
Consistency in Proof-of-Stake Blockchains with Concurrent
Honest Slot Leaders

Aggelos Kiayias1,3, Saad Quader2, and Alexander Russell2,3

1University of Edinburgh 2University of Connecticut 3IOHK

January 14, 2020

Abstract

We improve the fundamental security threshold of Proof-of-Stake (PoS) blockchain protocols, re�ecting for
the �rst time the positive e�ect of rounds with multiple honest leaders. Current analyses of the longest-chain
rule in PoS blockchain protocols reduce consistency to the dynamics of an abstract, round-based block creation
process that is determined by three probabilities:

• pA, the probability that a round has at least one adversarial leader;
• ph, the probability that a round has a single honest leader; and
• pH, the probability that a round has multiple, but honest, leaders.

We present a consistency analysis that achieves the optimal threshold ph + pH > pA. This is a �rst in the literature
and can be applied to both the simple synchronous setting and the setting with bounded delays. Moreover, we
achieve the optimal consistency error e−Θ(k) where k is the con�rmation time.

The consistency analyses in Ouroboros Praos (Eurocrypt 2018) and Genesis (CCS 2018) assume that the
probability of a uniquely honest round exceeds that of the other two events combined (i.e., ph − pH > pA); the
analyses in Sleepy Consensus (Asiacrypt 2017) and Snow White (Fin. Crypto 2019) assume that a uniquely
honest round is more likely than an adversarial round (i.e., ph > pA). Thus existing analyses either incur a
penalty for multiply honest rounds, or treat them neutrally. In addition, previous analyses completely break
down when uniquely honest rounds become less frequent, i.e., ph < pA. Our new results can be directly applied
to improve consistency of these existing protocols. We emphasize that these thresholds determine the critical
tradeo� between honest majority, network delays, and consistency error.

We complement our results with a consistency analysis in the setting where uniquely honest slots are rare,
event letting ph = 0, under the added assumption that honest players adopt a consistent chain selection rule. Our
analysis provides a direct connection between the Ouroboros analysis by Blum et al. (SODA 2020) focusing on
“relative margin” and the Sleepy consensus analysis focusing on “strong pivots.”

1 Introduction
Proof-of-Stake (PoS) blockchain protocols have emerged as a viable alternative to resource-intensive Proof-of-
Work (PoW) blockchain protocols such as Bitcoin and Ethereum. These PoS protocols are organized in rounds
(which we call slots in this paper); their most critical algorithmic component is a leader election procedure which
determines—for each slot—a subset of participants with the authority to add a block to the blockchain. Existing
security analyses of these protocols are logically divided into two components: the �rst reasons about the properties
of the leader election process, the second reasons about the combinatorial properties of the blockchains that can
be produced by an idealized leader schedule in the face of adaptive adversarial control of some participants. An
attractive side e�ect of this structure is that the combinatorial considerations can be treated independently of
other aspects of the protocol. A recent article of Blum et al. [3] gave an axiomatic treatment of this combinatorial
portion of the analysis which we extend in this paper.

1

These common combinatorial arguments can be formulated with very little information about the leader
election process. Speci�cally, current analyses focus on three parameters:

• ph, the probability that a slot has a unique honest leader;

• pH, the probability that a slot has multiple, but honest, leaders; and

• pA, the probability that a slot has at least one adversarial leader.

Our major contribution is a generic, rigorous guarantee of consistency under the most desirable assumption1
ph + pH > pA that achieves optimal consistency error exp(−Θ(k)) as a function of con�rmation time k. Our
analysis can be directly applied to existing protocols to improve their consistency guarantees.

To contrast this with existing literature, the analysis of Ouroboros Praos [5] and Ouroboros Genesis [1] require
the threshold assumption ph − pH > pA to achieve the optimal consistency error of e−Θ(k). Note how multiply
honest slots actually detract from security, appearing negatively in the basic security threshold. The consistency
analyses in SnowWhite [2] and Sleepy Consensus [12] assume an improved threshold ph > pA; however, they
only establish a consistency error bound of e−Θ(

√
k). Note here that multiple honest slots appear neutrally. All

existing analyses break down if ph < pA, i.e., when the uniquely honest slots are less probable than the adversarial
slots.

Multiply-honest slots may arise by design, e.g., when each player checks privately whether he is a leader. They
may also occur as a side-e�ect if the chain broadcast speed is relatively slow compared to the average chain growth
rate in the network. The role of these slots is rather delicate: while it is good for the system to have many honest
blocks, concurrent blocks can help the adversary in creating two long, diverging blockchains that might jeopardize
the consistency property. Our new analysis shows that this second e�ect can be mitigated, achieving consistency
error bound of e−Θ(k) under the (tight) assumption ph + pH > pA.

Our results and contributions. As described above, we show for the �rst time that PoS blockchain protocols
using the longest-chain rule can achieve a consistency error of e−Θ(k) under the desirable condition ph + pH > pA.
This improves the security guarantee of all “longest chain rule” PoS protocols such as Praos [5], Genesis [1], and
SnowWhite [2] (we remark that other PoS protocols such as Algorand [10] operate in a di�erent setting where
explicit participation bounds are assumed and forks can be prevented). We discuss our results in more detail
before turning to the model and proofs.

Our analysis in the simple synchronous model achieves the same asymptotic error bound as in [4]—the tightest
result in the literature—under a much weaker assumption, namely ph + pH > pA. Thus PoS protocols can in fact
achieve consistency with 0 < ph < pA, a regime beyond reach of all previous analyses. When pH = 0 (i.e., all
honest slots are in fact uniquely honest), we exactly recover the bound in [4]. Finally, when ph ≪ 1 (i.e., when
uniquely honest slots are rare), our bound has the right dependence on ph; in contrast, no existing analysis works
in this regime.

Next, we consider a variant model where the honest players use a consistent tie-breaking rule when selecting
the longest chain. (I.e., when a �xed set of blockchains of equal length are presented to a collection of honest
players, they all select the same chain. In previous models, the adversary had the right to break such ties by
in�uencing network delivery.) Assuming ph + pH > pA, we prove that the consistency error bound in this model
is identical to the e−Θ(k) bound in [4] even when ph = 0. No existing analysis survives in this regime.

Finally, we analyze the ∆-synchronous setting (i.e., all messages are delivered with at most a ∆ delay) using
the same general principle developed by the Praos analysis [5], achieving a consistency error probability of e−Θ(k)
in this setting as well. This analysis is presented in Section 7.

Atechnical overview. We initiallywork in the synchronous communicationmodel and extend the synchronous
combinatorial framework of [4] to accommodate multiply-honest slots. Many of the important constructs and

1Note that the case ph + pH = pA leaves little room for consistency since in this case the adversary can create a private protocol execution
identically distributed to that of the honest parties and by selectively disclosing it, it can break consistency. See [7] for more details on the
necessity of an honest majority assumption.

2

proofs from their development break down, however: In particular, the critical notions of “relative margin” and
“balanced forks” do not retain their direct signi�cance in the multi-leader setting. Thus we need new tools with
the right expressive properties.

Our analysis focuses on a combinatorial event called a “Catalan slot.”2 Catalan slots are honest slots c so
that any interval containing c possesses strictly more honest slots—with any number of honest leaders—than
adversarial ones. The analysis of [2] and [12] introduced this basic concept, though they counted only uniquely
honest slots. In comparison with their analysis, then, our treatment has two important advantages: �rst of
all, we let multiply honest slots count in the analysis and, additionally, we achieve strikingly stronger error
bounds: speci�cally, we achieve optimal settlement error of exp(−�(k)) rather then exp(−�(

√
k)). Catalan slots

are immediately connected to the notion of “relative margin” in [3]; more on this below.
A Catalan slot c acts as a barrier for the adversary in that if an honest blockchain from a slot ℎ < c is padded

with adversarial blocks and presented to an honest observer at slot c + 1, the observer will never adopt this
blockchain. As a result, the chains adopted by this honest observer must contain some block from slot c. Note that
this is true even if c is multiply-honest.

A critical observation is that a slot is Catalan if and only if all competitive blockhains in future slots, contain
at least one block from this slot. Thus if a Catalan slot c is uniquely honest, all blockchains that are eligible to be
adopted by future honest players, must contain the (only) honest block issued from slot c. We call this the “Unique
Vertex Property” (UVP). Note how the UVP is reminiscent of the “Common Pre�x Property” (CP) in the literature.

This explains why both analyses produce similar bounds; we explore these connections in Section 9. In the
analysis in [3], “balanced forks” and “relative margin” machinery act as a conduit between consistency violations
and underlying stochastic process. The same role is played by the UVP and Catalan slots in this paper. In fact,
UVP makes the characterization of consistency violations (and respective proofs)much simpler in comparison.
This is a testament to the expressive power of Catalan slots in analyzing PoS dynamics.

With this in place, the major challenge is to bound the probability that Catalan slots are infrequent. Here we
break away entirely from the analysis of [2] and approach the question using the theory of generating functions
and stochastic dominance. We �nd an exact generating function for a related event and use this, by dominance, to
control the undesirable event that a long window of slots is devoid of Catalan slots. This permits us to achieve
asymptotically optimal settlement bounds.

Finally, it follows from the discussion above that if two consecutive slots are Catalan then any subsequent
honest block must contain, in its pre�x, a block from each of these slots. In a setting where all honest players
use a consistent longest-chain selection rule, we show that both slots have UVP as well. Since Catalan slots can
be multiply-honest, PoS protocols can achieve a consistency error bound of e−Θ(k) in this model even if ph = 0.
Recall that no existing analysis can handle this parameter regime.

Consistency violations and PoS dynamics. The analysis in [3] characterizes PoS dynamics via a non-simple
biased random walk (called the relative margin walk) on integers; speci�cally, the walk may stick at zero from
time to time. This was in contrast with the PoW setting where the dynamics is captured by a simple random walk;
see [11, 8, 6]. However, we argue that the distinction between the PoS and the PoW dynamics stems not from
the intricacy of the random walks involved, but rather from the relevant combinatorial events de�ned on those
walks. Speci�cally, in the present analysis, we have a simple random walk (similar to the PoW setting) although
our stopping time (e.g., the �rst occurrence of a Catalan slot) resembles the event analyzed in [3], namely, the
last time the relative margin walk is non-negative. Thus it appears that the combinatorial nature of a consistency
violation—not the random walk(s) per se—is more complex in PoS than that in PoW.

Outline. We specify our model in Section 2 and focus on a speci�c consistency property called “k-settelement.”
This section also contains our main theorems although the proofs are deferred to Section 5. In Section 3, we
describe further necessary elements of the fork framework of [3] so that we can explore the relationship between
Catalan slots and the UVP in Section 4. In Section 5, we present two bounds on the stochastic events of interest, e.g.,

2The name is a nod to the Catalan number in combinatorics: The nth Catalan number Cn is the number of strings w ∈ {0, 1}2n so that
every pre�x x of w satis�es #0(x) ≥ #1(x).

3

the rarity of a Catalan slot; these bounds lead to short proofs of the main theorems. The proofs of these bounds are
presented next in Section 6 which contains all of our stochastic arguments. Our treatment of the ∆-synchronous
setting is presented in Section 7. In Section 8, we treat the traditional Common Pre�x (CP) violations using our
bounds on the UVP. Section 9 explores the connections between the Catalan slots and the relative margin and
thus establish a conceptual bridge between the SnowWhite analysis and the Ouroboros-family analysis. Finally,
Section 10 imitates [3] and explores an alternative connection between a CP violation and balanced forks in our
extended fork framework, without using Catalan slots.

2 The model; statement of the main theorems
We study the behavior of the elementary longest-chain rule algorithm, carried out by a collection of participants:

• In each round, each participant collects all valid blockchains from the network; if a participant is a leader in
the round, he adds a block to the longest chain and broadcasts the result.

Here, “valid” indicates that any block appearing in the chain was indeed issued by a leader from the associated
slot; in the PoS setting, this property is guaranteed with digital signatures.

We begin by studying this algorithm in the simple, synchronous model posited by Blum et. al [3]. The model
adopts a synchronous communication network in the presence of a rushing adversary: in particular,

A0. Any message broadcast by an honest participant at the beginning of a particular slot is received by the
adversary �rst, who may decide strategically and individually for each recipient in the network whether to
inject additional messages and in which order all messages are to be delivered prior to the conclusion of the
slot.

(See before Section 2.1 for our comments on this network assumption. A variant of this adversarial message-
ordering is presented in Section 2.3. The ∆-synchronous communication model is handled in Section 7.

Given this, it is easy to describe the behavior of the longest-chain rule when carried out by a group of honest
participants with the extra guarantee that exactly one is elected as leader in a slot: Assuming that the system is
initialized with a common “genesis block” corresponding to sl0, the players observe a common, linearly growing
blockchain:

0 1 2 …

Here node i represents the block broadcast by the leader of slot i and the arrows represent the direction of increasing
time.

The blockchain axioms: Informal discussion. The introduction of adversarial participants or multiple slot
leaders complicates the family of possible blockchains that could emerge from this process. To explore this in the
context of our protocols, we work with an abstract notion of a blockchain which ignores all internal structure. We
consider a �xed assignment of leaders to time slots, and assume that the blockchain uses a proof mechanism to
ensure that any block labeled with slot slt was indeed produced by a leader of slot slt; this is guaranteed in practice
by appropriate use of a secure digital signature scheme.

Speci�cally, we treat a blockchain as a sequence of abstract blocks, each labeled with a slot number, so that:

A1. The blockchain begins with a �xed “genesis” block, assigned to slot sl0.

