
Di�erentially-Private Multi-Party Sketching
for Large-Scale Statistics

Seung Geol Choi ∗1, Dana Dachman-Soled †2, Mukul Kulkarni ‡3, and Arkady Yerukhimovich §4

1United States Naval Academy
2University of Maryland, College Park

3UMass, Amherst
4George Washington University

January 9, 2020

Abstract
We consider a scenario where multiple organizations holding large amounts of sensitive data from

their users wish to compute aggregate statistics on this data while protecting the privacy of individual
users. To support large-scale analytics we investigate how this privacy can be provided for the case of
sketching algorithms running in time sub-linear of the input size.
We begin with the well-known LogLog sketch for computing the number of unique elements in a data
stream. We show that this algorithm already achieves di�erential privacy (even without adding any
noise) when computed using a private hash function by a trusted curator. Next, we show how to elim-
inate this requirement of a private hash function by injecting a small amount of noise, allowing us to
instantiate an e�cient LogLog protocol for the multi-party se�ing. To demonstrate the practicality of
this approach, we run extensive experimentation on multiple datasets, including the publicly available
IP address data set from University of Michigan’s scans of internet IPv4 space, to determine the trade-
o�s among e�ciency, privacy and accuracy of our implementation for varying numbers of parties and
input sizes.
Finally, we generalize our approach for the LogLog sketch and obtain a general framework for con-
structing multi-party di�erentially private protocols for several other sketching algorithms.

1 Introduction

Collecting and performing analytics on large amounts of personal data has become widespread and is in-
trinsic to the functionality of a rapidly growing number of apps and services. While desirable from a func-
tionality perspective, this now popular computing paradigm raises unprecedented security and privacy
concerns, and there is a growing and urgent need for technology solutions that balance these interests.

∗Email: choi@usna.edu. Supported in part by NSF #CNS-1618269, ONR #N0001419WX00568, ONR #N0001419WX01032.
†Email: danadach@umd.edu. Supported in part by NSF grants #CNS-1933033, #CNS-1840893, #CNS-1453045 (CAREER), by a

research partnership award from Cisco and by �nancial assistance award 70NANB15H328 from the U.S. Department of Commerce,
National Institute of Standards and Technology.

‡Email: mukul@cs.umass.edu. Part of this work was done while the author was a student at the University of Maryland.
§Email: arkady@gwu.edu.

1

In this paper, we aim at achieving a privacy-preserving mechanism that handles the following scenario:

Multiple organizations (e.g., hospitals, banks, government agencies, or nodes in a network) each hold sensitive
data from their users, and they wish to compute aggregate statistics while protecting the privacy of individual
users.

While our approach is quite general, for a concrete application we consider the problem of Tor mea-
surement; speci�cally, counting the number of unique users across the Tor network [19]. In this scenario,
the parties are the Tor relays that are tasked with routing Internet tra�c for as many as (approximately)
2 million daily users. Tor guard relays, in particular, serve as users’ entry points into the Tor network,
and thus learn the IP addresses of users that route their tra�c through them. In a day, each such guard
relay may observe thousands if not millions of connections, and, moreover, since users are encouraged to
regularly form new circuits, the same users are likely to route tra�c through multiple guard relays in a
given day. �us, while the relays have a large number of unique users across them, there is also a good
amount of overlap among the IP address lists at each relay.

Computing the number of unique users across a set of guard relays can measure the popularity of Tor
in a particular part of the world, or detect �uctuations in the number of users indicating that tra�c is being
blocked. However, the identities (i.e., IP addresses) of Tor users are highly sensitive—a�er all, protecting
their privacy is the raison d’être of Tor. Moreover, since some relays may be controlled by an adversary,
it is necessary to protect the privacy of the input IP addresses both during the computation and a�er the
output is released. A similar application enables exit relays to privately estimate the number of Tor hidden
services visited.

Our proposed protocol enables the relays to collaboratively approximate these counts while maintain-
ing both the privacy of the relays’ inputs and internal state as well as the privacy of any individual user,
even given the output of the computation.
Insu�ciency of MPC. To address this scenario, one can apply the notion of secure multiparty com-
putation (MPC). MPC allows parties to perform a distributed computing task—i.e. compute some joint
functionality—while revealing nothing but the �nal output of the computation. �e organizations would
like to execute MPC protocols to allow individual users to keep their personal data private, while still
bene�ting from analytics performed across a large number of users’ data.

While MPC will indeed be one aspect of the solution proposed in this work, MPC in and of itself does
not solve the problem of ensuring privacy of personal data in large-scale, distributed computing se�ings.

1. Privacy issue. First, MPC does not actually provide privacy guarantees for an individual user’s per-
sonal data! We note that MPC provides only a “relative” security guarantee, ensuring that parties do
not learn more from running the MPC protocol, than what they could have learned given only the
output of the functionality. It may be the case, however, that the output of the functionality itself
reveals private information about an individual user, rendering the security guarantee provided by
the MPC meaningless.

2. E�ciency issue. Moreover, computing statistics by having all user data as input to an MPC proto-
col will not be feasible in terms of e�ciency. While MPC protocols are becoming more and more
e�cient, they still lose at least an order of magnitude in e�ciency, compared to performing the com-
putation in the clear. For big data tasks, where even linear-time functions stretch the limit of feasible
computation, this approach will not work.

2

Our approach. In this work, we will use a combined approach to solve the above problems.
To address (1), we require that the functionality computed by the MPC satisfy certain privacy require-

ments. Speci�cally, we require that the functionality itself is di�erentially private (DP) [23, 25], which
(roughly) guarantees that the output of the functionality does not change much if a single individual
changes the data she contributes. In particular, this implies that it is impossible to recover an individ-
ual’s data, given only the output of the functionality. �e di�erential privacy notion has become the de
facto standard for guaranteeing an individual’s privacy and has been broadly adopted within the security
community.

�ere are several well-known mechanisms for releasing the approximate output of a functionality,
while satisfying di�erential privacy guarantee [25, 50, 56]. All DP mechanisms inherently su�er from a
tradeo� between accuracy and privacy. In the most commonly used mechanisms [25, 56], this tradeo� is
explicit since noise is deliberately added to the output of a functionality before releasing it, so as to ensure
privacy.

�is now leads us to addressing (2): Since the functionality is required to be DP, the output will nec-
essarily only be approximate. �erefore, we may now consider functionalities that are only approximate
even before the di�erentially private noise is added. �is relaxation allows us to achieve far be�er e�ciency
and thus obtain practical solutions even when the approximate functionality is computed via an MPC proto-
col. �e approximate functionalities that we utilize are based on well-known sketching algorithms from the
literature [5, 21, 33, 39, 58]. Such algorithms employ a special data structure, known as a “sketch,” which
is compact, structure-preserving and e�ciently updatable in the streaming se�ing.

1.1 Our Contribution

In this paper, we propose a framework that combines MPC, Sketching and Di�erentially Privacy. We begin
by focusing on a speci�c type of big data task and a corresponding well-known sketch for this task. �e
task we consider is computing approximate disjoint count in the single party se�ing, or approximate set
union cardinality in the multiparty se�ing. Both of these tasks can be accomplished via a well-known
sketch known as the “LogLog” sketch [21]. �is statistic has a�racted signi�cant a�ention and been used
in many applications, e.g., in Tor measurement [68], tra�c monitoring in networks [49], in-network query
aggregation in wireless sensor network [54], and �le signi�cance evaluation in P2P systems [57].

We then extend our results by presenting a general framework for multiparty, di�erentially-private
computation of various popular sketches. Our work consists of three main contributions.
DP of the LogLog sketch. First, we show that the popular “LogLog” algorithm is itself DP in the single
party se�ing. Given a stream of sensitive data items each obtained from an individual user, the LogLog
algorithm allows the organization to maintain a small-size sketch based on the hash value of each item.
At the end, the organization outputs the approximate count of distinct elements from the sketch.

We show that the approximate count as computed by the LogLog sketch, even without adding noise is
guaranteed to be DP, when the organization choose a hash function privately at random.
Extending to the multiparty setting. We achieve DP disjoint counting in the multiparty se�ing in the
semi-honest model assuming an honest majority.

�e LogLog sketch has the important property that it can be merged, which implies that multiple
organizations can locally compute a sketch and these can be merged to obtain the (approximate) set union
cardinality across all parties. However, the problem is that this merging can only be performed when the
same hash is used by all parties; as described above, di�erential privacy of a local sketch from a single
party holds only when the hash function is privately chosen at random. �erefore, when multiple local

3

sketches are merged using the same public hash, the merged sketch does not guarantee di�erential privacy
anymore.

We overcome this challenge by securely adding a small amount of noise according to the Laplace
mechanism. Since sampling noise inside an MPC protocol can be prohibitively expensive (requiring high
precision computation of continuous, real-valued functions corresponding to the noise distribution), we
introduce a novel way to sample the noise in a distributed fashion. We implement our MPC protocol that
securely merges the sketches and securely adds a noise; we provide a concrete analysis of the resulting
privacy and accuracy parameters.
Ageneral framework. Finally, we generalize our protocol above for the LogLog sketch to obtain a general
framework for e�ciently combining a sketching algorithm that is mergeable, a DP mechanism and an MPC
protocol. �is framework can be applied to the LogLog sketch and other sketches such as AMS sketch [5]
and the Johnson-Lindenstrauss Transform [45, 41].

2 Background and Related Work

2.1 DP and MPC

Di�erential privacy (DP) [23, 25] protects privacy of a user in a way that mimics the privacy protection
that he can get in the opt-out scenario. �at is, what can be learned about a user from a di�erentially
private computation is essentially limited to what could be learned about him from everyone else’s data
without his own data being included in the computation. Since its inception, a large body of research has
been devoted to the design of di�erentially private algorithms (see [26] and references therein). Most
works mainly considered the standard se�ing with a trusted curator who has access to all users’ data and
aims to respond in a di�erentially private manner.

Another active line of work has considered local di�erential privacy [46, 29] where parties locally add
noise to their data to guarantee privacy before submi�ing it to an untrusted curator. Our model di�ers
from this in that we use secure multi-party computation to, instead, have parties jointly simulate a trusted
curator resulting in less noise being added.

Secure multi-party computation (MPC) [69, 36] is concerned with privacy of the users’ input from a
di�erent perspective. Secure MPC protocols allow a set of parties P1, . . . Pn to compute some function of
their inputs in a distributed fashion, while revealing nothing to a coalition of corrupted parties about any
honest party’s input beyond what is implied by the output. Recently, a large amount of active research has
been conducted toward achieving e�cient protocols for secure MPC (see [30] and the references therein).
DP in the multiparty setting. Note that secure MPC protocols do not protect against the leakage stem-
ming from the actual output of the function. �erefore, it is desirable that the function should ensure that
its output guarantees privacy of the private inputs even if secure MPC protocols are to be used.

Toward this goal, Dwork et al. [24] presented a multiparty protocol for sampling from a Laplace distri-
bution. However, although their sampling protocol is secure in the malicious model, security of the entire
protocol still requires the parties to choose their actual data inputs honestly. Rather than following their
non-standard model, we adopt the standard semi-honest model for both noise sampling and the rest of
the protocol. We show how semi-honest sampling of Laplace noise can be done at a fraction of the cost
of their maliciously secure protocol. (�ey need a secure computation of Ω(n log n) gates over O(log n)
rounds to generate n random coins, while we just use non-interactive addition of locally generated noise.)

�e formal security de�nition for di�erentially private multi-party protocols was �rst given by [11] in
the information theoretic se�ing. �eir de�nition has been extened to the computational se�ing in [52, 62].

4

An alternative line of work [31, 38] instead studied secure approximation. However, their notion of
security is fundamentally di�erent from the DP security we aim for. In particular, they aim for a more
semantic-security style �avor requiring that the approximate output should reveal no more than what the
exact output reveals about the parties’ private input.

