
The Arwen Trading Protocols (Full Version) ?

Ethan Heilman, Sebastien Lipmann, Sharon Goldberg

Arwen (arwen.io)

Abstract. The Arwen Trading Protocols are layer-two blockchain pro-
tocols for traders to securely trade cryptocurrencies at a centralized ex-
change, without ceding custody of their coins to the exchange. Before
trading begins, traders deposit their coins in an on-blockchain escrow
where the agent of escrow is the blockchain itself. Each trade is backed
by the coins locked in escrow. Each trade is fast, because it happens off-
blockchain, and secure, because atomic swaps prevent even a hacked ex-
change from taking custody of a trader’s coins. Arwen is designed to work
even with the “lowest common denominator” of blockchains—namely
Bitcoin-derived coins without SegWit support. As a result, Arwen sup-
ports essentially all “Bitcoin-derived” coins e.g., BTC, LTC, BCH, ZEC,
as well as Ethereum. Our protocols support Limit and RFQ order types,
we implemented our RFQ protocol and are available for use at arwen.io.

1 Introduction

The promise of blockchain-backed cryptocurrencies is the ability to transact
without relying on a single trusted party. Blockchains therefore present a break-
through that circumvents a long-standing result in cryptography: namely, that
atomic swaps are impossible without the help of a trusted third party [34]. In an
atomic swap, two parties that do not trust each other swap items, such that ei-
ther (1) the swap occurs, OR (2) each party reclaims their item. Atomic swaps of
digital assets are possible when the blockchain acts as the trusted third party [8].

The Arwen Trading Protocols seek to deliver on this promise by bringing
atomic swaps to the mainstream use case of cryptocurrency trading. With Ar-
wen, traders benefit from the liquidity at centralized cryptocurrency exchanges
without trusting the exchange with custody of their coins. Arwen traders main-
tain custody of their cryptographic keys and their coins. Each coin’s native
blockchain acts as the agent of escrow. Arwen trades are fast because they
happen off blockchain, and secure, because they are atomic swaps. We have
implemented and deployed the Arwen trading RFQ protocol. It is currently
enabling atomic swaps between Bitcoin (BTC), Bitcoin-cash (BCH), Litecoin
(LTC) and Ethereum (ETH) on one of the largest global cryptocurrency ex-
changes, Kucoin[2].

? Major contributions to the design of these protocols were made by James Dalessan-
dro, Ezequiel Gomes Perez, Haydn Kennedy, Yuval Marcus, Chet Powers, Omar
Sagga, Aleksander Skjolsvik and Scott Sigel.

https://arwen.io
https://arwen.io

Our protocols are specifically designed for the trading use case and supports
trading instruments from traditional finance such as RFQs (Request For Quote)
and limit orders. RFQs are a valuable trading instrument for atomic trades as
they allow traders to swap coins immediately at current market prices. We use
RFQs instead of market orders because in an RFQ, the trader learns the price
the order will execute at before agreeing to execute the order, whereas in a
market order the trader has no recourse if the exchange sets an absurdly low
price. Limit orders are a basic and critical tool since they let a trader set their
own price on an exchange’s order book.

In Section 2 we discuss issues hampering mainstream atomic swap adoption
and how Arwen overcomes them. Section 3 provides an overview of Arwen fol-
lowed by our protocol for RFQs (Section 4) and limit orders (Section 5). Finally
we compare Arwen to related work (Section 6).

2 Whither Atomic Swaps?

Cross-blockchain atomic swaps seek to supplant today’s dominant form of cryp-
tocurrency trading: custodial trading at centralized exchanges. With custodial
trading, when users wish to trade they must first deposit their coins at the ex-
change; this is done using an on-blockchain transfer of coins from the user to the
exchange. Trading occurs within the databases of the centralized exchange, and
is not recorded on the blockchain. Finally, users can take custody of their coins
by withdrawing from the exchange; that is, the exchange uses an on-blockchain
transaction to send coins from the exchange back to the user. Custodial trad-
ing at a centralized exchange exposes users to serious counterparty risk—the
exchange may be unable to transfer coin back to the user’s wallet. This risk
has been realized, starting with the hack of MtGox [46] and continuing to the
present [11,39,21,9,30,14,23,22,40,7,48].

Request: Sell 1 BTC for some LTC?

Quote: 1 BTC for 100 LTC.

Confirmed!

Order! 1 BTC for 100 LTC.

CENTRALIZED
EXCHANGE

TRADER (ALICE)

First trade
(off blockchain!)

User Escrow
User: 5 BTC
Exchange: 0 BTC

Exchange Escrow
User: 0 LTC
Exchange: 500 LTC

BTC CashOut
User: 2 BTC
Exchange: 3 BTC

LTC CashOut:
User: 300 LTC
Exchange: 200 LTC

These transactions
are posted to the

blockchain only
when the escrows

are closed

Request: Sell 2 BTC for some LTC?

Quote: 2 BTC for 200 LTC.

Confirmed!

Order! 2 BTC for 200 LTC.
Second trade

(off blockchain!)

Fig. 1. Arwen Trading Protocol for two RFQ trades between the user and exchange.

The Bitcoin TierNolan Protocol. The TierNolan protocol [43] is the original
Bitcoin-compatible atomic swap; it can also be used for cross-blockchain atomic

swaps for “Bitcoin-like” blockchains (e.g., BCH, LTC, ZEC, etc.). TierNolan
uses Hashed Time-Locked Contract (HTLC) smart contracts as follows.

Bob chooses a random solution x and computes a puzzle y, where y = H(x)
and H is a cryptographic hash function. Bob reveals the puzzle y to Alice and
keeps x secret. Next, Bob locks up 100 LTC in an HTLC smart contract on
the Litecoin blockchain which stipulates: “before time twB, 100 LTC can be
claimed by a transaction signed by Alice containing the solution to puzzle y”.
Alice similarly locks up 1 BTC on the Bitcoin blockchain in an HTLC, which
stipulates: “before time twA, the 1 BTC can be claimed by a transaction signed
by Bob containing the solution to the puzzle y”. The atomic swap executes
when Bob claims 1 BTC by posting a transaction to the Bitcoin blockchain
containing x. Thus, Alice learns x and can post her solve transaction to the
Litecoin blockchain and claim 100 LTC. Security follows from the fact that Bob
must reveal x in order to claim his coins.

There are number of subtle issues that prevent current non-custodial trading
solutions from seeing widespread adoption for cryptocurrency trading. Below we
highlight several of these issues, and explain how Arwen overcomes them.

The challenge of providing liquidity. Most decentralized exchange (DEX)
protocols, including EtherDelta [1], 0x [45], and SparkSwap [5], are peer-to-peer
trading systems; Each trade involves a transfer of funds directly from trader
Alice’s wallet to trader Bob’s wallet. The peer-to-peer approach limits liquidity,
because Alice can only trade with traders that use that same peer-to-peer trading
system. If a system has too few users, it will not be able to provide good liquidity.

Arwen eschews the peer-to-peer approach because, today, the best liquidity
for cryptocurrency trading is found at centralized exchanges. With Arwen, Alice
can benefit from the liquidity at a centralized exchange even if she is the only
Arwen user at the exchange.

The pitfalls of on-blockchain protocols. On-blockchain protocols such as
TierNolan, EtherDelta [1] and 0x [45] suffer from slow trade execution because
they are bound by the speed at which blockchains confirms blocks. Many confir-
mations are often required to ensure a transaction can not be reversed [17] e.g.,
the cryptocurrency exchange Kraken waits 6 confirmations (60 minutes) for BTC
and 30 confirmations for ETH (6 minutes) [25]. When trading, even a few seconds
of latency is problematic, especially given the famously volatile cryptocurrency
prices. Even worse, if every single trade must be confirmed on-blockchain, and a
healthy trading ecosystem leads to many trades, then the blockchains involved
will be clogged with transactions resulting from each trade.

Ethereum DEX protocols e.g., EtherDelta and 0x, use the Ethereum blockchain
to trade one ERC-20 token for another ERC-20 token. In EtherDelta and 0x Al-
ice first broadcasts an order to the network without identifying a counterparty.
A counterparty Bob then sees Alice’s broadcast, decides to trade with Alice, and
adds his information to the order. Bob then posts the order to the blockchain.
Anyone can learn the details of Alice’s trade with Bob, and attempt to profit
from it by front-running Bob’s trade [45,16].

Arwen avoids these speed, scalability and frontrunning pitfalls, because trades
execute off-blockchain.

Dealing with lockup griefing. Lockup griefing affects any protocol that
requires users to lock coins in a smart contract. In TierNolan, Alice and Bob’s
coins are locked in smart contracts until the trade executes or the timelock on
the smart contracts expires. To ensure the security of the swap, timelocks are
generally a few hours long. These long expiry times creates a “lock-up griefing”
problem where one party (Alice or Bob) tricks the other into pointlessly locking
coins in the smart contract.

In Arwen the exchange has no incentive to launch a lockup griefing attack;
such an attack harms the exchange’s reputation, and prevents Alice from trading,
which is the exchange’s main source of revenue. The exchange, however, must
protect itself from Alice who might ask the exchange to lock up coins without
the intention to trade. Arwen introduces a novel escrow fee mechanism (see
Section 3.2) that compensates the exchange for locking up coins while rewarding
Alice for unlocking the exchange’s coins in a timely manner.

Atomic swaps as trading instruments. To use atomic swaps to provide
traditional trading instruments Arwen must avoid a misalignment of incentives.
We’ve already discussed how Arwen aligns incentives of opening escrows; we now
focus on trading incentives. Let’s revisit the TierNolan protocol.

The TierNolan Protocol is asymmetric as only Bob knows the secret solution
x. This means that Bob has the unilateral ability to decide whether to execute
the atomic swap by revealing x (or not). Because the timelocks twA, twB on
the smart contracts must at least be as long as the time it takes to confirm
transactions on the blockchain, Bob has minutes or hours to decide whether
market conditions justify the execution of the swap (or not). This means that
the TierNolan Protocol is actually an American call option: namely, Bob has
the right, but not the obligation, to buy 1 BTC from Alice at a strike price of
100 LTC, any time before the expiry time twA. Typically, the asymmetry in an
option is handled by requiring Bob to pay a premium to Alice before the option
is set up. However, in TierNolan Bob gets the option for free, resulting in a
misalignment of incentives.

Arwen is explicitly designed to support additional trading instruments be-
yond the American call option. For example in Arwen’s RFQ trade, the exchange
commits to a price, called the quote, before Alice decides whether or not to
place an order for the trade. (Quote: “You can buy 40 BCH, quote open for 1
second”). Importantly, RFQs are inherently asymmetric, because Alice gets to
decide whether the trade executes. Therefore, to align incentives, the exchange’s
quote includes a spread around the current price compensating the exchange for
price movements after the quote is given. If the exchange is unable to execute a
trade against a quote it provided, the exchange can abort the trade. While no
coins are lost, this is sufficiently harmful to the exchange’s reputation that we
would expect an exchange to avoid aborting if possible.

