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Abstract—Many studies focus on the blockchain privacy pro-
tection. Unfortunately, the privacy protection brings regulato-
ry issues (e.g., countering money-laundering). Tracing users’
identities is a critical step in addressing blockchain regulatory
issues. In this paper, we propose SkyEye, a traceable scheme
for blockchain. SkyEye can be applied to the blockchain appli-
cations that satisfy the following conditions: (I) The users have
public and private information, where the public information
is generated by the private information; (II) The users’ public
information is disclosed in the blockchain data. SkyEye enables
the regulator to trace users’ identities. The design of SkyEye
leverages some cryptographic primitives, including chameleon
hash and zero-knowledge succinct non-interactive arguments of
knowledge (zk-SNARK). Moreover, we demonstrate the security
of SkyEye under specific cryptographic assumptions. Finally, we
implement two prototypes of SkyEye, and evaluate the running
time and related data storage requirements by performing the
aforementioned prototypes.

I. INTRODUCTION

The blockchain was first introduced in Bitcoin [29], and
quickly became the supporting technology of decentralized
cryptocurrencies such as Litecoin [1], PPcoin [23], and
Nextcoin [3]. The blockchain integrates multiple technologies
(e.g., cryptography and peer-to-peer networking) and includes
a variety of features: distributed, decentralized, anonymity,
transparency, and so on. Today, the blockchain is not only
applied in decentralized cryptocurrencies, but also has broad
applications in other fields, including defense, finance, and
smart contract.

The blockchain can be considered a distributed database that
only appends data (e.g., transactions). The data is stored in the
block that contains the block header and block body. Every
block header includes the hash of the previous block, forming a
chain. The strategy of appending a block to the blockchain uses
a consensus mechanism such as proof of work (POW) [29],
proof of stake (POS) [6], [14], [22], or practical byzantine fault
tolerance (PBFT) [11]. In many blockchain applications, every
user generally has public/private information (e.g., the public
key address and the signature private key for each user in
Bitcoin [29], more details about the public/private information
are described in Section II-A).

Many studies focus on the blockchain privacy protection [8],
[32]. Unfortunately, the privacy protection brings regulatory
issues. On one hand, if a user’s private information is lost
or stolen, the user loses control of the data corresponding to
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the private information forever. For example, if the Bitcoin’s
user loses the signature private keys in his wallet, there is
no way to recover the coins in this wallet. In other words,
the user loses the coins controlled by these signature private
keys forever. On the other hand, strong privacy protection
in the blockchain facilitates many criminal activities (e.g.,
ransomware [2], money laundering). CipherTrace’s second
quarter 2019 cryptocurrency anti-money laundering report
shows that the total amount of funds that cybercriminals
directly steal, scam, and misappropriate from users and trading
platforms is approximately $4.3 billion in aggregate for 2019.
These regulatory issues not only present a serious threat to
the interests of users, but also have seriously hindered the
development and application of the blockchain.

We stress that tracing users’ identities is a critical step in
addressing blockchain regulatory issues. When each user’s
identity in the blockchain data is determined, the regulator
can conduct some regulatory operations (such as Big Data
analysis) to decide who should be punished or who should own
the lost data. Although there has been progress in designing
traceable mechanisms, such as zkLedger [30] and several
others [5], [15], [18], [21], these approaches are designed for
specific application environments and do not seem to have
been extended to other applications; see Section VIII for more
details.

A. Contributions

The main contributions of this paper are the following.
First, we introduce the notion of a traceable scheme for

blockchain and formalize the security properties to be satisfied,
namely identity proof indistinguishability and identity proof
unforgeability.

Second, we propose SkyEye, a traceable scheme for
blockchain. SkyEye can be applied to the blockchain appli-
cations that satisfy the following conditions: (I) The users
have public and private information, where the public in-
formation is generated by the private information; (II) The
users’ public information is disclosed in the blockchain data.
These blockchain applications are called the SkyEye-friendly
blockchain applications. SkyEye requires the user to register
only once, and enables the regulator to trace users’ identities.
In our design strategy, we add identity proofs, associated
with the users’ private information, to the blockchain data.
SkyEye is designed by using some cryptographic primitives
(including chameleon hash [25] and zk-SNARK [19]). In
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addition, we demonstrate the security of SkyEye under specific
cryptographic assumptions.

Finally, we implement two prototypes of SkyEye:
SkyEyeH and SkyEyeS . These correspond to the two pri-
mary ways of generating public and private information in the
blockchain applications. The first way is through a pseudoran-
dom function, and the second way is using elliptic curve scalar
multiplication. We evaluate the running time and related data
storage requirements by performing SkyEyeH and SkyEyeS .
Our evaluation results illustrate that using an i7 processor, a
16 GB RAM desktop machine, and a Merkle tree depth of 34,
the time taken by a verifier to verify a user’s identity proof
is nearly 4.6 ms in the first way and less than 25 ms in the
second way.

B. Paper Organization

The remainder of this paper is organized as follows. Section
II provides the background. Section III provides key ideas
in SkyEye design and an overview of SkyEye. Section IV
defines the algorithm and security of the traceable scheme for
blockchain. Section V details SkyEye. Section VI describes
our implementation and the evaluation results. We discuss
remaining issues of SkyEye and future work in Section VII.
We discuss related work in Section VIII and summarize this
paper in Section IX.

II. BACKGROUND

A. SkyEye-friendly blockchain applications

We use BsBsBs to denote SkyEye-friendly blockchain applica-
tions. Next, we describe the blockchain data in BsBsBs and an
overview of BsBsBs.

1) The Blockchain Data in BsBsBs: BsBsBs satisfies two conditions:
(I) The users have public and private information, where the
public information is generated by the private information; (II)
The users’ public information is disclosed in the blockchain
data.

We use equation pub = gen(priv) to describe the gen-
eration relation in the condition (I), where pub denotes the
public information, priv denotes the private information, and
gen(·) denotes the generation algorithm between pub and
priv, which has one-wayness, i.e., it is easy to compute
pub using the private information priv but is hard to invert.
In many blockchain applications, every user generally has
private information that corresponds to public information.
For example, the public key address and the signature private
key in Bitcoin [29] are the user’s public/private information.
In Zerocash [8], (sn, (ask, ρ)) is the user’s public/private
information, where sn is the serial number, ask is the address
private key, and ρ is the random number used to generate
the serial number. The public information is generated by the
private information via a cryptographic method, such as the
pseudorandom function, or elliptic curve scalar multiplication.

According to the condition (II), the blockchain data in BsBsBs

can be divided into two parts: one part is the users’ public
information, such as the input/output addresses in Bitcoin
[29], and the other part is the data contents, such as the
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Fig. 1: Overview of BsBsBs.

payment amount and the executable contract code. Therefore,
the blockchain data in BsBsBs can be represented as the equation
dataBs
dataBsdataBs

= [(pubi)i∈{1,...,n}, C]crytool, where (pubi)i∈{1,...,n}
denotes the set of the users’ public information, n is the
number of the users’ public information in the blockchain data,
C denotes the data contents, and crytool denotes the crypto-
graphic tools (e.g., digital signature) that guarantee blockchain
features such as tamper-resistance and privacy protection.