2.2 Secure Statistics

Cardinality estimation. Although the cardinality of a multi-set (i.e., the number of unique elements) can
be easily computed using space linear in said cardinality, the linear space complexity is o�en burdensome
for many applications dealing with a very large amount of data. �erefore, approximation algorithms have
been developed that need only sublinear space, maintaining a small sketch—a data structure that allows
aggregation of items—of size typically less than thousands of bytes. To name a few, these sketch-based al-
gorithms include probablistic counting [34], MinCount [8], LogLog [21] and its variants HyperLogLog [33],
and HyperLogLog++ [39].

�e �rst work on privacy-preserving cardinality estimators is [66]; they proposed a cardinality esti-
mation mechanism in a distributed se�ing. �e mechanism adds noise to sketches and then merges noisy
sketches in public. �is approach incurs a larger amount of error compared to our approach, and they
used their own privacy metric instead of the standard DP framework. Protocols based on MPC and Bloom
�lters have also been suggested [7, 27], but they did not consider di�erential privacy of individual users.

Alaggam et al. [4] used Bloom-�lter based techniques to achieve pan-private disjoint count estimates
(and other statistics) over Wi-Fi data. �eir model is di�erent from ours as they consider a centralized
curator that maintains a di�erentially-private state. Due to the pan-privacy requirements and their use of
Bloom �lters, their construction has signi�cantly larger error than in our construction, i.e., 10% vs 2% for
ε = 1 (See Figure 4 in [4] and Figure 4 in this paper).

Recently, [18] considered privacy of cardinality estimators from a di�erent angle. In particular, they
assumed an insider risk scenario where the adversary has access to the actual sketch (rather than the
output statistic) and asked whether the sketch itself is private. �ey showed that a sketch without any
noise is not private. Our threat model is di�erent from theirs.
Di�erentially private aggregation of statistics. A number of works have also considered aggregation
of other statistics.

Erlingsson et al. [29] proposed Randomized Aggregatable Privacy-Preserving Ordinal Response (RAP-
POR) for aggregating statistics (such as categories, frequencies, and histograms) generated via crowdsourc-
ing. �e system collects randomized responses via input perturbation, aiming to guarantee local di�eren-
tial privacy for individual reports. However, due to the larger noise necessary for local di�erential-privacy,
it requires at least millions of users in order to obtain reasonably accurate approximate answers.

Other examples of private aggregation include [28, 32, 43, 51]. �ese works aggregate statistics com-
puted by linear sketches with aggregation done using secret sharing [28, 43], accumulators based on public-
key cryptography [32], and homomorphic encryption [51]. All these works are limited to computing linear
sketches only and thus cannot support computations such as disjoint count.

Finally, the work of Wails et al. [68] also considers aggregate statistics for Tor measurement using
MPC. However, their work focuses on optimizing MPC for a large number of parties and does not consider
di�erential privacy.
Other related work. Recently, Bater et al. [9] considered performing SQL queries in a di�erentially
private manner. Perhaps the most relevant aspect of their work to our work, is computing “Aspirin count”

5

(counting distinct items matching some criteria from multiple tables). �ey report computing 2 join (similar
to 2 party MPC) for data size at least 500K for each party.

Additionally, recent work, e.g. [48] has pointed out that di�erential privacy guarantees may be insuf-
�cient when data in the database is correlated as in the case when the same or closely related users may
appear in multiple organizations’ data sets. We note that for the case of disjoint counting our protocol
provides security for correlated data since all instances of the same user are combined into a single record
in the sketch, while related but unequal records are made independent by hashing. Understanding the
impact of correlated inputs for other sketches is an interesting open problem.
2.3 Background on Sketching

Our framework requires sketches that are mergeable. Given such a sketch, our approach allows releasing
statistics calculated from the merged sketch. �e amount of noise to be added in the released statistics
depends on the sensitivity of the statistic itself as well as the accuracy of the sketch. Note that our approach
does not allow releasing the entire sketch itself.

A large body of work within the sketching literature is dedicated to linear sketches. �ese are sketches
that are computed by applying a linear function (represented by a matrix A) to the data X , i.e. a sketch
S is computed as S = AX . While non-linear sketches can still be mergeable—the LogLog sketch from
above is non-linear and mergeable—linear sketches are inherently mergeable: If the merged data of N
parties, each holding data Xi, is computed as X = X1 + · · ·+XN , then A(X) = A(X1 + · · ·+XN) =
AX1 + · · ·+AXN . We describe several linear sketches from the literature and the types of low-sensitivity
statistics that can be computed from these sketches. All of these sketches fall under our framework. We
then provide some examples of sketches that do not fall under our framework.
Count-Sketch and Count-Min Sketch. Count-Sketch [15] and Count-Min Sketch [16] are sketches that
are used to approximate the frequencies of elements in a datastream. Assume X is the exact frequency
vector of dimension n. �ese sketching algorithms proceed by storing multiple independent copies of
AX , where A is an m× n dimension matrix (with m� n) drawn from a certain distribution. �e stored
sketches can be used to approximate statistics such as median, quantiles, or histograms.
AMS sketch, JL-transform andLp-norm. By sampling A from a more complex distribution than above,
it is possible to achieve the property that ||AX||p ≈ ||X||p, where || · ||p denotes the Lp-norm of a vector.
�e AMS sketch [5] and the Johnson-Lindenstrauss transform [45, 41] provide distributions for A such
that ||AX||2 ≈ ||X||2. �is was subsequently generalized to arbitrary Lp-norms [40, 42]. Note that the
sensitivity of the Lp norm can be bounded, when the magnitude of each element of X is bounded.
Lp sampling. Lp sampling is the task of sampling from the distribution that places weight Xp

i /||X||
p
p on

the i-th element of the n-dimensional vector X = X1, . . . , Xn. A sequence of works showed that it is
possible to compute a linear sketch of X that allows one to perform approximate Lp sampling [17]. Such
sketches can be used to perform moment estimation [53, 44] and entropy estimation [13]. L0 sampling is
used for graph sketching, as discussed below.
Graph sketches. An L0 sampling sketch for each node of the graph allows the sampling of a neighbor of
each node uniformly at random. �e above forms the basis of several graph sketches, including a sketch
for minimum spanning tree (MST) cost. Since the L0 sampling sketches are linear and can be merged,
the resulting sketch is mergeable. Furthermore, approximate MST cost can be computed on top of the
sketch [2]. We may consider the sensitivity of the MST cost when perturbing a single edge weight of the
graph, but keeping the topology of the graph �xed. �is is similar to the privacy model considered by
Sealfon [60].

6

Sketches that do not fall under our framework. �ere are several such examples, including certain
sketches for graph sparsi�cation, where the goal is to construct a sparse graph that is similar in some way
to the original graph. �e sparsi�ers of [12, 63, 64, 10] are not linear and do not appear to be mergeable.
Importantly, we note that even if sketches are mergeable, if they compute statistics that have high sensitiv-
ity (e.g. connectivity of a graph), they would not be good candidates for our framework, since the amount
of noise added would be prohibitively large.

3 De�nitions and Preliminaries

Di�erential privacy in the single party setting. We �rst de�ne di�erential privacy in the se�ing of a
single trusted curator. Following [26], we think of databases as being collections of records from a universe
X , and view databases using their histograms X ∈ N|X |, where N is the set of all non-negative integers.
In this de�nitional framework, each entry xi represents the number of elements in the database X of type
i ∈ X . �e `1 norm of database X is de�ned as ‖X‖1 :=

∑|X |
i=1 |xi|, which is a measure of the size of

the database. �e `1 distance between two databases X and X ′ is ‖X −X ′‖1, which is a measure of how
many records di�er between X and X ′.

De�nition 3.1. A randomized algorithmM with domain N|X | is (ε, δ)-di�erentially private if for all S ⊆
Range(M) and for all X,X ′ ∈ N|X | such that ‖X −X ′‖1 = 1:

Pr[M(X) ∈ S] ≤ eε Pr[M(X ′) ∈ S] + δ.

Below, we give more formal treatment following [26].

De�nition 3.2. �e global sensitivy of a function f : N|X | → Rk is:

∆f = max
X,Y ∈N|X|,‖X−Y ‖1=1

‖f(X)− f(Y)‖1

De�nition 3.3. �e Laplace Distribution (centered at 0) with scale b is the distribution with probability
density function:

Lap(x|b) =
1

2b
e−x/b.

We will write Lap(b) to denote the Laplace distribution with scale b.
Given any function f : N|X | → Rk, the Laplace mechanism that adds noise drawn from Laplace

distribution; that is, given an input database X , the mechanism outputs

f(X) + (Y1, . . . , Yk),

where Yi are i.i.d. random variables drawn from Lap(∆f/ε). It is known that the Laplace mechanism
achieves (ε, 0)-di�erential privacy [26, �eorem 3.6].

3.1 Distributed Di�erential Privacy

Our presentation here follows the similar de�nitions given in [11, 62]. We assume that readers are famil-
iar with security notions of standard cryptographic primitives [47] and formal de�nitions of a protocol
securely realizing an ideal functionality (cf. [30]).

7

Notations and semi-honest adversary. Let λ denote the security parameter. A function g is said to be
negligible if for every positive integer c, there is an integer nc such that for all n ≥ nc we have g(n) ≤ 1/nc.
�roughout the paper, we will usually use negl(·) to denote a negligble function. We assume that the
adversary is semi-honest.
C-neighboring inputs. Let P = {P1, . . . , PN} be the set of computing parties, with party Pi holding
inputs Xi. Viewing Xi as a histogram (i.e., Xi ∈ N|X |) as in the single-party de�nition above, we say
that two input sets (X1, . . . , XN) and (X ′1, . . . , X

′
N) are neighboring if there is a single index i such that

‖Xi −X ′i‖1 = 1 and for all j 6= i, ‖|Xj −X ′j‖1 = 0. For a coalition of parties C ⊆ P , we say that two
input sets (X1, . . . , XN) and (X ′1, . . . , X

′
N) are C-neighboring if the input sets are neighboring and for

the index i at which they di�er Pi /∈ C .
Distributed di�erential privacy. We can now de�ne computational distributed di�erential privacy
against a coalition C . Roughly, this de�nition says that if a party outside C changes their input by a
single value, the view of the coalition will not change too much.

More formally, for an N -party protocol Π and an input (X1, . . . , XN), we let Π(X1, . . . , XN) denote
the execution of Π on this input. For a coalition C , we de�ne the view of C in protocol Π, denoted
Π(X1, . . . , XN)|C , as the inputs xi for Pi ∈ C , the random tapes of all parties in C , and all messages
received by parties in C .

De�nition 3.4 (cf. Def 2.1 in [62]). Let ε > 0 and 0 ≤ δ < 1. A (randomized) protocol Π preserves compu-
tational distributed (ε, δ)-Di�erential Privacy against a coalition C , if for any polynomial-time adversary
A, for all C-neighboring inputs (X1, . . . , XN) and (X ′1, . . . , X

′
N), there exists a negligible function negl(·)

such that,

Pr[A(Π(X1, . . . , XN)|C , 1λ) = 1] ≤
eε · Pr[A(Π(X ′1, . . . , X

′
N)|C , 1λ) = 1] + δ + negl(λ)

One natural way to achieve di�erential distributed privacy is executing secure MPC protocol for a
di�erential private functionality, as shown below:

�eorem 3.5 (Lemma 4.3 [62]). Let f be (ε, δ)-di�erentially private, and let Π be protocol securely realizing
f against a coalition C . �en, Π preserves computational distributed (ε, δ)-di�erential privacy against a
coalition C .

