribute-hiding in the ideal cipher
model under the security model defined in above.
We omit the proof of Theorem 2 because it is identical to the
one in [19]. In the rest of this section, we directly apply the
simulator of SHVE+ when simulating P .
Security of the pattern matching protocol. Let P be the
pattern matching protocol. The security of P is formally
defined via two groups of real/ideal game definitions. The first
real/ideal game definition depicts the security of P against the
adversary A1 who aims to compromise the confidentiality of
the encrypted packets. This adversary is identical to the one
in [4] who entrenches in MB and can get any number of the
encrypted patterns and filter tokens to examine the encrypted
packet. The following games and theorem state that P can
protect the packet confidentiality in the presence of A1:
• RealPA1

(λ): The adversary A1 chooses a packet P for
the game to generate the encrypted packet c and gives
c to A1. Then, A1 adaptively chooses a rule r to
query. To respond, the game GENERATE(msk, r) and
FILTERGENERATE(msk, r). Later, the game gives the
protocol outputs to A1. Eventually, A1 outputs a bit.

• IdealSA1
(λ): The game initialises a counter i = 0 and an

empty rule list R. The adversary A1 chooses a packet



P , and the game runs c ← S(L1(P )) and gives the
encrypted packet c to A1. Then, A1 adaptively chooses
a rule r to query. To respond, the game records the rule
as R[i], and gives the output of S(L1(P,R)) (R keeps
all history rules) to A1. Later, the game increases i by 1.
Eventually, A1 outputs a bit.

Theorem 3: P is L1-secure against A1, assuming that
the SHVE+ scheme is selectively simulation-secure, that the
SHVE scheme is selectively simulation-secure.

Proof: First, we describe the leakage function L1 towards
A1. On input a packet P and the adaptively chose ruleset
R, the leakage function can be parameterised as L1(P,R) =
{Posf ,Pose,Act} formed as follows:
• Posf is the possible matching positions in P w.r.t. R. For-

mally, Posf [i] is an array of possible matching positions
in P w.r.t. R[i].

• Pose is the matched positions in P w.r.t. R. Formally,
Pose[i] is an array of matched positions in P w.r.t. R[i].

• Act is the actions that need to be performed on P .
Formally, if R[i] is matched in P , Act[i] = R[i].act,
otherwise, Act[i] = ⊥.

Next, we show that we could combine the above leakage
function, SSHVE and SSHVE+ to simulate P . Suppose A1

provides a packet P to S1. S1 invokes c ← SSHVE+(λ)
to generate the ciphertext of P and gives it to A1. Upon
receiving the i-th rule from A1, S1 refers to Posf [i] to
simulate the filter. In specific, for each possible matching
position pf ∈ Posf [i], S1 sets {pf , pf + 1} as αi1(vi1)
and βi1(vi1, P ) as “True”. If |R[i]| ≥ 3, S1 addition-
ally sets {pf + 2, pf + 3} as αi2(vi2) and βi2(vi2, P )
as “True”. Then, it runs SSHVE(αi1(vi1), βi1(vi1, P )) and
SSHVE(αi2(vi2), βi2(vi2, P )) (if |R[i]| ≥ 3) to get the cor-
responding filter. Similarly, for each matched position pe ∈
Pose[i], S1 sets αi(vi) = {pe, ..., pe + |R[i]| − 1} and
β

′

i(vi, P ) = Act[i]. S1 then calls SSHVE+(αi(vi), β
i
i(vi, P ))

to get the token for R[i]. A1 finally receives the simulated
filter and encrypted pattern corresponding to R[i].

It is obvious that the simulated ciphertext is indistinguish-
able from the real ciphertext as it is computed via PRF.
Additionally, Theorem 1 and Theorem 2 directly ensure that
the simulated trapdoors for the filter and encrypted patterns
are indistinguishable from the real trapdoors generated by
RealPA1

(λ). Thus, it concludes that for every adversary A1,
it has a negligible probability to learn more information from
P than the defined leakage function L1.

Theorem 3 shows that the adversary cannot infer any
information about the packet beyond L1 after receiving the
encrypted pattern and filter. It indicates that MB cannot know
any information about a legitimate packet as it does not
match any rule. Meanwhile, to fulfil the requirement of pattern
matching middleboxes, MB is allowed to learn the matching
information and action on a malicious packet. The revealed
information enables the pattern matching middlebox to apply
the inspection rule on the malicious packet efficiently.