For example, Bitcoin [29], Ethereum [34], and RScoin [13]
are the applications that belong to BsBsBs. In these blockchain ap-
plications, the public key address and the signature private key
are the user’s public/private information, where the public key
address is generated by the signature private key. Moreover,
the user’s public key address is disclosed in the blockchain
data.

2) BsBsBs: An overview of BsBsBs is shown in Figure 1. In (1) and
(2), the user generates the (pub, priv), and publishes pub to
the node network. In (3), for creating data, the user obtains
others’ (pubi)i∈{1,...,n−1} from the node network. In (4), the
user creates dataBs

dataBsdataBs = [(pubi)i∈{1,...n}, C]crytool, where the
pubn denotes the user’s pub, and publishes dataBs

dataBsdataBs to the node
network. In (5) and (6), a verifier receives dataBs

dataBsdataBs from the
node network and verifies data contents. If the verification is
successful, dataBs

dataBsdataBs is valid and is added to the block generated
by the verifier. In (7), the block is published in the node
network by the verifier. In (8), according to a consensus
mechanism, the nodes in the network select a final block and
add it to the blockchain.

B. Cryptographic Preliminaries

The cryptographic building blocks in our construction in-
clude the following: chameleon hash scheme, zk-SNARK, and
public key encryption. Below, we informally describe these
notions.
Chameleon hash scheme. Compared with the tradition-
al hash scheme, the chameleon hash scheme has a spe-
cial property: the user who knows the trapdoor can eas-
ily find collision. A chameleon hash scheme Chash =
(Gchash,Kchash,Hchash, CFchash) is described below:
• Gchash(λ) → ppchash. Given a security parameter λ,

Gchash returns the public parameters ppchash.
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• Kchash(ppchash) → (pkchash, skchash). Given the public
parameters ppchash, Kchash returns a pair of public/private
keys (pkchash, skchash), where skchash is also known as the
trapdoor.

• Hchash(pkchash,m, r) → CH . Given the public key
pkchash, a message m, and a random number r, Hchash returns
a chameleon hash CH about m.

• CFchash(skchash,m,m′, r) → r′. Given the trapdoor
skchash, two messages m,m′, and the random number
r, CFchash returns r′ such that Chash(pkchash,m, r) =
Chash(pkchash,m

′, r′).
A chameleon hash scheme satisfies three secure properties:

(i) collision resistance; (ii) trapdoor collision; and (iii) seman-
tic security. More details are available in [4], [25].

There is a relationship between the public key pkchash and
the trapdoor skchash, which we refer to as the generation
relationship. As in [25], the ppchash = (p, q, g), where p, q
are prime numbers such that p = kq+1, and the order of g is
q in Z∗

p. The public key pkchash = h is computed as follows:
h = gx mod p, where x ∈ Z∗

q is the trapdoor. Let equation
pkchash = chash gen(skchash) describe this relation, where
chash gen(·) denotes the generation algorithm between the
pkchash and the skchash.
Zero-knowledge succinct non-interactive arguments of
knowledge. Let RAC = {(x,w) ∈ Fn ×Fh|AC(x,w) = 0l}
be an NP relation, where F denotes a finite field, and AC :
Fn ×Fh → Fl denotes an F-arithmetic circuit. The language
for RAC is LAC = {x ∈ Fn|∃w ∈ Fh s.t. AC(x,w) = 0l}.
A zk-SNARK scheme NIZK = (Knizk,Pnizk,Vnizk) corre-
sponds to the language LAC , which is described below:

• Knizk(λ,AC) → (pk, vk). Given a security parameter
λ and an F-arithmetic circuit AC, Knizk returns a pair of
proving/verification keys (pk, vk).

• Pnizk(pk, x, w) → π. Given the proving key pk, a
statement x, and a witness w, Pnizk returns a proof π for
a statement x using a witness w.

• Vnizk(vk, x, π) → {0, 1}. Given the verification key vk,
the statement x, and the proof π, Vnizk returns 1 if verification
succeeds, or 0 if verification fails.

A zk-SNARK scheme satisfies five secure properties: (i)
completeness; (ii) soundness; (iii) succinctness; (iv) proof of
knowledge; and (v) perfectly zero knowledge. More details are
available in [8], [10], [19].
Public key encryption. A public key encryption scheme
Enc = (Genc,Kenc, Eenc,Denc) is described below:

• Genc(λ) → ppenc. Given a security parameter λ, Genc

returns the public parameters ppenc.
• Kenc(ppenc) → (pkenc, skenc). Given the public pa-

rameters ppenc, Kenc returns a pair of public/private keys
(pkenc, skenc).

• Eenc(pkenc,m) → c. Given the public key pkenc and a
message m, Eenc returns a ciphertext c.

• Denc(skenc, c) → m. Given the private key skenc and
the ciphertext c, Denc returns a message m, or returns ⊥ if
decryption fails.

The public encryption scheme Enc satisfies a security
property: ciphertext indistinguishability under adaptive cho-
sen ciphertext attack (IND-CCA2 security). More details are
provided in [12].
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Fig. 2: Design idea.

III. KEY IDEAS AND SKYEYE OVERVIEW

In this section, we provide key ideas in SkyEye design and
an overview of SkyEye.

A. Key Ideas

Notation. Let BseBseBse denote the BsBsBs using SkyEye. We use u to
denote a user, idu to denote the u’s identity and proofidu to
denote the u’s identity proof. Let (pubu, privu) denote the
u’s public/private information, (pkchashu , skchashu) denote
the chameleon hash public/private key pair that generated by
the user u, and CHidu denote the chameleon hash value of
identity idu. The pkchashu ||CHidu denotes the concatenation
of pkchashu and CHidu , where || denotes the concatenate sym-
bol. The MT = (rt; pkchash1 ||CHid1 , ..., pkchashn ||CHidn)
denotes a Merkle tree, where rt denotes the root of the Merkle
Tree, and (pkchash1

||CHid1
, ..., pkchashn

||CHidn
) denotes the

leaf nodes in the Merkle tree. Let (pkreg, skreg) denote the
encryption public/private key pair of the regulator.

As shown in Figure 2, our design idea is that we
add identity proofs to dataBs

dataBsdataBs . The blockchain data in
BseBseBse can be represented as the equation dataBse

dataBsedataBse =
[(pubi, proofidi)i∈{1,...,n}, C]crytool, where the proofidi de-
notes the identity proof of the user whose identity is idi,
and the other variables are the same as those in the equation
dataBs
dataBsdataBs . The (pubi, proofidi) can be viewed as the new public
information pubi

′ of the user whose identity is idi.
The identity proof is the core of SkyEye. The two purposes

of the identity proof are to prove the user’s legitimacy and
to achieve tracing. Next, we briefly describe the identity
proof according to the above two purposes. More details are
described in Section V.