4 A Single-party Protocol

In this section, we �rst show that assuming the hash key is kept secret from the adversary, the LogLog
algorithm (and its variants) actually achieves di�erential privacy without adding any noise.

Recently, a seemingly contradictory result has been published. In particular, [18] showed that the
LogLog sketch does not protect privacy from the inside a�acker who has access to the sketch. �eir result
is not in con�ict with our result in this section, since they assumed that the inside a�acker also knows the
hash key whereas our result assumes the private hash function. Indeed, [18] suggested to hide the hash
key as a way of protecting their a�ack; we a�rm their suggestion by providing a rigorous proof. We prove
di�erential privacy of the algorithm in the random oracle model.

We note that prior work [14, 61, 67] proved a similar result for the JL transform showing that some
forms of the JL transform are di�erentially private when the JLT matrix is kept private.

8

Accuracy parameter: K .

Input: A sequence D of elements, i.e., D = (x1, x2, . . .).

Output: An approximate count of distinct elements in D.

1. Initialize counters c1, . . . , cK each with 0.

2. Choose a random hash function h. Let h output logK +m bits.

3. For each xi in D:

(a) Compute (j, y) := h(xi), where j is the �rst logK bits of h(xi) and y is the rest. Abusing
the notation, we will treat the k-bit string j as a number 0 ≤ j < K .

(b) Update cj := max(cj , ρ(y)).

4. Compute the sum of the counter values, i.e., u :=
∑K
j=1 cj

5. Output α ·K · 2u/K .
Here, α is a constant depending on K only.a

aIn particular, it holds α =
(

Γ(−1/K) · 1−21/K

log 2

)−K
with Γ(s) = 1

s

∫∞
0
e−ttsdt.

Figure 1: �e LogLog algorithm.

4.1 DP Without Noise

Here, we describe the LogLog algorithm [21], which is the simplest and thereby best to explain how dif-
ferential privacy is achieved without noise. Our analysis is easily carried over to other variants.
LogLog algorithm. Before describing the actual algorithm, we introduce a useful notation. For a binary
string s, we de�ne ρ(s) := 1 + z(s) where z(s) is the number of consecutive 0s in s counting from the le�
most position. For example, it holds ρ(000011) = 5, ρ(010100) = 2, ρ(110000) = 1, and ρ(000000) = 7.
�e LogLog algorithm is described in Figure 1.
Accuracy. �e algorithm has the following accuracy.

�eorem 4.1 ([21]). Consider the LogLog algorithm applied to D with n distinct elements, and let ñ be the
output of the algorithm. With σ = 1.30/

√
K , we have

Pr

[∣∣∣ ñ− n
n

∣∣∣ ≥ 2σ

]
≤ 0.05.

and

Pr

[∣∣∣ ñ− n
n

∣∣∣ ≥ 3σ

]
≤ 0.01.

Di�erential privacy. Interestingly, this algorithm achieves di�erential privacy without adding noise
when D is large.

�eorem 4.2. Suppose D contains n distinct elements with n ≥ 8Kλ · max(1
ε , 1), where λ is the security

parameter. �en, the LogLog algorithm applied to D achieves (ε, negl(λ))-di�erential privacy in the random
oracle model.

9

We begin with some intuition for why the theorem holds. In particular, we consider the following
simple experiment Cm(n). In relation to the LogLog algorithm, the output Cm(n) corresponds to the
counter value for a single bucket when n distinct items are considered in that bucket, assuming the random
oracle model. Note di�erential privacy for this single-bucket scenario can be extended to the multi-bucket
scenario as considered in the above theorem, since in the LogLog algorithm, di�erence of one item in
neighboring databases will a�ect only a single bucket.

Experiment Cm(n):

1. Choose x1, . . . , xn independently uniformly at random from {0, 1}m.

2. Output max{ρ(x1), . . . , ρ(xn)}.

First, for any n, any m = ω(log n), and any s ≤ m, we have

Pr[Cm(n) < s] = (1− 2−(s−1))n.

To see why, given a binary string s, let leftk(s) be the le�most k bits of s. For example, we have left3(000101) =
000. Now, for each i, with independent probability, we have that

Pr[ρ(Xi) < s] = 1− Pr[ρ(Xi) ≥ s]
= 1− Pr[lefts−1(Xi) = 0s−1] = 1− 2−(s−1).

�us,

Pr[max{ρ(X1), . . . , ρ(Xn)} < s]

= Pr

[
n∧
i=1

ρ(Xi) < s

]
= (1− 2−(s−1))n.

�is implies that

Pr[Cm(n) = s] = Pr[Cm(n) < s+ 1]− Pr[Cm(n) < s]

=

(
1− 1

2s

)n
−
(

1− 1

2s−1

)n
.

�e following two Lemmas show that the distributions Cm(n) and Cm(n + 1) are close, which implies
di�erential privacy in the single-bucket scenario.
Lemma 4.3. For any n, anym = ω(log n), and any s ≤ m, it holds

Pr[Cm(n+ 1) = s] ≤ (1 + 1/n) · Pr[Cm(n) = s].

Proof. Let a = 1− 2−s, b = 1− 2−s+1. Note b < a < 1.

(1 +
1

n
) Pr[Cm(n) = s] = (1 +

1

n
)(an − bn)

= (a− b)(1 +
1

n
) ·

n−1∑
i=0

ai · bn−1−i

> (a− b)(
n−1∑
i=0

ai · bn−1−i +
1

n

n−1∑
i=0

bn−1)

> (a− b)(
n∑
i=0

ai · bn−i) = Pr[C(n+ 1,m) = s].

10

Lemma 4.4. For any n, anym = ω(log n), and any 2 ≤ s ≤ m, it holds

Pr[Cm(n) = s] ≤ (1 + 2−(s−2)) · Pr[Cm(n+ 1) = s].

�e formal proof of �eorem 4.2, including proofs of the above lemmas, follow in the next subsection
(Section 4.2).

4.2 Proof of �eorem 4.2

�e proof uses the following lemma.
Lemma 4.5. Let M : {0, 1}∗ → {0, 1}` be a mechanism. Let BdM,x be a (bad) event that occurs when
mechanism M is run on input x. Suppose that for all neighboring datasets D and D′, and for all possible
outputs s fromM , it holds

Pr[M(D) = s ∧ BdM,D] ≤ (1 + ε) Pr[M(D′) = s ∧ BdM,D′].

�en, for all neighboring datasets D and D′, and for all S ⊆ {0, 1}`, it holds that

Pr[M(D) ∈ S] ≤ eε Pr[M(D′) ∈ S] + Pr[BdM,D].

Proof. First note that if for all neighboring D,D′ and all s ∈ {0, 1}`

Pr[M(D) = s ∧ BdM,D] ≤ (1 + ε) Pr[M(D′) = s ∧ BdM,D′]

then for all neighboring D,D′ and all S ⊆ {0, 1}`

Pr[M(D) ∈ S ∧ BdM,D] ≤ (1 + ε) Pr[M(D′) ∈ S ∧ BdM,D′].

�erefore, the lemma follows from the following:

Pr[M(D) ∈ S]

= Pr[M(D) ∈ S ∧ BdM,D] + Pr[M(D) ∈ S ∧ BdM,D]

≤ (1 + ε) Pr[M(D′) ∈ S ∧ BdM,D′] + Pr[BdM,D]

≤ (1 + ε) Pr[M(D′) ∈ S] + Pr[BdM,D]

≤ eε Pr[M(D′) ∈ S] + Pr[BdM,D].

�e �rst inequality holds from the assumption. For the second inequality, we used the fact that all x ∈ R
we have (1 + x) ≤ ex.

We now provide the proof of Lemma 4.4.

Proof. (
1− 1

2s−1

)−1

· Pr[C(n+ 1,m) = s]

=

(
1− 1

2s−1

)−1

·

((
1− 1

2s

)n+1

−
(

1− 1

2s−1

)n+1
)

>

(
1− 1

2s

)−1

·
(

1− 1

2s

)n+1

−
(

1− 1

2s−1

)n
= Pr[Cm(n) = s].

11

�erefore, we have Pr[Cm(n) = s] ≤
(
1− 1

2s−1

)−1 · Pr[C(n + 1,m) = s]. �e lemma holds from the
following:

1

1− 1
2s−1

=
2s−1

2s−1 − 1
= 1 +

1

2s−1 − 1
≤ 1 +

2

2s−1
.

We next complete the proof of �eorem 4.2.

Proof. We begin by analyzing the output distribution of the LogLog algorithm.
�e distribution of the output of the LogLog algorithm. Assuming the random oracle, if we strip out
the post-processing, the output of the LogLog algorithm applied toDwith n distinct elements is identically
distributed to the following experiment:

Experiment ZK,m(n):

1. Consider n balls and K bins. For each ball, choose a random bin in which to put the ball. Let Bj is
the number of balls in the jth bin.

2. Output Cm(B0), . . . , Cm(BK−1).

Since di�erential privacy of ZK,m implies di�erential privacy of the LogLog algorithm, it su�ces to show

Pr[ZK,m(n) ∈ S] ≤ eε Pr[ZK,m(n+ 1) ∈ S] + negl(λ),

Pr[ZK,m(n+ 1) ∈ S] ≤ eε Pr[ZK,m(n) ∈ S] + negl(λ).

We �rst show the �rst inequality. We will follow the strategy described in Lemma 4.5. �at is, we de�ne
an event Bd and show for any s, it holds Pr[Bd] = negl(λ) and

Pr[ZK,m(n) = s ∧ Bd] ≤ (1 + ε) Pr[ZK,m(n+ 1) = s ∧ Bd] (1)

Event Bd. Recall n ≥ max{8Kλ
ε , 8Kλ}. Let Bd be an event in which the output s has some sj less than

s∗ = log(4
ε). We show Pr[Bd] is negligible in λ. Let Enough be an event such that B0 ≥ 2λ/ε. �en, we

have

Pr[Bd] ≤
∑
j∈[K]

Pr[sj < s∗]

=
∑
j∈[K]

Pr[Cm(Bj) < s∗]

= K · Pr[Cm(B0) < s∗]

≤ K · (Pr[Cm(B0) < s∗|Enough] + Pr[¬Enough])

Now, we have

Pr[Cm(B0) < s∗|Enough]

≤
(

1− 1

2s∗−1

)B0

≤
(
e
− 1

2s
∗−1

)B0

≤ e−λ

12

To bound Pr[¬Enough], we use the Cherno� bound. Since µ = Exp[B0] = n/K , we have

Pr[¬Enough] ≤ Pr[B0 < µ/2] ≤ e−µ/8 ≤ e−λ.

�is concludes that Pr[Bd] = negl(λ).
Showing (1). In order to show (1), we consider the following:

• In ZK,m(n) and ZK,m(n + 1), let R denote random coins that choose which bins the (�rst) n balls
should be placed in.

• Note thatR doesn’t include the choice of the (n+1)st ball inZK,m(n+1). Also,R doesn’t determine
Cm(Bj) either.

In order to prove Equation (1), it su�ces to prove for every R:

Pr[ZK,m(n) = s | R ∧ Bd]

≤ (1 + ε) Pr[ZK,m(n+ 1) = s | R ∧ Bd]

For j = 0, . . . ,K−1, let Ij be an indicator variable for the event in which the last ball would be placed
in in the jth bin in experiment ZK,m(n+ 1). Fix R and let βj be the number of balls in bin j by throwing
n balls according to the random coin R. �en, we have

Pr[ZK,m+1(n) = s | R ∧ Bd]

=
K−1∑
j=0

Pr[Ij] · Pr[ZK,m+1(n) = s | Ij ∧R ∧ Bd]

=
K−1∑
j=0

 1

K
Pr[Cm(βj + 1) = sj] ·

∏
i∈[K]
i 6=j

Pr[Cm(βi) = si]


≥

K−1∑
j=0

(
1

K
· 1

1 + 2−(sj−2)
· Pr[Cm(βj) = sj]·

∏
i∈[K],i 6=j

Pr[Cm(βi) = si]

)

≥
K−1∑
j=0

(
1

K
· 1

eε
·
∏
i

Pr[Cm(βi) = si]

)
=

1

eε
· Pr[ZK,m(n) = s | R ∧ Bd].