3 Arwen overview

The Arwen Trading Protocol is a blockchain-backed two-party cryptographic
protocol between a user Alice and a centralized exchange. Alice first locks her
coins in an on-blockchain user escrow. Next, Alice asks the exchange to lock
its coins in an on-blockchain exchange escrow. To compensate the exchange
for locking up its coins, Alice pays an escrow fee to the exchange from Alice’s
user escrow. Each trade is an off-blockchain atomic swap. From these we build
non-custodial unidirectional trading instruments for RFQs (Section 4) and limit
orders (Section 5). In Appendix A we show how to modify our unidirectional
protocols to be bidirectional.

3.1 On-blockchain escrows.

Escrows are opened and closed by confirming a transaction on the coin’s native
blockchain. Opening and closing escrows takes the same amount of time it would
take to deposit or withdraw coins from a custodial centralized exchange.

Lets look at an example. Alice wishes to trade bitcoins for litecoins as shown
in Figure 1. Alice funds the on-blockchain user escrow. The user escrow locks
e.g., 5 BTC from the user’s wallet on the Bitcoin blockchain until the pre-agreed-
upon expiry time twA. The initial balance in this escrow is 5 BTC owned by
the user, and 0 BTC owned by the exchange. The exchange funds the exchange
escrow. To open the exchange escrow, Alice pays the exchange an escrow fee, as
described in Section 3.2. The exchange escrow locks 500 LTC from the exchange’s
wallet on Litecoin’s blockchain until some pre-agreed-upon expiry time twB. The
initial balance in this escrow is 0 LTC owned by the user, and 500 LTC owned
by the exchange.

Escrow smart contracts. The Arwen escrow is a timelocked two-of-two
multisig smart contract that stipulates the following:

“spending requires joint signatures of the user and the exchange, OR
after time tw only the signature of the party that funded this escrow.”

Escrows come with an expiry time that protect each party against a malicious
counterparty. Escrow expiry times can vary, but must be longer than the time
needed to reliably confirm a transaction on blockchain.

If the exchange and user are cooperative then escrows can be closed at any
time, even before they expire. Each escrow is closed via a jointly signed cashout
transaction, posted to the blockchain, that reflects the balance of the escrow.
If either counterparty is malicious the other party can unilaterally recover their
funds. These unilateral recovery procedures are specific to each of Arwen’s trad-
ing instruments.

Arwen escrow smart contracts (see Appendix D) are written in Bitcoin-script
allowing support for BTC, BCH, LTC, ZEC, etc.. The Ethereum implementation
of Arwen leverages the greater functionality of Ethereum smart contracts to

replicate the properties of the Bitcoin-script smart contracts (See Appendix B).
Script and contract source available on github1.

3.2 Arwen’s escrow fee mechanism.

When an exchange funds an exchange escrow for a specific user Alice (e.g., the
500 LTC exchange escrow in Figure 1), the exchange is locking coins in an escrow
that can only be used by Alice. These coins can come out of the exchange’s own
inventory. Alternatively, they could be coins deposited by custodial users that
the exchange uses to fund escrows, in exchange for earning interest on those
deposits.

For this reason, when Alice requests an exchange escrow, she first pays an
escrow fee to compensate the exchange for locking up its funds. Arwen’s es-
crow fees are an in-band mechanism that avoids the introduction of out-of-band
payments or of a superfluous fee token.

The escrow fee mechanism. The escrow fee is proportional to the amount
of coin locked in the exchange escrow, and to the expiry time of the exchange
escrow. Alice pays the escrow fee upfront, before she opens the exchange escrow.
Alice receives a rebate of a portion of the escrow fee if she closes the exchange
escrow early, before it expires.

Alice pays the upfront escrow fee via a fast off-blockchain transfer out of
the coins locked in one of her user escrows. Alice receives the rebate out of the
exchange escrow, once that exchange escrow is closed.

Paying escrow fees. This is best illustrated with an example. Consider the
situation in Figure 1, and suppose that Alice has an open user escrow with a
balance of 5 BTC owned by Alice. Alice then asks the exchange to open a 500
LTC exchange escrow for her that expires two days later, and indicates that she
can pay the escrow fee out of her BTC user escrow.

Suppose the escrow fee for the requested exchange escrow is 1 LTC/day and
Alice decides to pay the upfront escrow fee using her BTC user escrow. First,
the exchange performs a currency conversion of the escrow fee, converting it
from 2 LTC into 0.02 BTC. Next, the exchange quotes an escrow fee of 0.02
BTC to Alice. If Alice accepts this fee, Alice sends the exchange a 0.02 BTC
off-blockchain payment from her user escrow that alters the balance in the user
escrow so that the exchange owns 0.02 additional BTC and Alice owns 4.98 BTC.
Once the exchange receives this payment, the exchange funds an exchange escrow
for Alice for 500 LTC.

Escrow fee rebate. Now suppose that Alice has made trades that alter the
balance in the exchange escrow so that 300 LTC is owned by Alice and 200 LTC is
owned by the exchange. Alice then decides to closes her exchange escrow one day
early, so she is entitled to a escrow-fee rebate of 1 LTC. Alice is paid the rebate
out of the closed exchange escrow. Thus, the exchange escrow is closed with a

1 https://github.com/cwcrypto/arwen-eth-contracts
https://github.com/cwcrypto/arwen-btc-scripts

https://github.com/cwcrypto/arwen-eth-contracts
https://github.com/cwcrypto/arwen-btc-scripts

balance of 301 LTC sent to Alice’s wallet and 199 LTC sent to the exchange’s
wallet.

3.3 Security model.

Arwen assumes the exchange is almost always online, while the user is usually
not online. Atomic swap security for users of Arwen assumes (1). The traded
coins’ native blockchain is secure i.e., when selling or buying bitcoins we assume
Bitcoin’s blockchain is secure. (2). The user comes online in order to recover
coins from frozen escrows during their coin-recovery time period, and to close
escrows in a “timely manner”. Each Arwen protocol has a specific definition of
what it means to close escrows in “timely manner”.

4 Unidirectional RFQs

The following protocol is unidirectional [41] because it only allows Alice to sell
coins from her user escrow, and buy coins to her exchange escrow. Arwen’s more
complex bidirectional RFQ protocol is described in Appendix A. We show how
to port this same logic to Ethereum in Appendix B.

Each off-blockchain RFQ trade is backed by a user escrow (with expiry time
twA) and an exchange escrow (with expiry time twB). The protocol for opening
these escrows is in Section 3.1. Each trade generates a pair of puzzle transactions
for puzzle y = H(x) and solution chosen by the exchange x. One puzzle trans-
action spends the user escrow and has timelock τA, and the other spends the
exchange escrow and has timelock τB. Each pair of puzzle transactions reflects
the new balance of coins in the escrows after the trade, and “overwrites” the
transactions from previous trades. This protocol enables each party to unilater-
ally close escrows with the correct balance even if the other party is malicious.

4.1 Security assumptions.

Timelocks. Security of this protocol follows from setting the timelocks to be

τA = twA τB = max(twB, τA + 2%) (1)

where % is the time required for a transaction be reliably confirmed on the
blockchain. There is no relationship between the escrow expiry times (twA, twB).
We can pair any user escrow and exchange escrow regardless of expiry time.

Closing escrows in a timely manner. To withstand attacks by a malicious
exchange the user must close her exchange escrow before it expires at time twB.
If the user forgets to do this, an honest exchange will close the escrow on the
user’s behalf, but a malicious exchange may be able to steal coins from the
escrow. This requirement is for exchange escrows only; there is no requirement
that the user close her user escrows in a timely manner. Similarly, to withstand
attacks by a compromised or malicious user the exchange must close its user
escrow before it expires at time twA. Finally, the time period in which the user
can unilaterally recover coins from frozen escrows is (twA, τB).

4.2 Off-blockchain RFQ trades.

As shown in Figure 1 we suppose that Alice wants to do a trade, selling 2 bitcoins
for 200 litecoins. We also assume that, in all previous successfully-completed
trades, Alice has sold at total 1 BTC from the user escrow and 100 LTC from
the exchange escrow that are backing the current trade. Each RFQ is an off-
blockchain four-message protocol comprising the following four messages.

Request. Alice requests a quote to sell 2 BTC in order to buy LTC.

Quote. The exchange responds with the quote—“2 BTC can be sold for 200
LTC, open for time δ”. The exchange has now committed to executing the trade
should Alice choose to place an order before the quote expires at time δ.

To commit to the quote, the exchange chooses a secret x and computes a
puzzle y = H(x). The exchange sends Alice a Litecoin puzzle transaction signed
by the exchange’s key, spending the output of the exchange escrow, and reflecting
the current balance in the LTC exchange escrow, except that 200 LTC is locked
in an HTLC smart contract stipulating

”spending requires the user’s signature and the solution to puzzle y, OR
after time τB only exchange’s signature”

Order. If the user decides not to place the order, then the escrows remain open
and can be used for other trades.

To place an order, Alice signs and sends the exchange a new Bitcoin puzzle
transaction using the same puzzle y chosen by the exchange. The puzzle transac-
tion spends the output of the user escrow and reflects the current balance in the
user escrow, except that 2 BTC is locked in an HTLC smart contract stipulating

”spending requires exchange’s signature and the solution to puzzle y OR
after time τA only user’s signature”

At this point the exchange can now unilaterally decide whether or not the trade
executes. (This follows because the exchange can use this puzzle transaction,
and the solution x, to unilaterally close the user escrow).

Execute. If the user placed the order before time δ, then the exchange is
expected to execute the trade by releasing x. After which both Alice and the
exchange hold transactions that allow them to unilaterally close their escrows,
reflecting the new balance after the trade. (the user can unilaterally close the
exchange escrow; the exchange can unilaterally close the user escrow.) In most
situations the user will prefer to keep trading against her open escrows. In this
case, no transactions are posted to the blockchain and both escrows remain open.

If the exchange does not properly execute the trade by releasing x Alice will
freeze the user escrow and exchange escrow that backed the aborted trade and
launch a procedure for recovering her coins, as described in Section 4.5.

4.3 The magic of unidirectionality.

The security of our protocol follows, in part, from an observation made by
Spilman [41]. This is a unidirectional protocol, which means that the user can

only use the exchange escrow to buy coins from the exchange. Thus, each sub-
sequent trade changes the balance of coins in the exchange escrow such that the
user holds more litecoins and the exchange holds less litecoins. For this reason,
the user will always prefer to post the transactions resulting from the most recent
trade to the Litecoin blockchain. This is why the Litecoin transactions result-
ing from a new trade will “overwrite” the Litecoin transactions of the previous
trade. Both parties are incentivized to close the escrow they funded before it
expires using transactions from the most recent trade. If a party goes rogue and
closes the escrow they funded using transactions from a prior trade they only
hurt themselves (they get fewer coins, their counter party gets more coins)!