1) Proving the user’s legitimacy: We assume that the
user u has generated (pubu, privu), (pkchashu , skchashu) and
CHidu = Hchash(pkchashu , idu, r), where r is the random
number sampled by u.

Step 1: user registration. To prove the user’s legitimacy,
there must be something (similar to a certificate) that can
indicate the user’s legitimacy. In SkyEye, this is done through
user registration. Here, we briefly introduce user registration
in SkyEye. More details on user registration appear in Section
V-A2.
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As shown in Figure 3, the user u sends registration in-
formation (Cinfo, πinfo) to the regulator, where the Cinfo

is the ciphertext that is the encryption of the plaintext
(pkchashu , idu, CHidu) under the regulator’s public key pkreg
and the πinfo is the zk-SNARK proof that is used to prove:
“I know (skchashu , r) which can generate the pkchashu and
CHidu”.

If the verification of the (Cinfo, πinfo) is success-
ful, the regulator stores (pkchashu , idu, CHidu), and adds
pkchashu ||CHidu to the Merkle tree MT . The regulator pub-
lishes the Merkle tree MT at the right time. The registration
of u is successful only if the u’s pkchashu

||CHidu
appears in

the Merkle tree MT .
The Merkle tree MT can be regarded as a credential

of proving the user’s legitimacy. In other words, to prove
the u’s legitimacy, the user u must prove that his or her
pkchashu ||CHidu appears in the Merkle tree MT . Therefore,
the proofidu generated by the user u must be able to prove
the following.

“I know (skchashu , idu, r) that can generate the pkchashu

and CHidu , and the pkchashu ||CHidu appears as a leaf of
the Merkle tree MT with the root rt”.

Step 2: establishing the binding relationship between the
pubupubupubu and proofidu

proofiduproofidu . Although the proofidu described above
can prove the u’s legitimacy, an issue remains. It can be seen
from Figure 4 that the (pubu, proofidu) needs to be published
in the node network. The adversary who has registered with
the regulator can generate an identity proof proofidadv

and
publish the (pubu, proofidadv

) to the node work. At this time,
a pubu corresponds to two different users’ identity proofs (i.e.,
proofidu and proofidadv

). This presents a great obstacle to
trace. We need to establish a relation between the pubu and
the proofidu that only the user u can generate the identity
proof proofidu corresponding to the pubu.

The key idea behind establishing this relation is that we
establish the binding relationship between the privu and
proofidu . Because the pubu is generated by the privu, there
is binding relationship between the pubu and proofidu .

We leverage the special property of chameleon hash scheme
(i.e., the user who knows the trapdoor can easily find collision)
to establish the binding relationship between the privu and
proofidu . Given the private information privu, the user u
who knows the trapdoor skchashu can easily find r′ such that
CHidu

= Hchash(pkchashu
, privu, r

′). To achieve the binding
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represent the operations of the SkyEye scheme. The red line
1∗1∗1∗ denotes user registration. The red line 2∗2∗2∗ denotes generating
identity proof. The red line 3∗3∗3∗ denotes verifying identity proof.
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of privu and proofidu , we require the identity proof proofidu

to prove the following.
1. The public information pubu is generated by the private

information privu.
2. I know (skchashu , privu, r

′) which can generate the
pkchashu and CHidu ;

3. The pkchashu ||CHidu appears as a leaf of a Merkle tree
with the root rt.

This binding relationship between proofidu and privu en-
sures that only the user u who knows the private information
privu can generate the identity proof proofidu , and others
cannot forge the identity proof corresponding to the pubu.

Moreover, the special property of chameleon hash scheme
makes the user u just register once, and then can generate
identity proofs without involving the regulator.

2) Achieving tracing: To achieve tracing, we add Cidu

which is the ciphertext of the pkchashu
under the regulator

public key pkreg to the proofidu , and require the proofidu

to prove that the plaintext corresponding to the ciphertex-
t Cidu is pkchashu . Because the regulator has the record
[(pkchash1 , id1, CHid1), ..., (pkchashn , idn, CHidn)], the reg-
ulator can decrypt the Cidu , obtain the pkchashu , and deter-
mine the identity of the user u based on the record. More
details about the identity proof are provided in V-A3.

Remark. We use id to denote the user’s real identity (such
as identity card number or mobile phone number). Moreover,
there are many ways to verify the user’s identity in reality, such
as, face recognition, identity card, or short message service
(SMS) verification. Therefore, we assume there is an efficient
way of verifying the id in the user registration of SkyEye.

B. SkyEye Overview

As can be seen from Figure 4, SkyEye’s application strategy
in BsBsBs is that the user generates the identity proof proofid cor-
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responding to the user’s public information pub, and publishes
the (pub, proofid) to the node network.

From Figure 4, it can also be seen that the SkyEye scheme
mainly has the following operations between the regulator,
users, and verifiers.

• User registration. The user generates registration informa-
tion and sends it to the regulator. The regulator is responsible
for the verification of registration information.

• Generating identity proof. The user who registers suc-
cessfully can generate the identity proof proofid. There is a
binding relationship between the proofid and the priv.

• Verifying identity proof. Different from traditional verifi-
cation process in the blockchain, the verifier (e.g., the miner)
verifies identity proofs in addition to verifying data contents.
If the data contents and identity proofs are simultaneously
verified successfully, the data will be added to the block
generated by the verifier.

• Tracing. The regulator traces the users’ true identities in
the blockchain data.

Remark. The SkyEye scheme provides an alternative trac-
ing strategy for BsBsBs. If a blockchain application that does
not belong to BsBsBs wants to use SkyEye, this application must
modify some rules to make it belong to BsBsBs.

IV. DEFINITION OF A TRACEABLE SCHEME

A. Definition

A traceable scheme for blockchain is a tuple of polynomial-
time algorithms Π = (Setup, Geninfo, V erinfo, Genproof ,
V erproof , Trace) described below:

• Setup(λ) → pp. Given a security parameter λ, the Setup
returns public parameters pp. This algorithm is executed by a
trusted party and is done only once. The public parameters pp
are published and made available to all parties.

• Geninfo(pp,id) → reginfo. Given the public parameters
pp and a user identity id, this algorithm returns the registration
information reginfo.

• V erinfo(pp,reginfo,skreg) → b. Given the registration
information reginfo, the public parameters pp and the regulator
private key skreg , this algorithm returns a bit b. If verification
succeeds, this algorithm returns 1; otherwise, it returns 0.

• Genproof (pp, pub, priv, CHid, pkchash, skchash, r, rt,
pathid) → proofid. Given the public parameters pp, a user’s
public/private information (pub, priv), the chameleon
hash CHid, the chameleon hash public/private key
(pkchash, skchash), the random element r for computing
the chameleon hash, the Merkle tree root rt, and the path
pathid from pkchash||CHid to rt, Genproof returns the
user’s identity proof proofid.