A2. The (slot) labels of the blocks are in strictly increasing order.

It is further convenient to introduce the structure of a directed graph on our presentation, where each block is
treated as a vertex; in light of the �rst two axioms above, a blockchain is a path beginning with a special “genesis”
vertex, labeled 0, followed by vertices with strictly increasing labels that indicate which slot is associated with the
block.

4

0 2 4 5 7 9

The protocols of interest call for honest players to add a single block during any slot. In particular:

A3. Let k ≥ 1 be an integer. If a slot slt was assigned to k honest players but no adversarial players, then k blocks
are created—during the entire protocol—each having the label slt.

Recall that blockchains are immutable in the sense that any block in the chain commits to the entire previous
history of the chain; this is achieved in practice by including with each block a collision-free hash of the previous
block. These properties imply that any chain that includes a block issued by an honest player must also include
that block’s associated pre�x in its entirety.

As we analyze the dynamics of blockchain algorithms, it is convenient to maintain an entire family of
blockchains at once. As a matter of bookkeeping, when two blockchains agree on a common pre�x, we can
glue together the associated paths to re�ect this, as indicated below.

0 2 4 5
7 9

8 9

When we glue together many chains to form such a diagram, we call it a “fork”—the precise de�nition appears
below. Observe that while these two blockchains agree through the vertex (block) labeled 5, they contain (distinct)
vertices labeled 9; this re�ects two distinct blocks associated with slot 9 which, in light of the axiom above, may be
produced by either an adversarial participant assigned to slot 9 or two honest participants, both assigned to slot 9.

Finally, as we assume that messages from honest players are delivered without delay, we note a direct conse-
quence of the longest chain rule:

A4. If two honestly generated blocks B1 and B2 are labeled with slots sl1 and sl2 for which sl1 < sl2, then the
length of the unique blockchain terminating at B1 is strictly less than the length of the unique blockchain
terminating at B2.

Recall that the honest participant(s) assigned to slot sl2 will be aware of the blockchain terminating at B1 that was
broadcast by an honest player in slot sl1 as a result of synchronicity; according to the longest-chain rule, B2 must
have been placed on a chain that was at least this long. In contrast, not all participants are necessarily aware of all
blocks generated by dishonest players, and indeed dishonest players may often want to delay the delivery of an
adversarial block to a participant or show one block to some participants and show a completely di�erent block to
others.

Characteristic strings, forks, and the formal axioms. Note that with the axioms we have discussed above,
whether or not a particular fork diagram (such as the one just above) corresponds to a valid execution of the
protocol depends on how the slots have been awarded to the parties by the leader election mechanism. We
introduce the notion of a “characteristic” string as a convenient means of representing information about slot
leaders in a given execution.

De�nition 1 (Characteristic string). Let sl1,… , sln be a sequence of slots. A characteristic string w is an element of
{h, H, A}n de�ned for a particular execution of a blockchain protocol on these slots so that for t ∈ [n], wt = A if slt is
assigned to an adversarial participant; otherwise, wt = h if slt is assigned to a single honest participant; otherwise,
wt = H.

For two strings x and w on the same alphabet, we write x ≺ w i� x is a strict pre�x of w. Similarly, we write
x ⪯ w i� either x = w or x ≺ w. The empty string " is a pre�x to any string. If wt ∈ {h, H}, we say that “slt is
honest” and otherwise, we say that “slt is adversarial.” With this discussion behind us, we set down the formal
object we use to re�ect the various blockchains adopted by honest players during the execution of a blockchain
protocol. This de�nition formalizes the blockchains axioms discussed above.

5

De�nition 2 (Fork). Let w ∈ {h, H, A}n, P = {i ∶ wi = h}, and Q = {j ∶ wj = H}. A fork for the string w consists of
a directed and rooted tree F = (V, E) with a labeling l ∶ V → {0, 1,… , n}. We insist that each edge of F is directed
away from the root vertex and further require that

(F1.) the root vertex r has label l(r) = 0;

(F2.) the labels of vertices along any directed path are strictly increasing;

(F3.) each index i ∈ P is the label of exactly one vertex of F and, in addition, each index j ∈ Q is the label of at least
two vertices of F; and

(F4.) for any indices i, j ∈ P ∪Q, if i < j then the depth of a vertex with label i is strictly less than the depth of a vertex
with label j.

If F is a fork for the characteristic string w, we write F ⊢ w. Note that the conditions (F1)–(F4) are direct
analogues of the axioms A1– A4 above. See Fig. 1 for an example fork. A �nal notational convention: If F ⊢ x

w = h

1

A

2

2

h

3

A

4

4

4

h

5

H

6

6

A

7

A

8

H

9

9

0

Figure 1: A fork F for the characteristic string w = hAhAhHAAH; vertices appear with their labels and honest
vertices are highlighted with double borders. Note that the depths of the (honest) vertices associated with the
honest indices of w are strictly increasing. Note, also, that this fork has three disjoint paths of maximum depth. In
addition, two honest vertices have label 6 and two more have label 9, indicating the fact that two honest leaders
are associated with each of the (honest) slots 6 and 9.

and F̂ ⊢ w, we say that F is a pre�x of F̂, written F ⊑ F̂, if x ⪯ w and F appears as a consistently-labeled subgraph
of F̂. (Speci�cally, each path of F appears, with identical labels, in F̂.)

Let w be a characteristic string. The directed paths in the fork F ⊢ w originating from the root are called tines;
these are abstract representations of blockchains. (Note that a tine may not terminate at a leaf of the fork.) We
naturally extend the label function l for tines: i.e., l(t) ≜ l(v) where the tine t terminates at vertex v. The length
of a tine t is denoted by length(t).

Viable tines. The longest-chain rule dictates that honest players build on chains that are at least as long as all
previously broadcast honest chains. It is convenient to distinguish such tines in the analysis: speci�cally, a tine
t of F is called viable if its length is no smaller than the depth of any honest vertex v for which l(v) ≤ l(t). A
tine t is viable at slot s if the length of the portion of t appearing over slots 0,… , s is no smaller than the depths
of any honest vertices labeled from these slots. (As noted, the properties (F3) and (F4) together imply that an
honest observer at slot s will only adopt a viable tine.) The honest depth function d ∶ P ∪ Q → [n], de�ned as
d(i) = maxt∈F {length(t) ∶ l(t) = i}, gives the largest depth of the (honest) vertices associated with an honest slot;
by (F4), d(⋅) is strictly increasing.

2.1 Slot settlement and the Unique Vertex Property
We are now ready to explore the power of an adversary in this setting who has corrupted a (perhaps evolving)
coalition of the players. We focus on the possibility that such an adversary can violate the consistency of the honest
players’ blockchains. In particular, we consider the possibility that, at some time t, the adversary conspires to
produce two blockchains of maximal length that diverge prior to a previous slot s ≤ t; in this case honest players

6

The (D, T; s, k)-settlement game

1. A characteristic string w ∈ {h, H, A}T is drawn from D. (This re�ects the results of the leader election
mechanism.)

2. Let A0 ⊢ " denote the initial fork for the empty string " consisting of a single node corresponding to the
genesis block.

3. For each slot slt, t = 1,… , T in increasing order:

(a) (Honest slot.) This case pertains to wt ∈ {h, H}. If wt = h then A sets k = 1. If wt = H then A chooses
an arbitrary integer k ≥ 2. The challenger is then given k and the fork At−1 ⊢ w1…wt−1. He must
determine a new fork Ft ⊢ w1…wt by adding k new vertices (all labeled with t) to At−1. Each new
vertex is added at the end of a maximally long path in At−1. If there are multiple candidatesa for this
path, Amay break the tie. If k ≥ 2, multiple vertices (all with label k) may be added at the end of the
same path.

(b) (Adversarial slot.) If wt = 1, this is an adversarial slot. Amay set Ft ⊢ w1…wt to be an arbitrary fork
for which At−1 ⊑ Ft.

(c) (Adversarial augmentation.) A determines an arbitrary fork At ⊢ w1… , wt for which Ft ⊑ At.

Recall that F ⊑ F′ indicates that F′ contains, as a consistently-labeled subgraph, the fork F.

A wins the settlement game if slot s is not k-settled in some fork At, t ≥ s + k.
aIt is possible that all maximally long paths are honest. In the settlement game considered in [4], at least one of these paths was adversarial.

adopting the longest-chain rule may clearly disagree about the history of the blockchain after slot s. We call such a
circumstance a settlement violation.

To re�ect this in our abstract language, let F ⊢ w be a fork corresponding to an execution with characteristic
string w. Such a settlement violation induces two viable tines t1, t2 with the same length that diverge prior to a
particular slot of interest. We record this below.
De�nition 3 (Settlement with parameters s, k ∈ ℕ). Let n ∈ ℕ and let w be a characteristic string of length n. Let
t ∈ [s + k, n] be an integer, ŵ ⪯ w, |ŵ| = t, and let F be any fork for ŵ. We say that a slot s is not k-settled in F if F
contains two maximally long tines C1,C2 that “diverge prior to s,” i.e., they either contain di�erent vertices labeled
with s, or one contains a vertex labeled with s while the other does not. Otherwise, we say that slot s is k-settled in F.
We say that slot s is k-settled in w if, for each t ≥ s + k, it is k-settled in every fork F ⊢ ŵ where ŵ ⪯ w, |ŵ| = t.

De�nition 4 (Bottleneck Property (BP) and Unique Vertex Property (UVP)). Let w ∈ {h, H, A}T be a characteristic
string. A slot s ∈ [T] is said to have the bottleneck property in w with parameter k if, for any fork F ⊢ w and any
k ≥ s+1, every tine viable at the onset of slot k contains, as its pre�x, some vertex with label s. Slot s is said to have the
Unique Vertex Property if, for any fork F ⊢ w, there is a unique vertex u ∈ F with label s so that for any k ≥ s + 1,
all tines viable at the onset of slot k contain, as their common pre�x, the vertex u.

Thus if a uniquely honest slot in w has the bottleneck property, it has the UVP as well. As a consistency
property, UVP has several advantages over slot settlement. First, it easily implies the slot settlement property: let
w ∈ {h, H, A}T , s ∈ [T], and k ∈ [T − s].

If s + k has UVP in w then s is k-settled in w. (1)

In addition, UVP has a straightforward characterization using “Catalan slots” (see Theorem 3)which is amenable to
stochastic analysis. Finally, since UVP is structurally reminiscent of the traditional common pre�x (CP) violations,
UVP easily implies CP. The analogous statement “settlement implies CP,” however, requires a lengthy proof both
in [3] and our framework. See Section 10 for details.

7

2.2 Adversarial attacks on settlement time; the settlement game
To clarify the relationship between forks and the chains at play in a canonical blockchain protocol, we de�ne a
game-based model below that explicitly describes the relationship between forks and executions. By design, the
probability that the adversary wins this game is at most the probability that a slot s is not k-settled.

Consider the (D, T; s, k)-settlement game (presented in the box), played between an adversaryA and a challenger
C with a leader election mechanism modeled by an ideal distributionD. Intuitively, the game should re�ect the
ability of the adversary to achieve a settlement violation; that is, to present two maximally-long viable blockchains
to a future honest observer, thus forcing them to choose between two alternate histories which disagree on slot s.
The challenger plays the role(s) of the honest players during the protocol.

It is important to note that the game bestows the player A with the power to choose the number of honest
vertices in a multiply-honest slot. Note that this setting makes the player strictly more powerful and, importantly,
implies that the game is completely determined by the choices made byA (i.e., the actions of the challenger are
deterministic). Consequently, in De�nition 5, we can use a single, implicit universal quanti�er over all strategies
A; no choices of the challenger are actually necessary to fully describe the game.
De�nition 5 (Settlement insecurity). LetD be a distribution on {h, H, A}T . Let w ∼ D be the string used in the �rst
step of a (D, T; s, k)-settlement game G. The (s, k)-settlement insecurity ofD is de�ned as

Ss,k[D] ≜ max
ŵ⪯w

|ŵ|≥s+k

max
F⊢ŵ

Pr [F has two maximally long tines
that diverge prior to slot s] .

Note that the probability in the right-hand side is the same as the probability that the player wins G.
Note that in typical PoS settings the distributionD is determined by the combined stake held by the adversarial

players, the leader election mechanism, and the dynamics of the protocol. The most common case (as seen in
Snow White [2], Ouroboros [9], and Ouroboros Praos [5]) guarantees that the characteristic string w = w1…wT is
drawn from an i.i.d. distribution for which Pr[wi = 1] ≤ (1 − �)∕2 for some � ∈ (0, 1); here the constant (1 − �)∕2
is directly related to the stake held by the adversary. Some settings involving adaptive adversaries (e.g., Ouroboros
Genesis [1]) yield a weaker martingale-type guarantee that Pr[wi = 1 ∣ w1,… , wi−1] ≤ (1 − �)∕2. We can easily
handle both types of distributions in our analysis since the former distribution “stochastically dominates” the
latter. As a rule, we denote the probability distribution associated with a random variable using uppercase script
letters.
De�nition 6 (Stochastic dominance). Let X and Y be random variables taking values in some setΩ endowed with
a partial order ≤. We say that X stochastically dominates Y, written Y ⪯ X, ifX(A) ≥ Y(A) for allmonotone sets
A ⊆ Ω, where a set A ⊆ Ω is called monotone if x ∈ A implies y ∈ A for all x ≤ y. As a special case, whenΩ = ℝ,
Y ⪯ X if Pr[X ≥ Λ] ≥ Pr[Y ≥ Λ] for every Λ ∈ ℝ. We extend this notion to probability distributions in the natural
way.