We also consider the adversary A2 who wants to learn
unintended information from the ruleset, which captures the

capacity of adversaries either in endpoints. Similar to the
adversary in [7], A2 is able to use arbitrary packet payload
to examine the ruleset deployed on MB. The following games
and theorem indicate the security guarantee on the ruleset in
the presence of A2:
• RealPA2

(λ): The adversary A2 chooses a ruleset R and a
packet list q. Then, the game runs GENERATE(msk,R)
and FILTERGENERATE(msk,R) to generate the en-
crypted pattern E and filter F . Later, the game runs
FILTERING(msk,F ,q[i]) and MATCH(msk, E ,q[i]) for
1 ≤ i ≤ |q|. The ciphertext ci of q[i] and pattern
matching results are stored in t[i] as the transcript. The
generated E , F and t are given to A2. Eventually, A2

outputs a bit.
• IdealSA2

(λ): The adversary A2 chooses a ruleset R
and a packet list q. Then, the game runs {E ,F , t} ←
S2(L2(R,q)) and gives the outputs to A2. Eventually, A
outputs a bit.

Theorem 4: P is L2-secure against A2, assuming that
the SHVE+ scheme is selectively simulation-secure, that the
SHVE scheme is selectively simulation-secure.

Proof: We start with the definition of L2: Let q[i], 1 ≤
i ≤ |q| be a query packet and R[j], 1 ≤ j ≤ |R|
is a rule in the given ruleset. We have L2(R,q) =
{r, |E|, |F|,MatchP,Match,Act, IP} formed as follows:
• r is an array storing the length of each rule, i.e., r[i] is

the length of R[i].
• |E| is the size of the encrypted pattern list.
• |F| is the size of the encrypted filter.
• MatchP is the possible match position pattern of each

packet q[i] w.r.t. each rule R[j], which is a bidimensional
array: MatchP[i, j] is all positions in q[i] that probably
match R[j].

• Match is the matched position pattern of each packet
q[i] w.r.t. each rule R[j], which is a bidimensional array:
Match[i, j] is all positions in q[i] that match R[j].

• Act is the action pattern of each packet q[i] w.r.t. each
rule R[j], which is a bidimensional array. If R[j] matches
in q[i], Act[i, j] = R[j].act, otherwise, Act[i, j] = ⊥.

• IP is the intersection pattern of any two rules
R[j], R[k], 1 ≤ j, k ≤ |R|, j 6= k matched the packet q[i],
which is a three dimensional array. Particularly, IP[i, j, k]
stores the intersection position of R[j], R[k].

Next, we show how to simulate P via L2, SSHVE and
SSHVE+. First, S2 initialises a bi-dimensional array A to store
the auxiliary information for the simulation. Then, S2 lever-
ages the outputs from IP and Match to simulate the encrypted
packet. In specific, for each query packet q[i], 1 ≤ i ≤ |q|:

1) S2 generates an empty array ci.
2) For each rule R[j], 1 ≤ j ≤ |R|:
• For each matched position pos ∈ Match[i, j] of R[j],
S2 checks whether A[R[j], l], pos ≤ l ≤ pos+ r[j]− 1
is set as the wildcard symbol.
• If any of the above value in A[R[j], l] is wildcard and
∀IP[i, j, k] = ∅, 1 ≤ k ≤ |R|, k 6= j, then S2 simulate a



ciphertext A[R[j], l]
$←− {0, 1}λ.

• Otherwise, if ∃IP[i, j, k] 6= ∅, A[R[j], l] = A[R[k], l].
• If ci[l] is not set, S2 sets ci[l] = A[R[j], l].

3) For all empty entries in ci, S2 randomly generates a
ciphertext and fills it into those empty entries.

In the next stage, S2 leverages the encrypted packet and the
leakage functions to simulate the encrypted patterns, filter and
transcript, for each encrypted packet ci, 1 ≤ i ≤ |q|:

1) S2 puts ci into t[i] and sets ci as xi.
2) For each rule R[j], 1 ≤ j ≤ |R|:
• S2 puts Match[i, j], MatchP[i, j] and Act[i, j] into t[i].
• For each matched position pos ∈ Match[i, j] of
R[j], S2 sets αi(vj) = {pos, ..., pos + r[j] − 1} and
β

′

i(vj ,xi) = Act[i, j].
• S2 calls SSHVE+(αi(vj), β

′

i(vj ,xi)) to get the corre-
sponding encrypted pattern and put it into E .
• For each possible match position posp ∈ MatchP[i, j]
of R[j], S2 sets αi1(vj1) = {posp, posp + 1} and
βi1(vj1,xi) = True; If r[j] ≥ 3, S2 also sets αi2(vj2)
= {posp + 2, posp + 3} and βi2(vj2,xi) = True.
• Then, S2 calls SSHVE(αi1(vj1), βi1(vj1,xi)) and
SSHVE(αi2(vj2), βi2(vj2,xi)) (if r[j] ≥ 3) to get the
corresponding filter and put it into F .