Paying escrow fees. Unidirectionality makes it easy for the Alice to pay es-
crow fees out of her user escrow. Suppose that, after the second trade in Figure 1,
Alice wishes to pay an 0.02 BTC escrow fee to open a new exchange escrow. To
do this, Alice signs and sends the exchange a cashout transaction that reflects
the current balance of the user escrow, with an additional 0.02 BTC allocated
to the exchange. The same unidirectional argument means that the exchange is
incentivized to have this cashout transaction “overwrite” the puzzle transaction
received from the previous trade.

(a) User Escrow (b) Exchange Escrow

Fig. 2. Unidirectional RFQ protocol transaction diagram. Balances are per Figure 1.
Green and blue transactions unilaterally close the escrow if a counterparty is unco-
operative. Purple transactions refund the escrow after it expires at time twA or twB.
Magenta transactions refund the puzzle transactions after the expiry time τA or τB.
The ⊕ symbol is an XOR: only one of the transactions from the ⊕ can be posted to
the blockchain. The lock symbol represents a signature.

4.4 Cooperative close

If neither the user or the exchange are unresponsive or malicious, escrows can be
closed prior to their expiry using the cooperative close. Both parties jointly sign
and post cashout transactions spending and reflecting the final balance of each

escrow. Cooperatively closing is in the interest of both parties. It reduces mining
fees by closing an escrow with a single transaction rather than two (i.e., the
puzzle and solve transactions) and a cooperative close of the exchange escrow
rebates the user some escrow fees.

4.5 Unilaterally closing an open escrow

What happens if the user and exchange fail to cooperatively close an escrow?
First we consider the case where all trades against the escrow have properly

completed. If the exchange refuses to close an exchange escrow before time twB
Alice signs and posts the latest puzzle and solve transactions releasing the final
balance to both parties. If Alice does not close the exchange escrow before time
twB the exchange can unilaterally close the exchange escrow after it expires at
time twB using a refund transaction (Figure 2(b)). If the user Alice forgets to
close the user escrow before time twA, then the exchange signs and posts the
latest puzzle and solve transactions unilaterally closing the user escrow. If the
exchange refuses to close the user escrow, the user waits until the user escrow
expires at twA, and unilaterally closes the user escrow via a refund transaction.

Next we consider the case where Alice places an order against a quote pro-
vided by the exchange, but the exchange does not release the preimage x. Alice
asks the exchange to cooperatively close the user escrow backing this trade. If
the exchange refuses Alice unilaterally closes the exchange escrow by posting
the puzzle transaction from the aborted trade. The coins from the aborted trade
are now locked in the puzzle transaction’s smart contract until time τB. We call
these coins the outstanding coins. If the exchange executes the aborted trade
the outstanding coins belong to Alice; otherwise, the outstanding coins belong
to the exchange. To claim the outstanding coins whenever they are rightfully
hers, Alice comes online during time window (twA, τB) and performs the correct
action for each case:

User escrow closed using a successful trade. The exchange closed the user
escrow on the Bitcoin blockchain via a puzzle transaction for any trade prior to
the aborted trade. No further action is needed from Alice. The outstanding coins
rightfully belong to the exchange. The exchange uses a puzzle-refund transaction
to unilaterally claim the coins once the timelock τB expires.

User escrow closed using the aborted trade. The exchange closed the
user escrow on the Bitcoin blockchain via a puzzle transaction for the aborted
trade, as well as its corresponding solve transaction. Alice learns the solution x
from the Bitcoin solve transaction and uses x to claim her coins on the Litecoin
blockchain via a solve transaction. She must complete this action before τB as
the outstanding coins can be unilaterally claimed by the exchange after τB.

User escrow partially closed. The exchange posted the puzzle transaction
for the aborted trade, but the coins locked in this puzzle transaction on the
Bitcoin blockchain are unspent. Alice recovers the coins locked in the puzzle
output from the user escrow by unilaterally posting a puzzle-refund transaction
to the Bitcoin blockchain after the timelock expires at time τA.

User escrow not closed. The exchange did not execute the aborted trade.
To recover her coins in the user escrow Alice posts the refund transaction. This
must be done after the user escrow expires at twA and before τB.

4.6 Deployment status

We implemented the unidirectional RFQ protocol described in this section. A
release of our trading software is currently available for download enabling users
to atomically trade on the orderbook of the centralized exchange kucoin. We
support BTC, BCH, LTC and ETH on their respect mainnets. Our client is
composed of a daemon written in C# which acts as the user’s agent in the
protocol and a graphical interface written in typescript. The other protocols
described in this paper e.g., limit orders, have not yet been implemented.

(a) Limit order user escrow (b) Partial-fill limit order example

Fig. 3. (a). User Escrow modified for limit orders by adding a cancel condition on the
puzzle output (b). Unilaterally closed partial-fill limit order with N = 5 puzzle outputs

5 Limit Orders

In this section we introduce off-blockchain atomic trading protocols for All-or-
None (AoN) limit orders and partial-fill limit orders. Our limit order protocols
allow the user Alice to place a order for a specified amount and limit price against
a (user escrow, exchange escrow) pair. For example, Alice might say “I will sell
3.1 BTC at the price of 1 BTC for 100 LTC”. In our All-or-None limit order,
this order would remain open until the limit price is met for the entire amount,
then the exchange would execute the entire order (e.g., Alice sells 3.1 BTC and
buys 310 LTC). In our partial-fill limit order the exchange can execute or fill

the order in increments e.g., the exchange could execute the trade 0.3 BTC for
30 LTC. Then later when the price is met again, the exchange could fill (aka,
execute) an additional trade of 0.8 BTC for 80 LTC. Unlike RFQs, limit orders
can remain open for long periods of time. The user can cancel her limit order at
any time. When the user cancels a partial-fill limit order, she only cancels the
unfilled part of the order (e.g., if Alice’s order has already filled for 110 LTC,
the remaining 200 LTC of the order is canceled, with result being that Alice sold
1.1 BTC to buy 110 LTC).

Technically speaking, our limit orders protocols and transactions are very
similar to our RFQ protocol (Section 4) with one exception. We add the ability
for the exchange to “cancel” a limit order after the user places it. To ensure the
exchange can not steal the user’s funds by posting canceled orders, our cancel
functionality must be cryptographically enforceable by the user. This change
is necessary because limit orders, unlike RFQs, are not designed to execute
immediately and can stay open indefinitely. Users often cancel and reissue limit
orders depending on market conditions.

Canceling user escrow puzzles.
We modify the user escrow puzzle transaction so the puzzle output stimulates:

“spending requires the user’s signature and the cancel value c
OR after time τC the exchanges signature and the solution to puzzle y
OR after time τA the user’s signature .”

Figure 3(a) shows our modified user escrow. For each user escrow puzzle transac-
tion the exchange randomly chooses a secret cancel value c, hashes it to generate
 = H(c), and uses as the cancel condition in the puzzle transaction puzzle out-
put. When the exchange wishes to cancel the puzzle output, it sends c to the
user. We say the output is “canceled” because, if the exchange misbehaves by
posting the transaction that contains that output, the then user can retaliate
and claim all coins in the canceled output at anytime before time τC .

5.1 Security assumptions

Timelocks. Security of this protocol follows from setting the timelocks to be

twA + 2% < τC τC + 2% < τA τB = max(twB, τA + 2%) (2)

where % is the time required for a transaction be reliably confirmed on the
blockchain. There is no enforced relationship between the escrow expiry times
(twA, twB). Escrows can be paired regardless of expiry time.

Closing escrows in a timely manner. As in Section 4.1 the user must close
her exchange escrow before it expires at time twB. Similarly, to withstand attacks
by a malicious user, the exchange must close its user escrow before it expires
at time twA. However in limit orders, the user must now come online between
twA and τC to either post her user escrow refund or if a malicious exchange has
posted a canceled puzzle output the user must then use the cancel value c to

claim the coins from that output. Finally, the time period in which the user can
unilaterally recover coins from frozen escrows is (twA, τB).

Prior to opening a limit order on an escrow pair, the user and the exchange
must cancel any currently open limit orders on that escrow pair using the Cancel
Limit Order procedure.

5.2 All-or-None (AoN) Limit Orders

This protocol allows the user to place a limit order for a specified amount and
price against a (user escrow, exchange escrow) pair. The order remains open
until the limit price is met for the entire amount. Once the limit price is met,
the exchange executes the order.

Limit Order. To place the limit order, the user specifies the amount and the
limit price e.g., “I will sell 3.1 BTC at the price of 1 BTC per 100 LTC”. To
place the limit order, the user and exchange perform the “Request”, “Quote”
and “Order” steps of the RFQ protocol in Section 4.2 for the price that the user
requested. The exchange now has the ability to execute or fill the limit order by
posting the user escrow solve and puzzle transactions thereby releasing x.

Execute Limit Order. To execute the order, the exchange performs the “Ex-
ecute” step of the unidirectional RFQ protocol in Section 4.2. This fills the order
at the limit price for the specified amount.

Cancel Limit Order. The user can cancel her order at any time after placing
it and prior to it being filled. She can’t force the exchange to participate in
the cancel protocol, but if the exchange does complete the protocol, even a
malicious exchange can’t execute the order. To do this the user requests the
order be canceled. In reply the exchange releases the cancel value c for the user
escrow puzzle transaction used to place the limit order. This cancels the limit
order since if the exchange misbehaves and posts the canceled puzzle transaction
the user can reclaim the coins the exchange would be buying in the trade.

5.3 Partial-fill Limit Orders

We now show how to use our All-or-None Limit Order Protocol from Section 5.2
to construct a partial-fill limit order i.e., an order that can be incrementally
filled/executed at the limit price. Partial fill limit orders are important for trad-
ing as they are the default order type supported by all centralized exchanges.
In fact, partial-fill limit orders are so basic that the term limit orders typically
refers to partial-fill limit orders. Our partial-fill limit order is composed of N
All-or-None limit orders (Section 5.2), which we call sub-orders. By selectively
executing some of these sub-orders and not-executing others, the exchange is
able to control how much of the limit order fills.

Our partial fill limit order will use puzzle transactions with N puzzle outputs
rather than a single puzzle output as done in our other protocols. These N puzzle
outputs Out1, . . .OutN placeN different All-or-None limit sub-orders. We denote
the amount of coin the i-th sub-order locks in outi as ai. The amounts a1, . . . aN

locked in the N outputs are chosen such that each amount decreases by one half
from the previous amount, ai = 1

2 ×ai+1 and that they sum to the total amount

A =
∑N

i=1 ai which the user is selling in partial-fill limit order. Thus, for any N
and A we determine the amount ai to lock in a puzzle output outi as

ai =
A(2N−i)

(2N − 1)
(3)

Using this sub-orders the exchange can execute as limit order trade for any
amount between 0 to A in increments of aN = A/(2N − 1).