Let w be a characteristic string, |w| = T. We investigate a family of distributions that stipulate that w has
i.i.d. coordinates; speci�cally, for � ∈ (0, 1), let B� = (B1,… , BT) denote a list of independent and identically
distributed random variables Bi ∈ {h, H, A}, i ∈ [T] where Pr[Bi = A] = (1 − �)∕2 and Pr[Bi = h] > 0. Let ℬ� be
the distribution associated with B�.
Theorem 1 (Main theorem). Let � ∈ (0, 1), s, k, T ∈ ℕ. Considering the random variableB� above, letph = Pr[B1 =
h] > 0. Then Ss,k[ℬ�] ≤ exp

(
−k ⋅Ω(min(�3, �2ph)

)
for large k. Furthermore, letW be a distribution on {h, H, A}T so

thatW ⪯ ℬ�. Then Ss,k[W] ≤ Ss,k[ℬ�]. (Here, the asymptotic notation hides constants that do not depend on � or k.)
The proof is deferred to Section 5.

Analysis in the∆-synchronous setting. The security game abovemost naturallymodels a blockchain protocol
over a synchronous network with immediate delivery (because each “honest” play of the challenger always builds
on a fork that contains the fork generated by previous honest plays). However, the model can be easily adapted to
protocols in the ∆-synchronous model by applying the ∆-reduction mapping of [5] (which is speci�cally designed
to lift the synchronous analysis to the ∆-synchronous setting). These details appear in Section 7.

8

Public leader schedules. One attractive feature of thismodel is that it gives the adversary full information about
the future schedule of leaders. The analysis of some protocols indeed demand this (e.g., Ouroboros, Snow White).
Other protocols—especially those designed to o�er security against adaptive adversaries (Praos, Genesis)—in fact
contrive to keep the leader schedule private. Of course, as our analysis is in the more di�cult “full information”
model, it applies to all of these systems.

Bootstrappingmulti-phase algorithms; stake shift. Weremark that several existing proof-of-stake blockchain
protocols proceed in phases, each of which is obligated to generate the randomness (for leader election, say) for
the next phase based on the current stake distribution. The blockchain security properties of each phase are then
individually analyzed—assuming clean randomness—which yields a recursive security argument; in this context
the game outlined above precisely re�ects the single phase analysis.

2.3 A consistent longest-chain selection rule
The rushing adversary described at the outset of Section 2 can always reorder messages before delivering to a
recipient. Let us modify this threat model by modifying axiom A0 as follows:

A0′. Assume axiom A0. Suppose two honest recipients receive the same set L of maximally long blockchains. If
all chains in L end in honest blocks then the adversary delivers the elements of L to these honest recipients
in an arbitrary but consistent order.

Note that the adversary is free to deliver adversarial blockchains in any order, interleaving the honest chains if he
so wishes. Moreover, if there is no competitive adversarial blockchain when devlivering to an honest recipient, he
relinquishes his right to reorder the maximally long honest blockchains. When an execution satis�es this axiom,
we say that the honest players use a cosnsistent longest-chain tie-breaking rule.

De�nition 7 (Bivalent characteristic string). Let sl1,… , sln be a sequence of slots. A bivalent characteristic string
w is an element of {H, A}n de�ned for a particular execution of a blockchain protocol on these slots so that for t ∈ [n],
wt = A if slt is assigned to an adversarial participant, and wt = H otherwise.

The de�nition of a fork F for a bivalent characteristic string is identical to De�nition 2 except the following:

(F3.) each index in {j ∶ wj = H} is the label of at least one vertex of F.

Let w a bivalent characteristic string, F a fork for w, and F′ a fork for wH so that F ⊑ F′ and any honest vertex
in F′ ⧵ F has label |w| + 1. Considering F′, let C be the set of all maximally long tines in F seen by an honest slot
leader associated with the honest slot |w| + 1. (In particular, if a maximally long tine has an honest label, it is
in C.) There can be two scenarios: If C contains an adversarial tine, we say that F has a tie for the longest-chain
rule—or, in short, that F has an LCR tie. In this case, axiom A0′ above states that every honest slot leader at slot
|w| + 1 selects a tine t ∈ C chosen by the adversary. Otherwise, every tine in C is honest and, in this case, every
slot leader at slot |w| + 1 selects a unique chain determined by the consistent longest-chain tie-breaking rule.
Therefore, if F does not have an LCR tie, all honest tines in F′ with label |w| + 1 build upon a unique honest tine
in F.

Let w be a bivalent characteristic string and consider distributions for w so that w has i.i.d. slots; speci�cally,
for T ∈ ℕ and � ∈ (0, 1), let B̃� = (B1,… , BT) denote a list of independent and identically distributed random
variables Bi ∈ {H, A}, i ∈ [T] so that Pr[Bi = A] = (1 − �)∕2. Let ℬ̃� be the distribution associated with B̃�.

Theorem 2 (Main theorem; consistent tie-breaking). Let � ∈ (0, 1), s, k, T ∈ ℕ. LetW and ℬ̃� be two distributions
on {H, A}T where ℬ̃� is de�ned above andW ⪯ ℬ̃�. Then Ss,k[W] ≤ Ss,k[ℬ̃�] ≤ exp

(
−k ⋅Ω(�3(1 + O(�)))

)
for large

k. (Here, the asymptotic notation hides constants that do not depend on � or k.)

The proof is deferred to Section 5. We can interpret the random variables Bi (de�ned above the theorem) as
taking values in the set {h, H, A} but with Pr[Bi = h] = 0. Thus the theorem above allows a leader election scheme
to produce no uniquely honest slot and yet achieve optimal consistency error. (Recall that Theorem 1 requires
Pr[Bi = h] > 0.)

9

3 Structure of forks
Let us lay down the elements from the fork framework of [4]. For completeness, we restate and brie�y discuss
the pertinent de�nitions below. A vertex of a fork is said to be honest if it is labeled with an index i such that
wi ∈ {h, H}; otherwise, it is said to be adversarial.
De�nition 8 (Tines, length, and height). Let F ⊢ w be a fork for a characteristic string. A tine of F is a directed
path starting from the root. For any tine t we de�ne its length to be the number of edges in the path, and for any vertex
v we de�ne its depth to be the length of the unique tine that ends at v. If a tine t1 is a strict pre�x of another tine t2, we
write t1 ≺ t2. Similarly, if t1 is a non-strict pre�x of t2, we write t1 ⪯ t2. The longest common pre�x of two tines t1, t2
is denoted by t1 ∩ t2. That is, l(t1 ∩ t2) = max{l(u) ∶ u ⪯ t1 and u ⪯ t2}. The height of a fork (as is usual for a tree)
is the length of the longest tine, denoted by height(F).

When an adversary builds a fork, it is natural to imagine that he “grows” an existing fork by adding new
vertices and edges.
De�nition 9 (Fork pre�xes). Letw, x ∈ {h, H, A}∗ so that x ⪯ w. Let F, F′ be two forks for x andw, respectively. We
say that F is a pre�x of F′ if F is a consistently labeled subgraph of F′. That is, all vertices and edges of F also appear
in F′ and the label of any vertex appearing in both F and F′ is identical. We denote this relationship by F ⊑ F′.
When speaking about a tine that appears in both F and F′, we place the fork in the subscript of relevant properties.

For any string x (on any alphabet) and a symbol � in that alphabet, de�ne #�(x) as the number of appearances
of � in x. When a characteristic string w ∈ {h, H, A}T is �xed from the context, we extend this notation to sub-
intervals of [T] in a natural way: For integers i, j ∈ [T], i ≤ j, let I = [i, j] ⊂ [T] be a closed interval and de�ne
#�(I) = #�(wi …wj) for � ∈ {h, H, A}. A characteristic string w is called hH-heavy if #h(w) + #H(w) > #1(x);
otherwise, it is called A-heavy. For a given characteristic string w of length T, an interval I = [i, j] ⊆ [T] is called
A-heavy if the substring wi …wj is A-heavy.

Let F be a fork for w and let B be an honest tine in F. We say that B has an adversarial extension t if B can be
extended to an adversarial tine t using only adversarial vertices from the interval I = [l(B) + 1,l(t)] so that B ≺ t
and the last honest vertex on t is B. Note that t can be made disjoint with any F-tine over the interval I. If w = xy
and two tines t1, t2 are disjoint over y, we call these tines y-disjoint. We also equivalently say that t1 is y-disjoint
with t2.
Fact 1. Let w ∈ {h, H, A}T be a characteristic string, s ∈ [T + 1] be an integer, x ⪯ w, |x| = s − 1. Let F be a fork for
w, B an honest vertex in F, ℎ = l(B), and I = [ℎ + 1, s − 1]. Let Fx ⊢ x be a fork pre�x of F so that Fx contains all
honest tines from F with labels at most s − 1. The following statements are equivalent: (a) I is A-heavy; and (b) B has
an adversarial extension t,l(t) ∈ I so that t is viable at the onset of slot s.
Proof. First let us prove that (a) implies (b). Let t∗ be a maximally long honest tine in F so that l(t∗) ∈ I. There
can be two cases. If B is on t∗, the adversarial slots in I can be used to create an adversarial tine t so that i) B is
the last honest vertex on t, ii) B is the last common vertex between t and t∗, and iii) length(t) ≥ length(t∗) so
that t is viable at the onset of slot s. Now suppose B is not on t∗. Let B∗ be the �rst honest vertex on t∗ so that
l(B∗) ≤ l(B). If the interval I′ = [l(B∗) + 1,l(B) − 1] is non-empty, t∗ must contain only adversarial vertices
in I′. We can build the adversarial tine t as follows: Extend B∗ by duplicating the vertices on t∗ in the interval
[l(B∗) + 1,l(B) − 1], put B on t and �nally, extend B using only adversarial slots from I so that B∗ is the last
common vertex between t and t∗, and length(t) ≥ length(t∗). Hence t is viable at the onset of slot s.

It remains to prove that (b) implies (a). Since t is an adversarial extension of B, it contains only adversarial
vertices from I. By assumption, t is viable at the onset of slot s. It follows that #A(I) ≥ #h(I) + #H(I) since the
longest tine grows by at least one vertex for each honest slot in I.

Corollary 1. Let w be a characteristic string, F be any fork for w, and let t be any tine in F. Let B1 and B2 be two
honest vertices on t such that (i) l(B1) < l(B2), (ii) t contains only adversarial vertices from I = [l(B1)+1,l(B2)−1],
and (iii) t contains at least one vertex from I. Then I is A-heavy.
Proof. By assumption, the honest vertex B2 builds on some adversarial tine t′ that is viable at the onset of slot
l(B2) and, importantly, contains B1 as its last honest vertex. By Fact 1, the interval I is A-heavy.

10

4 Catalan slots and the UVP
De�nition 10 (Catalan slot). Let w ∈ {h, H, A}T be a characteristic string and let s ∈ [T] be an integer. s is called a
left-Catalan slot in w if, for any integer l ∈ [s], the interval [l, s] is hH-heavy in w. s is called a right-Catalan slot in
w if, for any integer r ∈ [s, T], the interval [s, r] is hH-heavy in w. Finally, s is called a Catalan slot in w if it is both
left- and right-Catalan in w.

Observe that a left- or right-Catalan slot must be honest. In addition, the slot before a left-Catalan (resp. after
a right-Catalan) slot must be honest as well. Thus the slots adjacent to a Catalan slot must be honest. A Catalan
slot c acts as a barrier for adversarial tine extensions in that in any fork, every tine viable at the onset of slot c + 1
must be honest.

Fact 2. Let w ∈ {h, H, A}T be a characteristic string and s a left-Catalan slot in w. In any fork for w, every viable tine
at the onset of slot s + 1 is an honest tine from slot s.

Proof. Let � be the longest tinewith label s. (� is an honest tine. If s is a uniquely honest slot, � is unique. Otherwise,
� is unique up to tie-breaking among equally-long tines.) We claim that all adversarial tines t ∈ F,l(t) ≤ s − 1 are
strictly shorter than �. Suppose, towards a contradiction, that t is a viable adversarial tine at the onset of slot s + 1,
i.e., l(t) ≤ s−1 and length(t) ≥ length(�). Let B be the last honest vertex on t; necessarily, l(B) < s. According to
Fact 1, the interval [l(B) + 1, s] is A-heavy. But this contradicts the assumption that s is a left-Catalan slot. Hence
the adversarial tine t cannot be viable.

Observation 1. If s is a Catalan slot for w, Fact 2 implies that in every fork for w, an honest slot leader at slot
s + 1 always builds on top of an honest tine with label s; this tine, in fact, will be maximally long among all tines
with label s.

Fact 3 (Bottleneck property implies a Catalan slot). Let w ∈ {h, H, A}T be a characteristic string. If an honest slot in
w has the bottleneck property then it is a Catalan slot.

Proof. Let s ∈ [T] be an honest slot in w. We will prove the contrapositive: namely, that if s is not Catalan then s
does not have the bottleneck property. Suppose s is not a Catalan slot. Then there must be some a, b ∈ [T] so
that I = [a, b] is the largest A-heavy interval which includes s. Necessarily, either b = T, or b + 1 must be an
honest slot. Likewise, either a = 1, or a − 1must be an honest slot. Let u ∈ F,l(u) = a − 1 be an honest tine. (If
a = 1, we can take u as the root vertex.) Since I is A-heavy, Fact 1 states that it is possible to augment F with an
adversarial extension t, u ≺ t so that t is viable at the onset of slot b + 1. In particular, the extension will use only
adversarial vertices from the interval I and, in particular, t will not contain any vertex from the honest slot s. Thus
s does not have the bottleneck property.