• V erproof (pp,pub,proofid) → b. Given the public param-
eters pp, a user’s public information pub and the user identity
proof proofid, V erproof returns a bit b. If the verification
of proofid succeeds, this algorithm returns 1; otherwise, it
returns 0.

• Trace(dataBse
dataBsedataBse) → ID. Given the blockchain data dataBse

dataBsedataBse ,
Trace returns the identity set ID for dataBse

dataBsedataBse
.

B. Security

We assume that in BsBsBs relevant cryptographic techniques
(e.g., digital signatures) have been used to ensure that the
blockchain data generated by the users cannot be tampered
with. Therefore, the users’ identity proofs added to the
blockchain data also cannot be tampered with. We also assume
that the regulator is trusted and has an efficient way of
verifying user identity. Therefore, the goals of the adversary
are to forge the user identity proof and to distinguish two
distinct user identity proofs. The security of a traceable scheme
must satisfy the following security properties:
• Identity proof indistinguishability. This property re-

quires that even if the adversary can adaptively induce honest
parties to perform operations of his choice, the identity proof
reveals no information except for some public information,
such as public addresses and serial numbers. In other words,
even if the adversary queries two different honest parties(one
identity is id0, and the other identity is id1), no polynomial-
time adversary can distinguish between the identity proofs
proofid0 and proofid1 . The meaning of this property is that if
the blockchain is indistinguishable, adding the identity proofs
to the blockchain data does not affect the indistinguishability
in the blockchain.
• Identity proof unforgeability. This property requires that

even if the adversary can adaptively induce honest parties
to perform operations of his choice, no polynomial-time ad-
versaries can forge the identity proof of honest parties. This
property ensures that the adversary cannot forge the honest
user’s identity proof to create blockchain data for evading
supervision.

We defer formal definition of each property to Appendix A.

Definition 1 A traceable scheme
∏

= (Setup, Geninfo,
V erinfo, Genproof , V erproof , Trace) is secure if it satisfies
identity proof indistinguishability and identity proof unforge-
ability.

V. CONSTRUCTION

A. SkyEye Construction

1) SkyEye Initialization: The public parameters pp created
by the Setup algorithm include the following information: the
zk-SNARK proving/verification key (pkinfo, vkinfo) used to
generate and verify the zk-SNARK proof πinfo for the NP
relation Rinfo (see Section V-A2 for details), the zk-SNARK
proving/verification key (pkproof , vkproof ) used to generate
and verify the zk-SNARK proof πproof for the NP relation
Rproof (see Section V-A3 for details), the regulator public
key pkreg for public key encryption, and the public parameters
ppchash of the chameleon hash scheme. Once the algorithm
Setup returns pp, the pp will be published and made available
to all parties. (See Setup algorithm in Algorithm 1 for specific
operations.)

2) User Registration: The user registration is divided into
two parts: the generation of user registration information and
the verification of user registration information.
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Algorithm 1 SkyEye Construction

Setup
Input: security parameter λ;
Output: public parameters pp;
1: construct arithmetic circuit ACinfo for relation Rinfo at

security λ;
2: construct arithmetic circuit ACproof for relation Rproof

at security λ;
3: (pkinfo, vkinfo) = Knizk(λ,ACinfo) ;
4: (pkproof , vkproof ) = Knizk(λ,ACproof );
5: compute ppenc = Genc(λ);
6: compute (pkreg, skreg) = Kenc(ppenc);
7: compute ppchash = Gchash(λ);
8: return pp := (pkinfo, vkinfo, pkproof , vkproof , pkreg,

ppchash);

GeninfoGeninfoGeninfo

Input:
public parameters pp,
user identity id;

Output:
registration information reginfo;

1: (pkchash, skchash) = Kchash(ppchash);
2: randomly sample r;
3: compute CHid = Hchash(pkchash, id, r);
4: set xinfo = (id, pkchash, CHid), winfo = (skchash, r);
5: πinfo = Pnizk(pkinfo, xinfo, winfo);
6: set Cinfo = Eenc(pkreg, xinfo);
7: store (id, pkchash, skchash, r, CHid);
8: return reginfo = (Cinfo, πinfo);

V erinfoV erinfoV erinfo
Input:

public parameters pp;
registration information reginfo,
regulator’s private key skreg ,

Output: bit b;
1: parse reginfo as (Cinfo, πinfo);
2: xinfo = Denc(skreg, Cinfo);
3: parse xinfo as (id, pkchash, CHid);
4: if id not valid then
5: return b=0;
6: end if
7: if Vnizk(vkinfo, xinfo, πinfo) = 0 then
8: return b=0;
9: else

10: store (pkchash, id, CHid);
11: publish pkchash||CHid via the Merkle tree MT ;
12: return b=1;
13: end if

GenproofGenproofGenproof

Input:
public parameters pp,
user public/private information (pub, priv),
chameleon hash CHid,
chameleon hash public/private key (pkchash, skchash),
random element r for computing chameleon hash,
Merkle tree root rt,
path pathid from pkchash||CHid to rt;

Output:
user identity proof proofid;

1: compute r′ = CFchash(skchash, id, priv, r);
2: randomly sample rn for encrypting;
3: compute Cid = Eenc(pkreg, pkchash, rn);
4: set uproof = (rt, pkreg, Cid);
5: set xproof = (pub, uproof ),

wproof = (pathid, CHid, skchash, pkchash, priv, r
′, rn);

6: compute πproof = Pnizk(pkproof , xproof , wproof );
7: set proofid = (uproof , πproof );
8: return proofid

V erproofV erproofV erproof
Input:

public parameters pp,
user public information pub;
identity proof proofid;

Output:
bit b;

1: parse proofid as (uproof , πproof )
2: set xproof = (pub, uproof )
3: if (Vnizk(vkproof , xproof , πproof ) = 0) then
4: return b=0;
5: else
6: return b=1;
7: end if

Trace
Input:

blockchain data dataBse
dataBsedataBse ;

Output:
identity set ID for dataBse

dataBsedataBse ;
1: set ID = ϕ;
2: get ciphertext set C = {Cidi}i∈{1,...,n} from dataBse

dataBsedataBse ,
where n is the number of the users’ public information in
dataBse
dataBsedataBse ;

3: for (each Cidi ∈ C) do
4: compute pkchashi = Denc(skreg, Cidi);
5: search (pkchash, id, CHid) records, get idi correspond-

ing to pkchashi ;
6: put idi in ID;
7: end for
8: return ID;
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As shown in Algorithm 1, A user generates his own
(pkchash, skchash) based on the chameleon hash public param-
eters ppchash, then computes the chameleon hash value CHid

of identity id, and stores (id, pkchash, skchash, r, CHid). At
this point, the user can produce a zk-SNARK proof πinfo for
the following NP relation, which we call Rinfo:
Given xinfo = (id, pkchash, CHid), I know winfo =
(skchash, r) such that:

� The chameleon hash private key matches the chameleon
hash public key: pkchash = chash gen(skchash).