Lets look at the example in Figure 3(b), Alice placed a limit order selling
A = 3.1 BTC for A = 310 LTC. Thus if we set N = 5 Alice’s user escrow
puzzle output amounts would be a1 = 1.6, a2 = 0.8, a3 = 0.4, a4 = 0.2, a5 = 0.1
(BTC) and using the price she set her exchange escrow puzzle output amounts
are a1 = 160, a2 = 80, a3 = 40, a4 = 20, a5 = 10 (LTC). By selectively executing
only the All-or-None sub-orders in Out2,Out4,Out5 the exchange fills the order
so that Alice sells 0.8 + 0.2 + 0.1 = 1.1 BTC and buys 80 + 20 + 10 = 110 LTC.

Once a user opens a partial-fill limit order it stays open until (a). the user
cancels it, (b). it fills completely, or (c). one of the parties unilaterally closes the
user or exchange escrows. To determine how much of her limit order has filled
the user runs the Update Limit Order protocol with the exchange. The exchange
can unilaterally fill the limit order even if the user is offline.

Limit Order. To place the limit order, the user specifies the amount A and the
limit price e.g., “I will sell 3.1 BTC at price of 1 BTC per 100 LTC”. the user and
exchange then perform the Limit Order step of our all-or-nothing protocol N -
times. Creating one puzzle transaction per escrow, with each puzzle transaction
having N puzzle outputs. Since the exchange knows the solutions x0 . . . xN the
exchange can release a subset of these puzzles to fill the order by amount it fills
on the exchange’s order book.

Update Limit Order. If the user is online, she can query the exchange to learn
how much of the limit order she placed has been filled. To do this, the exchange
signs and sends the user a new exchange escrow puzzle transaction reflecting the
balance of the coins which have been bought and sold as part of the fill. This new
exchange escrow puzzle transaction contains a new set of puzzle outputs holding
the smaller yet to be filled remainder of the order. In reply, the user signs and
sends the exchange a new user escrow puzzle transaction with puzzle outputs
mirroring those in the new exchange escrow puzzle transaction. The exchange
then releases all the cancel values c1, . . . cN for the previous user escrow puzzle
transaction. If the order filled completely, then the order is moved to closed, and
cashout transactions are used in place of puzzle transactions.

Cancel Limit Order. The user can ask the exchange to cancel her order at
any time after she places the order. This is exactly like our Update Limit Order
but both parties exchange cashouts rather than puzzle transactions.

5.4 Closing Limit Orders

We will describe the process for closing escrows whose last trade was a partial-
fill limit order. All-or-None limit orders can be treated as a specific case of the
partial-fill protocol where N = 1. The limit order cooperative close is the same
as used by our RFQs protocol in Section 4.4.

Our unilateral close is very similar to the unilateral close and aborts given
in unidirectional RFQ protocol given in Section 4.5. However the addition of a
cancel on the user escrow puzzle transaction places new requirements on the user
and the exchange. The magic of unidirectionality (Section 4.3) protects both the
user and the exchange from the other party posting old cashout transactions.

To unilaterally close an exchange escrow the user Alice posts the latest ex-
change escrow cashout or puzzle transaction. She must come online after twA
and before τC to check if the exchange has unilaterally closed the associated user
escrow. If the user escrow has not been spent she signs and posts the refund
transaction and is done. If on the other hand it has been spent there are three
cases. The user escrow was spent with: (1). the most recent cashout transaction
in which case the user is done, (2). a canceled puzzle transaction in which case
she claims the coins in the puzzle outputs, or (3). the latest puzzle transaction
in which case she then waits until τA after which she claims the unspent puzzle
outputs with a refund transaction and uses the solutions in the spent puzzle
outputs to claim her coins from the exchange escrow.

The exchange must come online before twA to post the latest user escrow
cashout or puzzle transaction. If the exchange posted a puzzle transaction it
must wait until τC to spend the puzzle outputs by posting a solve transaction
containing some of the x1, . . . xN solutions reflecting the how much of the limit
order filled. After τB the exchange must come online and may post an escrow
refund transaction or a puzzle refund transaction refunding the unsolved and
unspent puzzle outputs closing the exchange escrow.

6 Related work

Atomic swap protocols. The first description of an atomic swap is commonly
attributed to TierNolan’s 2013 forum post [43]. Many works have since explored
atomic swaps [37,35,26,4], including cross-chain auctions [38], improved funga-
bility [27,20], trading across blockchains [6,5] and forks [29] or between tokens
on Ethereum’s blockchain [36]. An alternative approach to cross-chain atomic
swaps is the trustless issuance of pegged tokens [47,33].

Layer-two or Off-blockchain protocols. A layer-two blockchain protocol [32]
binds off-blockchain transfers of funds to an on-blockchain smart contract. Typ-
ically they do not require the addition of a trusted third party, trusted oracle,
or trusted gateway. There has been a variety of work on layer-two protocols
for Bitcoin [41,37,13,20,35,26], where transfers of funds are accomplished via
atomic swaps. In 2013, Spilman’s unidirectional payment channel was the first

to use the “magic of unidirectionality” that Arwen uses in Section 4.3. Mean-
while, bidirectional payment channels for Bitcoin payments were first proposed
by [13,37], and significant progress has been made on the Lightning Network [3].
Today’s Lightning Network requires SegWit, and thus only supports Bitcoin and
Litecoin, while Arwen does not require SegWit (See Appendix C) and thus sup-
ports more Bitcoin-derived coins, including BCH, ZEC. [35,26] build layer-two
protocols “scriptlessly”, without smart contracts, by cleverly leveraging digital
signatures. BOLT [18] is a layer two payments protocol with very strong privacy
guarantees designed for Zcash. Sparkswap [5] is a peer-to-peer trading platform
for BTC and LTC built on top of Lightning. Bitcoin covenants [31] proposes a
change to Bitcoin allowing coins to carry scripts even after they are spent.

Smart contracts on Ethereum are Turing-complete, and thus support a dra-
matically richer set of operations than smart contacts written in Bitcoin Script.
Thus, it is no surprise that Ethereum supports layer two protocols including
“state channels” [4,28]. Plasma [36] is a proposal for a layer-two decentralized
exchange protocol on Ethereum. Similar to Plasma is NOCUST [24] which uses
zkSNARKs to ensure correctness of state updates and employs collateral-based
protocols for faster transaction finality. Truebit is a fascinating approach, where
computations (rather than payments) are moved off the Ethereum blockchain via
a layer-two protocol [42]. Generally speaking [28,4,36,24,42] are for Ethereum and
ERC-20s only, and so they leverage the richness of Ethereum smart contracts.
Meanwhile, Arwen’s Ethereum leg is designed to be functionally equivalent to
Arwen’s Bitcoin leg, and so it very strictly mimics the UTXO model used in
Bitcoin scripts.

Fees. Payment focused protocols typically structure incentives around trans-
action fees, i.e., fees earned when payments are made. This does not solve the
problem of lockup griefing because no fees are earned if no payments are made.
Arwen addresses this via escrow fees and reputation. Komodo [6] also aims to
solve the lockup griefing problem for on-blockchain atomic swaps using fees. Also
the peer-to-peer nature of Komodo means that Bob has a strong incentive to
walk away after Alice pays her fee; by contrast Arwen escrow fees are sent from
user to exchange, and the exchange’s reputation is at stake if it walks away with
the fee without establishing an escrow.

7 Conclusion

Arwen is a layer-two blockchain trading protocol allowing traders to benefit
from liquidity at centralized exchanges without trusting exchanges with cus-
tody of their coins. Instead, Arwen trades are backed by on-blockchain escrows,
and executed via fast off-blockchain atomic swaps. Arwen’s RFQ protocol has
been implemented and is currently deployed offering secure RFQ trades. Arwen
solves many of the incentive issues that emerge when payment protocols are
repurposed for cryptocurrency trading. Arwen supports a wide range of coins
including Bitcoin, “Bitcoin fork” coins (BCH, LTC etc.), and Ethereum.

8 Acknowledgements

The authors would like to thank Underscore VC, Digital Garage, Notation,
United Bitcoiners, Highland Capital Partners, and the Cybersecurity Factory
for their support of Arwen. We also acknowledge Patrick McCorry, Ben Jones,
David Vorick and our anonymous reviewers for their valuable feedback.

References

1. Etherdelta. https://etherdelta.com/.
2. Kucoin: download arwen to trade on kucoin directly from your wallet. https:

//www.kucoin.com/page/arwen.
3. Lightning daemon (lnd). https://github.com/lightningnetwork/lnd.
4. Raiden network. https://raiden.network/.
5. Sparkswap. https://sparkswap.com/.
6. Komodo. White paper, June 3 2018.
7. Clare Baldwin. Bitcoin worth $72 million stolen from bitfinex exchange in hong

kong. Reuters, August 3 2016.
8. Simon Barber, Xavier Boyen, Elaine Shi, and Ersin Uzun. Bitter to better—how

to make bitcoin a better currency. In International Conference on Financial Cryp-
tography and Data Security, pages 399–414. Springer, 2012.

9. Bloomberg. Coincheck Hack: How to Steal $500 Million in Cryptocurrency. For-
tune, January 31 2018.

10. Mark Friedenbach BtcDrak and Eric Lombrozo. BIP 0112: CHECKSEQUENCEV-
ERIFY.

11. Vitalik Buterin. Bitfloor Hacked, $250,000 Missing. Bitcoin Magazine, September
5 2012.

12. Vitalik Buterin. Eip 1014: skinny create2. Ethereum Improvement Proposals, 2018.
13. Christian Decker and Roger Wattenhofer. A fast and scalable payment network

with bitcoin duplex micropayment channels. In Symposium on Self-Stabilizing
Systems, pages 3–18. Springer, 2015.

14. Ian DeMartino. Mintpal hacked ’considerable amount’ of vericoin stolen. Coin-
telegraph, Jul 13 2014.

15. Johnson Lau Eric Lombrozo and Pieter Wuille. BIP 141: Segregated Witness.
16. Shayan Eskandari, Seyedehmahsa Moosavi, and Jeremy Clark. Sok: Transparent

dishonesty: front-running attacks on blockchain. 2019.
17. Arthur Gervais, Ghassan O Karame, Karl Wüst, Vasileios Glykantzis, Hubert Ritz-

dorf, and Srdjan Capkun. On the security and performance of proof of work
blockchains. In Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, pages 3–16. ACM, 2016.

18. Matthew Green and Ian Miers. Bolt: Anonymous payment channels for decentral-
ized currencies. In Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, pages 473–489. ACM, 2017.