Finally, S2 generates dummy HVE trapdoors to pad E and F
to |E| and |F|, respectively.

Due to the security properties of SHVE and SHVE+, the
adversary cannot distinguish the real and simulated E and F .
Moreover, the transcript t is also indistinguishable since the
ciphertext is simulated under the ideal cipher model, and the
query history under real and ideal games are identical. Even
if the adversary uses the E and F to examine the ciphertext,
the output result is also indistinguishable. Therefore, A2 only
has a negligible probability to learn more information than the
defined leakage function L2 from the ruleset.

Theorem 4 shows that the adversary cannot get information
about the ruleset more than L2 after receiving the ciphertext of
chosen packets. This guarantees an untrusted MB cannot learn
the ruleset with arbitrary legitimate packets. On the other hand,
as a part of the pattern matching middlebox requirement, the
matching information and action can be revealed towards the
malicious packet. Hence, MB can still effectively inspect the
packet and execute actions on malicious packets.

VI. EXPERIMENT AND EVALUATION

Environment setup and implementation. We choose two
open-source rulesets, i.e., Snort ruleset [28] (1522 rules, 1116
patterns) and ETOpen ruleset2 (24804 rules, 12634 patterns)
to initialise our pattern matching middlebox module and use
the traffic dump iCTF083 to evaluate its performance.

We implement the middlebox module and a gateway client
in C++. Recall that SHVE+ combines each pattern string with
all possible positions to generate the encrypted pattern list.
This treatment ensures that matching can only happen in the

2Emerging Threats ruleset: https://rules.emergingthreats.net
3iCTF08 dumps: https://ictf.cs.ucsb.edu/archive/2008/dumps/

positions indicated in the rules. To save storage, we choose
AES-CMAC as the PRF to implement SHVE and SHVE+ and
truncate the output of PRF to 5 bytes as in [6], [27]. Because
the PRF outputs in the above scheme are used to mask the
random key for the symmetric key encryption scheme Sym,
truncating them does not affect the correctness of them. Hence,
we can use the PRF to mask a 5-byte random value and employ
a KDF (Key Derivation Function) to generate the key for Sym
from the random value. Also, we substitute the non-wildcard
position array S (see Section IV-A) to a 2-byte integer value
indicating the length of each pattern. Note that this will not
affect the correctness of SHVE+, because those positions
represent a continuous string under the pattern matching ap-
plication. After optimisation, each encrypted pattern requires
23 bytes (1 PRF value + 1 AES ciphertext + 1 pattern length),
and the encrypted pattern list for Snort ruleset costs 43.5 MB,
while the one for ETOpen requires 808 MB. On the other
hand, the secure filtering protocol generates SHVE trapdoors
for the beginning 2 bytes of each distinct pattern, and it further
generates SHVE trapdoors for the following 2 bytes if the
pattern is larger than 3 bytes. We observe that the filtering
protocol generates a 32 MB filter from Snort ruleset, and 129
MB for ETOpen ruleset. These storage costs are moderate to
a cloud server where the middlebox is supposed to deploy. In
addition, computing and uploading the above lists are one-time
costs in the initialisation phase, and it enables the middlebox
to save bandwidth during the inspection phase tremendously.

For performance evaluation, we deploy the middlebox on
a server equipped with Intel Core i7-6700 3.4GHz CPU and
16GB RAM and use a desktop with Intel Core i5-6500 3.2GHz
CPU and 8GB RAM as the gateway client.
Performance evaluation. First, we show the setup time for
the middlebox module. For the generation of the encrypted
pattern list, it runs SHVE+.KeyGen for each pattern and its all
possible positions. This takes 18.9 s in Snort ruleset and 287.3
s in ETOpen ruleset. Similarly, the filter generation combines
each distinct 2 bytes extracted from the beginning of pattern
with all possible positions and runs SHVE.KeyGen operations
to get the filter trapdoor, it also processes the next 2 bytes for
the longer pattern. Our evaluation shows that it requires 14 s
and 45.5 s for our two rulesets, respectively.