�e �rst inequality holds from Lemma 4.4. �e second equality holds since we conditioned on Bd (i.e.,
sj ≥ log(4/ε)); we have

1 + 2−sj+2 ≤ 1 + ε ≤ eε.

�e other direction. We are le� to show:

Pr[ZK,m(n+ 1) ∈ S] ≤ eε Pr[ZK,m(n) ∈ S] + negl(λ),

which can be similarly shown by using Lemma 4.3.

13

Accuracy parameter: K .

Parameter for di�erential privacy : ε

Parameter of the maximum possible number of items: Nmax, i.e., Nmax ≥ |D|.

Public hash: h : {0, 1}∗ → {0, 1}logK × {0, 1}m, where m = 3 + log Nmax

K .
Input: A sequence D of elements, i.e., D = (x1, x2, . . .).

Output: An approximate count of distinct elements in D.

1. Initialize counters c1, . . . , cK each with 0.

2. For each xi in D:

(a) Compute (j, y) := h(xi), where j is logK bits long and y is m bits long. Abusing the
notation, we will treat the k-bit string j as a number 0 ≤ j < K .

(b) Update cj := max(cj , ρ(y)).

3. Compute the sum of the counter values, i.e., u :=
∑K
j=1 cj

4. Choose a random number r drawn from Lap((1 +m)/ε).

5. Output α ·K · 2(u+r)/K .

Figure 2: Di�erentially private LogLog with public hash.

5 Achieving DP with public hash

Possible attacks and adding noise. When the hash key is revealed to the public, the LogLog algorithm
described in Figure 1 fails to achieve di�erential privacy. Recall our analysis above started with choosing
x1, . . . , xn uniformly at random where xi corresponds to a hash output of an input. However, given that
the hash key is revealed, xi is not randomly distributed anymore; it’s just some determined value. So, the
entire analysis breaks down.

In fact, the adversary can distinguish two neighboring databases D and D′ by hashing all the items
in D and D′ on its own and matching the result against the output of the LogLog algorithm. �is a�ack
works, since it’s highly unlikely for the outputs fromD andD′ to be exactly the same. In order to guarantee
di�erential privacy in this situation, we have to rely on added noise.

We note that more sophisticated a�ack was shown in [18] in the insider a�ack threat model, i.e., when
the a�acker has the sketch (i.e., the counter value for each bucket) in addition to hash function and the
algorithm output. Interestingly, the a�ack in [18] applies only to noiseless cardinality estimators as well.
Sensitivity of the LogLog algorithm and the Laplace mechanism. It is well known that a mechanism
can be augmented to achieve di�erential privacy by adding a reasonable amount of noise, if the mechanism
has low sensitivity, i.e., when small change in the input leads to small change in the output.

To evaluate the sensitivity of the LogLog algorithm described in Figure 1, consider any two neighboring
inputsD andD′ and let u and u′ be the sum of counters that the algorithm, on inputD andD′ respectively,
computes at step 4. As before, we consider the di�erential privacy for this sum.

Note that only one item is di�erent in D and D′. Each item will either positively contribute to the
�nal sum by its ρ value (if the value is the maximum in the bucket) or be ignored. Let ρmax denote the
maximum possible ρ value. �en, it holds that u = usame +α and u′ = usame +β where α, β ∈ [0, ρmax],

14

and usame is the sum of counters for the items that belong to both D and D′. �is implies that we have
|u − u′| = |α − β| ≤ ρmax. �erefore, the global sensitivity of the algorithm is ∆f = ρmax and we can
achieve (ε, 0)-di�erential privacy by adding noise drawn from Lap(ρmax/ε) (see in Figure 2).
Engineering the parameter for better accuracy. Since the amount of noise is ρmax, we should set the
length of the hash digests as short as possible to reduce the noise and optimize accuracy of the overall
mechanism. �at is, le�ing h : {0, 1}∗ → {0, 1}logK+m, we would like to determine the minimum value
form that still guarantees the accuracy of the cardinality estimation algorithm. Note ∆f = ρmax = m+1.
�e original LogLog algorithm [21] suggests m = 3 + log Nmax

K , where Nmax is the maximum possible
number of items.

Since the Laplace mechanism achieves (ε, 0)-di�erential privacy [26, �eorem 3.6], we achieve the
following:

�eorem 5.1. �e mechanism described in Figure 2 is (ε, 0)-di�erentially private.

Accuracy of the mechanism. Note that the modi�ed algorithm has an additional 2r/K multiplicative
factor in the output, where r ∼ Lap((m+ 1)/ε). To assess accuracy concretely, set for example Nmax =
240 andK = 212, and aim for (1, 0)-di�erential privacy. In this se�ing, we havem = 31 and r ∼ Lap(32).

Recall ifY ∼ Lap(b), it holds Pr[|Y | ≥ tb] ≤ e−t. �erefore, with probability 1−e−3 ≈ 95%, the value
|r| is at most 3 · 32 = 96. �is implies that most of the time, the multiplicative factor 2r/K = 296/4096

is at most 1.016, i.e., incurring about 1.6% accuracy degradation. One can improve accuracy by taking
K = 213 at the expense of the run time to be doubled. �en, the accuracy degradation becomes 0.8%.

6 Multi-party protocol

Now that we can achieve di�erentially private cardinality estimation in the single party se�ing, in this
section, we explore how to extend this to the multi-party se�ing. Let N be the number of parties. We
assume the semi-honest model and honest majority.

To achieve a di�erentially private multi-party protocol, we �rst need to answer the following question:

How do we correctly merge the distinct counts produced by the MPC parties? Simple addition would not be the
total distinct count.

Sketching and merging paradigm. Fortunately, the LogLog algorithm is already a sketch-based algo-
rithm that allows merging of small sketches e�ciently. �at is, each participant will maintain the counters
(c1, . . . , cK) as a sketch. �en, we can merge the sketches as follows:

Merge:

1. Denote party Pi’s input sketch by (ci1, . . . , c
i
K).

2. Compute c1 = max{ci1 : i ∈ [N]}, c2 = max{ci2 : i ∈ [N]}, . . . , cK = max{ciK : i ∈ [N]}.

3. Output u =
∑K

j=1 cj .

Merge can be easily implemented as a circuit using comparison and addition gates and therefore using
MPC one can securely compute u, the �nal sum.

15

Public parameters: K, ε,Nmax, α (refer to Figure 2).

Public hash: h : {0, 1}∗ → {0, 1}logK × {0, 1}m, where m = 3 + log Nmax

K .

Participants: �ere are N parties P1, . . . , PN .

Private input of Pi: A sequence Di of elements, i.e., Di = (xi1, x
i
2, . . .).

Output: An approximate count of distinct elements in D =
⋃
iDi.

1. Each Pi locally computes the following:

(a) Initialize counters ci1, . . . , ciK each with 0.
(b) For each item x in Di,

Compute (j, y) := h(x) and update cij := max(cij , ρ(y)).

(c) Sample ai, bi ∼ Γ(2/N, 1) and set ei = m+1
ε · (ai − bi).

2. Parties execute a secure MPC protocol to compute the following:

• Input: {(ci1, . . . , ciK), ei}Ni=1

• Output u :=
∑K
j=1(max{cij : i ∈ [N]}) +

∑N
i=1 ei

3. Each Pi locally outputs the following:

Given u from MPC, output α ·K · 2u/K .

Figure 3: Di�erentially private multi-party LogLog algorithm.

Protocol using private hash. Recall that a LogLog sketch produced using a private hash function (e.g.,
run by a trusted curator) in Figure 1 is (ε, negl(λ))-di�erentially private. To achieve a di�erentially private
multi-party protocol, we could have each party run an oblivious pseudorandom function (OPRF) [35] on
each item to evaluate the private hash value and then construct the local sketch. �en, execute an MPC
protocol computing Merge on the local sketches. However, this requires huge communication costs that
is at least linear in the input size for the OPRF evaluations. �is approach doesn’t provide an e�cient
solution.
Protocol using public hash and generating private noise. We choose to employ the (ε, 0)-DP LogLog
algorithm with public hash described in Figure 2. An MPC protocol can be used to compute Merge on the
local sketches. �erefore, we only need to generate the noise securely and add to the output of the Merge
circuit.

Recall that we assume honest majority in the semi-honest model. �e problem is that simply adding
random variables from the Laplace distribution doesn’t follow the Laplace distribution that we want. Still,
we can sample a Laplace random variable in a distributed manner.

Fact 6.1. ∀k ∈ R, if X ∼ Lap(1), then kX ∼ Lap(k).

�erefore, we only need to sample from Lap(1) in order to sample Lap(m+ 1).

Fact 6.2. If X,Y ∼ Exponential(λ) (i.e., exponential distribution with pdf f(x) = λe−λx), then X − Y ∼
Lap(1/λ).

�erefore, we only need to sample from Exponential(1) twice. Note that Dwork et al. [24] showed

16

how to sample from an exponential distribution in the malicious model. Since we are in the semi-honest
model, we can achieve our goal much more e�ciently, as described below.

Fact 6.3. �e distribution Exponential(1) is equivalent to Γ(1, 1), where Γ(α, β) is the gamma distribution
with pdf f(x) = βα

Γ(α)x
α−1e−βx.

�erefore, we reduce our task to sampling from Γ(1, 1) in the multi-party se�ing, which can be done
by using the following fact:

Fact 6.4. If Xi ∼ Γ(αi, β), then
∑

iXi ∼ Γ(
∑

i αi, β).

Based on the above facts, we generate the Laplace noise as follows:

Noise: Distributed sampling from Lap(`).

1. Each party Pi prepares its input ei as follows:

• Choose ai and bi from gamma distribution Γ(2/N, 1).
• Set ei = `(ai − bi).

2. Execute an MPC protocol that computes
∑

i ei.

Note that for any setS of sizeN/2, we have
∑

i∈S ai ∼ Exponential(1) and
∑

i∈S bi ∼ Exponential(1),
thereby

∑
i∈S ei ∼ Lap(1). �is su�ces to show that the added noise achieves the di�erential privacy of

the overall mechanism described in Figure 3.
Scalability of our protocol. Assuming that we are using an arithmetic circuit, the circuit used in the
MPC protocol shown in Figure 3 has the following features:

• �e size of input: Each Pi has K + 1 numbers. �erefore, the total input size is (K + 1) ·N .

• �e number of operations: We needN+K+1 additions andK operations of max overN numbers.

Based on the above, we conclude that the size of circuit is O(N ·K) �erefore, the MPC computaion
will be independent of the actual input size |D|. �is means that our protocol would scale very well; only
the amount of local computation will increase as the size of the input increases.
Security of the protocol. �e following theorem states the security guarantees of the protocol:

�eorem 6.5. �e protocol described in Figure 3 preserves (ε, 0) computational di�erential privacy against a
semi-honest adversary that can corrupt at most t parties where t < N/2.

Proof. Assuming semi-honest security model, for any set S of size N/2 consisting of only honest parties,
the value

∑
i∈S ei would be distributed according to Lap((m + 1)/ε) to the adversary. (Note that to

achieve this we had to add roughly twice this amount of noise to account for the fact that the adversary
sees his own contribution to the noise.) �is implies that the MPC protocol inside of Figure 3 realizes a
functionality that is (ε, 0)-di�erentially private, which is essentially the same as a single-party protocol
with public hash described in Figure 2. �erefore, applying �eorem 3.5, we conclude that our protocol is
distributed di�erentially private.