19. Ethan Heilman. Moving Arwen’s Ethereum smart contract to create2, 2019.
20. Ethan Heilman, Leen Alshenibr, Foteini Baldimtsi, Alessandra Scafuro, and Sharon

Goldberg. Tumblebit: An untrusted bitcoin-compatible anonymous payment hub.
In Network and Distributed System Security Symposium, 2017.

21. Stan Higgins. Details of 5 Million Bitstamp Hack Revealed. Coindesk, July 1 2015.

https://etherdelta.com/
https://www.kucoin.com/page/arwen
https://www.kucoin.com/page/arwen
https://github.com/lightningnetwork/lnd
https://raiden.network/
https://sparkswap.com/
http://fortune.com/2018/01/31/coincheck-hack-how/
https://github. com/bitcoin/bips/blob/master/bip-0112. mediawiki
https://github. com/bitcoin/bips/blob/master/bip-0112. mediawiki
https://bitcoinmagazine.com/articles/bitfloor-hacked-250000-missing-1346821046/
https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki
https://medium.com/arwensecure/moving-arwens-ethereum-smart-contract-to-create2-4451e685f7a1
https://www.coindesk.com/unconfirmed-report-5-million-bitstamp-bitcoin-exchange/

22. Stan Higgins. Cryptsy threatens bankruptcy, claims millions lost in bitcoin heist.
Coindesk, Jan 15 2016.

23. Stan Higgins. Bitcoin exchange youbit to declare bankruptcy after hack. Coindesk,
Dec 19 2017.

24. Rami Khalil and Arthur Gervais. NOCUST-A Non-Custodial 2nd-Layer Financial
Intermediary. IACR Cryptology ePrint Archive, 2018.

25. Kraken. How long do digital assets/cryptocurrency deposits take?
26. Giulio Malavolta, Pedro Moreno-Sanchez, Clara Schneidewind, Aniket Kate, and

Matteo Maffei. Anonymous Multi-Hop Locks for Blockchain Scalability and In-
teroperability. In Network and Distributed System Security Symposium (NDSS),
2019.

27. Gregory Maxwell. CoinSwap: Transaction graph disjoint trustless trading. Bitcoin-
talk, 2013.

28. Patrick McCorry, Surya Bakshi, Iddo Bentov, Andrew Miller, and Sarah Meikle-
john. Pisa: Arbitration outsourcing for state channels. IACR Cryptology ePrint
Archive, 2018.

29. Patrick McCorry, Ethan Heilman, and Andrew Miller. Atomically trading with
roger: Gambling on the success of a hardfork. In Data Privacy Management,
Cryptocurrencies and Blockchain Technology, pages 334–353. Springer, 2017.

30. David Z. Morris. BitGrail Cryptocurrency Exchange Claims $195 Million Lost to
Hackers. Coindesk, February 11 2018.

31. Malte Möser, Ittay Eyal, and Emin Gün Sirer. Bitcoin covenants. In International
Conference on Financial Cryptography and Data Security. Springer, 2016.

32. Neha Narula. The Importance of Layer 2, May 27 2018.
33. Keep Network. tBTC A Decentralized Redeemable BTC-backed ERC-20 Token,

2019.
34. Henning Pagnia and Felix C Gärtner. On the impossibility of fair exchange without

a trusted third party. Technical report, TTUD-BS-1999-02, Darmstadt University
of Technology, 1999.

35. Andrew Poelstra. Scriptless Scripts. 2018.
36. Joseph Poon and Vitalik Buterin. Plasma: Scalable autonomous smart contracts.

2017.
37. Joseph Poon and Thaddeus Dryja. The bitcoin lightning network. 2016.
38. James Prestwich. Summa.One: Cross-chain Auctions via Bitcoin Double Spends,

2018.
39. Pete Rizzo. Poloniex Loses 12.3% of its Bitcoins in Latest Bitcoin Exchange Hack.

Coindesk, March 5 2014.
40. Jon Russell. Korean crypto exchange coinrail loses over $40m in tokens following

a hack. Techcrunch, June 10 2018.
41. Jeremy Spilman. [bitcoin-development] anti dos for tx replacement, April 20 2013.
42. Jason Teutsch and Christian Reitwießner. A scalable verification solution for

blockchains. 2017.
43. TierNolan. Re: Alt chains and atomic transfers. Bitcoin-talk, May 21 2013.
44. Peter Todd. BIP 0065: OP CHECKLOCKTIMEVERIFY.
45. Will Warren. Front-running, Griefing and the Perils of Virtual Settlement, 2017.
46. Wikipedia. Mt. Gox.
47. Alexei Zamyatin, Dominik Harz, Joshua Lind, Panayiotis Panayiotou, Arthur Ger-

vais, and William Knottenbelt. Xclaim: Trustless, interoperable, cryptocurrency-
backed assets. IEEE Security and Privacy. IEEE, 2019.

48. Wolfie Zhao. Crypto exchange zaif hacked in $60 million bitcoin theft. Coindesk,
Sept 20 2018.

https://eprint.iacr.org/2018/642.pdf
https://eprint.iacr.org/2018/642.pdf
https://web.archive.org/web/20200102212352/https://support.kraken.com/hc/en-us/articles/203325283-How-long-do-digital-assets-cryptocurrency-deposits-take
https://eprint.iacr.org/2018/472
https://eprint.iacr.org/2018/472
https://bitcointalk.org/index.php?topic=321228
http://fortune.com/2018/02/11/bitgrail-cryptocurrency-claims-hack/
http://fortune.com/2018/02/11/bitgrail-cryptocurrency-claims-hack/
https://medium.com/mit-media-lab-digital-currency-initiative/the-importance-of-layer-2-105189f72102
http://docs.keep.network/tbtc/index.html
https://download.wpsoftware.net/bitcoin/wizardry/mw-slides/2018-05-18-l2/slides.pdf
https://medium.com/summa-technology/summa-auction-bitcoin-technical-7344096498f2
https://www.coindesk.com/poloniex-loses-12-3-bitcoins-latest-bitcoin-exchange-hack/
https://people. cs. uchicago. edu/teutsch/papers/truebit pdf
https://people. cs. uchicago. edu/teutsch/papers/truebit pdf
https://bitcointalk.org/index.php?topic=193281.msg2224949#msg2224949
https://github. com/bitcoin/bips/blob/master/bip-0065. mediawiki
https://blog.0xproject.com/front-running-griefing-and-the-perils-of-virtual-settlement-part-1-8554ab283e97
https://en.wikipedia.org/wiki/Mt._Gox

A Bidirectional RFQs

The following Arwen RFQ protocol is bidirectional allowing Alice to buy and sell
coins from her user escrow, and to buy and sell coins from her exchange escrow.
A bidirectional protocol is useful for high-frequency trading strategies, where
the trader quickly moves coins back and forth. Figure 4 shows the transaction
diagram for user and exchange escrows.

Like the unidirectional protocol of Section 4, each off-blockchain RFQ trade
in the bidirectional protocol is backed by a user escrow (with expiry time twA)
and an exchange escrow (with expiry time twB). The protocol for opening these
escrows remains identical to the one in Section 3.1. Both escrows must be open
during a trade (not expired, frozen, or closed). We first overview the necessary
technical tools, describe the trading protocol, and explain how escrows can be
securely closed when one party becomes malicious or uncooperative.

A.1 Technical tools

We continue to execute trades using HTLCs, where a trade is executed by re-
vealing the solution x to a puzzle y, where y = H(x). However, but there are
several other technical tools needed in order to make this protocol bidirectional.

Four puzzles transactions. In the unidirectional protocol, there was only
a single type of puzzle transaction that could spend the output of each es-
crow. In the bidirectional protocol, there are four puzzle transactions per escrow:
payU postU, payU postE, payE postU, and payE postE. This is true for both
the user escrow and the exchange escrow. The only difference between the puz-
zles for the user escrow puzzles and the puzzles for the exchange escrow is that
user escrow puzzles have tw = twA and exchange escrow puzzles have tw = twB.
The user will only post a puzzle transaction if the exchange aborts a trade. The
exchange will post a puzzle transaction if the user aborts a trade or if the user
fails to cooperatively close an escrow before it expires.

payE and payU puzzles. By having both payE and payU puzzles for each escrow,
each escrow can be used to both buy and sell coins. In a payE puzzle, the puzzle
locks coins that pay to the exchange once the exchange reveals x in a solve
transaction, before time τA. The payE puzzle transaction has an HTLC smart
contract that is similar to the one in Figure 4.3 of our unidirectional protocol,
using timelock τA and puzzle y. In a payU puzzle, the puzzle locks coins that
pay to the user, once the user reveals x in a solve transaction before time τB .
The payU puzzle has an HTLC smart contract that is similar to the one in
Figure 2(b) of our unidirectional protocol using timelock τB and puzzle y.

If the user is doing a trade that buys coins from the user escrow while selling
coins from the exchange escrow, we would use a payU puzzle that spends the
user escrow and a payE puzzle that spends the exchange escrow. Meanwhile, to
buy coins from the exchange escrow while selling coins from the user escrow, we
use a payE puzzle that spends the user escrow, and payU puzzle that spends the
exchange escrow.

postU and postE puzzles. A postU puzzle transaction can only be posted to
the blockchain by the user. The postU puzzle transaction is initially formed
and signed by the exchange, and then sent to user; the user can later post
this transaction to the blockchain if the exchange becomes uncooperative. The
analogous postE puzzle transaction can only posted by the exchange

Two cashout transactions. The postU cashout is signed by the exchange
and sent to the user, and is used to unilaterally close an escrow when all trades
against the escrow completed successfully. The postE cashout, which is signed
by the user and sent to the exchange, is used to cancel RFQ quotes.

Cancelling transactions. Arwen’s bidirectional RFQ protocol no longer uses
“the magic of unidirectionality” (Section 4.3). Instead, we “overwrite” transac-
tions from old trades by cancelling them, adapting the idea of breach remedy
transaction from the Lightning Network [37].

Every postE-type transaction, which is first signed by the user and then sent
to the exchange, can be cancelled by the exchange using the cancel value CE .
The cancel value CE is randomly chosen and kept secret by the exchange. To
cancel the postE transaction, the exchange reveals CE to the user. The cancel
value CE protects the user if the exchange posts a canceled postE transaction to
the blockchain, as follows. The postE transaction contains a value jE such that
jE = H(CE), and every output on the postE transaction that pays out to the
exchange also includes the following smart contract:

“Coins may only be paid to the exchange after time tw , OR the coins
return to the user if the user reveals a cancel value corresponding to jE .”

Then, if the exchange misbehaves by posting a cancelled transaction, the user has
can retaliate via a justice transaction anytime before tw . The justice transaction
reveals CE and is posted unilaterally by the user, allowing her to claim all the
coins in the canceled transaction.

Previous transactions. The following notation is useful for our protocol
description and analysis. Let pay∗ postE be a puzzle transaction from the cur-
rent trade (where ∗ is either U or E). For convenience, we use the notation
prev(pay∗ postE) to indicate the transaction from a previous trade that is (a)
held by the exchange and (b) spends the same escrow as the pay∗ postE.