� The chameleon hash is computed correctly: CHid =
Hchash(pkchash, id, r).

The Geninfo algorithm outputs registration information
reginfo, which consists of the ciphertext Cinfo and zk-SNARK
proof πinfo. The ciphertext Cinfo is the encryption of xinfo

that uses the regulator public key pkreg .
The V erinfo algorithm shown in Algorithm 1 is used to

verify the user’s registration information reginfo by the regu-
lator. The verification operations in algorithm V erinfo include
verifying the identity id and verifying the zk-SNARK proof
πinfo. If the above two operations are verified successfully,
the regulator stores (pkchash, id, CHid), and then publishes
pkchash||CHid stored in the Merkle tree MT in which the
root is denoted by rt. Meanwhile, this algorithm returns 1.

3) Generating and Verifying Identity Proof: The Genproof

shown in Algorithm 1 is used to generate the identity proof
for each user. Assume a user has generated the public/private
information (pub, priv). According to the known trapdoor
skchash, the user can calculate a value r′ such that CHid =
Hchash(pkchash, priv, r

′). Next, the user computes ciphertext
Cid = Eenc(pkreg, pkchash, rn), where pkreg is the public
key of the regulator, and rn is the random number used
for encryption. Finally, the user produces a zk-SNARK proof
πproof for the following NP relation, which we term Rproof :
Given a statement xproof = (pub, rt, pkreg, Cid), I know
wproof = (pathid, CHid, skchash, pkchash, priv, r

′, rn) such
that:

� The private information matches the public information:
pub = gen(priv).

� The chameleon hash private key matches the chameleon
hash public key: pkchash = chash gen(skchash).

� The chameleon hash CHid is computed correctly:
CHid = Hchash(pkchash, priv, r

′).
� The ciphertext Cid corresponds to the plaintext pkchash:

Cid = Eenc(pkreg, pkchash, rn).
� The pkchash||CHid appears as a leaf of a Merkle tree

with the root rt.
The V erproof algorithm in Algorithm 1 is used to verify

the user’s identity proof proofid. The verification operation
verifies the zk-SNARK proof πproof . This algorithm returns
1 if and only if the above operation verifies successfully.

4) Tracing: As shown in Algorithm 1, the algorithm Trace
is used to trace the blockchain data dataBse

dataBsedataBse . The regulator
obtains pkchash by decrypting every ciphertext Cid, and ac-
cording to the record that stores each user’s chameleon hash
public key pkchash, identity id, and chameleon hash CHid,

the regulator can determine the true identities of the users in
the dataBse

dataBsedataBse . This algorithm returns the users’ identity set ID.

B. SkyEye Security

Theorem 1 Assuming that the Chash scheme is collision
resistant, trapdoor collision and semantic security, the NIZK
scheme is perfectly zero-knowledge and simulation sound
extractable, the encryption scheme Enc satisfies IND-CCA2
security, and gen(·) has one-wayness property. Our scheme∏

= (Setup, Geninfo, V erinfo, Genproof , V erproof , Trace)
described in Algorithm 1 is a secure (cf. Definition 1) traceable
scheme.

We provide the proof of Theorem 1 in Appendix B.

VI. IMPLEMENTATION AND EVALUATION

A. Implementation

There are two main ways of generating public and private
information in blockchain applications. One is through the
pseudorandom function (e.g., Zerocash [8], Hawk [24]), i.e.
pub = PRFpriv(s), where PRF denotes the pseudorandom
function, pub is the pseudorandom number, priv is the private
key used to generate pub, and s is the uniform seed. The
other way is to use elliptic curve scalar multiplication (e.g.,
Bitcoin) to generate the public and private information, i.e.,
pub = priv ·G, where priv is a scalar, G is a base point on
the elliptical curve, and pub is a point on the elliptical curve.
We use SkyEyeH to represent the scheme that generates
public and private information in the first way, and SkyEyeS
to represent the scheme that generates public and private
information in the second way. We use the C++ programming
language to implement the prototype of the above two different
schemes based on the zk-SNARK library, libsnark [9].

There are some cryptographic building blocks in SkyEyeH :
the pseudorandom function, chameleon hash scheme, hash
function in the Merkle tree, public encryption scheme, and zk-
SNARK scheme. For the chameleon hash scheme, we use the
chameleon hash scheme proposed by Hugo Krawczyk and Tal
Rabin [25]. For efficiency, we use the SHA256 compression
function to implement the pseudorandom function and hash
function in the Merkle tree, which is similar to the approach
used in Zerocash [8]. We use the practical public key encryp-
tion scheme proposed by Cramer and Shoup [12], an IND-
CCA2 secure public encryption scheme, as our encryption
scheme. We use the scheme proposed by Parno et al. [31] as
the zk-SNARK scheme. In the concrete implementation, we
use the Barreto-Naehrig elliptic curve [7] that provides 128-bit
security as the underlying curve of the zk-SNARK scheme.
The implementation of the chameleon hash and public key
encryption scheme is based on a prime field of 254 bits.

In SkyEyeS , the main cryptographic building block dif-
fers from the former in that the pseudorandom function is
replaced by elliptic curve scalar multiplication. The chameleon
hash scheme, public key encryption scheme, and zk-SNARK
scheme are the same as those in the SkyEyeH . In the
concrete implementation, we use the MNT4 elliptic curve
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TABLE I: Performance of SkyEyeH

Configuration 1:
intel(R) core(TM) i5-2450M

@2.50GHz
4GB of RAM

Configuration 2:
intel(R) core(TM) i7-6700

@ 3.40GHz
16GB of RAM

SkyEyeH
Tree depth

10 20 30 34 10 20 30 34

Setup

time(s) 69 114 156 175 37 61 83 94
|pkinfo|(KB) 480
|vkinfo|(B) 574

|pkproof |(MB) 90 149 209 231 90 149 209 231
|vkproof |(KB) 21

Geninfo
time(ms) 475.7 494.3 530.1 538.5 231.5 248.0 266.2 272.4
|πinfo|(B) 287

V erinfo time(ms) 15.3 15.3 15.7 15.1 7.1 7.0 7.0 6.9

Genproof
time(s) 29 46 59 66 15 24 30 35

|πproof |(B) 287
V erproof time(ms) 10.1 10.2 10.1 10.2 4.5 4.5 4.8 4.6
Trace time(ms) 0.13 0.075