17

6.1 Implementation

To demonstrate the e�ciency of our protocol, we implemented the protocol described in Figure 3, using
Python 3.7.4 and open-source secure multi-party computation framework MPyC [59]. In this section, we
overview our implementation and in Section 6.2, we provide a summary of the performance measurements.
Choosing a hash function. We stress that distributional di�erential privacy of our mechanism does not
depend on the security of the hash function. We achieve di�erential privacy based only on security of the
MPC protocol and the Laplace machanism for the ideal functionality. In particular, di�erential privacy holds
even when the hash functions are public with seeds revealed to everyone. It is the accuracy guarantee,
however, that requires a good hash function; our accuracy analysis assumes that each input is mapped to
a random bit string.

A natural candidate would be a cryptographic hash function such as SHA-2. However, we choose AES
to improve e�ciency of computing the local sketch. AES is a pseudorandom function that maps an item
into a pseudorandom string given a random key, which is just what we want. Of course, AES is not a hash
function and its domain has a �xed length; if we need to have the hash function take arbitrarily long strings
as input, AES would not work. Fortunately, our experiments deal with only small-length data such as IP
addresses, so this is not a problem. �e practice of using AES as a hash function has become increasingly
popular, e.g., in the area of secure computation [37].

We have not performed further optimizations such as parallelizing the sketch computation.
Circuit optimizations. We use a 128-bit prime �eld for secret sharing the intermediate values (sketches)
while implementing the MPC protocol given in step 2 of Figure 3. A huge portion of the circuit is dedi-
cated to computing maximums, which is reduced to comparing two numbers. �e common technique for
comparison, also used in MPyC, involves converting numbers into binary strings [65]. In order to optimize
the performance of this conversion procedure, we observed that each ρ value needs at most 5 bits.

Moreover, in order to avoid costly �xed-point operations the parties �rst compute the scaled noise
value êi = b260 · eic and execute a circuit that takes only integers as input, i.e.,

{(ci1, . . . , ciK), êi}Ni=1

�e MPC circuit computes

û = 260 ·
K∑
j=1

(max{cij : i ∈ [N]}) +

N∑
i=1

êi (2)

and each party locally computes u = û/260.
Size of a local sketch and input to the circuit. Note that the local sketch that Pi holds is (ci1, . . . , c

i
K),

which is just K numbers indpendent of the data items that Pi collects. Moreover, as shown above, each
partyPi feeds (ci1, . . . , c

i
K , êi) to the circuit, which simply amounts toK+1 numbers, whereK is the num-

ber of buckets, which we usually set to 4096 in our experiment. In other words, the asymptotic complexity
of our MPC protocol (circuit) is Θ(NK) where N is the number of parties. Note that this is independent
of the size of individual parties’ input data. �erefore, whether the actual number of items is 10K or 100M,
the input to the MPC circuit always consists ofK+1 numbers per party. �is property allows optimal scal-
ability for our mechanism. On the other hand, the circuit size increases as the number N of participating
organizations grows. Our experiments show below that the MPyC framework provides good e�ciency for
our protocol up to about ten organizations.

18

Input size 10K 100K 1M 10M 100M
#unique 29989 299036 2000000 21640641 42261769

Table 1: IPv4 addresses when running experiments with 3 parties. Each party has the same input data
size. For example, for data size 10K, each party holds 10K IP addresses, and together they contain 29989
unique IP addresses.

104 105 106 107 108

Data size

0

5

10

15

20

25

30

%
 E

rro
r

Accuracy vs. DP noise (K = 4096)
e=0.1
e=1
e=10
no noise

Figure 4: Accuracy vs. DP noise. �e protocol improves as we increase the di�erential privacy budget. �is
is expected since we add lower amount of noise as ε grows. We run this experiment for di�erent input
data sizes from 10K to 100M with K = 4096.

6.2 Performance Results

In this section we present the results of several experiments to capture the accuracy and performance
tradeo�s of our protocol. For all the results reported below, we run the experiment with the speci�ed
se�ings 10 times and report the average statistics of these 10 runs.
Data sets. We use two di�erent data sets in our experiments. Our �rst data consists of the publicly avail-
able University of Michigan internet scan data [22]. �is data set contains the IPv4 addresses scanned by
University of Michigan project during December 2013 and January 2014. �e input �les contain speci-
�ed numbers of IPv4 addresses. Raw text data �les containing 10K, 100K, 1 million, 10M, and 100M IPv4
addresses were created from randomly sampling downloaded IP addresses. See Table 1.

�e second data set we use is the 1998 FIFA world cup (soccer) web site daily access logs data set [6, 4].
�is dataset consists of all the requests made to the 1998 World Cup Web site between April 30, 1998 and
July 26, 1998. We use the tool provided by the data owner to extract the client ID for arbitrarily chosen
access logs. We further split the extracted data in di�erent �les of sizes 10K, 100K and 1M which are used
as inputs of the parties running the MPC protocol.
Privacy loss parameter ε vs. accuracy. Our �rst experiment aimed to analyze the trade-o� between
the di�erential privacy budget ε and the accuracy achieved by our protocol. We used the dataset of IPv4
addresses. For this experiment, we held the number of MPC parties �xed at three. Figure 4 shows the
relationship between the input data size, the di�erential privacy parameter ε and the accuracy of approx-
imate count. It can be seen that for all input sizes the accuracy improves (error reduces) as the privacy

19

4096 8192 16384
K (#Buckets)

0

2

4

6

8

10

12

14

16

%
 E

rro
r

Accuracy vs #Buckets (input size = 1M)
e=0.1
e=1
no noise

Figure 5: Accuracy vs. number of buckets. �e accuracy of the protocol improves with increase in the
number of buckets. For input data size 1M and ε = 0.1 when K increases from 4096 to 8192, the average
error drops from 17% to 5%.

loss parameter ε increases. We measure the % error with respect to the actual count of distinct elements
in parties input. For example, if the estimate is 105 and the actual count is 100, we would report the error
as 5%. We �x the number of buckets K = 4096 for this experiment.

We note that, Figure 4 shows that the algorithm does not guarantee monotonically be�er accuracy
according to the number of items. One can verify this for every privacy loss parameter (even for the case
without noise, i.e., the black line with triangles). �e case with a larger amount of noise (i.e., the red line
with circles) shows this trend more clearly. �is is due to the fact that �eorem 4.1 only claims that the
accuracy error converges to about 2/

√
K ≈ 3% with high probability and may vary before it does so. Our

experiment shows that the algorithm has slightly be�er accuracy in practice (2% or less) for larger ε.
Accuracy vs. number of buckets. Our next experiment studies the trade-o� between the number of
buckets (i.e. the parameter K) and the achieved accuracy. Figure 5 shows the trade-o� between accuracy
of the protocol and the number of buckets for various values of ε and for di�erent input data sizes. It is
easy to see that the error accuracy improves signi�cantly as the number of buckets grows. Since the MPC
circuit grows linearly in the bucket size, the run time increases as the bucket size grows.
Run time vs. input data size. We conducted additional experiments with the dataset of IPv4 addresses
where parties have di�erent input sizes and measured the run time. We ran the protocol between 3 parties
where the input data size for each party is chosen from {10K, 100K, 1M}, we kept the parameter ε = 1
and K = 4096 �xed. We ran these experiments on a Macbook Pro with 2.6 GHz Intel i5 processor with 4
cores and 16GB DDR RAM.

As shown in Figure 6, the run time of the MPC part is independent of the individual parties’ input sizes.
�is is due to the fact that the low space complexity of the LogLog sketch allows us to use the same sketch
size, and thus MPC input size, for all input sizes we consider. On the other hand, the local pre-processing
time, although much shorter than the MPC time, scales linearly with individual input data size since each
party needs to hash its own data to compute the local sketches.

20

10K-10K-10K 10K-10K-1M 10K-100K-1M 1M-1M-100K 1M-1M-1M
Input size

0

10

20

30

40

50

60

Ru
nn

in
g

tim
e

(s
ec

s)

Input size vs running time
mpc time
preprocessing time for party 1
preprocessing time for party 2
preprocessing time for party 3

Figure 6: Run time vs. input data size. �e run time of the MPC protocol is independent of the input data
size of each party. �e local pre-processing time for individual party scales linearly with input data size.
Here, on x-axis, 10K-100K-1M represents the experiment withN = 3 parties where parties P1, P2, and P3

holds input data of sizes 10K, 100K , and 1M respectively.
K •-•-• •-•-� •-?-� �-�-? �-�-�
4096 33.91 34.57 34.50 33.39 33.68
8192 72.10 70.99 71.27 70.57 70.96
16384 147.79 144.73 144.59 145.52 147.70

Table 2: Comparison of runtime (in seconds) of MPC protocol with DP parameter ε = 1. We vary the
input data size and bucket sizeK . All the reported values are average run time of MPC protocol in seconds
for N = 3 parties. Columns 2-6 show di�erent input data sizes, • = 10K , ? = 100K , and � = 1M .
Run time overhead for noise sampling. Recall that the noise sampling in our protocol is performed by
simply computing

∑N
i=1 ei in the MPC circuit. To measured the overhead of this part, we compared the

run time of the protocol with noise sampling and the one without, using the con�gurations in the above
experiment (i.e., run time vs. input data size). In all con�gurations, the cost of noise sampling was very
small taking at most 1.36 seconds.
Number of buckets vs. MPC run time. In order to experimentally verify that the MPC run time grows
linearly with number of buckets K as shown in Equation (2), we conducted experiments for ε = 1, and
input data sizes in {10K, 100K, 1M} for 3 parties with di�erent values of K ∈ {4096, 8192, 16384}
and measured the run time of the MPC protocol. Table 2 shows the resulting MPC runtimes for these
experiments. As expected, the average MPC runtime scales linearly with the bucket size. We used the
world cup data set for conducting these experiments and the same Macbook Pro machine used above.
Number of parties vs. MPC run time. Finally, we analyze the run time of our protocol as a function of
the number of MPC parties. Table 3 shows the runtime of MPC protocols for di�erent numbers of parties
each holding input of size 1 million and ε = 1. We ran the protocol on cluster of 64 intel(R) Xeon(R)
E5-2697A v4 CPUS each with 16 cores operating at 2.6 GHz and 380GB memory.

Increasing the number of parties causes a slow down for two reasons: First, the runtime of executing

21

No. of parties 3 5 7 9
Runtime (in sec) 17 48 92 183

Table 3: Comparison of runtime of MPC protocol. Input data size = 1 Million, DP parameter ε = 1.
the MPC for the Merge circuit depends on the number of local sketches (and hence the number of MPC
parties each of which supplies a sketch), which increases linearly with the number of parties. Second, as
the number of parties grows, the overhead of the underlying MPC protocol also grows (even when circuit
size is �xed).

7 Framework for Distributed Private Sketching

We now show how we can generalize our results to give a construction for private distributed sketching
for a large class of sketch-based approximations. Speci�cally, we show (roughly) that for any sketch with
a good accuracy guarantee there is a private distributed mechanism that requires the addition of only a
small amount of noise that depends on the accuracy of the sketch and the global sensitivity of the function
being approximated.

We �rst describe key technical insights. We �rst note that accuracy and sensitivity of a sketch go
together. �at is, if a sketching algorithm approximates a functionality f that has low sensitivity (the
output of the functionality di�ers by a bounded amount on any two neighboring inputs), then we can use
the accuracy of the sketching algorithm to bound the sensitivity of the output of the sketch. Once we
bound the sensitivity, we can then apply known DP mechanisms to obtain di�erential privacy.