Differences from the Lightning Network. Our bidirectional protocol has
many things in common with the payment channel design of the lightning net-
work. However, there are some important differences. To support coins that
don’t have a transaction malleability fix, e.g., SegWit, additional constraints are
placed on our design. Unlike lightning we can not use the relative timelocking
mechanism CheckSequenceVerify [10], instead we can only use the absolute time-
locking mechanism CheckLockTimeVerify [44]. Thus, our escrows always have a
fixed time before they must be closed. Additionally, as discussed in Section C,
due to the threat of transaction malleability any transactions which require
signatures from both parties must spend from a transaction which is already
confirmed on-blockchain. This requirement results in a slightly different breach
remedy mechanism. Unrelated to malleability, our protocol is focused on trading

cross-chain at centralized exchanges, rather than on peer-to-peer payments, so
we have the escrow fee mechanism to enable traders to open escrows when they
do not hold any of the coins they are buying (see Section 3.2).

A.2 Security assumptions.

Timelocks. The security of this protocol requires we set the timelocks to be

τA > max(twA, twB) + 2% τB > τA + 2% (4)

where % is the time required for transaction be reliably confirmed on a blockchain.
Notice that there is no relationship between the escrow expiry times (twA, twB),
allowing to us pair any user escrow and exchange escrow, regardless of expiry.

Closing escrows in a timely manner. To withstand attacks by a malicious
user the exchange must close its user escrows before they expire at time twA,
and its exchange escrows before they expire at twB. To withstand attacks by
a malicious exchange the user must close her user escrows before they expire
at time twA, and her exchange escrows before they expire at twB. If the user
forgets to do this, an honest exchange will close the escrow on the user’s behalf,
but a malicious exchange may be able to steal coins from the escrow.

A.3 Off-blockchain RFQ trades.

Setup. The exchange chooses random solution x, computes y = H(x), and
sends the puzzle y to the user. The exchange also chooses a two random cancel
values CE,A and CE,B, computes jE,A = H(CE,A) and jE,B = H(CE,B), and sends
jE,A and jE,B to the user. The exchange keeps x, CE,A, and CE,B secret. The user
responds by choosing a random secret cancel value CU , computing jU = H(CU),
and sending jU to the exchange.

Request. Alice requests a quote, indicating what escrow she wants to sell coins
from, and what escrow she wants to buy coins from, and the amount of coins she
wants to buy2. If Alice is selling from the user escrow, this protocol uses payE
puzzles on the user escrow and payU puzzles on the exchange escrow. If Alice is
buying from the user escrow, we use payU puzzles on the user escrow and payE
puzzles on the exchange escrow.

Alice then sends the exchange a payU postE puzzle transaction that (a) locks
the amount of coins she is buying under puzzle y. If Alice is buying coins from
the user escrow, this payU postE puzzle transaction (b) spends the output of
the user escrow and (b) can be cancelled under CE,A. If Alice is buying coins
from the exchange escrow, this payU postE puzzle transaction (b) spends the
output of the exchange escrow and (b) can be cancelled under CE,B.

2 For a sell-side RFQ, we could prefix the flow described here with two additional
messages: (1) the user indicates an amount of coin she wishes to sell and requests a
quote, and (2) the exchange provides the user with the quote with the amount she
can buy.

u
se

r e
scro

w

p
a
y
U

_p
o
stE

ju
stice

re
fu

n
d

(U
 Λ

 E
)

U
-W

a
lle

t

(E
 Λ

 tw
A)

(U
 Λ

 C
ε,A)

(U
 Λ

 E
)

(U
 Λ

 tw
A)

U
-W

a
lle

t

E
-W

a
lle

t

(U
 Λ

 E
)

U
-W

a
lle

t

E
-W

a
lle

t

p
a
y
U

_p
o
stU

ju
stice

(U
 Λ

 E
)

E
-W

a
lle

t

(U
 Λ

X
 Λ

 tw
A)

(E
 Λ

 C
u)

(E
 Λ

 τ
B)

so
lv

e

E
-W

a
lle

t

U
-W

a
lle

t

p
o
stU

 ca
sh

o
u
t

(U
 Λ

 E
)

E
-W

a
lle

t

U
-W

a
lle

t

U
-W

a
lle

t

U
-W

a
lle

t

(U
 Λ

 X
)

(E
 Λ

 τ
B)

 so
lv

e

(U
 Λ

 X
)

U
-W

a
lle

t

p
u
zzle

 re
fu

n
d

E
-W

a
lle

t

E
-W

a
lle

t

p
a
y
E
_p

o
stE

ju
stice (U

 Λ
 E

)

U
-W

a
lle

t
 U

-W
a
lle

t

E
-W

a
lle

t

p
a
y
E
_p

o
stU

ju
stice

(U
 Λ

 E
)

E
-W

a
lle

t

so
lv

e

E
-W

a
lle

t

U
-W

a
lle

t

(E
 Λ

 X
)

E
-W

a
lle

t

so
lv

e

0
0

7
0

C
0
ff

U
-W

a
lle

t

U
-W

a
lle

t

e
xch

a
n

g
e
 e

scro
w

p
a
y
U

_p
o
stE

ju
stice

 re
fu

n
d

(U
 Λ

 E
)

U
-W

a
lle

t

(E
 Λ

 tw
B)

(U
 Λ

 C
ε,B)

(U
 Λ

 E
)

(E
 Λ

 tw
B)

(U
 Λ

 C
ε,B)

(E
 Λ

 tw
B)

U
-W

a
lle

t

E
-W

a
lle

t

(U
 Λ

 E
)

U
-W

a
lle

t

(E
 Λ

 tw
B)

(U
 Λ

 C
ε,B)

 (E
 Λ

 tw
B)

 E
-W

a
lle

t

(E
 Λ

 tw
B)

p
a
y
U

_p
o
stU

ju
stice

(U
 Λ

 E
)

E
-W

a
lle

t

(U
 Λ

 X
 Λ

 tw
B)

(E
 Λ

 C
u)

(E
 Λ

 τ
B)

so
lv

e

(E
 Λ

 C
u)

(U
 Λ

 tw
B)

E
-W

a
lle

t

U
-W

a
lle

t

(U
 Λ

 X
 Λ

 tw
B)

(U
 Λ

 E
)

E
-W

a
lle

t

(U
 Λ

 tw
B)

(E
 Λ

 C
u)

(U
 Λ

 tw
B)

 U
-W

a
lle

t

E
-W

a
lle

t

U
-W

a
lle

t

(U
 Λ

 X
)

(E
 Λ

 τ
B)

(U
 Λ

 tw
B)

(E
 Λ

 C
u)

so
lv

e
(U

 Λ
 X

)

U
-W

a
lle

t

(E
 Λ

 τ
B)

E
-W

a
lle

t

(E
 Λ

 τ
B)

E
-W

a
lle

t

p
a
y
E
_p

o
stE

ju
stice

(U
 Λ

 E
)

U
-W

a
lle

t

(E
 Λ

 tw
B)

U
-W

a
lle

t

E
-W

a
lle

t

p
a
y
E
_p

o
stU

ju
stice

(U
 Λ

 E
)

E
-W

a
lle

t

(E
 Λ

 X
)

(U
 Λ

 τ
A)

 so
lv

e

(U
 Λ

 tw
B)

E
-W

a
lle

t

U
-W

a
lle

t

(E
 Λ

 X
)

E
-W

a
lle

t

(E
 Λ

 X
 Λ

 tw
B)

(U
 Λ

 C
ε,B)

(U
 Λ

 τ
A)

so
lv

e

(E
 Λ

 X
 Λ

 tw
B)

 E
-W

a
lle

t

(U
 Λ

 τ
A)

(U
 Λ

 τ
A)

U
-W

a
lle

t

U
-W

a
lle

t

 (U
 Λ

 tw
A)

 (U

 Λ
 X

 Λ
 tw

A)

 (B
 Λ

 X
 Λ

 tw
A)

 (U

 Λ
 tw

A)

(U
 Λ

 tw
A)

(E
 Λ

 C
u)

(E
 Λ

 X
 Λ

 tw
A)

(U
 Λ

 C
u)

(U
 Λ

 τ
A)

(U
 Λ

 tw
A)

(E
 Λ

 C
u
)

(U
 Λ

 tw
A)

(E
 Λ

 C
u)

 (U
 Λ

 tw
A)

 (E
 Λ

 tw
A)

 (E
 Λ

 tw
A)

(E
 Λ

 tw
A)

(U
 Λ

 C
ε,A)

(E
 Λ

 tw
B)

(U
 Λ

 C
ε,B)

(U
 Λ

 C
ε,B)

(E
 Λ

 C
u)

(U
 Λ

 tw
B)

(E
 Λ

 C
u)

(U
 Λ

 C
ε,A)

(E
 Λ

 C
u)

(U

 Λ
 C

ε,A)

(U
 Λ

 τ
A)

(U

 Λ
 τ

A)

(E
 Λ

 τ
B)

(E

 Λ
 τ

B)

(E
 Λ

 X
)

(U
 Λ

 τ
A)

(E
 Λ

 C
u)

(E
 Λ

 tw
A)

(U
 Λ

 C
ε,A)

p
o
stE

 ca
sh

o
u
t

p
o
stU

 ca
sh

o
u
t

p
o
stE

 ca
sh

o
u
t

p
u
zzle

 re
fu

n
d

p
u
zzle

 re
fu

n
d

p
u
zzle

 re
fu

n
d

p
u
zzle

 re
fu

n
d

p
u
zzle

 re
fu

n
d

p
u
zzle

 re
fu

n
d

p
u
zzle

 re
fu

n
d ju

stice
E
-W

a
lle

t

(E
 Λ

 C
u)

ju

stice
U

-W
a
lle

t

(U
 Λ

 C
ε,A)

 ju
stice

U
-W

a
lle

t

(U
 Λ

 C
ε,B)

ju

stice
(E

 Λ
 C

u)

E
-W

a
lle

t

(U
 Λ

 tw
B)

(E
 Λ

 tw
B)

F
ig
.
4
.

T
ra

n
sa

ctio
n

d
ia

g
ra

m
fo

r
b
id

irectio
n
a
l

R
F

Q
a
n
d

b
id

irectio
n
a
l

lim
it

o
rd

er
p
ro

to
co

ls.

As an example, refer again to Figure 1, and suppose after the second trade
in the Figure Alice requests a quote “Buy 2 BTC for some LTC.” In this case,
Alice would send the exchange a payU postE puzzle transaction that (a) locks
2 BTC under puzzle y, (b) spends the output of the user escrow, and (c) can be
cancelled using cancel value CE,A.

Quote. The exchange responds with the quote—“2 BTC can be bought for 200
LTC, open for time δ”. To commit to the quote, the exchange signs and sends
Alice the following three items.