Next, we report the runtime performance of the middle-
box module. In Fig. 4a, we evaluate the average inspection
latency under two rulesets, respectively. For Snort ruleset,
the inspection delay is less than 300 µs. For the larger
ETOpen ruleset, the inspection delay is less than 850 µs.
We further examine the inspection latency after applying our
secure filtering protocol. As a result, the middlebox only takes
less than 60 µs to inspect a packet in Snort ruleset, and 100 µs
for ETOpen ruleset, because in the iCTF08 dataset, only 1/6
packets and 1/9 packets need further inspection against Snort
ruleset and ETOpen ruleset, respectively.

As shown in Fig. 4b, the bandwidth overhead in our pro-
posed design is a constant, i.e., 5 times in terms of the original
packet size. This overhead is much smaller than any existing
secure middlebox system using sliding window tokenisation
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Fig. 4: The performance evaluation for the proposed middlebox module.

TABLE II: Throughput of our middlebox for different rulesets.

Ruleset Snort Snort (filter) ETOpen ETOpen (filter)
Throughput 206 MBps 1442 MBps 75 MBps 578 MBps

TABLE III: Theoretical performance comparison between
the existing pattern matching middleboxes and our middle-
box. n is the packet size and l is the size of pattern string.

Scheme Pattern size Traffic size Inspection time
SEST [24] 1 + dl/8e 64n (n− l + 1)Tpb

BlindBox [6] 16dl/16e 5((n+ 1)|DR
a|

−ΣDR)
((n+ 1)|DR|
−ΣDR)TM

c

Our middlebox 23(n− l + 1) 5n
(n− l + 1)

(lTXOR
d + TDec

e)
a An array with all distinct pattern sizes in the ruleset
b Time taken to compute a pairing
c Time taken to access a tree index in memory
d Time taken to compute an XOR operation
e Time taken to decrypt a symmetric ciphertext

algorithms [6], [24] because those algorithms enumerate all
possible window sizes when tokenising the traffic payload.
More specifically, for Snort ruleset, the number of distinct
pattern sizes is 82 (1 – 214 bytes), and the sliding window
tokenisation enlarges the bandwidth consumption by 77×. For
ETOpen ruleset, there are more distinct pattern sizes than Snort
ruleset, i.e., 130 (1 – 196 bytes). Therefore, the bandwidth
overhead of the sliding window tokenisation reaches 120×. In
comparison, our system performs encryption and queries in
byte-wise. Namely, it only scans the traffic once, and thus, the
bandwidth overhead keeps constant, and it saves 94% – 96%
bandwidth comparing to the sliding window tokenisation in
Snort and ETOpen ruleset. Another approach (SEST [24]) with
constant bandwidth overhead is based on the elliptic curve.
However, the ciphertext in the elliptic curve is much longer
than that in our symmetric building blocks, and this approach
still leads to a prohibitive bandwidth overhead (64×).

We simulate a multi-session scenario (100 to 2000 clients)
to measure the throughput of the middlebox on our two differ-
ent rulesets. The results are given in Fig. 4c and Table II. As
our middlebox can perform filtering and matching efficiently
in parallel, the throughput for each connection can reach up to
5000 packets per second (pps) for 100 connections under Snort
ruleset, and around 300 pps when there are 2000 connections,
and the overall throughput achieves 1442 MBps. For ETOpen
ruleset, the throughput per connection still reaches 3000 pps
for 100 connections, and the overall throughput is 578 MBps.
Comparison between prior designs. We provide theoretical
and real-world performance comparisons between SEST [24],

TABLE IV: Performance comparison between the existing
pattern matching middleboxes and the proposed middlebox
using a 1500-byte packet and Snort ruleset.

Scheme Traffic size (bytes) Inspection time
(1 rule (100 bytes), 1 packet)

SEST [24] 96000 600 ms
BlindBox [6] 115504 5 µs

Our middlebox 7500 43 µs

BlindBox [6] and our middlebox. Note that the work [7],
[8] adopts a similar approach based on searchable encryption
and tokenisation as BlindBox. Therefore, the comparison with
BlindBox can also demonstrate our advantages to the above
work. The source code of [6], [24] is not publicly available,
so we only compare our results with the one reported in their
paper. We note that the test machine of SEST has similar
capabilities as ours, while BlindBox is evaluated on a much
better machine (Intel Xeon E5-2650 2.6GHz, 128GB RAM).