For most sketches in the literature, however, the accuracy achieved by the sketch is multiplicative,
meaning that, on any input, the output of the sketch is guaranteed to be within a (1 ± ε̃) multiplicative
factor of the correct answer with high probability (over randomness of the sketch). On the other hand, the
Laplace mechanism [25] is easier to analyze and achieve be�er concrete parameters when the sensitivity
is an additive constant. We resolve this discrepancy by having our MPC protocol add noise in the exponent.
�at is, instead of adding some noise e to the output of the sketch, the MPC protocol will multiply the
output of the sketch by 2e

′—where the distribution of e′ depends on the accuracy of the sketch and the
sensitivity of the functionality—e�ectively adding e′ noise to the logarithm of the output of the sketch.

Now, we begin with some terminology.

De�nition 7.1. A sketch is a pair of algorithms (Sketch,Evaluate).

• Sketch takes an input sequence X and outputs a data structure S(X).

• Evaluate takes S(X) and outputs a value y ∈ R+

We will o�en abuse notation, using S to refer to both the sketch, and the data structure output by Sketch.

De�nition 7.2. We say that a sketch S(X) is an (ε̃, δ̃)-accurate approximation of a function f if, le�ing
y = Evaluate(S(X)), for all sequences of inputs X , we have that

Pr[(1− ε̃)f(X) < y < (1 + ε̃)f(X)] > 1− δ̃

De�nition 7.3. We say that a sketch S is mergeable if there exists a merge procedure Merge that takes N
sketches and outputs a single sketch. Formally, for any input sequence X partitioned into N subsequences
X := X1, . . . , XN ,

S(X) = Merge(S(X1), . . . , S(XN)).

22

Participants: �ere are N parties P1, . . . , PN .

Each party Pi for i ∈ [N] inputs a sequence Xi of elements, i.e., Xi = (x1i , x
2
i , . . .). Also, a budget ε for

di�erential privacy is speci�ed.

Output: An approximation for some function f(X).

1. Each party chooses a uniform random seed seedi ← {0, 1}λ. �e parties then compute seed =
⊕Ni=1seedi.

2. Each Pi locally computes the following:

(a) Computes Si = Sketch(Xi) algorithm using H(seed||·) as a random oracle and
H(seed||0||·) for computing any additional randomness necessary for constructing the
sketch.

(b) Generate noise e′i := (∆S/ε) · (ai − bi), where ai and bi are i.i.d. random variables drawn
from the Gamma distribution Γ(2/N, 1), using randomness ri (from Pi’s random tape) for
sampling. Let ei = 2e

′
i .

3. Parties execute a secure MPC protocol to compute the following

• Input: (S1, . . . , SN), (e1, . . . , eN)

• Compute y′ = Evaluate(Merge(S1, . . . , SN))

• Output: y = y′ · (Πn
i=1ei) .

Figure 7: ΠPrivateSketch: Distributed sketch framework.

We now bound the global sensitivity of the logarithm of a sketch evaluation. Looking forward, the
reason that we bound the logarithm of the sketch evaluation, rather than the evaluation itself is that our
algorithm will add noise in the exponent. �is is done to account for the multiplicative error of the sketch;
the traditional di�erential privacy se�ing usually considers only additive error.

Lemma 7.4. Assume that a sketch S is an (ε̃, δ̃)-accurate approximation of a function f(X) outpu�ing a
positive number. De�ne Y (X) = Evaluate(S(X)) and let g(X) = log2 (Y (X)) be the random variable
corresponding to the logarithm of the evaluation of sketch S onX . �en, for any two neighboring inputsX1,
X2,

Pr

[
|g(X1)− g(X2)| < log(1 +

2ε̃

1− ε̃
) · (1 +

∆f

min(f)
)

]
≥ 1− 2δ̃

where ∆f is the global sensitivity of the function f and min(f) is the minimum value a�ained by f on any
input X .

Proof. By the accuracy of the sketch, we have that for any neighboring inputsX1 andX2 with probability
1− 2δ̃, we have:

Y (X1)

Y (X2)
≤ (1 + ε̃)f(X1)

(1− ε̃)f(X2)
≤ (1 + ε̃)(∆f + f(X2))

(1− ε̃)f(X2)

≤ (1 +
2ε̃

1− ε̃
) · (1 +

∆f

f(X2)
)

23

Taking the logarithm base 2 of this equation, and since the output of f is positive, we conclude that the
lemma holds.

De�nition 7.5. For a skecth S as in Lemma 7.4, we de�ne its global sensitivity,

∆S = log(1 + 2ε̃/(1− ε̃)) + log(1 +
∆f

min(f)
).

We now use this lemma to construct a distributed di�erentially private sketch described in Figure 7.
But, before doing so, we need an (ε̃, δ̃)-approximation algorithm with δ̃ = negl(λ). �is can be achieved
through the median technique [8].

Lemma 7.6. Suppose there is a sketching algorithm S that is a (ε̃, δ̃)-accurate approximation of a function
f with δ̃ ≤ 1/4. �en, there is a sketching algorithm S′ approximating f with (ε̃, negl(λ))-accuracy.

Proof. �e median technique augments S into a mechanism S′:

S′(X) :

1. Execute k instances of S on input X with independent randomness.

2. Output the median of the outputs from the instances.

Note that for the median technique to fail to achieve good accuracy, at least k/2 instances should have
bad estimates. Let Ti be an indicator variable such that Ti is 1 if the i instance gives a bad estimate or 0
otherwise. Let T =

∑k
i=1 Ti. Note E[Ti] < δ̃ and µ = E[T] < kδ̃. �erefore, le�ing z = 1

2δ̃
− 1, we have

Pr[S′ outputs bad estimates] = Pr[T > k/2]

≤ Pr[T > µ(1 + z)]

≤ e−
z2

z+2
µ

≤ e−k/3.

�e second inequality is from the Cherno� bound, and the last inequality holds since we have z2

z+2µ ≥
k/3 for any δ̃ < 1/4. Se�ing k = Θ(λ) will satisfy the lemma.

We can now state our main result in this section. But, before doing so, we de�ne some parameters:

• (ε̃, δ̃): �e accuracy parameters of the underlying mergeable sketch. We require δ̃ to be negligible in
λ.

• (ε, δ): �e di�erential privacy parameters for the protocol. We require δ to be negligible in λ.

• (ε, δ): �e accuracy of the output of the protocol, relative to the output of the sketch (i.e., the addi-
tional accuracy error on top of the original error of the sketch).

We further require the following relationship among the parameters:

ε̃/(1− ε̃) ≤ (ε− ε2/2) · ε
4 ln(2/δ)

− ∆f

2 min(f)
,

We next present the main theorem of this section, which states the accuracy, privacy, and e�ciency pa-
rameters of our protocol, in terms of the above parameters.

24

Input: Each party Pi for i ∈ [N] inputs a sequence Xi of elements, i.e., Xi = (x1i , x
2
i , . . .). Also, a

budget ε for di�erential privacy is speci�ed.

Output: An approximation for some N -input function f(X1, . . . , XN).

1. Choose seed← {0, 1}λ

2. Computes Si = Sketch(Xi) algorithm using H(seed||·) as a random oracle (the random oracle is
also used to generate any additional randomness necessary for constructing the sketch).

3. Generate noise e′i := (∆S/ε) · (ai − bi), where ai and bi are i.i.d. random variables drawn from
the Gamma distribution Γ(2/N, 1), using randomness ri for sampling. Let ei = 2e

′
i .

4. Compute y′ = Evaluate(Merge(S1, . . . , SN)).

5. To each party i ∈ [N], output y = y′ · (Πn
i=1ei) as well as their randomness ri.

Figure 8: Ideal Functionality F for Distributed Sketch Framework.

�eorem7.7. For parameters (ε̃, δ̃), (ε, δ), (ε, δ) satisfying the above requirements, the protocolΠPrivateSketch

in Figure 7 is a distributed private sketch secure against a semi-honest adversary controlling any coalition C ,
with |C| < N/2, with the following properties:

1. Accuracy: ΠPrivateSketch is a (ε+ ε̃+ ε · ε̃, δ + δ̃)-approximation of f .

2. Privacy: ΠPrivateSketch achieves (ε, δ)- di�erential privacy

3. Run time: �e run time depends only on the size of CMerge and CEvaluateMech and is independent of the
size of the input.

Proof. We prove �eorem 7.7 following the proof outline given in �eorem 3.5. First, we de�ne an ideal
functionality in Figure 8 and show that this functionality achieves ε-di�erential privacy. �en, we show
that our protocol securely realizes this functionality against any coalition C of size at most t < N/2.

We consider an intermediate hybrid model, where the MPC protocol in Figure 7, that takes as input
(S1, . . . , SN), (e1, . . . , eN), computes y′ = Evaluate(Merge(S1, . . . , SN)) and outputs y = y′·(Πn

i=1ei)
∆S/ε

to each party is replaced with an ideal functionality FMerge.
Di�erential privacy of the ideal world. We �rst show that the ideal functionality described in Figure 8.
�e di�erential privacy of the ideal follows from the global sensitivity and di�erential privacy of Laplace
mechanism.

We assume that the adversary corrupts a coalition C s.t. |C| = N/2 to simplify our notation. Di�er-
ential privacy in the case that there are fewer corruptions follows immediately. Recall that the view of the
adversary in the Ideal world consists of the output y, as well as the randomness [ri]Pi∈C and the seed seed.
We therefore analyze di�erential privacy, conditioned on a �xed seed and �xed values of [ri]Pi∈C , from
which the values of [ei]Pi∈C and [e′i]Pi∈C (where e′i = log(ei)) can be derived.

Consider two C-neighboring inputs X = (X1, . . . , XN), X ′ = (X ′1, . . . , X
′
N) leading to two sets of

sketches (S1, . . . , SN), (S′1, . . . , S
′
N). Let

g(X) := Evaluate(Merge(S1, . . . , SN))

g(X ′) := Evaluate(Merge(S′1, . . . , S
′
N)).

25

Since S(X1, . . . , XN) = Merge(S1, . . . , SN) and S(X ′1, . . . , X
′
N) = Merge(S′1, . . . , S

′
N), by de�nition of

∆S, we have that with all but negligible probability (over the randomness of the sketch)

| log g(X)− log g(X ′)| ≤ ∆S. (3)

Let y be some outcome of the functionality F . Note that log(y) is fully determined given y and vice
versa. We therefore consider the probability of obtaining a given value of log(y), conditioned on �xed seed
and [ei]i∈S , when the input is X versus X ′. Let log′(y) = log(y)−

∑
i/∈S e

′
i.

If the input is X , then the probability of obtaining outcome log′(y) is the probability that
∑

i∈S e
′
i =

log′(y)− log g(X). Since
∑

i∈S e
′
i is distributed as Laplace(0,∆S/ε), this is equivalent to the probability

of log′(y)− log g(X) under the corresponding PDF:

pX := Lap

(
log′(y)− log g(X)

∣∣∣∣∆Sε
)

=
ε

2∆S
· e−ε·

log′(y)−log g(X)
∆S .

Similarly, if the input is X ′, then the probability of obtaining outcome log′(y) is

pX′ := Lap

(
log′(y)− log g(X ′)

∣∣∣∣∆Sε
)

=
ε

2∆S
· e−ε·

log′(y)−log g(X′)
∆S .

Using (3) we can upperbound the ratio pX
pX′

by

exp

(
−ε · log′(y)− log g(X)

∆S
+ ε · log′(y) + log g(X ′)

∆S

)
= exp

(
ε · log g(X)− log g(X ′)

∆S

)
≤ exp(ε).

�us, we obtain the desired result that the ideal functionality achieves (ε, δ = negl(λ))-di�erential privacy.
Protocol realizes F in the FMerge-hybrid model. We now show that, once the MPC subprotocol in Fig-
ure 7 is replaced with the Ideal functionalityFMerge, we securely realize functionalityF , given in Figure 8.