4.1 UVP from a uniquely honest Catalan slot
Theorem 3. Letw ∈ {ℎ,H,A}T be a characteristic string. Let s ∈ [T] be a uniquely honest slot inw. Slot s is Catalan
in w if and only if it has the UVP in w.

Proof. (The⟸ direction.) Since s has the UVP it satis�es the (weaker) bottleneck property. By Fact 3, the honest
slot s must be Catalan.

(The⟹ direction.) By assumption, slot s has a unique honest leader. Let � be the unique honest tine at slot s.
By Fact 2, the honest tine � is the only viable tine at the onset of slot s + 1. If s = T then � is the only viable tine at
the onset of slot T + 1. Now suppose s ≤ T − 1. As s is a Catalan slot, slots s and s + 1must be honest. Let t be a
viable tine at the onset of some slot k, k ≥ s + 2. We claim that � must be a pre�x of t.

Suppose, for a contradiction, that t does not contain � as its pre�x. Let B1 be the last honest vertex on t such
that l(B1) ≤ s − 1. (If s = 1 or no such vertex can be found, take B1 as the root vertex.) Likewise, let B2 be the �rst
honest vertex on t such that l(B2) ∈ [s + 1, k − 1].

Suppose B2 exists. If l(B2) = s + 1 then, by Observation 1, B2 builds on �, contradicting our assumption that �
is not a pre�x of t. Otherwise, suppose l(B2) ∈ [s + 2, k − 1]. let I be the interval [l(B1) + 1,l(B2) − 1]. Clearly, I

11

contains s. If t contains any adversarial vertex between B1 and B2 then, by Corollary 1, I must be A-heavy; but this
contradicts the assumption that s is a Catatan slot. Otherwise, B2 builds on top of B1 and, in particular, B1 must
be viable at the onset of slot l(B2) ≥ s + 1. Since l(�) = s, this means length(B1) ≥ length(�). However, since
l(B1) < s, by the monotonicity of the honest-depth function d(⋅), length(�) ≥ 1 + length(B1). This contradicts the
inequality above.

Now suppose B2 does not exist. We claim that t is an adversarial tine. To see why, note that if t were honest
and l(t) ≥ s + 1 then there would have been a B2. Since s is a uniquely honest slot and � is not a pre�x of t by
assumption, l(t) ≠ s if t is honest.

Finally, if t is honest and l(t) ≤ s − 1 then, by Fact 2, t cannot be viable at the onset of slot s + 1 since s is
Catalan. Since s + 1 is an honest slot, honest tines with label s + 1 will be strictly longer than t and, therefore,
t cannot be viable at the onset of slot k ≥ s + 2 either. We conclude that t must be an adversarial tine viable at
the onset of slot k. By Fact 1, the interval I = [l(B1) + 1, k − 1]must be A-heavy. However, since I contains s, it
contradicts the fact that s is a Catalan slot.

It follows that every viable tine t ∈ F,l(t) ≥ s + 1must contain � as its pre�x.

4.2 UVP from consecutive Catalan slots and axiom A0′

Theorem 4. Letw ∈ {H, A}T be a bivalent characteristic string and axiomA0′ is satis�ed. Let s ∈ [2, T] be an integer
such that s and s − 1 are two honest slots in w. The following statements are equivalent: (i) Slots s, s − 1 are Catalan.
(ii) If s ≤ T−1, both s and s−1 have the UVP. Otherwise, slot T−1 has the UVP but slot T has the bottleneck property.

Proof. Since the slots s, s − 1 satisfy the (weaker) bottleneck property, Fact 3 implies that they must be Catalan
slots. This proves (ii) implies (i).

Now let us prove that (i) implies (ii). Slots s, s − 1 are Catalan. Let Vs (resp. Vs+1) be the set of all viable tines
at the onset of slot s (resp. slot s + 1). Since s − 1 (resp. s) is a Catalan slots, we use Fact 2 and conclude that
Vs (resp. Vs+1) can contain only maximally long honest tines t,l(t) = s − 1 (resp. l(t) = s). Let us ∈ Vs be the
unique vertex determined by the consistent tie-breaking rule when applied to the set Vs. De�ne us+1 ∈ Vs+1 in an
analogous way for the set Vs+1.

Let k ∈ [s + 1, T + 1] be an integer. We wish tho show that for every tine t viable at the onset of slot k, the
following holds: (i) if s ≤ T − 1 then us ≺ us+1 ⪯ t, and (ii) if s = T then uT−1 ≺ t where l(t) = T.

All tines at the honest slot s build upon us. If s = T, we are done. Otherwise, i.e., if s ≤ T − 1, let � = us+1 and
note that us ≺ us+1 = �. If k = s + 1, we are done since by Fact 2, every tine at the honest slot k will build upon �.

It remains to reason about the case s ≤ T − 2 and k ≥ s + 2. Consider a tine t which is viable at the onset of
slot k. (All we know about t’s label is that l(t) ≤ k − 1.) We claim that � ≺ t. Suppose, towards a contradiction,
that � is not a pre�x of t. Let B1 be the last honest vertex on t such that l(B1) ≤ s − 1. (If no such vertex can be
found, take B1 as the root vertex.) Likewise, let B2 be the �rst honest vertex on t such that l(B2) ∈ [s + 1, k − 1].

Below, we show that every choice for B1, B2 leads to a contradiction and, therefore, � must be a pre�x of t. If
B2 exists then, by construction, l(B1) < s < l(B2) ≤ k − 1. If l(B2) = s + 1 then, as we have argued earler, B2
must have built on �. This contradicts our assumption that � is not a pre�x of t. Otherwise, suppose l(B2) ≥ s + 2.
Let I be the interval [l(B1) + 1,l(B2) − 1] and note that I contains s. There can be two scenarios. If t contains an
adversarial vertex between B1 and B2 then, by Corollary 1, I must be A-heavy; but this contradicts the assumption
that s is a Catatan slot. Otherwise, B2 builds on top of B1 and, in particular, B1 must be viable at the onset of slot
l(B2) ≥ s + 1. Since l(�) = s, this means length(B1) ≥ length(�). However, since l(B1) < s, by the monotonicity
of the honest-depth function d(⋅), length(�) ≥ 1 + length(B1). This contradicts the inequality above.

If B2 does not exist then we claim that t is an adversarial tine. To see why, note that if t were honest and
l(t) ≥ s + 1 then there would have been a B2. If t were honest with l(t) = s, t ≠ � then t would not be viable
at the onset of slot s + 2. This is because s is a Catalan slot and as such, each vertex from slot s + 1 builds on
�, length(�) ≥ length(t). Hence tines viable at the onset of slot s + 2must have length at least 1 + length(�) >
length(t). Finally, if t is honest and l(t) ≤ s − 1 then, by Fact 2, t cannot be viable at the onset of slot s + 1 since s
is Catalan. Since s + 1 is an honest slot, honest tines with label s + 1 will be strictly longer than t and, therefore,
t cannot be viable at the onset of slot k ≥ s + 2 either. We conclude that t must be an adversarial tine viable at

12

the onset of slot k. By Fact 1, the interval I = [l(B1) + 1, k − 1]must be A-heavy. However, since I contains s, it
contradicts the fact that s is a Catalan slot.

5 Proofs of main theorems
We start with two bounds on the event that Catalan slots are rare; the proofs are deferred till the next section.
Bound 1 conerns uniquely honest Catalan slots and complements Theorem 3 while Bound 2 concerns two
consecutive Catalan slots and complements Theorem 4.

Bound 1. Let �, qh ∈ (0, 1) and qH ∈ [0, 1) so that qh + qH = (1 + �)∕2. Let w ∈ {h, H, A}∗ be a characteristic
string, written w = xyz, where both |x| and |z| are allowed to go to∞ and the wis are i.i.d. random variables with
Pr[wi = h] = qh > 0 and Pr[wi = H] = qH. Let k = |y|. LetH denote the event that y does not contain a uniquely
honest Catalan slot. Then for large k, Pr[H] ≤ exp

(
−k ⋅Ω(min(�3, �2qh))

)
.

In particular, when qH = 0, the bound above coincides with the bound in [3]; thus the current analysis
subsumes their result.

Bound 2. Let � ∈ (0, 1) and letw ∈ {H, A}∗ be a bivalent characteristic string, writtenw = xyz, where both |x| and |z|
are allowed to go to∞ and thewis are i.i.d. random variables with Pr[wi = H] = (1 + �)∕2. Let k = |y|. LetH denote
the event that y does not contain two consecutive Catalan slots. Then for large k, Pr[H] ≤ exp

(
−k ⋅Ω(�3(1 + O(�)))

)
.

Proof of Theorem 1. We consider the distribution ℬ� �rst. Write w = xyz, |x| = s − 1. Recall that Ss,k[ℬ�] =
Prw∼ℬ� [s is not k-settled in w]. Theorem 3 and Equation (1) implies that if w contains a uniquely honest Catalan
slot c ∈ [s, s + k] then slot s must be k-settled in w. In fact, by virtue of Fact 2, it su�ces to take c ∈ [s, s + k − 1],
i.e., |x| ≤ c ≤ |xy|. Thus the probability above is bounded by Bound 1 which renames ph = qh and pH = qH. This
proves the �rst inequality.

Now let us prove the second inequality. Let a, b ∈ {h, H, A}∗, |a| = |b|. De�ne the partial order ≤ on equal-
length characteristic strings as follows: a ≤ b if and only if for all i = 1,… , |a|, ai = 1 implies bi = 1. For any
player playing the settlement game, let C be the set of strings on which the player wins. Clearly, C is monotone
with respect to the partial order ≤. To see why, note that if the player wins on a speci�c string w, he can certainly
win on any stringw′ so thatw ≤ w′. By assumption,W ⪯ ℬ�. It follows from De�nition 6 that PrW [w] ≤ Prℬ� [w]
for any w in the monotone set C. By referring to the de�nition of settlement insecurity (see De�nition 5), we
conclude that Ss,k[W] ≤ Ss,k[ℬ�].

Proof of Theorem 2. This proof is identical to the proof of Theorem 1 except that we need to refer to Theorem 4
in lieu of Theorem 3 and Bound 2 in lieu of Bound 1.

6 Proofs of Bounds 1 and 2
As a rule, we denote the probability distribution associated with a random variable using uppercase script letters.
Observe that if Y ⪯ X and Z is independent of both X and Y, then Z + Y ⪯ Z + X. In addition, for any
non-decreasing function u de�ned on Ω, Y ⪯ X implies u(Y) ≤ u(X).

Generating functions. We reserve the term generating function to refer to an “ordinary” generating function
which represents a sequence a0, a1,… of non-negative real numbers by the formal power series A(Z) = ∑∞

t=0 atZ
t .

We denote the above correspondence as {at}
gf
⟷ A(Z). When A(1) = ∑

t at = 1 we say that the generating
function is a probability generating function; in this case, the generating function A can naturally be associated
with the integer-valued random variable A for which Pr[A = k] = ak. If the probability generating functions A
and B are associated with the random variables A and B, it is easy to check that A ⋅ B is the generating function
associated with the convolution A + B (where A and B are assumed to be independent). Translating the notion of

13

stochastic dominance to the setting with generating functions, we say that the generating function A stochastically
dominates B if

∑
t≤T at ≤

∑
t≤T bt for all T ≥ 0; we write B ⪯ A to denote this state of a�airs. If B1 ⪯ A1 and

B2 ⪯ A2 then B1 ⋅ B2 ⪯ A1 ⋅ A2 and �B1 + �B2 ⪯ �A1 + �A2 (for any �, � ≥ 0). Moreover, if B ⪯ A then it can
be checked that B(C) ⪯ A(C) for any probability generating function C(Z), where we write A(C) to denote the
composition A(C(Z)).

Finally, we remark that if A(Z) is a generating function which converges as a function of a complex Z for
|Z| < R for some non-negative R, R is called the radius of convergence of A. It follows from Theorem 2.19 in [13]
that limk→∞ |ak|Rk = 0 and that |ak| = O(R−k). In addition, if A is a probability generating function associated
with the random variable A then it follows that Pr[A ≥ T] = O(R−T).

6.1 Proof of Bound 1
Let p = (1 − �)∕2 and q = 1 − p = qh + qH; thus q − p = �. De�ne the processW = (Wt ∶ t ∈ ℕ),Wt ∈ {±1} as
Wt = 1 if and only if wt = A. Let S = (St ∶ t ∈ ℕ), St =

∑
i≤tWi be the position of the particle at time t. Thus S is

a random walk on ℤ with � negative (i.e., downward) bias. By convention, setW0 = S0 = 0.

Case 1: x is an empty string. In this case, we write w = yz so that |y| = k. Let ct be the probability that
t is the �rst uniquely honest Catalan slot in w with c0 = 0, and consider the probability generating function

{ct}
gf
⟷ C(Z) = ∑∞

t=0 ctZ
t. Controlling the decay of the coe�cients ct su�ces to give a bound on Pr[H], i.e., the

probability that y does not contain a Catalan slot, because this probability is at most 1 −∑k−1
t=0 ct =

∑∞
t=k ct. To

this end, we develop a closed-form expression for a related probability generating function Ĉ(Z) = ∑
t ĉtZ

t which
stochastically dominates C(Z). Recall that this means that for any k,∑t≥k ck ≤

∑
t≥k ĉk. Finally, bound the latter

sum by using the analytic properties of Ĉ(Z).
Treating the random variablesW1,… as de�ning a (negatively) biased randomwalk, de�ne D (resp. A) to be the

generating function for the descent stopping time (resp. the ascent stopping time) of the walk; this is the �rst time
the random walk, starting at 0, visits −1 (resp. +1). The natural recursive formulation of these descent time yield
simple algebraic equations for the descent generating function, D(Z) = qZ + pZD(Z)2 and A(Z) = pZ + qZA(Z)2,
and from this we may conclude

D(Z) = (1 −
√
1 − 4pqZ2)∕2pZ ,

A(Z) = (1 −
√
1 − 4pqZ2)∕2qZ .