In Table III, we compare the theoretical performance from
three perspectives of the listed works, i.e., the size of encrypted
patterns, the size of the encrypted traffic ciphertext sending
to the middlebox, and the inspection time on the middle-
box. The encrypted pattern size mainly affects the storage
consumption of the middlebox. Although our scheme has
the largest storage overhead, it is still a moderate cost to
a cloud server, as mentioned in the performance evaluation
part. On the other hand, the encrypted traffic size of our
proposed scheme is much smaller than the other two schemes;
it implies that our middlebox can save enormous bandwidth
comparing with [6], [24]. In terms of the inspection time,
all schemes are linear in the length of the packet from the
complexity view. Nonetheless, the inspection time of our
middlebox is comparable to BlindBox: both of them achieve
a microsecond-level inspection delay because the inspection
using the SHVE scheme is based on ultra-fast operations, i.e.,
XOR and Sym.Dec, which is only slightly slower than the
index access operations in BlindBox. However, the inspection
delay of SEST is larger because it relies on cryptographic
pairing, which can take a millisecond for each pairing.

We report the performance comparison over real-world data
in Table IV. We encrypt a 1500-byte packet as the encrypted
traffic and use Snort ruleset to inspect the traffic on the
middlebox. The result shows that our client only sends 7500
bytes to the middlebox to inspect the given packet, which is
13-15 times smaller than [6], [24]. When inspecting a 100-byte
pattern in the ruleset, although SEST [24] and our middlebox



TABLE V: Monthly cost estimation between the tokenisation-
based middleboxes and the proposed middlebox with ETOpen
ruleset under AWS pricing information.

Scheme Instance Network Total
Blindbox [6] $244.8 $1620 (10 Gb bandwidth) $1864.8

Our middlebox $244.8 $216 (1 Gb bandwidth) $460.8

leverage the linear scan to inspect the packet, SEST needs 600
ms to finish the inspection as it is based on the public-key
cryptographic scheme, which is very slow in practice, while
our middlebox based on SHVE only needs 43 µs. As reported
in BlindBox [6], inspecting one rule against a packet only
requires 5 µs. Note that our inspection delay is also in the
microsecond-level, which is negligible in real-world scenarios.
Also, the testbed machine they used is much better than ours.
Deployment cost comparison. To further illustrate the prac-
ticality of our middlebox, we estimate the deployment cost
of our scheme and the representative (i.e., BlindBox [6]) of
tokenisation-based approaches [6]–[8].

In this cost estimation, we assume that the enterprise de-
ploys a 7/24 pattern matching middlebox on AWS to examine
all its traffic. In particular, the enterprise hires a c5.2xlarge
EC2 instance (8 cores, 16 GB RAM) to host the middlebox
module. Note that this instance has sufficient memory for
the proposed middlebox since the previous evaluation shows
that 1 GB is enough to store the encrypted pattern list and
filter generated from ETOpen ruleset. To have a consistent
and stable network connection with higher bandwidth and
throughput, the enterprise connects its network to the EC2
instance through AWS Direct Connect [29]. However, due to
the traffic size under BlindBox is 15 times larger than our
middlebox, BlindBox needs higher network capacity in order
to achieve similar performance as our middlebox. For instance,
if our middlebox requires 1 Gbps bandwidth to guarantee a
low delay, then BlindBox should use the 10 Gbps plan instead.

We refer to the pricing information in the U.S. East region
(Virginia) to compute the price, and the monthly cost esti-
mation result according to the above assumptions is listed in
Table V. The result shows that even though the instance cost
is the same for BlindBox and our middlebox, BlindBox has to
pay 7.5× more ($1620 versus $216) to get the same network
performance as ours. In total, the monthly cost of deploying
our middlebox in AWS only needs $460.8 while BlindBox
takes $1864.8, which indicates a 300% extra cost.

VII. CONCLUSION

In this paper, we design a system that allows outsourced
middleboxes to perform pattern matching over encrypted traf-
fic without revealing both traffic content and patterns. We first
design a customised SHVE scheme (SHVE+) and then build
an encrypted pattern matching protocol based on SHVE+ to
protect pattern and network traffic during the pattern matching
process. Next, we design a secure filtering protocol that can
quickly find the starting positions for each possible match,
which improve the pattern matching process further. Our
system is implemented as a prototype, and our evaluation on
real-world ruleset and traffic dump illustrates its advantages in
terms of bandwidth, inspection delay and throughput.
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