We present a simulator Sim for the semi-honest case with less than N/2 corruptions. Let S ⊆ [N]
be the set of uncorrupted parties and S ⊆ [N] be the set of corrupted parties. For each of the corrupted
parties, Sim receives their input stream Xi, i ∈ S . Sim invokes F with inputs [Xi]i∈S , receiving back
(y, seed, ri). Sim sets the random tape of each corrupted party Pi to contain the randomness ri returned
by the ideal functionality, and chooses the rest of the tape uniformly at random. Sim uses the internal
states of the corrupted parties to compute seedi, i ∈ S . Sim chooses random seedi, i ∈ S (i.e. the values
for the uncorrupted parties) such that seed = ⊕ni=1seedi. Sim instantiates the corrupted parties and plays
the part of the uncorrupted parties in the protocol by sending seedi, i ∈ S to the corrupted parties. If Sim
receives a random oracle query from a corrupted party, Sim forwards the query to the random oracle, and
returns the response to the corrupted party.1 When Sim receives [(Si, ei)]i∈S from the corrupted parties

1Note that Sim does not program the random oracle in our security proof.

26

as input to FMerge, Sim returns y to the corrupted parties. Finally, Sim outputs the view of the corrupted
parties.

It is straightforward to verify that the joint distribution over the output of Sim and the output of the
honest parties in the ideal F-model is identical to the joint distribution over the view of the corrupted
parties and the output of the honest parties in the FMerge-hybrid model.
Accuracy of the Protocol. To achieve (ε̃+ ε+ ε̃ε, δ̃ + δ)-accuracy, we need to ensure (ε, δ)-accuracy of
the outcome of the added noise. �erefore, le�ing α := GS(S)

ε , we must ensure that

Pr

∣∣∣∣∣∣α ·
∑
i∈[N]

ei

∣∣∣∣∣∣ > log(1 + ε)

 ≤ δ.
Note the above is upperbounded by the following probability:

Pr

∣∣∣∣∣α∑
i∈S

ei

∣∣∣∣∣ > log(1 + ε)

2
or

∣∣∣∣∣∣α
∑
i∈S

ei

∣∣∣∣∣∣ > log(1 + ε)

2

 .
�erefore, it is su�cient to ensure that the probability that a Laplacian random variable Laplace(0, ∆S

ε)
has magnitude greater than log(1 + ε)/2 is bounded by δ/2. Using the CDF for the Laplacian, we thus
require that

e−
log(1+ε)·ε

2∆S ≤ δ/2 (4)

Equivalently,

log(1 + ε) · ε
2∆S

≥ ln(2/δ). (5)

We next bound the le� side of (5):

log(1 + ε) · ε
2 log(1 + 2ε̃/(1− ε̃)) + 2 log(1 + ∆S/min(f))

=
ln(1 + ε) · ε

2 ln(1 + 2ε̃/(1− ε̃)) + 2 ln(1 + ∆S/min(f))

≥ (ε− ε2/2) · ε
4ε̃/(1− ε̃) + 2∆S/min(f)

.

We used two inequalities, i.e., ln(1 + x) ≥ x− x2/2 and (1 + x) ≤ ex in the above. �us, se�ing

ε̃/(1− ε̃) ≤ (ε− ε2/2) · ε
4 ln(2/δ)

− ∆S

2 min(f)
, (6)

we obtain the desired accuracy.

Example of a concrete instantiation. We brie�y describe the resulting parameter se�ings when instan-
tiating our framework with the LogLog sketch. Note that the concrete parameters in the previous section
beat the parameters described here and we present these parameters se�ings for illustrative purposes only.

27

Assuming that our underlying LogLog sketch implementation achieves ε̃ := 0.01 and negligible δ̃ by ap-
plying Lemma 7.6 (i.e., the size of sketch will blow up byO(λ) times). We set ε := 0.09 and δ = 0.1, which
means that our �nal accuracy of the MPC output is within about 10% accuracy with 90% probability. We
also assume that min(f) ≥ 1000, since we assume that at least one of the parties inputs a set of size at
least 1000 (otherwise we are not in the big-data se�ing). Moreover, ∆f = 1. For these se�ings, we can
achieve (ε, δ)-di�erential privacy, where δ is negligible as long as ε satis�es:

0.01/(1− 0.01) ≤ (0.09− 0.092/2) · ε
4 ln(2/0.1)

− 1

2000
.

�us, we may set ε ≈ 1.5.

7.1 Example Instantiations

To justify the usefulness of our general framework we show that several well-known sketching algorithms
satisfy its requirements.
LogLog sketch. �e �rst sketching algorithm we consider is the LogLog sketch studied in the previous
sections (See Figure 1). We observe that the Sketch algorithm can be computed locally a�er the seed for
H is chosen, so each party Pi can build a sketch Si of his own data. Next, the Merge algorithm (given
in Section 6) computes the max value (among N values) for each of its K counters. �is can be done in
linear time in the number of counters, K , and the number of parties N . Importantly, this is far less than
the total number of input values. Finally, the Evaluate method computes α ·K · 2u/K , which has a cost
independent of the input size. �us, the LogLog sketch can be plugged into our framework to achieve a
distributed private variant. We also note that the global sensitivity of the unique count function is 1. So,
if we require that all possible inputs have above a certain number of minimum elements, the noise added
(∆S/min(f)) is quite small.

We note however, that the protocol resulting from this general framework has worse parameters than
the optimized protocol presented earlier (See Section 6). Furthermore, the optimized variant allows a hash
function to be chosen once and for all, allowing for repeated input phases, whereas the general framework
requires that inputs be �xed before the hash function is �xed to prevent the adversary �nding a “bad” hash
input.
AMS sketch. We next consider the well-known Alon-Matias-Szegedy (AMS) sketch [5] for approximating
the L2-norm of the frequency vector of a stream of data items. Brie�y, for a universe of size m, the AMS
sketch chooses k vectors (rj1, . . . , r

j
m), j ∈ [k] independently with Pr[rji = 1] = Pr[rji = −1] = .5 (these

can be chosen using the hash function H and do not need to be stored). Next upon observing streaming
values xi, Sketch computes Zj =

∑
rjixi, j ∈ [k]. Note that this sketch is linear and thus mergeable.

Finally, the Evaluate procedure simply computes
∑

j∈[k](Z
j)2.

JL Transform. �e Johnson-Lindenstrauss Transform (JLT) is an important tool in the sketching litera-
ture [45]. It is a linear sketching algorithm that can be used to embed a high dimensional space into a low
dimensional space, while preserving pairwise distances. It has many applications (cf. [58, 3, 20]), including
providing another method for approximating the L2 norm of a frequency vector of a stream of data items.
Since the sketch is linear, it is trivially mergeable.

Let X be a high dimensional (dimension n) vector corresponding to the frequency vector of a stream
of data items. To compute the transform on a vector X , one samples a matrix Π ∈ Rm×n, where m � n
and outputs ΠX . �e product ΠX can be computed in a streaming fashion, since the columns of Π can be
sampled on-the-�y. �e dimension m of the resulting sketch depends on the desired (ε̃, δ̃)-accuracy, but

28

does not depend on the dimension n of the original data. �ere are various ways to sample Π, we present
one such method:

De�nition 7.8 (JL Transform ((ε̃, δ̃, N)-JLT)). LetX ∈ Rn be a �nite set with |X| = N . A random matrix
Π ∈ Rm×n is called Johnson-Lindenstrauss Transform ((ε̃, δ̃, N)-JLT), if for all unit norm vectors x,x′ ∈ X
following holds with probability at least 1− δ̃:

‖Πx‖2 = (1± ε) and, ‖Π(x + x′)‖2 = (1± ε̃)‖(x + x′)‖2.

�eorem 7.9 (Originally in [41]). LetΠ be the scaled matrix (multiply by 1√
m
) with i.i.d. standard Gaussian

random variables and ε̃, δ̃ ∈ (0, 1). Ifm = Ω
((

1
ε̃2

) (
logN

δ̃

))
, then Π is (ε̃, δ̃, N)-JLT.

�ere have been results showing that various forms of the JL transform are di�erentially private, with-
out addition of noise to the output [14, 61, 67]. It may therefore seem that the techniques provided by our
framework are redundant for the above application. However, we emphasize that those results hold only
when the JLT matrix Π is private. Di�erential privacy does not hold if the matrix Π is publicly released. In
our distributed se�ing, all parties must use the same JLT matrix Π in order for the sketches to be merge-
able. �erefore, we must assume that the JLT matrix Π is public and those prior results do not hold. �is
is why addition of noise via an MPC protocol is necessary in our se�ing.

References

[1] Gail-Joon Ahn, Moti Yung, and Ninghui Li, editors. ACM CCS 14. ACM Press, November 2014.

[2] Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. Analyzing graph structure via linear measure-
ments. In Yuval Rabani, editor, 23rd SODA, pages 459–467. ACM-SIAM, January 2012.

[3] Nir Ailon and Bernard Chazelle. �e fast johnson–lindenstrauss transform and approximate nearest
neighbors. SIAM Journal on computing, 39(1):302–322, 2009.

[4] Mohammad Alaggan, Mathieu Cunche, and Sébastien Gambs. Privacy-preserving wi-� analytics.
Proceedings on Privacy Enhancing Technologies, 2018(2):4–26, 2018.

[5] Noga Alon, Yossi Matias, and Mario Szegedy. �e space complexity of approximating the frequency
moments. J. Comput. Syst. Sci., 58(1):137–147, 1999.

[6] M. Arli� and T. Jin. 1998 world cup web site access logs, August 1998. Available at
h�p://www.acm.org/sigcomm/ITA/.

[7] Vikas G. Ashok and Ravi Mukkamala. A scalable and e�cient privacy preserving global itemset
support approximation using bloom �lters. InData and Applications Security and Privacy XXVIII - 28th
Annual IFIP WG 11.3 Working Conference, DBSec 2014, Vienna, Austria, July 14-16, 2014. Proceedings,
pages 382–389, 2014.

[8] Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, D. Sivakumar, and Luca Trevisan. Counting distinct ele-
ments in a data stream. In Randomization and Approximation Techniques, 6th International Workshop,
RANDOM 2002, Cambridge, MA, USA, September 13-15, 2002, Proceedings, pages 1–10, 2002.

29

[9] Johes Bater, Xi He, William Ehrich, Ashwin Machanavajjhala, and Jennie Rogers. Shrinkwrap: e�-
cient sql query processing in di�erentially private data federations. Proceedings of the VLDB Endow-
ment, 12(3):307–320, 2018.

[10] Joshua D. Batson, Daniel A. Spielman, and Nikhil Srivastava. Twice-ramanujan sparsi�ers. SIAM
Review, 56(2):315–334, 2014.

[11] Amos Beimel, Kobbi Nissim, and Eran Omri. Distributed private data analysis: Simultaneously solv-
ing how and what. In David Wagner, editor, CRYPTO 2008, volume 5157 of LNCS, pages 451–468.
Springer, Heidelberg, August 2008.

[12] András A. Benczúr and David R. Karger. Approximating s-t minimum cuts in Õ(n2) time. In 28th
ACM STOC, pages 47–55. ACM Press, May 1996.

[13] Lakshminath Bhuvanagiri and Sumit Ganguly. Estimating entropy over data streams. In Algorithms -
ESA 2006, 14th Annual European Symposium, Zurich, Switzerland, September 11-13, 2006, Proceedings,
pages 148–159, 2006.

[14] Jeremiah Blocki, Avrim Blum, Anupam Da�a, and Or She�et. �e johnson-lindenstrauss transform
itself preserves di�erential privacy. In 53rd FOCS, pages 410–419. IEEE Computer Society Press,
October 2012.