Note that while D is a probability generating function, A is not: according to the classical “gambler’s ruin” analysis,
the probability that a negatively-biased random walk starting at 0 ever rises to 1 is exactly p∕q; thus A(1) = p∕q.

Recall that a slot is Catalan in w if and only if it is both left-Catalan and right-Catalan. A slot is left-Catalan if
the walk S descends to a new low at that slot. In addition, the same slot (say s) is right-Catalan if the walk never
reaches to that level in future, i.e., Ss ≥ Si , i ≥ s + 1. The probability of this event is 1 − A(1) = 1 − p∕q = �∕q,
conditioned on the fact thatWs = −1.

Assume that the walk is now at its historical minimum. We can think of the generating function C(Z) as a
search procedure for �nding the �rst uniquely honest Catalan slot. Let v be the �rst symbol we observe. Noting
that 1 − �∕q = p∕q, we claim that

C(Z) = pZD(Z)C(Z) + qhZ ⋅ �∕q + qhZ ⋅ p∕q ⋅ E(Z)C(Z) + qHZC(Z) .

Here is the explanation: (i) With probability p, v = A and the walk moves up. then we wait till the walk makes
a �rst descent and restart. (ii) With probability qH, v = H and the walk moves down. Since we will reach a new
minimum, we restart. (iii) With probability qh ⋅ �∕q, v = h and the walk diverges below. Hence our search has
succeded and we stop. (iv) Otherwise, i.e., with probability qh ⋅ p∕q, v = h but the walk returns to the origin from
below. Then we wait for the walk to match its minimum again before we can restart. We use E(Z) to denote the
generating function for this “guaranteed ascent then match minimum” walk. After rearranging, we get

14

C(Z) =
(qh�∕q)Z

1 −
(
pZD(Z) + (qhp∕q)ZE(Z) + qHZ

) , (2)

Since E(1) = 1 by assumption, p + (qhp∕q) + qH = 1 − qh(1 − p∕q) = 1 − qh�∕q. It follows that C(1) =
(qh�∕q)∕(1 − (1 − qh�∕q)) = 1; hence C(Z) is a probability generating function.

Instead of working directly with E(Z), we can work with a generating function Ê(Z) which is identical to
E(Z) for the initial ascending part but di�ers in the descending part. Speci�cally, in the descending part, the
walk represented by Ê(Z) descends as many levels as the number of steps it took to return to the origin. Clearly,
E(Z) ⪯ Ê(Z) ≜ A(ZD(Z))∕A(1). Here, an individual term in A(ZD(Z)) = ∑

i aiZ
iD(Z)i has the interpretation “if

the �rst ascent took i steps then immediately descend i levels.” Since A(Z) is not a probability generating function,
we have to normalize it by A(1) to make sure that the ascent happens with certainty. Writing

F(Z) ≜ pZD(Z) + qhZA(ZD(Z)) + qHZ ,

note that

C(Z) ⪯ Ĉ(Z) ≜ (qh�∕q)Z∕(1 − F(Z)) . (3)

Since F(1) = p + qhp∕q + qH = 1 − qh(1 − p∕q) = 1 − qh�∕q, we have Ĉ(1) = 1, i.e., Ĉ(Z) is a probability
generating function. It remains to establish a bound on the radius of convergence of Ĉ. A su�cient condition
for the convergence of Ĉ(z) for some z ∈ ℝ is that all generating functions appearing in the de�nition of Ĉ(z)
converge at z and that F(z) ≠ 1.

The generating functions D(z) and A(z) converge when the discriminant 1 − 4pqz2 is positive; equivalently
|z| < 1∕

√
1 − �2 = 1 + �2∕2 + O(�4). In addition, conditioned on the convergence of A(z) and D(z), we can check

that
A(z) < 1∕2qz and D(z) < 1∕2pz . (4)

On the other hand, the convergence of F(z) depends on the convergence of D(z) and A(zD(z)). The convergence
of A(zD(z)) is likewise determined by the positivity of its discriminant, i.e.,

1 − (1 − �2) (z ⋅
1 −

√
1 − (1 − �2)z2
(1 − �)z)

2

> 0 .

The inequality above implies that if A(zD(z)) converges when

|z| < R1 ≜
((
2∕

√
1 − �2 − 1∕(1 + �)

)
∕(1 + �)

)1∕2
,

where

R1 = 1 + �3∕2 + O(�4) ≈ exp
(
�3(1 + O(�))∕2

)
. (5)

Note that the radius of convergence of A(ZD(Z)) is smaller than that of A(Z) or D(Z).
It is easy to check that when F(z) converges, it satis�es

F(z) ≤ F(|z|) .

The claim is trivial for z = 0. Otherwise, note that D(z) is an odd function and hence, zD(z) = |z|D(|z|). Thus,
for the claim to hold, we need only show that z (qhA(zD(z)) + qH) ≤ |z| (qhA(|z|D(|z|)) + qH). But the right-hand
side equals |z| (qhA(zD(z)) + qH) and A(x) > 0 for real x > 0, we can divide both sides by qhA(zD(z)) + qH. The
reduced inequality becomes z∕|z| ≤ 1. However, z∕|z| = ±1 for any non-zero real z. Therefore, it su�ces for us
to require that F(z) ≠ 1 for z > 0.

15

We can also check that
F(z) is convex and increasing for z ∈ [0, R1) . (6)

To see why, note that since z2 is convex in z, (1−4pqz2) is concave. Since square root is non-decreasing and convex
for positive z,

√
1 − 4pqz2 is concave and consequently, −

√
1 − 4pqz2 is convex. Since 1∕z2 is convex, it follows

that D(z) and, by a simliar reasoning, A(z) are convex. Next, observe that A(zD(z)) converges for z ∈ [0, R1) and
hence it is also convex in z. Thus F(z) turns out to be a convex combination of convex functions; it follows that
F(z) is convex for z ∈ (0, R1). In addition, since F(0) = 0 and F(1) > 0, F(z)must be increasing as well.

Let
R2 be the solution to the equation F(z) = 1, z > 0 .

Then Ĉ(z) would converge for |z| < R ≜ min(R1, R2). It remains to characterize R2 in terms of � and qh. Note that
R1 < 2 as long as � ≤ 0.97. Since the �nal bounds will be only asymptotic in �, it su�ces for us to consider small �.
That is to say, we consider the case where 0 < z < R1 < 2, i.e., z − 1 < 1.

If we express F(z) as its power series around z = 1, we can check that

F(1) = 1 − �qh∕q ,

F′′(1) = 1 − �
�5

(
qh(1 + 3�) + qH�2

)
, and

F′(1) = p(1 + 1∕�) + qh(p∕q)
(
1 + (1 + 1∕�)∕�

)
+ qH .

Since F′′(1) > 0 and F(z) is convex and increasing, the �rst-order approximation

f(z) = (1 − �qh∕q) + F′(1)(z − 1) (7)

is a lower bound for F(z) when 1 ≤ z < R1. The approximation error at any z ∈ (1, 2) is F(z) − f(z) = O(ℎ(z))
where we de�ne

ℎ(z) ≜ F′′(1)(z − 1)2 .
Since the bounds we develop will have the asymptotic notation Θ(⋅) in the exponent, it su�ces to ensure that
R2 = Θ(R∗2). In the exposition below, we will only develop approximations R∗2 satisfying R2 = (1− �)R∗2 for a small
positive constant � ∈ (0, 1).

In the special case qH = 0, F(Z) simpli�es as F(Z) = pZD(Z) + qZA(ZD(Z)). Note that F(Z) converges when
A(ZD(Z)) does and it is not hard to check that F(z) < 1. Speci�cally, we know that F(z) converges when z ∈ [0, R1)
and when it does, we claim that F(z) < 1. Speci�cally, when z ∈ [0, 1], F(z) ≤ F(1) = 1 − �qh∕q = 1 − � < 1
since � < 1. On the other hand, we can check that D(z) is convex for z ≥ 0 and, in particular, the �rst order
approximation 1 + (z − 1)∕� around z = 1 is a lower bound for D(z), z ≥ 1. It follows that D(z) ≥ 1 for z ∈ [1, R1).
Consequently, F(z) ≤ pZD(Z)+qzA(zD(z)) ⋅D(z) = pzD(z)+qxA(x) < 1∕2+1∕2 = 1where we write x = zD(z)
and use (4). Thus the radius of convergence of Ĉ is R1 if qH = 0.

The remainder of the exposition considers the general case 0 < qh < q. Let the solution to the equation
f(z) = 1 be denoted by

R∗2 ≜ 1 + �(qh∕q)∕F′(1) .

If qh is small, q = (1 + �)∕2, p + � = q and p∕q3 ∈ [1, 4], we can check that

ℎ(R∗2) = O
⎛
⎜
⎝

pq
�3 ⋅ (

�2qℎ∕q
p(1 + �) + �q)

2⎞
⎟
⎠
= O (

�q2h ⋅ pq
q2 (p + �)2)

= O (
�q2h ⋅ p
q3) = O(�q2h) ,

i.e., it vanishes. Thus f(z) is a good approximation for F(z). It follows that F′(1) ≈ p(1 + 1∕�) + q = q∕� and,
therefore,

R∗2 ≈ 1 + (�qh∕q)∕(q∕�) = 1 + qh(�∕q)2 ≈ exp(�2qh∕q2) = eO(�2qh)

since q ∈ (1∕2, 1). (Although we have an asymptotic notation, it is important that we have the right exponenet on
qh.)

16

If, on the contrary, qh = O(1) but � vanishes then F′(1) will be dominated by its second term; that is to say,
F′(1) ≈ qh(p∕q) (1 + (1 + 1∕�)∕�) = O(qh∕�2) and, therefore,

R∗2 ≈ 1 + O
(
(�qh∕q)∕(qh∕�2)

)
= 1 + O(�3) = eO(�3)

since q ≈ 1∕2.
Recall that R1 = exp

(
O(�3(1 + O(�)))

)
. It follows that Ĉ(z) converges for |z| less than

R = exp
(
O(min(�3, �2qh))

)
. (8)

Recall that if the radius of convergence of Ĉ is exp(�) then Pr[H]—which is a geometric sum—is at most
O(1) ⋅ exp(−�k). We conclude that for large k,

Pr[H] ≤ O(1) ⋅ e−k lnR = exp
(
−k ⋅Ω(min(�3, �2qh))

)
.

Case 2: x is non-empty. Next, let us consider the case when x ≠ ", i.e., |x| ≥ 1. Letm = |x| and writew = xyz
where |y| = k. Recall the processes (Wt) and (St) de�ned on w and, in addition, de�neM = (Mt ∶ t ∈ ℕ),Mt =
min0≤i≤t Si and X = (Xt ∶ t ∈ ℕ), Xt = St −Mt. By convention, setM0 = X0 = 0. Thus Xt denotes the height of
the walk S, at time t, with respect to its minimumMt.

For a �xed value ℎ = Xm, the relevant generating function would be D(Z)ℎĈ. Hence the �nal generating
function we seek is

C̃(Z) ≜
∞∑

ℎ=0
Pr[Xm = ℎ] ⋅ D(Z)ℎĈ(Z)

whose tth coe�cient is the probability that t is a Catalan slot in y.
Note that X = (Xt) is an �-downward biased random walk on non-negative integers with a re�ective barrier

at −1. Speci�cally, for any ℎ ∈ ℕ,Pr[Xt = ℎ ∣ Xt−1 = ℎ − 1] = p and Pr[Xt = ℎ − 1 ∣ Xt−1 = ℎ] = Pr[Xt =
0 ∣ Xt−1 = 0] = q. In [4, Lemma 6.1], it is proved that the distribution of Xm is stochastically dominated by the
distribution of X∞, written X∞ and de�ned, for k = 0, 1, 2,…, as

X∞(k) = Pr[X∞ = k] ≜ (2�
1 + �) ⋅ (

1 − �
1 + �)

k
= (1 − �)�k (9)

where � ≜ (1 − �)∕(1 + �). Let
{X∞(k)}

gf
⟷ X∞(Z) =

1 − �
1 − �Z .

It follows that C̃(Z) is dominated by

∞∑

ℎ=0
X∞(ℎ)D(Z)ℎĈ(Z) = X∞(D(Z))Ĉ(Z) =

(1 − �)Ĉ(Z)
1 − �D(Z)

.

Let ⋆ denote the quantity above. For it to converge, we need to check that D(Z) should never converge to 1∕�.
Since the radius of convergence of D(Z)—which is (1 − �2)−1∕2—is strictly less than (1 + �)∕(1 − �) for � > 0, we
conclude that⋆ converges if both D(Z) and Ĉ(Z) converge. The radius of convergence of⋆would be the smaller of
the radii of convergence of D(Z) and Ĉ(Z). We already know from the previous analysis that Ĉ(Z) has the smaller
radius of convergence of these two; therefore, the bound on Pr[H] from the previous case holds for |x| ≥ 0.

6.2 Proof of Bound 2
Let p = (1 − �)∕2 and q = 1 − p; thus q − p = �. De�ne the processW = (Wt ∶ t ∈ ℕ),Wt ∈ {±1} asWt = 1 if
and only if wt = A. Let S = (St ∶ t ∈ ℕ), St =

∑
i≤tWi be the position of the particle at time t. Thus S is a random

walk on ℤ with � negative (i.e., downward) bias. By convention, setW0 = S0 = 0.