TABLE II: Performance of SkyEyeS

Configuration 1:
intel(R) core(TM) i5-2450M

@2.50GHz
4GB of RAM

Configuration 2:
intel(R) core(TM) i7-6700

@ 3.40GHz
16GB of RAM

SkyEyeH
Tree depth

10 20 30 34 10 20 30 34

Setup

time(s) 187 296 403 451 101 162 220 244
|pkinfo|(KB) 661
|vkinfo|(B) 667

|pkproof |(MB) 105 174 243 268 105 174 243 268
|vkproof |(KB) 13

Geninfo
time(ms) 1398.0 1413.3 1456.3 1523.9 754.9 772.6 787.8 793.8
|πinfo|(B) 337

V erinfo time(ms) 51.8 52.4 53.4 54.4 27.3 27.8 27.0 27.3

Genproof
time(s) 56 83 109 120 30 45 58 64

|πproof |(B) 337
V erproof time(ms) 47.8 47.9 48.0 47.9 24.9 24.9 24.7 24.9
Trace time(ms) 0.14 0.09

[28] as the underlying curve of the zk-SNARK scheme. The
implementation of elliptic curve scalar multiplication is based
on the MNT6 elliptic curve [28]. We implement the chameleon
hash scheme and public key encryption scheme in a prime
field of 298 bits. To improve efficiency, in the formation of
the Merkle tree, because the length of the leaf node is 298 bits,
two leaf nodes together cannot form 512 bits. Therefore, the
upper node is generated by the leaf node using the standard
SHA256. In addition, the data length of the node above the leaf
node is 256 bits, so each node that is not generated through the
leaf node is generated by the SHA256 compression function.

B. Evaluation

We evaluate the performance of every algorithm in the
two aforementioned schemes in two different configurations:
configuration 1, with an Intel i5 processor and 4 GB memory
laptop; and configuration 2, with an Intel i7 processor and 16
GB memory desktop machine. The depth of the Merkle tree
in our evaluation is 10, 20, 30, and 34, respectively. In other
words, the maximum number of users which the Merkle tree
supports is 210, 220, 230, and 234. This fully meets demand,
because the current global population is about 7.5 billion,
and 234 reaches more than 17 billion. Moreover, we evaluate

the performance of the Trace algorithm under the condition
that there are already 1024 successfully registered users at the
regulator.

Table I and Table II illustrate the performance results of the
Setup, Geninfo, V erinfo, Genproof , V erproof and Trace
algorithms in SkyEyeH and SkyEyeS , respectively (the time
in the two tables is the average of 10 runs per algorithm). In the
two tables, time represents the running time of the algorithm,
and | · | represents the data length. For example, the |pkinfo|
represents the length of the proving key in the registration.
Without loss of generality, using an i7 processor, a 16 GB
memory desktop machine, and with a tree depth of 34 in Table
I, we can obtain the results of the SkyEyeH scheme:
• Setup algorithm takes 94 s. The size of the proving key

and verification key used for user registration are 480 KB
and 574 B, respectively. and the size of the proving key and
verification key used for user identity proof are 231 MB and
21 KB, respectively.
• Geninfo requires 272.4 ms, and the size of the zk-SNARK

proof πinfo is 287 B.
• V erinfo algorithm takes 6.9 ms.
• Genproof algorithm takes 35 s to generate a user’s identity

proof, and the size of the zk-SNARK proof πproof is 287 B.
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• V erproof algorithm takes 4.6 ms.
• Trace algorithm takes 0.075 ms to trace a user’s identity.

The tables reveal the following:
• In each configuration, the time required for verification

by the regulator and the verifiers is small and does not
substantially change as the depth of the tree changes. As
shown in Table I, the regulator takes approximately 15 ms to
verify the user registration information in configuration 1 and
approximately 7 ms in configuration 2; and the time taken by a
verifier to verify the user identity proof is approximately 10 ms
in configuration 1 and approximately 5 ms in configuration 2.
From Table II, we can observe that the time taken for verifying
the user registration information is approximately 53 ms in
configuration 1 and approximately 28 ms in configuration 2;
and the time taken for verifying the user identity proof is
approximately 48ms in configuration 1 and approximately 25
ms in configuration 2.

• Not all of the information in SkyEye must be on-chain.
Only the information proofid generated by the Genproof

algorithm is added to the user data. Furthermore, the size of
the user’s zk-SNARK proof πproof in the proofid is dominant.
As can be observed from the two tables, the length of the zk-
SNARK proof πproof will not change as the configuration
environment and tree depth change. The size of πproof is
small, and the length is 287 B in SkyEyeH and 337 B in
SkyEyeS .

VII. DISCUSSION AND FUTURE WORK

In SkyEye, the centralization of the regulator is a ma-
jor issue. The regulator can arbitrarily trace the identity of
blockchain data without any restrictions and oversight.

From the data tracing process of the regulator, it can be
seen that the regulator must first use its private key skreg to
decrypt the ciphertext of each user’s chameleon hash public
key in the blockchain data. Therefore, we can restrict the reg-
ulator through the distributed key generation (DKG) protocol
[20]. Specifically, the public/private key pair (pkreg, skreg) is
generated by a committee with a threshold of t through the
DKG protocol. In this way, the pkreg is made public, and
each committee member has a share of skreg . The regulator
submits the data and tracing evidence to the committee. If
at least t+1 members of the committee accept the data and
tracing evidence, the regulator will obtain the skreg from the
committee.

However, this approach does not completely restrict the
regulator. Even if the committee regularly updates the pub-
lic/private key pair, as long as the regulator obtains the private
key skreg in a cycle, it can trace not only the data submitted
to the committee, but also all user data in this cycle. In future
work, we will consider how to restrict the regulator to make
the regulator only trace the data submitted to the committee.

VIII. RELATED WORK

Blockchain research focuses primarily on enhancing
blockchain privacy protection [8], [32], improving blockchain
scalability [16], [35], analyzing blockchain security [17], [26],

and applying blockchain to other areas [27], [33]. However,
research on traceable mechanisms is limited.

Narula, Vasquez, and Virza proposed zkLedger [30], the first
distributed ledger system, that provides strong privacy protec-
tion, public verifiability, and practical auditing. zkLedger uses
table-construction in the ledger. Each user identity corresponds
to each column in the ledger. Therefore, the regulator can
determine every user identity through the ledger. However,
this traceable mechanism in zkLedger cannot be applied to
environments with a large number of users and is used only
for auditing digital asset transactions over some banks.

Defrawy and Lampkins [15] proposed a proactively-private
digital currency (PDC) scheme that can provide privacy-
preserving and accountability. In their scheme, the ledger
is kept by a group of ledger servers. Every ledger sever
has a balance ledger that contains a share of every user
identity. Therefore, the regulator can determine every user
identity through those ledger servers. However, their traceable
mechanism does not seem to have been extended to other
applications.

Ateniese and Faonio [5] constructed a scheme that provides
certified Bitcoin addresses to enable Bitcoin users to trade
with certifiable users authenticated by the trusted certificate
authority. The regulator can determine every user identity
through the authority. However, if a user wants to use a new
certified address for each transaction, the user must contact the
certificate authority to obtain a certified address. This reduces
the efficiency of the entire system and exerts considerable
pressure on the certificate authority when the number of users
is large. Moreover, their approach only applies to Bitcoin.