[15] Moses Charikar, Kevin C. Chen, and Martin Farach-Colton. Finding frequent items in data streams.
�eor. Comput. Sci., 312(1):3–15, 2004.

[16] Graham Cormode and S. Muthukrishnan. An improved data stream summary: the count-min sketch
and its applications. J. Algorithms, 55(1):58–75, 2005.

[17] Michael S. Crouch and Andrew McGregor. Periodicity and cyclic shi�s via linear sketches. In Ap-
proximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques - 14th In-
ternational Workshop, APPROX 2011, and 15th International Workshop, RANDOM 2011, Princeton, NJ,
USA, August 17-19, 2011. Proceedings, pages 158–170, 2011.

[18] Damien Desfontaines, Andreas Lochbihler, and David A. Basin. Cardinality estimators do not pre-
serve privacy. PoPETs, 2019(2):26–46, 2019.

[19] Roger Dingledine, Nick Mathewson, and Paul F. Syverson. Tor: �e second-generation onion router.
In Proceedings of the 13th USENIX Security Symposium, August 9-13, 2004, San Diego, CA, USA, pages
303–320, 2004.

[20] Petros Drineas, Michael W Mahoney, S Muthukrishnan, and Tamás Sarlós. Faster least squares ap-
proximation. Numerische mathematik, 117(2):219–249, 2011.

[21] Marianne Durand and Philippe Flajolet. Loglog counting of large cardinalities (extended abstract). In
Algorithms - ESA 2003, 11th Annual European Symposium, Budapest, Hungary, September 16-19, 2003,
Proceedings, pages 605–617, 2003.

[22] Zakir Durumeric, James Kasten, Michael Bailey, and J. Alex Halderman. Analysis of the HTTPS
certi�cate ecosystem. In Proceedings of the 13th Internet Measurement Conference, October 2013.

30

[23] Cynthia Dwork. Di�erential privacy (invited paper). In Michele Bugliesi, Bart Preneel, Vladimiro
Sassone, and Ingo Wegener, editors, ICALP 2006, Part II, volume 4052 of LNCS, pages 1–12. Springer,
Heidelberg, July 2006.

[24] Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, and Moni Naor. Our data,
ourselves: Privacy via distributed noise generation. In Serge Vaudenay, editor, EUROCRYPT 2006,
volume 4004 of LNCS, pages 486–503. Springer, Heidelberg, May / June 2006.

[25] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensitivity in
private data analysis. In Shai Halevi and Tal Rabin, editors, TCC 2006, volume 3876 of LNCS, pages
265–284. Springer, Heidelberg, March 2006.

[26] Cynthia Dwork and Aaron Roth. �e algorithmic foundations of di�erential privacy. Foundations
and Trends in �eoretical Computer Science, 9(3-4):211–407, 2014.

[27] Rolf Egert, Marc Fischlin, David Gens, Sven Jacob, Ma�hias Senker, and Jörn Tillmanns. Privately
computing set-union and set-intersection cardinality via bloom �lters. In Information Security and
Privacy - 20th Australasian Conference, ACISP 2015, Brisbane, QLD, Australia, June 29 - July 1, 2015,
Proceedings, pages 413–430, 2015.

[28] Tariq Elahi, George Danezis, and Ian Goldberg. PrivEx: Private collection of tra�c statistics for
anonymous communication networks. In Ahn et al. [1], pages 1068–1079.

[29] Úlfar Erlingsson, Vasyl Pihur, and Aleksandra Korolova. RAPPOR: Randomized aggregatable privacy-
preserving ordinal response. In Ahn et al. [1], pages 1054–1067.

[30] David Evans, Vladimir Kolesnikov, and Mike Rosulek. A pragmatic introduction to secure multi-party
computation. Foundations and Trends in Privacy and Security, 2(2-3):70–246, 2018.

[31] Joan Feigenbaum, Yuval Ishai, Tal Malkin, Kobbi Nissim, Martin J. Strauss, and Rebecca N. Wright.
Secure multiparty computation of approximations. ACM Trans. Algorithms, 2(3):435–472, 2006.

[32] Ellis Fenske, Akshaya Mani, Aaron Johnson, and Micah Sherr. Distributed measurement with private
set-union cardinality. In Bhavani M. �uraisingham, David Evans, Tal Malkin, and Dongyan Xu,
editors, ACM CCS 17, pages 2295–2312. ACM Press, October / November 2017.

[33] Philippe Flajolet, Eric Fusy, Olivier Gandouet, and Frederic Meunier. Hyperloglog: �e analysis
of a near-optimal cardinality estimation algorithm. In IN AOFA 2007: PROCEEDINGS OF THE 2007
INTERNATIONAL CONFERENCE ON ANALYSIS OF ALGORITHMS, 2007.

[34] Philippe Flajolet and G. Nigel Martin. Probabilistic counting algorithms for data base applications. J.
Comput. Syst. Sci., 31(2):182–209, 1985.

[35] Michael J. Freedman, Yuval Ishai, Benny Pinkas, and Omer Reingold. Keyword search and oblivi-
ous pseudorandom functions. In Joe Kilian, editor, TCC 2005, volume 3378 of LNCS, pages 303–324.
Springer, Heidelberg, February 2005.

[36] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A completeness
theorem for protocols with honest majority. In Alfred Aho, editor, 19th ACM STOC, pages 218–229.
ACM Press, May 1987.

31

[37] Chun Guo, Jonathan Katz, Xiao Wang, and Yu Yu. E�cient and secure multiparty computation from
�xed-key block ciphers. To appear in IEEE S&P, 2020.

[38] Shai Halevi, Robert Krauthgamer, Eyal Kushilevitz, and Kobbi Nissim. Private approximation of NP-
hard functions. In 33rd ACM STOC, pages 550–559. ACM Press, July 2001.

[39] Stefan Heule, Marc Nunkesser, and Alexander Hall. Hyperloglog in practice: algorithmic engineering
of a state of the art cardinality estimation algorithm. In Joint 2013 EDBT/ICDT Conferences, EDBT ’13
Proceedings, Genoa, Italy, March 18-22, 2013, pages 683–692, 2013.

[40] Piotr Indyk. Stable distributions, pseudorandom generators, embeddings, and data stream computa-
tion. J. ACM, 53(3):307–323, 2006.

[41] Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: Towards removing the curse of
dimensionality. In 30th ACM STOC, pages 604–613. ACM Press, May 1998.

[42] Piotr Indyk and David P. Woodru�. Optimal approximations of the frequency moments of data
streams. In Harold N. Gabow and Ronald Fagin, editors, 37th ACM STOC, pages 202–208. ACM Press,
May 2005.

[43] Rob Jansen and Aaron Johnson. Safely measuring tor. In Edgar R. Weippl, Stefan Katzenbeisser,
Christopher Kruegel, Andrew C. Myers, and Shai Halevi, editors, ACM CCS 16, pages 1553–1567.
ACM Press, October 2016.

[44] Rajesh Jayaram and David P. Woodru�. Perfect lp sampling in a data stream. In 59th IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2018, Paris, France, October 7-9, 2018, pages
544–555, 2018.

[45] William B Johnson and Joram Lindenstrauss. Extensions of lipschitz mappings into a hilbert space,
1984.

[46] Shiva Prasad Kasiviswanathan, Homin K. Lee, Kobbi Nissim, Sofya Raskhodnikova, and Adam Smith.
What can we learn privately? In 49th FOCS, pages 531–540. IEEE Computer Society Press, October
2008.

[47] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography. Chapman and Hall/CRC
Press, 2007.

[48] Changchang Liu, Prateek Mi�al, and Supriyo Chakraborty. Dependence makes you vulnberable:
Di�erential privacy under dependent tuples. In NDSS 2016 [55].

[49] Yang Liu, Wenji Chen, and Yong Guan. Identifying high-cardinality hosts from network-wide tra�c
measurements. IEEE Trans. Dependable Sec. Comput., 13(5):547–558, 2016.

[50] Frank McSherry and Kunal Talwar. Mechanism design via di�erential privacy. In 48th FOCS, pages
94–103. IEEE Computer Society Press, October 2007.

[51] Luca Melis, George Danezis, and Emiliano De Cristofaro. E�cient private statistics with succinct
sketches. In NDSS 2016 [55].

32

[52] Ilya Mironov, Omkant Pandey, Omer Reingold, and Salil P. Vadhan. Computational di�erential pri-
vacy. In Shai Halevi, editor, CRYPTO 2009, volume 5677 of LNCS, pages 126–142. Springer, Heidelberg,
August 2009.

[53] Morteza Monemizadeh and David P. Woodru�. 1-pass relative-error lp-sampling with applications.
In Moses Charika, editor, 21st SODA, pages 1143–1160. ACM-SIAM, January 2010.

[54] Suman Nath, Phillip B. Gibbons, Srinivasan Seshan, and Zachary R. Anderson. Synopsis di�usion for
robust aggregation in sensor networks. TOSN, 4(2):7:1–7:40, 2008.

[55] NDSS 2016. �e Internet Society, February 2016.

[56] Aleksandar Nikolov, Kunal Talwar, and Li Zhang. �e geometry of di�erential privacy: the sparse
and approximate cases. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors, 45th ACM
STOC, pages 351–360. ACM Press, June 2013.

[57] Nikos Ntarmos, Peter Trianta�llou, and Gerhard Weikum. Counting at large: E�cient cardinality
estimation in internet-scale data networks. In Proceedings of the 22nd International Conference on
Data Engineering, ICDE 2006, 3-8 April 2006, Atlanta, GA, USA, page 40, 2006.

[58] Tamás Sarlós. Improved approximation algorithms for large matrices via random projections. In 47th
FOCS, pages 143–152. IEEE Computer Society Press, October 2006.

[59] Berry Schoenmakers. Mpyc - secure multiparty computation in python. GitHub, 2018.
h�ps://github.com/lschoe/mpyc.

[60] Adam Sealfon. Shortest paths and distances with di�erential privacy. In Proceedings of the 35th ACM
SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, PODS 2016, San Francisco, CA,
USA, June 26 - July 01, 2016, pages 29–41, 2016.

[61] Or She�et. Di�erentially private ordinary least squares. In Proceedings of the 34th International
Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017, pages 3105–
3114, 2017.

[62] Elaine Shi, T.-H. Hubert Chan, Eleanor G. Rie�el, and Dawn Song. Distributed private data analysis:
Lower bounds and practical constructions. ACM Trans. Algorithms, 13(4):50:1–50:38, 2017.

[63] Daniel A. Spielman and Shang-Hua Teng. Nearly-linear time algorithms for graph partitioning, graph
sparsi�cation, and solving linear systems. In László Babai, editor, 36th ACM STOC, pages 81–90. ACM
Press, June 2004.

[64] Daniel A. Spielman and Shang-Hua Teng. Spectral sparsi�cation of graphs. SIAM J. Comput.,
40(4):981–1025, 2011.

[65] �omas To�. Primitives and applications for multi-party computation. PhD thesis, Aarhus Universitet,
Denmark, 2007.

[66] Florian Tschorsch and Björn Scheuermann. An algorithm for privacy-preserving distributed user
statistics. Computer Networks, 57(14):2775–2787, 2013.

33

[67] Jalaj Upadhyay. Di�erentially private linear algebra in the streaming model. CoRR, abs/1409.5414,
2014.

[68] Ryan Wails, Aaron Johnson, Daniel Starin, Arkady Yerukhimovich, and S. Dov Gordon. Stormy:
Statistics in tor by measuring securely. In Proceedings of the 2019 ACM SIGSACConference on Computer
and Communications Security, CCS 2019, London, UK, November 11-15, 2019, pages 615–632, 2019.

[69] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In 27th FOCS,
pages 162–167. IEEE Computer Society Press, October 1986.

34