17

Case 1: x is an empty string. In this case, we write w = yz so that |y| = k. Let mt denote the probability
that t is the �rst index so that both t and t + 1 are Catalan slots in w, withm0 = 0, and consider the probability
generating function {mt}

gf
⟷ M(Z) = ∑∞

t=0mtZt. Controlling the decay of the coe�cientsmt su�ces to give a
bound on Pr[H], i.e., the probability that y does not contain two consecutive Catalan slots, because this probability
is at most 1 −∑k−1

t=0 mt =
∑∞

t=kmt. To this end, we develop a closed-form expression for a related probability
generating function M̂(Z) = ∑

t m̂tZt which stochastically dominatesM(Z). Recall that this means that for any
k,∑t≥kmk ≤

∑
t≥k m̂k. Finally, bound the latter sum by using the analytic properties of M̂(Z).

Recall the “�rst ascent” and “�rst descent” generating functions A(Z) and D(Z) from the proof of Bound 1.
We wish to devise the generating function for the �rst occurrence of a left-Catalan slot immediately followed
by a right-Catalan slot. To that end, note that D(Z) is the generating function for the �rst left-Catalan slot. The
generating function for the �rst right-Catalan slot can be devised as follows. Consider the walk S starting at the
origin. With probability q(1 − p∕q) = �, the walk will immediately descend a step and never return to the origin.
But this means S1 ≤ St, t ≥ 2 and hence the �rst slot is a right-Catalan slot and we are done. Otherwise, i.e., with
probability 1 − �, the walk makes a (guaranteed) return to the origin in future. In this case, we will have to restart
our search for the next consecutive Catalan slots but, before that, we will have to ensure that we are in a “safe
position.” In particular, we can safely restart our search if Speci�cally, if the current position (i.e., level) of the
walk is at its historical minimum, we can restart our search by applying D(Z) to �nd the next left-Catalan slot.
Thus an “epoch” begins with a guaranteed return and ends when the walk descends to a new level for the �rst
time. Let E(Z) be the generating function of an epoch. Thus we can write

M(Z) = D(Z) ⋅ {� + (1 − �)E(Z)M(Z)}

= �D(Z)
1 − (1 − �)E(Z)

. (10)

An epoch can have two shapes. If an epoch starts with an up-step (i.e., an “up” shape), it is easy to see that the
epoch ends as soon as the walk returns to the origin from above and, importantly, that the walk will (eventually)
return to the origin with probability one. However, if the epoch starts with a down-step (i.e., a “down” shape), we
have to “remember” the lowest level l touched by the walk in its way to its (sure) ascent to the origin and then
descend l levels to end the epoch. In particular, we have to ensure that we return to the origin with probability
one.

A generating function of a stopping time of a random walk is ill suited to “remember” its historical mini-
mum/maximum. However, it can remember the length of the walk for free. Thus, instead of working directly
with E(Z), we work with a generating function Ê(Z) which is identical to E(Z) for the up shape but di�ers in the
down shape. Speci�cally, in the down shape, the walk represented by Ê(Z) descends as many levels as the number
of steps it took to return to the origin. Clearly, E ⪯ Ê where

Ê(Z) ≜ pZD(Z) + qZA(ZD(Z))∕A(1) .

Here, the �rst term denotes the “return to origin from above” shape. An individual term in A(ZD(Z)) =∑
t atZ

tD(Z)t has the interpretation “if the �rst ascent took t steps then follow it by descending t levels.” Since
A(Z) is not a probability generating function, we have to normalize it by A(1) to denote that the ascent happens
with certainty. This implies,

M(Z) ⪯ M̂(Z) ≜ �D(Z)
1 − (1 − �)Ê(Z)

It remains to establish a bound on the radius of convergence of M̂. A su�cient condition for the convergence
of M̂(z) for some z ∈ ℝ is that all generating functions appearing in the de�nition of M̂ converge at z and that
(1 − �)Ê(Z) ≠ 1.

By retracing our footsteps as in the proof of Bound 1, we can see that D(z),A(z), and A(zD(z)) converge when
|z| satis�es (5). Moreover, since D(Z) is a probability generating function, it follows that Ê(Z) is stochastically

18

dominated by pZD(Z) + qZA(ZD(Z))∕A(1) ⋅ D(Z). Therefore, when Ê(z) converges for some z, it satis�es

Ê(z) ≤ pzD(z) + (q∕p)(qzD(z))A(zD(z))
< 1∕2 + (q∕p)∕2

since A(1) = p∕q, pzD(z) < 1∕2, and qxA(x) < 1∕2 for any z, x so that A(x) and D(z) converge, respectively.
Therefore, (1 − �)Ê(z) = 2pÊ(z) < p + q = 1. It follows that M̂(z) converges for |z| < 1 + �3∕2 + O(�4) ≤
exp(�3∕2 + O(�4)). Recall that if the radius of convergence of M̂ is exp(�) then Pr[H] is at most O(1) ⋅ exp(−�k).
We conclude that

Pr[H] ≤ O(1) ⋅ e−�3(1+O(�))k∕2 . (11)

Case 2: x is non-empty. This part of the proof is the same as the |x| ≥ 1 case in the proof of Bound 1. The only
di�erence is that Ĉ(Z) and C̃(Z) would be replaced by M̂(Z) and M̃(Z), respectively, where

M̃(Z) ⪯
∞∑

ℎ=0
X∞(ℎ)D(Z)ℎM̂(Z) .

We conclude that the bound in (11) holds when |x| ≥ 0.

7 The semisynchronous setting
We set the stage by stating the ∆-synchronous model.

De�nition 11 (Semisynchronous characteristic string). Let sl1,… , sln be a sequence of slots. A semisynchronous
characteristic string w is an element of {h, H, A,⟂}n de�ned for a particular execution of a blockchain protocol on
these slots so that for t ∈ [n], wt =⟂ if slt was assigned to no participants; otherwise, wt = A if slt was assigned to an
adversarial participant; otherwise, wt = h if slt was assigned to a single honest participant; otherwise wt = H.

In the ∆-synchronous setting, axiom A4 is replaced by

A4∆. In a ∆-synchronous execution, if two honestly generated blocks B1 and B2 are labeled with slots sl1 and sl2
for which sl1 + ∆ < sl2, then the length of the unique blockchain terminating at B1 is strictly less than the
length of the unique blockchain terminating at B2.

De�nition 12 (∆-Fork). Let w ∈ {h, H, A,⟂}n,∆ ∈ {0, 1, 2,…}, P = {i ∶ wi = h}, and Q = {j ∶ wj = H}. A ∆-fork
for the semisynchronous stringw consists of a directed and rooted tree F = (V, E)with a labeling l ∶ V → {0, 1,… , n}.
We insist that each edge of F is directed away from the root vertex and further require that

(F1.) the root vertex r has label l(r) = 0;

(F2.) the labels of vertices along any directed path are strictly increasing;

(F3.) each index i ∈ P is the label of exactly one vertex of F and, in addition, each index j ∈ Q is the label of at least
two vertices of F; and

(F4.) for any indices i, j ∈ P ∪ Q, if i + ∆ < j then the depth of a vertex with label i is strictly less than the depth of a
vertex with label j.

IfF is a∆-fork for the semisynchronous characteristic stringw, we writeF ⊢∆ w. Note that the conditions (F1)–
(F4) above are direct analogues of the axioms A1– A3 and axiom A4∆ above. Note that the synchronous fork
in De�nition 2 is a ∆-fork with ∆ = 0. We sometimes emphasize this fact by writing F′ ⊢0 w′ where w′ is a
synchronous characteristic string and F′ is a synchronous fork.

19

De�nition 13 (Reduction map). For ∆ ∈ ℕ, we de�ne the function �∆ ∶ {⟂, h, H, A}∗ → {h, H, A}∗ inductively as
follows: �∆(") = " and for w ∈ {⟂, h, H, A}∗,

�∆(bw) =
⎧

⎨
⎩

�∆(w) if b =⟂ ,
b�∆(w) if b ∈ {h, H} and {⟂, A}∆ ⪯ w ,
A�∆(w) otherwise .

(12)

In the above de�nition, ifw′ = �∆(w) andA = {i ∶ wi ≠⟂} then note that |A| = |w′|. Also note that the reduction
�∆ implicitly de�nes a bijective, increasing function � ∶ A → |w′|.

De�nition 14 (∆-settlement with parameters s, k ∈ ℕ). Let n ∈ ℕ and let w ∈ {⟂, h, H, A}n. Let t ∈ [s + k, n] be
an integer, ŵ ⪯ w, |ŵ| = t, and let F be any ∆-fork for ŵ. We say that a slot s is not (k,∆)-settled in F if F contains
two maximally long tines C1,C2 so that at least one of these tines contains a vertex with label s, both tines contain at
least k vertices after slot s, and the label of their last common vertex is at most s − 1. Otherwise, we say that slot s is
(k,∆)-settled in F. We say that slot s is (k,∆)-settled in w if, for each t ≥ s + k, it is (k,∆)-settled in every ∆-fork
F ⊢ ŵ where ŵ ⪯ w, |ŵ| = t.

Note that in the above de�nition, we truncated k trailing blocks from a tine whereas in De�nition 3, we
truncated from a tine all trailing blocks corresponding to the last k slots. Note that this change of perspective is
necessary since w may contain ⟂ symbols, i.e., empty slots.

Let f ∈ (0, 1),∆ ∈ ℕ andwrite � = (1−f)∆. Let p⟂, ph, pH, pA ∈ (0, 1) so that p⟂ = 1−f and ph+pH+pA = f.
Let B = Bf,∆,T denote a list of independent and identically distributed random variables Bi , i ∈ [T], Bi ∈ {⟂, h, H, A}
so that Pr[Bi = �] = p� for � ∈ {⟂, h, H, A}.

Theorem 5 (Main theorem; ∆-synchronous setting). Let s, k, T,∆ ∈ ℕ, T ≥ s + k + ∆, w ∈ {⟂, h, H, A}T . Let
f, � ∈ (0, 1) and suppose that the random variable B de�ned above (using parameters f,∆, and T) additionally
satis�es

pA ⋅ �∕f = (1 − �)∕2 − (1 − �) . (13)

Letℬ be the distribution ofB. LetS be the event that slot s is not (k,∆)-settled inw. ThenPrw∼ℬ[S] ≤ e−k⋅Θ(min(�3,�2ph))+∆.
(Here, the asymptotic notation hides constants that do not depend on � or k.) LetW be a distribution on {⟂, h, H, A}T
so thatW ⪯ ℬ. Then Prw∼W [S] ≤ Prw∼ℬ[S].

The condition (13) re�ects (and quanti�es) the fact that the adversarial probability is ampli�ed by the reduction
map �∆ but we still want it to be bounded from above by 1∕2. The ampli�cation is inevitable since the map �∆
turns an h or H symbol into an A symbol with a constant probability.

The main observation for proving the theorem above is that a ∆-settlement violation in w, implies a certain
combinatorial event (parameterized by ∆) in a pre�x of �∆(w) that can be analyzed using techniques similar to
those used in proving Theorem 1.

7.1 Some structural and stochastic ingredients
Let w ∈ {⟂, h, H, A}∗, w′ = �∆(w), n = |w|, andm = |�∆|. Our roadmap forward is as follows:

1. Show that there is a bijection between ∆-forks for w and synchronous forks for w′. In particular, for each ∆-
fork F ⊢∆ w there is an isomorphic synchronous fork F′ ⊢0 w′ and a bijective map {i ∈ [n] ∶ wi ≠⟂}→ [m].
This is shown in Proposition 1.

2. Since the decisions made by �∆ at each slot depends on the ∆ future slots, the distribution of the last few
symbols of �∆(w) will be “distorted” no matter how w is distributed. Assuming w has i.i.d. symbols, we
need to identify a pre�x b ≺ �∆(w) whose symbols are i.i.d. as well. This is done in Lemma 2.

3. Show that if w violates ∆-settlement then the aforementioned pre�x b violates some combinatorial event. It
is important that we can analyze this event using the techniques and results we have already established.
This is done in Lemma 1.

20

4. Obtain a bound on this probability. This is done in Bound 3.

5. Prove Theorem 5.

Proposition 1. Let w ∈ {⟂, h, H, A}∗ and w′ = �∆(w). Then, for every ∆-fork F ⊢ w there is a synchronous fork
F′ ⊢0 w′ which is isomorphic to F. F′ is called the image of F under �∆.

Proof sketch. Let F′ be a copy of F. Establish the natural bijectionm ∶ V(F)→ V(F′) given by the copying proess,
i.e., u ↦ m(u), and relabel the vertices as

l(m(u)) = �(l(u)) for each vertex u ∈ F . (14)

Set r(F′) = m(r(F)) and l(r(F′)) = 0. It su�ces to check that F′ ⊢0 w′, i.e., F′ is a valid (synchronous) fork for
w′. Speci�cally, if there are two honest slots ℎ1, ℎ2 in w within a distance ∆ of each other, then the former honest
slot is mapped to an adversarial slot in w′. Therefore, in F′, an honest vertex is aware of all honest vertices with
smaller labels.

For any string x = x1x2… , n = |x| on any alphabet and any k ∈ ℕ, de�ne x⌊k ≜ x1…xn−k.