1. A payU postU puzzle transaction that (a) locks the amount of coins Alice
is buying under puzzle y, and (b) can be cancelled using cancel value CU . If
Alice is buying coins from the user escrow, this payU postU puzzle transac-
tion (c) spends the output of the user escrow. Otherwise, this payU postE
puzzle transaction (c) spends the output of the exchange escrow. (This puz-
zle is analogous to the puzzle sent to Alice during the quote phase of the
unidirectional protocol in Section 4.2.)

2. A payE postU puzzle transaction that (a) locks the amount of coins Alice is
selling under puzzle y, and (b) can be cancelled using cancel value CU . If Alice
is selling coins from the user escrow, this payU postU puzzle transaction (c)
spends the output of the user escrow. Otherwise, this payU postE puzzle
transaction (c) spends the output of the exchange escrow.

3. If Alice buying from user escrow, the cancel value C ′E,A from the previous
trade. Otherwise, the cancel value C ′E,B from the previous trade. (This can-
cels prev(payU postE), so that the current payU postE puzzle is the only
uncancelled puzzle transaction held by the exchange for the escrow spent by
this puzzle.)

At this point, the user can either place the order, or cancel the quote.

Order To place the order, the user sends the exchange the following two items.

1. A payE postE puzzle that (a) locks the amount of coins Alice is selling under
puzzle y. If Alice is selling coins from the user escrow, this payE postE puzzle
transaction (b) spends the output of the user escrow and (c) can be cancelled
under CE,A. Otherwise, this payE postE puzzle transaction (b) spends the
output of the exchange escrow and (c) can be cancelled under CE,B. (This
is analogous to the puzzle sent to the exchange during the Order phase in
Section 4.2.)

2. The cancel value C ′E from the previous trade. (This cancels prev(payU postU)
and prev(payE postU).)

Once the user places the order, she cannot back out of the order. This is because
(1) the only uncancelled puzzles Alice holds are the current payU postU and
payE postU puzzles for this trade, and (2) the exchange knows the solution x
and thus has the ability to unilaterally claim the coins the user is selling in this
trade by (a) posting the payE postE transaction to the blockchain, and then (b)
revealing x in a solve transaction.

Execute. Once the order is placed, the exchange sends the user the following
four items. This execute phase is not performed if the user cancels the quote.

1. If Alice selling from the user escrow, the cancel value C ′E,A from the previous
trade. Otherwise, the cancel value C ′E,B from the previous trade. (This can-
cels prev(payE postE). At this point in the protocol, the only uncancelled
puzzle transactions held by the exchange are the current payE postE and
the current payU postE puzzle transactions.)

2. The solution x for the current trade.
3. Two postU cashout transactions, one for the user escrow and one for the

exchange escrow. Both of the transactions reflect the balance in the two
escrows after this trade. (This last step is done because the solution to the
payU postU puzzle transaction may only be posted by the user after time
tw ; to avoid requiring the user to come online at time tw to post the solution,
we instead have the exchange release a cashout transaction.)

Cancel Quote. If the user does not want to place an order, then the user
sends the following after receiving the Quote message.

1. A postE cashout that (a) resets the balance of the escrow as it was before
the aborted trade. If Alice is buying coins from the user escrow, the postE
cashout (b) spends the output of the user escrow and (b) can be cancelled
under CE,A. Otherwise, the postE cashout (b) spends the output of the
exchange escrow and (c) can be cancelled under CE,B. (This cashout replaces
the payU postE transaction that Alice sent to the exchange as part of the
Request message in the current trade.)

2. The cancel value CU from the current trade. (This cancels both the current
payU postU and the current payE postU puzzles. However, prev(payU postU)
and prev(payE postU) remain valid.)

A.4 Closing an escrow.

The process for cooperatively closing these escrow is identical to that of uni-
directional RFQ protocol of Section 4.4. We now sketch how each party can
unilaterally close escrows, assuming that all trades against these escrows com-
pleted successfully. Recall that these procedures are only required if one party
becomes malicious or unresponsive.

Unilateral close for the user. The user must remember to close the both
escrows before they expire at time tw . If the outputs of both the user escrow and
the exchange escrow are unspent, then the user can unilaterally close both the
escrows by posting the most recent postU cashout transaction for that escrow.

Suppose that upon attempting to close an escrow, the user sees that exchange
has posted a cancelled postE transaction spending the output of that escrow.
In this case, the user can immediately use the cancel value to post a justice
transaction that claims, for the user, all coins in the cancelled transaction. This

is possible because the user is expected to close the escrow before it expires
at time tw AND all coins in a postE transaction that pay to the exchange are
locked until time tw . This is why it is never in the interest of a party to post a
cancelled transaction!

Next, suppose that upon attempting to close an escrow, the user sees that
exchange has posted the payE postE puzzle transaction from the current trade,
but the output of the other escrow is unspent. In this case, the user immediately
posts the postU cashout transaction to unilaterally close the other escrow. No
further action is required from the user; the exchange can recover the coins locked
in the current postE payE puzzle transaction by posting the solve transaction
after time tw .

Finally, suppose that upon attempting to close an escrow, Alice sees that
exchange has posted the payU postE puzzle transaction from the current trade.
Both escrows must be frozen. If the output of the other escrow is unspent, then
the user immediately posts the current payE postU puzzle for that escrow. The
user then comes online between time τA and τB to recover the coins from the
current trade, using a procedure similar to that used to recover from frozen
escrows in Section 4.5. The same is done if the other escrow is spent with a
payU postU transaction. If the other escrow is spent using any other transaction,
then no further action is required from the user.

Unilateral close after a Cancelled Quote What happens when Alice must uni-
laterally close an escrow after a Cancel Quote? This case is very similar to the
case described in Section A.5. Before tw , the user must post the payU postU
puzzle from the Cancelled-Quote trade. The exchange must then come online
after time τB for the current trade, in order to claim the coins locked in the
puzzle by posting a puzzle-refund transaction. That closes one of the escrows.
To close the other escrow, the user can post the postU cashout transaction from
previous completed trade before time tw .

Unilateral close for the exchange. The exchange must also remember to
close the both escrows before they expire at time tw .

If either output is spent using a cancelled transaction, the exchange imme-
diately posts a justice transaction that claims all the coins in the escrow.

If the outputs of both escrows are unspent, the exchange can unilaterally
close each escrow by posting the most recent payE postE and payU postE puzzle
transactions. If one escrow is already spent using a current payE postU puzzle
transaction, the exchange immediately posts the current payU postE puzzle for
the other escrow (assuming that escrow is unspent). If one escrow is already
spent using a current payU postU puzzle transaction, the exchange immediately
posts the current payE postE puzzle for the other escrow (assuming that escrow
is unspent).

In all of the above cases, the exchange must come online between time
(tw , τA) and post the solve transaction for the payE puzzle, releasing the coins
locked in the payE puzzle to the exchange’s wallet. The exchange can unilat-
erally release the coins locked in the payU puzzle by posting a puzzle-refund

transaction after time τB. An honest exchange would send these coins to the
user’s wallet (because they rightfully belong to the user), but a malicious ex-
change would claim these coins for itself. This is why a user must remember to
close her escrows before they expire (at time tw < τB)!

A.5 Dealing with an aborted trade.

What happens when a trade aborts? A trade can abort after the Request, after
the Quote, or after the Order. If the exchange elects not to provide the user with
a Quote, nothing happens and the user can keep trading. If the user elects not to
place an Order and also refuses to send a Cancel Order message, the exchange
must stop trading and close the escrows. Finally, if the exchange aborts after the
Order is placed, the user must stop trading, freeze and then close the escrows.

Exchange aborts after Request Suppose the exchange elects not to provide
a Quote after a Request message is sent. This is not a problem, because the
exchange will not want to post the current payU postE received during the
Request. This follows because the current payU postE transfers coins to from
the exchange to Alice (i.e., it is a payU puzzle), and thus will result in more
coins for the user and fewer coins for the exchange. Instead, the exchange will
always prefer to use the puzzles from the previous completed trade.

User aborts after Quote Suppose Alice decides to abort after receiving a
Quote, while refusing to send the Cancel Order message. In this case, the ex-
change should immediately close the escrows involved in this trade, as follows.

First, the exchange posts the payU postE puzzle from the current trade. The
exchange must then come online after time τB for the current trade, in order to
claim the coins posted in the current payU postE puzzle by posting a puzzle-
refund transaction. (If the exchange cannot post the payU postE puzzle because
its escrow is already spent, it follows that the user must have either (a) posted a
cancelled transaction, (in which case the exchange can reclaim its coins through
a justice transaction) or (b) posted a payU postU puzzle (in which case the
exchange’s again posts the puzzle-refund after time τB). That closes one of the
escrows.

What about the other escrow? There are two cases:

Case 1: The exchange holds an uncancelled payE postE puzzles from the pre-
vious trade that spends this escrow. The exchange must post this payE postE
puzzle before time tw . The exchange must then must come online between time
tw and τA for the previous trade, and claim the locked coins by posting a solve
transaction.

Case 2: The exchange holds an uncancelled payU postE puzzles from the pre-
vious trade that spends this escrow. The exchange must post the payU postE
puzzle from the previous trade before time tw . Alice must then must come online
between time tw and τB for the previous trade, in order to claim the coins in

the puzzle transaction by posting a solve transaction. This is possible because
the exchange has revealed the solution x′ to Alice as part of the previous trade.
Importantly, Alice will always know that she is supposed to take this action, be-
cause she is expected to close this escrow before time tw using the cashout from
the previous trade (see ‘Unilateral close after cancelled quote’ in Section A.4).
If Alice finds that she cannot do this because the exchange has already posted
the payU postE from the previous trade, then Alice knows she must come online
between time tw and τB.

Finally, if the exchange cannot close this escrow because its output is already
spent, it follows that (a) the user posted a cancelled transaction (in which case
the exchange can reclaim its coins through a justice transaction) or (b) posted
a uncancelled payE postU puzzle (in which case the exchange does as in Case
1), or (c) posted an uncancelled payU postU puzzle (in which case the exchange
does as in Case 2), or (d) posted an uncancelled postU cashout transaction from
the previous trade (in which case the exchange has earned its rightful balance
of coins).

Exchange aborts after Order. Suppose the exchange decides not to Execute
after an Order. This causes the user to freeze the escrows.

After the Order message is sent, there are five uncancelled puzzles: the four
puzzles from the current trade, plus one additional puzzle from the previous
trade, i.e., the prev(payE postE) puzzle. We argue that the prev(payE postE)
puzzle would never be posted. Why? This follows because exchange would always
prefer to post the current payE postE puzzle over the previous puzzle. There
are two cases. (1) The previous puzzle is a payE postE type puzzle. In this
case, it follows that the current payE postE puzzle pays the exchange more
coins than then previous puzzle, and so the exchange would prefer to post the
current puzzle. (This is the “magic of unidirectionality”, see Section 4.3.) (2) The
previous puzzle is a payU postE type puzzle. In this case, the current payE postE
puzzle pays out to the exchange, while the previous puzzle pays out to the user.
It follows that the current payE postE puzzle pays the exchange more coins
than then previous puzzle, and so the exchange would prefer to post the current
puzzle.)