Garman, Green, and Miers [18] designed new decentralized
anonymous payment (DAP) systems to address the regulatory
issue by adding privacy preseving policy-enforcement mech-
anisms that guarantee regulatory compliance, allow selective
user tracing, and admit tracing of tainted coins. The regulator
can determine every user identity through the identity escrow
policy. However, the DAP system are based on Zerocash [8].

The traceable mechanisms proposed above can only be
applied to specific application environments and do not seem
to have been extended to other applications. We propose
SkyEye, a traceable scheme for blockchain. Our scheme can be
applied to a class of blockchain applications, which is denoted
by BsBsBs.

IX. CONCLUSION

In this paper, we design SkyEye, a traceable scheme for
blockchain. SkyEye can be applied to the blockchain applica-
tions that satisfy the following conditions: (I) The users have
public and private information, where the public information
is generated by the private information; (II) The users’ public
information is disclosed in the blockchain data. SkyEye just
requires the user to register only once, and enables the
regulator to trace users’ identities. Moreover, we implement
two different SkyEye prototypes: SkyEyeH and SkyEyeS .
Our evaluation results show that even if the number of users
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is very large, the registration information and identity proof
are verified quickly.

APPENDIX A
SECURITY OF THE TRACEABLE SCHEME

We describe identity proof indistinguishability and identity
proof unforgeability. Every property is formalized as an ex-
periment between an adversary A and a challenger C. The
behavior of the honest user with identity id is realized by the
oracle Oid, and the behavior of the regulator is realized by the
oracle Oreg . We assume that the honest users and adversary
in the experiment have already registered successfully in the
regulator, i.e., they can generate any identity proof. Below, we
describe how Oid and Oreg work.

Oracles Oid and Oreg are initialized by challenger C using
the public parameters pp. The Oreg stores: (1) Record, a set of
information used to trace true identities of all registered users;
(2) the encryption public/private key pair (pkreg, skreg). The
Oreg accepts different queries, which are described below:

• Q = (judge, proofid1 , proofid2), the Oreg determines
whether proofid1 and proofid2 belong to the same user, and
sends the result to the inquirer.

• Q = (chashset, proofid), the Oreg sends the chameleon
hash set Pchash to the inquirer. The Pchash includes the
chameleon hash of the user who generates the proofid.

The Oid stores: (1) RegPriInfo, the secret information used
to generate registration information; (2) IdProof, a set of
identity proofs generated by the user whose identity is id;
(3)IdProofPriInfo, the set of evidence that the user uses to
generate the identity proofs. The Oid accepts different queries,
which are described below:

• Q = (genidproof), The adversary is not aware of the
private information priv. The oracle Oid first randomly selects
priv, and then generates the public information pub. Finally,
the oracle Oid calls the Genproof algorithm to generate the
identity proof proofid, and sends the (pub, proofid) to the
inquirer.

• Q = (genidproof, priv), The adversary knows the
private information priv, and the oracle Oid uses the priv
selected by the adversary to generate the public information
pub and then calls the Genproof algorithm to generate the
identity proof proofid. Finally, sends the (pub, proofid) to
the inquirer.

• Q = (genidproof, pubi), here, pubi ∈ Tpub, and
Tpub = {pub1, ..., pubn} is the public information set of the
user whose identity is id. The oracle Oid calls the Genproof

algorithm to generate the identity proof proofid, and sends
the (pubi, proofid) to the inquirer.

A. Identity proof indistinguishability

Identity proof indistinguishability is formalized by
ExpIDP−IND

A,Π (λ), which is shown below:
1. The challenger C randomly samples b ∈ {0, 1}, gets pp
by running Setup(λ), and sends pp to adversary A. Next, C
initializes two separate oracles Oid0

and Oid1
.

2. The adversary A issues queries q1, ..., qm, where qi is one
of the following:
• Q and Q

′
are both genidproof queries. C forwards Q

to Oid0 , and forwards Q
′

to Oid1 . C replies to A with
((pubb, proofidb

), (pub1−b, proofid1−b
)), which is the two o-

racle answer.
• {Q,Q

′} = {(genidproof, priv), (genidproof, priv′
)},

where priv = priv
′
. C forwards Q to Oid0 , and forwards Q

′
to

Oid1 . C replies to A with ((pub, proofidb
), (pub, proofid1−b

)),
which is the two oracle answer.
3. At the end of the query, A sends C a guess b

′ ∈ {0, 1}. If
b = b

′
, C outputs 1; otherwise, C outputs 0.

Identity proof indistinguishability requires that the adversary
A wins the above experiment with only negligible probability.
Next, we formally define this property.

Definition 2 A traceable scheme
∏

= (Setup, Geninfo,
V erinfo, Genproof , V erproof , Trace) satisfies identity proof
indistinguishability if for all probabilistic polynomial-time
adversaries A, there is a negligible function negl(·) such that

AdvIDP−IND
A,Π ≤ negl(λ), (1)

where AdvIDP−IND
A,Π = Pr[ExpIDP−IND

A,Π (λ) = 1] − 1/2 is
A’s advantage in the experiment ExpIDP−IND

A,Π (λ).

B. Identity proof unforgeability

Identity proof unforgeability is formalized by an experiment
ExpIDP−UNF

A,Π (λ), which is shown below:
1. The challenger C obtains pp by running Setup(λ), and sends
pp to adversary A. Next, C initializes two separate oracles
Oid and Oreg . Let Tpub = {pub1, ..., pubn} be the public
information set for the user whose identity is id.
2. The adversary A issues queries q1, ..., qm, where qi is
(genidproof, pubi), and pubi ∈ Tpub. C forwards Q to Oid,
C replies to A with (pubi, proofid), which is the oracle Oid’s
answer.
3. At the end of the query, let P = {proof1, ..., proofm}
is the identity proof set that is generated by Oid. A sends
(pub∗, proof∗

id) to C. C checks as follows:
• If proof∗

id /∈ P ∧ V erproof (pp, pub
∗, proof∗

id) = 1, C
proceeds as follows; otherwise it aborts.
• C sends (judge, proofid∗ , proofi) to Oreg , where i ∈

[1,m]. If proofid∗ and proofi belong to the user whose the
identity is id, Oreg sends c = 1 to C; otherwise it returns
c = 0.

If proof∗
id /∈ P ∧ V erproof (pp, pub

∗, proof∗
id) = 1∧ c = 1,

C outputs 1; otherwise, C outputs 0.
The adversary A wins the above experiment if the proof∗

id

such that (i) proof∗
id /∈ P ; (ii) V erproof (pp, pub

∗, proof∗
id) =

1; (iii) proofid∗ belongs to the user whose identity is id. In
other words, A can forge the identity proof of honest parties.
Identity proof unforgeability requires that the adversary wins
the above experiment with only negligible probability. Next,
we formally define this property.