Proposition 2. Let T ∈ ℕ, w = w1…wT ∈ {⟂, h, H, A}T be a sequence of i.i.d. symbols, and de�ne p� ≜ Pr[w1 = �]
for each � ∈ {⟂, h, H, A}. Let x = �∆(w) and let l = |x|. Write f = 1 − p⟂ and � = (1 − f)∆. Then the symbols in
the string x⌊∆ are i.i.d. with

Pr[xi = h] = ph ⋅ �∕f ,
Pr[xi = H] = pH ⋅ �∕f , and
Pr[xi = A] = 1 − � + pA ⋅ �∕f

(15)

for each i ∈ [l − ∆].

Proof. First let us pretend for a moment that T = ∞; then l = ∞ as well. Let us write the in�nite sequence w as a
concatenation of segments of ⟂s punctuated by a single non-⟂ symbol. That is, write w = b0e1b1e2b2… where, for
i = 0, 1,…, bi =⟂∗ and ei ∈ {h, H, A}. The reduction map �∆ translates a segment eibi into a symbol zi as follows:

zi = {A if ei = A or |bi| ≤ ∆ − 1
ei if ei ∈ {h, H} and |bi| ≥ ∆ .

In particular, the segments eibi as well as the events that determine the value of an zi are disjoint. Therefore, the
symbols in the in�nite sequence z1z2… = �∆(w1ww …) are independent and identically distributed.

If T is �nite, however, the last ∆ symbols of x = �∆(w) are “distorted” in that the translated symbols in this
region will be more favored to be As. However, since the last ∆ symbols of x must correspond to at least ∆ trailing
symbols of w, it follows that x1…xl−∆ is a pre�x of z1z2… .

It remains to compute the probabilities. Let q� = Pr[zi = �] for any i and � ∈ {h, H, A}. Then qh = ph∕(1 −
p⟂)p∆⟂ = ph�∕f, qH = pH�∕f, and qA = 1−(qh+qH) = 1−(ph+pH)�∕f = 1−(f−pA)�∕f = 1−�+pA�∕f.

The following lemma connects a ∆-settlement violation in w ∈ {⟂, h, H, A}∗ to a combinatorial event in
�∆(w)⌊∆ ∈ {h, H, A}∗.

Lemma 1. Let w ∈ {⟂, h, H, A}∗,∆, s, k ∈ ℕ so that |x| = s and xs ≠⟂. Let w′ = �∆(w) and write w′ = x′y′z′a′ so
that |a′| = ∆ and |y′| ≥ 1 + ∆. Let Ey be the event that there are at least 1 + ∆ slots in y′ that are Catalan in x′y′z′
and, in addition, that the earliest one of these slots is uniquely honest. Then Ey implies that s is (|y′|,∆)-settled in w.

We insist that the event Ey in the lemma is su�cient, but not necessary, for the conclusion to hold.3

3In fact, there are other combinatorial events that lead to tighter tail bounds; we defer the relevant analysis for a future version of this
manuscript.

21

Proof. Let � be the bijection described after De�nition 13. Note that |x′| = �(s). Let the slots c′i , i ∈ [1 + ∆] be
Catalan in x′y′z′ so that |x′| < c1 <⋯ < c1+∆ ≤ |x′y′|. By assumption, c′1 is uniquely honest. Note that c

′
i may

not be Catalan inw′. However, the su�x a′ can “destroy” at most ∆ of the Catalan slots c′2,… , c
′
1+∆—starting from

c′1+∆ and moving backwards. In particular, the slot c′1 will remain a uniquely honest Catalan slot in w′. Therefore,
by Theorem 3, c′1 has the UVP in w′. Let c be the integer satisfying c′1 = �(c).

Let b ⪯ xyz, |b| ≥ |xy| and b′ = �∆(b) ⪯ x′y′z′. (Necessarily, |b′| ≥ |x′y′|.) Since the reduction map gives
an isomorphism between every ∆-fork for b and its unique image (which is a synchronous fork for b′) under the
reduction �∆, it follows that c has the UVP in w.

For any ∆-fork F ⊢∆ b, let u ∈ F,l(u) = c be the unique vertex contained by every tine t ∈ F viable at the
onset of any slot after c. Consider all tines � ∈ F so that � has at least |y′| vertices with label at least s + 1. and � is
viable at the onset of slot l(�) + 1. Since l(�) ≥ |xy| ≥ c, it follows that u ⪯ �. Thus all these tines � agree about
slot s since s < c = l(u). In particular, if F contains two maximally long tines �1, �2, each with at least |y′| vertices
after slot s, then they would agree about slot s. In fact, l(�1 ∩ �2) ≥ c > s. Hence s must be (|y′|,∆)-settled in F
and, since F was arbitrary, s must be (|y′|,∆)-settled in w.

Bound 3. Let �, qh, qH ∈ (0, 1) so that qh + qH = (1 + �)∕2. Let w′ ∈ {h, H, A}∗ be a characteristic string, written
w′ = x′y′z′, where both |x′| and |z′| are allowed to go to∞ and the w′

i s are i.i.d. random variables with Pr[w′
i =

A] = (1− �)∕2,Pr[w′
i = h] = qh, and Pr[w′

i = H] = qH. Let k = |y′|. Let∆ ∈ ℕ and let E be the event that y′ contains
1 + ∆ slots, each Catalan in w′, and the �rst of these Catalan slots is uniquely honest. Then Pr[E does not happen] is
at most O

(
k∆b(k, �)

)
where b(k, �) is the right-hand side in the probability in Bound 1.

Proof.

Case: |x′| = 0. The generating function of interest is L(Z) ≜ C(Z)1+∆ where C(Z) is de�ned in (2). Recall that
C(Z) is stochastically dominated by Ĉ(Z); see (3). The radius of convergence of L̂(Z) ≜ Ĉ(Z)1+∆ is the same as
that of Ĉ(Z), i.e., R de�ned in (8). Since L(Z) is the convolution ofm = 1 + ∆ identical generating functions, its
kth coe�cient is

ln =
∑

k1,…,km
k1+⋯+km=k

O(1) ⋅ R−k .

But this equals O(1)
(k
k1,…,km

)
R−k which is at most O(1) km−1 ⋅ R−k = e−k lnR+∆ ln k. Since this decreases geometri-

cally for large k, We conclude that

Pr[E does not happen ∣ x′ is empty] ≤ O(1) e−k lnR+∆ ln k . (16)

Case: |x′| ≥ 1. This part of the proof is the same as the |x| ≥ 1 case in the proof of Bound 1. The only di�erence
is that Ĉ(Z) and C̃(Z) would be replaced by L̂(Z) and L̃(Z), respectively, where

L̃(Z) ⪯
∞∑

ℎ=0
X∞(ℎ)D(Z)ℎL̂(Z) .

As we did in that proof, we conclude that Pr[E does not occur] is no more than the probability at the right-hand
side in (11).

7.2 Proof of Theorem 5
The symbols in w are independent and identically distributed. Write w′ = �∆(w), w′ = x′y′z′a′, |a′| = ∆ and
|y′| ≥ 1 + ∆. Let k = |y′|. Let E be the event that there are at least 1 + ∆ slots in y′ that are Catalan in x′y′z′ and,
in addition, that the earliest one of these slots is uniquely honest.

Lemma 1 states that the Pr[S] is no more than the probability that E does not occur. This latter probability can
be bounded from above using Bound 3 provided the symbols in x′y′z′ are i.i.d. and Pr[x′1 = A] = (1 − �)∕2.

22

We have f = 1−p⟂ and � = (1−f)∆. Proposition 2 states that the symbols of x′y′z′ are i.i.d. with distribution
given by (15). For each � ∈ {h, H, A} we write p′� = Pr[x′1 = �].

The condition (13) can be equivalently stated as 1−(1−pA∕f)� = (1−�)∕2. We check that p′A = 1−(p′h+p
′
H) =

1 − (ph + pH)�∕f = 1 − (f − pA)�∕f = 1 − (1 − pA∕f)� = (1 − �)∕2 and, consequently, p′h + p′H = (1 + �)∕2.
Hence we can directly apply Bound 3 to bound Pr[E]. This completes the proof of Theorem 5.

8 The common pre�x property
For the sake of simplicity, assume the synchronous communication model from Section 2.2; the ∆-synchronous
setting can be handled in the same way as delineated in Sections 7 and 7.

The common pre�x property with parameter k asserts that, for any slot index s, if an honest observer at slot
s + k adopts a blockchain C, the pre�x C[0 ∶ s] will be present in every honestly-held blockchain at or after slot
s+ k. (Here, C[0 ∶ s] denotes the pre�x of the blockchain C containing only the blocks issued from slots 0, 1,… , s.)

We translate this property into the framework of forks. Consider a tine t of a fork F ⊢ w. The trimmed tine
t⌊k is de�ned as the portion of t labeled with slots {0,… ,l(t) − k}. For two tines, we use the notation t1 ⪯ t2 to
indicate that the tine t1 is a pre�x of tine t2.

De�nition 15 (Common Pre�x Property with parameter k ∈ ℕ). Let w be a characteristic string. A fork F ⊢ w
satis�es k-CPslot if, for all pairs (t1, t2) of viable tines F for which l(t1) ≤ l(t2), we have t⌊k1 ⪯ t2. Otherwise, we say
that the tine-pair (t1, t2) is a witness to a k-CPslot violation. Finally, w satis�es k-CPslot if every fork F ⊢ w satis�es
k-CPslot.

If a string w does not possess the k-CPslot property, we say that w violates k-CPslot. Observe that traditionally
(cf. [6]), the truncated chain is de�ned in terms of deleting a su�x of (block-)length k from C. We denote this
traditional version of the common pre�x property as the k-CP property. Note, however, that a k-CP violation
immediately implies a k-CPslot violation; hence, bounding the probability of a k-CPslot violation is su�cient to
rule out both events.

Connection with the UVP. Note that if w admits a k-CPslot violation, then there must be a fork F containing
two distinct viable tines t1, t2,l(t1) ≤ l(t2) so that l(t1) − l(t1 ∩ t2) ≥ k + 1. Then t1 must contain a vertex
v,l(t1 ∩ t2) < l(v) ≤ l(t1) − k so that v does not belong to t2. If every substring x of w with |x| ≥ k, contained a
slot with the UVP then we would never have a k-CPslot violation. Therefore,

w violates
k-CPslot ⟹

w has a substring y, |y| ≥ k so
that no slot indexed by y has

the UVP in w.
(17)

Recall that a uniquely honest Catalan slot has the UVP. This fact allows us to bound the probability of common
pre�x violations by reasoning only about Catalan slots.4

Theorem 6 (Main theorem; CP version). Let � ∈ (0, 1) and T ∈ ℕ. Recall the distributionW on {h, H, A}T from
Theorem 1 and the distribution W̃ on {H, A}T from Theorem 2. Then

Pr
w∼W

[w violates k-CP] ≤ Pr
w∼W

[w violates k-CPslot] ≤ T ⋅ exp
(
−k ⋅Ω(min(�3, �2qh))

)
.

Furthermore, if axiom A0′ is satis�ed then

Pr
w∼W̃

[w violates k-CP] ≤ Pr
w∼W̃

[w violates k-CPslot] ≤ T ⋅ exp
(
−Ω(�3(1 + O(�))k)

)
.

4One can also prove Theorem 6 by directly showing—as in [3]—that a k-CPslot violation implies a k-settlement violation and then appealing
to Theorem 1. However, the proof of the implication (see Section 10) is several pages long and far complicated compared to the short proof
yielded by the Catalan slots and UVP. Nevertheless, the proof shows how arguments in [3] can be adapted to our generalized fork framework.

23

Proof. (The �rst claim.) Write w = xyz and let "k be the probability that y contains no slot with the UVP in w,
conditioned on the fact that |y| = k. Then, recalling (17), we can apply a union bound over all substrings of w
of length at least k to get Pr[w violates k-CPslot] ≤ T ∑

r≥k "r where the factor T represents a summation over all
x ≺ w. By Theorem 3, if a substring y of w does not contain a slot with the unique vertex proeprty in w, y cannot
contain a uniquely honest slot that is Catalan in w. Therefore, "k is at most the error probability from Bound 1.
Since "k decreases exponentially in k, we can write

Pr[w violates k-CPslot] ≤ T ⋅ O(1) ⋅ "k .

This proves the second inequality. The �rst inequality follows since in a given characteristic string, a k-CP violation
implies a k-CPslot violation.

(The second claim.) The proof in this case is identical to the preceding argument except that we need to refer
to Theorem 4 in lieu of Theorem 3 and Bound 2 in lieu of Bound 1.

The ∆-synchronous setting. A k-CP violation in a ∆-fork for a string w ∈ {⟂, h, H, A}∗ would imply a k-CP
violation in the corresponding synchronous fork in the string �∆(w) ∈ {h, H, A}∗ and, consequently, a k-CPslot
violation in �∆(w). We omit further details.

9 Catalan slots and relative margin
We set the stage by de�ning additional elements of the fork framework.

De�nition 16 (Closed fork). A fork F is closed if every leaf is honest. For convenience, we say the trivial fork is
closed.

Closed forks have two nice properties that make them especially useful in reasoning about the view of honest
parties. First, all honest observers will select a unique longest tine from this fork (since all longest tines in a closed
fork are honest, honest parties are aware of all previous honest blocks, they observe the longest chain rule, and
they employ the same consistent tie-breaking rule). Second, closed forks intuitively capture decision points for
the adversary. The adversary can potentially show many tines to many honest parties, but once an honest node
has been placed on top of a tine, any adversarial blocks beneath it are part of the public record and are visible to
all honest parties. For these reasons, we will often �nd it easier to reason about closed forks than arbitrary forks.