Therefore, only the four puzzles from the current trade matter, and we have
essentially reduced back to the frozen case from the unidirectional protocol.
Thus, if the exchange aborts after the Order, the user would try to coopera-
tively close her escrows using the balance from the previous trade. If that fails,
she would unilaterally post the payU postU puzzle. (This allows Alice to get
paid if the exchange decides to execute the trade on-blockchain by revealing the
solution x.) Once that puzzle is confirmed on the blockchain, the user would then
post the payE postU puzzle. (This forces the exchange to reveal the solution x
between time (tw , τA) if the exchange decides it wants to execute the trade on
the blockchain.) The user would then come online between time τA and τB and
use the usual procedure for recovering from frozen escrows.

B Ethereum Unidirectional RFQs

We now describe how to port the unidirectional RFQ protocol of Section 4 to
Ethereum. We use an escrow smart contract that mimics the UTXO transaction
paradigm that is used on Bitcoin.

Ethereum Smart contract. Each user escrow and exchange escrow is a smart
contract that can be in one of three states: (UNFUNDED, OPEN, PUZZLE-
POSTED, CLOSED). The payer first computes the contract address and funds
the contract address before the contract is created. This technique is called
“counterfactual instantiation” by the ethereum community and relies on the
contract address being deterministic. Then once the contract address has been
funded, the payer posts another transaction which creates the escrow smart con-
tract using the Create2 contract creation call [12,19]. The escrow smart contract
constructor checks if the contract address has been funded and if it has it changes
the state from UNFUNDED to open. If on the other hand, the contract address
has not been funded the constructor throws an exception and doesn’t create the
smart contract.

The user escrow can move from the OPEN state to the CLOSED state via
a:

1. refund transaction which is signed by the user and posted to the blockchain
after time twA, (thus fulfilling the timelock condition of the Arwen escrow)

2. cashout transaction which is doubly-signed by the user and by the exchange,
(thus fulfilling the 2-of-2 multisig condition of the Arwen escrow)

Meanwhile, the escrow smart contract moves from the OPEN state to the PUZ-
ZLEPOSTED state when a puzzle transaction, that calls a method in the escrow
smart contract, is confirmed on the Ethereum blockchain. The puzzle transaction
is doubly-signed by the user’s ephemeral key and the exchange’s ephemeral key
(thus fulfilling the 2-of-2 multisig condition of the Arwen escrow) and contains
a puzzle y and an puzzle timelock τ (which are used for atomic swap trading).
Then, a user escrow can move from the PUZZLEPOSTED state to the CLOSED
state via:

3. solve transaction which contains solution x and is signed by the exchange
4. puzzle-refund transaction which is signed by the user and posted to the

blockchain after time τA

The exchange escrow can be analogously arrive in the CLOSED state in four
ways (i.e., via solve, puzzle-refund, refund, or cashout transaction).

The RFQ protocol is essentially identical to that of Section 4. The four ways
that the user escrow can be closed are identical to the four ways that an escrow
can be closed in the protocol of Section 4 (see also Figure 4.3). As in Section 4,
the cashout transaction is used for cooperatively closing an escrow, while the
puzzle, solve, refund, and puzzle-refund transactions are used to unilaterally
close escrows per Section 4.5.

C Transaction Malleability

Arwen withstands transaction malleability attacks on “Bitcoin-derived‘’ blockchain
that do not have SegWit. We now explain the transaction malleability problem,
discuss why it affects layer-two blockchain protocols, and explain how Arwen
avoids it. Withstanding transaction malleability allows Arwen to support more
Bitcoin-derived blockchains.

Transaction malleability. Consider a transaction T2 that spends the output
of a transaction T1. T2 therefore contains a pointer to T1, called the TXID. This
TXID is malleable: the TXID can be changed (“mauled”) by anyone, without
affecting the validity or contents of transaction T1.

We explain why as follows. The TXID on T1 is the hash of (essentially) the
entire T1, including any signatures on T1. Most “Bitcoin derived” blockchains
use elliptic curve digital signatures, which are not deterministic. (That is, a
random value r is used to compute the signature σ on message m.) This means
that a party that holds the secret signing key can easily produce multiple valid
signatures σ, σ′, . . . on a single message m. Worse yet, even a party that does
not know the secret signing key can take a valid signature σ on a message m,
and maul σ to obtain a different valid signature σ′ on m. Now, because TXID
is the hash of (essentially) the entire T1, mauling the signatures on T1 results in
a completely different TXID for T1. Additionally, some parts of the transaction
that are included in the TXID hash are not covered by the signature on the
transaction, which creates an additional malleability problem.

SegWit. With SegWit [15], the TXID hash is not computed over the signatures
on the transaction. This solves the malleability problem, because now mauling
the signature has no effect on the TXID. SegWit also removes other malleability
vectors (i.e., parts of the transaction that are not covered by the signature).

Impact on layer-two protocols. If T1 is already reliably confirmed on the
blockchain, the security of the blockchain ensures that no one call maul the
signatures on T1, and transaction malleability is irrelevant.

Now consider a layer-two protocol where Alice holds T1, an off-blockchain
transaction that spends an on-blockchain transaction T0. Next suppose that
Alice transfers coins to Bob by sending Bob an off-blockchain transaction T2
that is signed by Alice and contains a pointer to T1. Transaction malleability
means that Alice’s signature on T2 is completely useless. This follows because
Alice can break the TXID pointing from T2 to T1 by mauling the signatures
on T1; this means that T2 becomes an invalid transaction but T1 remains valid.
Thus, Bob could not use T2 to claim coins from T0. (This is exact reason why
the Lightning Network, as currently designed, only works with blockchains that
support SegWit, see Appendix A of [32].)

How Arwen avoids this problem. To avoid this problem, Arwen ensures that
parties never need to send each other signatures on off-blockchain transactions
that point to other off-blockchain transactions. Instead, parties only send each
other signatures on off-blockchain transactions that point directly to the Arwen
on-blockchain escrows. This further implies that if an off-blockchain transaction

comes with a smart contract (e.g., like the HTLC smart contract on the off-
blockchain puzzle transaction), then each clause on that smart contract must
require the signature of only one party. If a single clause required the signature
of more than one party, then parties would need to send each other signatures
on off-blockchain transactions that point to other off-blockchain transactions,
which is vulnerable to transaction malleability. The reader is invited to check
that Arwen is robust to transaction malleability, by checking that each clause
on a smart-contract in an off-blockchain transaction only requires the signature
of a single party; see Figures 4.3,2(b),4.

This is also why we can not use relative timelocks i.e., CheckSequenceVer-
ify [10] in Arwen. CheckSequenceVerify (which is used extensively in Lightning)
provides a timelock which is relative to the time another transaction is confirmed
on-blockchain. CheckSequenceVerify is therefore not safe to use on blockchains
vulnerable to transaction malleability attacks, like BCH or ZEC. Instead, Arwen
can only use absolute timelocks i.e., CheckTimeLockVerify [44].

D Smart Contracts

The source code for the Ethereum smart contracts can be found at: https://github.com/cwcrypto/arwen-
eth-contracts.

D.1 Unidirectional RFQ

Smart contracts i.e., Bitcoin-script P2SH redeem-scripts used in our unidirec-
tional RFQ (Section 4).

User Escrow:

OP_DEPTH, OP_3, OP_EQUAL

OP_IF

OP_2, OP_PUSH <User Trade Key>, OP_PUSH <Exchange Trade Key>, OP_2, OP_CHECKMULTISIG

OP_ELSE

OP_PUSH <twA>, OP_CHECKLOCKTIMEVERIFY, OP_DROP

OP_PUSH <User Refund Key>, OP_CHECKSIG

OP_ENDIF

Exchange Escrow:

OP_DEPTH, OP_3, OP_EQUAL

OP_IF

OP_2, OP_PUSH <Exchange Trade Key>, OP_PUSH <User Trade Key>, OP_2, OP_CHECKMULTISIG

OP_ELSE

OP_PUSH <twB>, OP_CHECKLOCKTIMEVERIFY, OP_DROP

OP_PUSH <Exchange Refund Key>, OP_CHECKSIG

OP_ENDIF

User Escrow Puzzle Transaction (Puzzle Output):

https://github.com/cwcrypto/arwen-eth-contracts
https://github.com/cwcrypto/arwen-eth-contracts

OP_DEPTH, OP_2, OP_EQUAL

OP_IF

OP_RIPEMD160, OP_PUSH <puzzle>, OP_EQUALVERIFY

OP_PUSH <Exchange Puzzle Pubkey>, OP_CHECKSIG

OP_ELSE

OP_PUSH <tauA>, OP_CHECKLOCKTIMEVERIFY, OP_DROP

OP_PUSH <Alice Puzzle Pubkey>, OP_CHECKSIG

OP_ENDIF

Exchange Escrow Puzzle Transaction (Puzzle Output):

OP_DEPTH, OP_2, OP_EQUAL

OP_IF

OP_RIPEMD160, OP_PUSH <puzzle>, OP_EQUALVERIFY

OP_PUSH <Alice Puzzle Pubkey>, OP_CHECKSIG

OP_ELSE

OP_PUSH <tauB>, OP_CHECKLOCKTIMEVERIFY, OP_DROP

OP_PUSH <Exchange Refund Pubkey>, OP_CHECKSIG

OP_ENDIF

D.2 Unidirectional Limit orders

Smart contracts i.e., Bitcoin-script P2SH redeem-scripts used in our unidirec-
tional limit orders (Section 5). All scripts are the same as our unidirectional
RFQ protocol smart contracts given in Appendix D.1 except for the user escrow
puzzle transaction.

User Escrow Puzzle Transaction (Puzzle Output):

OP_1, OP_EQUAL

OP_IF

OP_PUSH <tauC>, OP_CHECKLOCKTIMEVERIFY, OP_DROP

OP_RIPEMD160, OP_PUSH <puzzle>, OP_EQUALVERIFY

OP_PUSH <Exchange Puzzle Pubkey>, OP_CHECKSIG

OP_ELSE

OP_PUSH <Alice Refund Pubkey>, OP_CHECKSIGVERIFY

OP_DEPTH, OP_1, OP_EQUAL

OP_IF

OP_RIPEMD160, OP_PUSH <cancel>, OP_EQUALVERIFY

OP_ELSE

OP_PUSH <tauA>, OP_CHECKLOCKTIMEVERIFY, OP_DROP

OP_ENDIF

OP_ENDIF

	The Arwen Trading Protocols (Full Version)