Definition 3 A traceable scheme
∏

= (Setup, Geninfo,
V erinfo, Genproof , V erproof , Trace) satisfies identity proof

10



unforgeability if for all probabilistic polynomial time adver-
saries A, there is a negligible function negl(·) such that

AdvIDP−UNF
A,Π ≤ negl(λ), (2)

where AdvIDP−UNF
A,Π = Pr[ExpIDP−UNF

A,Π (λ) = 1]− 1/2

is A’s advantage in the experiment ExpIDP−UNF
A,Π (λ).

APPENDIX B
PROOF OF THEOREM 1

A. Proof of identity proof indistinguishability

Theorem 2 Assuming that the NIZK scheme is perfectly zero-
knowledge and simulation sound extractable, the encryption
scheme Enc satisfies IND-CCA2 security, then, our scheme∏

= (Setup, Geninfo, V erinfo, Genproof , V erproof , Trace)
described in Algorithm 1 satisfies identity proof indistinguisha-
bility.

We prove the Theorem 2 through a sequence of hybrid
experiments. Let qm be the number of queries issued by the
adversary A.

expreal. The experiment expreal is the same as the
ExpIDP−IND

A,Π (λ).
exp1. The experiment exp1 is the same as the exper-

iment expreal except that the challenger C simulates the
NIZK. More precisely, C calls a polynomial-time simulator
Snizk(λ,ACproof ) to obtain (pkproof , vkproof , tra), where
tra is the trapdoor, instead of invoking Knizk(λ,ACproof ).
When an oracle Oid sends a NIZK proof πproof to C, C
replaces the real proof with a simulated proof by invok-
ing Snizk(pkproof , xproof , tra), without using the witness.
Because the NIZK scheme is perfectly zero-knowledge, the
distribution of the simulated πproof is identical to that of the
proof computed in expreal. Therefore, Advexpreal

= Advexp1
.

expfinal. The experiment expfinal is the same as the ex-
periment exp1 except that the challenger C replaces the Cid in
proofid by encrypting a random string. More precisely, when
an oracle Oid sends an identity proof proofid to C, C replaces
the Cid with a C

′

id generated by Eenc(pkreg, r, rn), where
r is a random strings sampled uniformly from the plaintext
space of the encryption scheme. Because the responses to
the adversary A in expfinal are independent of the bit b.
Therefore, Advexpfinal

= 0 in the experiment expfinal.
Next, we prove that no polynomial-time adversary can

distinguish exp1 from expfinal except with negligible proba-
bility(see below lemma).

Lemma 1 After qm queries, |Advexpfinal
−Advexp1 | ≤ qm ·

Advenc, where Advenc denotes the adversary’s advantage in
the IND-CCA2 experiment.

Proof sketch. We construct an algorithm B, using A as
a subroutine, to win the IND-CCA2 experiment. Define ϵ =
Advexpfinal

−Advexp1 .
For some i ∈ {1, ..., qm}, when A issues an i-th query, B

uses the NIZK extractor ε to obtain plaintext m corresponding
to Cid. Then, B chooses a random string r that has the
same length as m. B sends (m0,m1) = (m, r) to the

IND-CCA2 challenger and receives C∗ = Eenc(pkreg, r,mb),
where b is the bit chosen by the IND-CCA2 challenger. B
replaces Cid included in proofid with C∗. We return b′,
which A outputs as the guess in the IND-CCA2 experiment.
We know that when b = 0, A’s view of the interaction is
distributed identically to that of exp1. And when b = 1,
A’s view represents the expfinal in which one ciphertext
Cid has been replaced. Based on a standard hybrid argument
over each of the qm ciphertexts, we can conclude that over
the randomness of the experiment, B must succeed in the
IND-CCA2 experiment with the advantage of at least ϵ/qm.
Therefore, |Advexpfinal−Advexp1

| ≤ qm ·Advenc.

B. Proof of identity proof unforgeability

Theorem 3 Assuming that the Chash scheme is collision
resistant, trapdoor collision and semantic security, the NIZK
scheme is perfectly zero-knowledge and simulation sound
extractable, gen(·) is one-wayness, then, our scheme

∏
=

(Setup, Geninfo, V erinfo, Genproof , V erproof , Trace) de-
scribed in Algorithm 1 satisfies identity proof unforgeability.

From experiment ExpIDP−UNF
A,Π (λ), we can observe that

A succeeds only if it outputs (pub∗, proof∗
id) such that: (i)

proof∗
id /∈ P ; (ii) V erproof (pp, pub

∗, proof∗
id) = 1; (iii)

proofid∗ belongs to the user whose identity is id. We define
the two disjoint events which A succeeds: (i) Event, A
succeeds, and pub∗ ∈ Tpub; (ii) Event, A succeeds, and
pub∗ /∈ Tpub. Let ε be the NIZK extractor for A.

Obviously, AdvIDP−UNF
A,Π = Pr[Event] + Pr[Event].

Define ϵ1 = Pr[Event] and ϵ2 = Pr[Event].
When Event occurs, we construct the algorithm B. It uses

A as a subroutine, and solves the one-wayness of gen(·). Let
ε be the NIZK extractor for A. The algorithm B works as
follows.

1. B randomly selects i ∈ {1, ..., n}.
2. B performs the experiment ExpIDP−UNF

A,Π (λ) with A to
obtain (pub∗, proof∗

id).
3. B runs the ε(vkproof , π

∗
proof ) to obtain wproof =

{path∗
id, CH∗

id, pk
∗
chash, sk

∗
chash, priv

∗, r∗, rn∗}.
4. If pub∗ = pubi, then B outputs priv∗; otherwise, B

aborts.
Because the index i is selected at random, B succeeds with

probability ϵ1/n. Because of the one-wayness of the gen(·),
ϵ1 must be negligible in λ.

When Event occurs, we construct algorithm Z . It uses A
as a subroutine and finds collision for the chameleon hash
scheme. Z sends (chashset, proofid) to Oreg , and obtains
Pchash = {CHid1 , ..., CHidk

} from the oracle Oreg , where
k ≪ λ. The set Pchash includes the chameleon hash CHid of
the user whose identity is id. The algorithm Z performs as
follows.

1. Z randomly selects i ∈ {1, ..., k}.
2. Z performs the experiment ExpIDP−UNF

A,Π (λ) with A to
obtain (pub∗, proof∗

id).
3. Z runs the ε(vkproof , π

∗
proof ) to obtain wproof =

{path∗
id, CH∗

id, pk
∗
chash, sk

∗
chash, priv

∗, r∗, rn∗}.

11



4. If CH∗
id = CHidi , then Z outputs (priv∗, r∗); otherwise,

B aborts.
Because the index i is selected at random, Z succeeds with

probability ϵ2/k. Furthermore, because of the collision resis-
tance of the chameleon hash scheme, ϵ2 must be negligible in
λ.
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