The next few de�nitions are the start of a general toolkit for reasoning about an adversary’s capacity to build
highly diverging paths in forks, based on the underlying characteristic string.

De�nition 17 (Gap, reserve, and reach). For a closed fork F ⊢ w and its unique longest tine t̂, we de�ne the gap of
a tine t to be gap(t) = length(t̂) − length(t). Furthermore, we de�ne the reserve of t, denoted reserve(t), to be the
number of adversarial indices inw that appear after the terminating vertex of t. More precisely, if v is the last vertex of
t, then

reserve(t) = |{ i ∣ wi = 1 and i > l(v)}| .
These quantities together de�ne the reach of a tine: reach(t) = reserve(t) − gap(t).

The notion of reach can be intuitively understood as a measure of the resources available to our adversary in
the settlement game. Reserve tracks the number of slots in which the adversary has the right to issue new blocks.
When reserve exceeds gap (or equivalently, when reach is nonnegative), such a tine could be extended—using
a sequence of dishonest blocks—until it is as long as the longest tine. Such a tine could be o�ered to an honest
player who would prefer it over, e.g., the current longest tine in the fork. In contrast, a tine with negative reach is
too far behind to be directly useful to the adversary at that time.

De�nition 18 (Maximum reach). For a closed fork F ⊢ w, we de�ne �(F) to be the largest reach attained by any
tine of F, i.e.,

�(F) = max
t

reach(t) .

24

Note that �(F) is never negative (as the longest tine of any fork always has reach at least 0). We overload this notation
to denote the maximum reach over all forks for a given characteristic string:

�(w) = max
F⊢w

F closed

[
max
t

reach(t)
]
.

Reach of vertices is always non-increasing as we move down a tine. That is, if B1, B2,… are vertices on the same
tine in the root-to-leaf order, then reach(Bi) ≤ reach(Bi+1). The inequality is strict if Bi+1 is honest. Consequently,
the reach of an adversarial tine is no more than the reach of the last honest vertex in that tine. In any fork, the
reach of a maximally long tine is always non-negative. Hence, an honest tine with the maximal length over all
honest tines will always have a non-negative reach. Thanks to the monotonicity of the honest-depth function
d(⋅), if there are multiple honest tines having the (same) maximal length among all honest tines, they must have
the same label. Therefore, if ℎ is the last honest slot in w and t a maximally long honest tine with label ℎ, then
reach(t) ≥ 0.
Fact 4. Let w ∈ {h, H, A}T be a characteristic string, s ∈ [T + 1] be an integer, x ⪯ w, |x| = s − 1. Let F be a fork for
w, B an honest vertex in F, ℎ = l(B), and I = [ℎ + 1, s − 1]. Let Fx ⊢ x be a fork pre�x of F so that Fx contains all
honest tines from F with labels at most s − 1. The following statements are equivalent: (i) reachFx (B) ≥ 0; (ii) I is
A-heavy; and (iii) B has an adversarial extension t,l(t) ∈ I so that t is viable at the onset of slot s.
Proof. The equivalence between items (ii) and (iii) has already been shown in Fact 1.

(i) implies (ii). By assumption, reachFx (B) = reserveFx (B) − gapFx (B) ≥ 0. Since reserveFx (B) = #A(I) and
gapFx (B) ≥ #h(I) + #H(I), it follows that #A(I) ≥ #h(I) + #H(I).

(iii) implies (i). Since t is an adversarial extension of B, it contains only adversarial vertices from I. By assumption,
t is viable at the onset of slot s. It follows that #A(I) ≥ gapFx (B). Since reserveFx (B) = #A(I), we have
reachFx (B) = reserveFx (B) − gapFx (B) ≥ 0.

Observe that for any characteristic string x, one can extend (i.e., augment) a closed fork pre�x F ⊢ x into a
larger closed fork F′ ⊢ x0 so that F ⊑ F′. A conservative extension is a minimal extension in that it consumes the
least amount of reserve (cf. De�nition 17), leaving the remaining reserve to be used in future. Extensions and, in
particular, conservative extensions play a critical role in the exposition that follows.

De�nition 19 (Extensions). Let w ∈ {h, H, A}∗ be a characteristic string and F a closed fork for w. Let F′ be a
closed fork for wb, b ∈ {h, H} so that F ⊑ F′. We say that F′ is an extension of F if every honest vertex in F′ either
belongs to F or has label |w| + 1. Let � ∈ F′ be an honest vertex with l(�) = |w| + 1 and let s be the longest honest
pre�x of �. (Necessarily, s ∈ F.) We say that � is an extension of s. The new tine � is a conservative extension if
height(F′) = height(F) + 1.

Since F′ is closed, all longest tines in F′ are honest and they have label |w| + 1. Let t̂ be the unique longest
honest tine in F′ under the consistent longest-chain selection rule in AxiomA0′. Now consider a tine � ∈ S. Since
� is honest, it follows that length(�) ≥ 1 + height(F) = 1 + length(s) + gapF(s) where s ∈ F is the longest honst
pre�x of �. The root-to-leaf path in F′ that ends at � contains at least gapF(s) adversarial vertices u ∈ F′ so that
l(u) ∈ [l(s) + 1, |w|] and u ∉ F. If � is a conservative extension, the number of such vertices is exactly gapF(s).

9.1 Relative margin and balanced forks
De�nition 20 (The ∼x relations). For two tines t1 and t2 of a fork F, we write t1 ∼ t2 when t1 and t2 share an
edge; otherwise we write t1 ≁ t2. We generalize this equivalence relation to re�ect whether tines share an edge over a
particular su�x of w: for w = xy we de�ne t1 ∼x t2 if t1 and t2 share an edge that terminates at some node labeled
with an index in y; otherwise, we write t1 ≁x t2 (observe that in this case the paths share no vertex labeled by a slot
associated with y). We sometimes call such pairs of tines disjoint (or, if t1 ≁x t2 for a string w = xy, disjoint over y).
Note that ∼ and ∼" are the same relation.

25

The basic structure we use to use to reason about settlement times is that of a “balanced fork.”

De�nition 21 (Balanced fork). A fork F is balanced if it contains a pair of tines t1 and t2 for which t1 ≁ t2 and
length(t1) = length(t2) = height(F). We de�ne a relative notion of balance as follows: a fork F ⊢ xy is x-balanced
if it contains a pair of tines t1 and t2 for which t1 ≁x t2 and length(t1) = length(t2) = height(F).

Thus, balanced forks contain two completely disjoint, maximum-length tines, while x-balanced forks contain
two maximum-length tines that may share edges in x but must be disjoint over the rest of the string. See Figures 2
and 3 for examples of balanced forks.

w = h

1

A

2

h

3

A

4

h

5

A

6

0

Figure 2: A balanced fork

w = h

1

h

2

h

3

A

4

h

5

A

6

0

Figure 3: An x-balanced fork, where x = hh

Balanced forks and settlement time. A fundamental question arising in typical blockchain settings is how to
determine settlement time, the delay after which the contents of a particular block of a blockchain can be considered
stable. The existence of a balanced fork is a precise indicator for “settlement violations” in this sense. Speci�cally,
consider a characteristic string xy and a transaction appearing in a block associated with the �rst slot of y (that is,
slot |x|+ 1). One clear violation of settlement at this point of the execution is the existence of two chains—each of
maximum length—which diverge prior to y; in particular, this indicates that there is an x-balanced fork F for xy.
Let us record this observation below.5

Observation 2. Let s, k ∈ ℕ be given and letw be a characteristic string. Slot s is not k-settled for the characteristic
string w if there exist a decomposition w = xyz, where |x| = s − 1 and |y| ≥ k + 1, and an x-balanced fork for xy.

In particular, to provide a rigorous k-slot settlement guarantee—which is to say that the transaction can be
considered settled once k slots have gone by—it su�ces to show that with overwhelming probability in choice of
the characteristic string determined by the leader election process (of a full execution of the protocol), no such
forks are possible. Speci�cally, if the protocol runs for a total of T time steps yielding the characteristics string
w = xy (wherew ∈ {0, 1}T and the transaction of interest appears in slot |x|+1 as above) then it su�ces to ensure
that there is no x-balanced fork for xŷ, where ŷ is an arbitrary pre�x of y of length at least k + 1. Note that for
systems adopting the longest chain rule, this condition must necessarily involve the entire future dynamics of the
blockchain. We remark that our analysis below will in fact let us take T = ∞.

De�nition 22 (Margin). Themargin of a fork F ⊢ w, denoted �(F), is de�ned as

�(F) = max
t1≁t2

(
min{reach(t1), reach(t2)}

)
, (18)

where this maximum is extended over all pairs of disjoint tines of F; thus margin re�ects the “second best” reach
obtained over all disjoint tines. In order to study splits in the chain over particular portions of a string, we generalize
this to de�ne a “relative” notion of margin: If w = xy for two strings x and y and, as above, F ⊢ w, we de�ne

�x(F) = max
t1≁xt2

(
min{reach(t1), reach(t2)}

)
.

5A balanced fork in [3] had the property that at least one maximally long tine was adversarial. But this is not true in our setting since we
allow multiply-honest slots.

26

Note that �"(F) = �(F).
For convenience, we once again overload this notation to denote themargin of a string. �(w) refers to themaximum

value of �(F) over all possible closed forks F for a characteristic string w:

�(w) = max
F⊢w,
F closed

�(F) .

Likewise, if w = xy for two strings x and y we de�ne

�x(y) = max
F⊢w,
F closed

�x(F) .

Note that, at least informally, tines with the “second-best” reach are of natural interest to an adversary who
wants to build an x-balanced fork, since such a fork contains two (partially disjoint) long tines.

Finally, writing w = xy, consider any tine-pair (tx, t�) in a fork F ⊢ w so that reachF(t�) = �(F) and tx is
y-disjoint with t�. Observe that if �x(y) < 0 then reachF(tx) < 0.

Fact 5 (see Fact 1 in [4]). Let xy ∈ {h, H, A}∗ be a characteristic string. Then there is an x-balanced fork F ⊢ xy if
and only if �x(y) ≥ 0.

Let w = xy. If �x(y) is negative, there can be no x-balanced fork for w. However, this also means that there
can be no fork for w which contains two maximally long tines that diverge prior to any slot s ≤ |x| + 1.

Corollary 2. Let w be a characteristic string and let w = xx′y be an arbitrary decomposition. If �xx′(y) < 0 then
�x(x′y) < 0.

Note that if a slot s > |x| has the UVP then there can be no x-balanced fork for xy. An appeal to Corollary 5
immediately gives:

Corollary 3. Let w ∈ {h, H, A}T be a characteristic string, s ∈ [T] be an integer, and w = xy be an arbitrary
decomposition where |x| < s. If s is a uniquely honest Catalan slot in w then �x(y) < 0.

9.2 Catalan slots and relative margin
Below, we lay down the connection between Catalan slots and relative margin. Note, however, that the exposition
below is not essential in proving the main theorems.

De�nition 23 (Margin-critical slot). Let w ∈ {h, H, A}T be a characteristic string, s ∈ [T] be a slot in w, and x be a
pre�x of w so that |x| = s − 1. Slot s is calledmargin-critical if, for all decompositions w = xyz so that |y| ≥ 1 and
|z| ≥ 0, we have �x(y) < 0.

Since �x(") ≥ 0 and |y| ≥ 1 in the above de�nition, it follows that a margin-critical slot (i.e., the �rst slot in y)
must be honest.

Lemma 2. Let w ∈ {h, H, A}T be a characteristic string. A a uniquely honest slot is margin-critical if and only if it
has the UVP.

Proof.

The⟹ direction. Let s ∈ [T] be a uniquely honest margin-critical slot in w. This means, for every pre�x
xy ⪯ w, |x| = s − 1, |y| ≥ 1, we have �x(y) < 0. Let F be any fork for xy and let t ∈ F,l(t) ≤ s − 1 be an
honest tine. Since it is disjoint with any tine in F over the su�x y, reach(t) < 0 and, by Fact 1, t does not
have an adversarial extension t′ ∈ F, t ≺ t′ that is viable at the onset of slot |xy| + 1. Therefore, if a tine in
F is viable at the onset of slot |xy| + 1, it must contain an honest vertex with label at least s. However, since
an honest vertex builds only on top of a viable tine, it follows that any viable tine must contain the unique
honest vertex with label s.

27

The⟸ direction. Let s ∈ [T] be a uniquely honest slot in w so that s has the UVP in xy. Let k ∈ ℕ, s ≤ k ≤ T;
Write w = xyz with |x| = s − 1 and |xy| = k. (Thus |y| ≥ 1 and y1 = ws.) Let F be any fork for xy. Since
slot s belongs to y, F cannot contain two tines such that i) both tines are viable at the onset of slot |xy| + 1
and, at the same time, ii) disjoint over the length of y since they must contain the unique vertex with label s.
In particular, F cannot be x-balanced. As F was an arbitrary fork for xy, no fork for xy can be x-balanced
for our choice ofm and k. We use Fact 5 to conclude that the relative margin �x(y)must be negative. Since
our k ∈ [s, T] is arbitrary, the above conclusion applies to all decompositions w = xyz where |x| = s − 1
and |xy| ≥ s. Therefore, slot s is margin-critical in w.

Corollary 4. Let w ∈ {h, H, A}T be a characteristic string. A uniquely honest slot in w is Catalan if and only if it is
margin-critical.

10 CP violations and balanced forks with concurrent honest leaders
Balanced forks played a critical role in the analysis of [3]. Speci�cally, a balanced forkwas equivalent to a settlement
violation in their setting and a CP violation would also imply a balanced fork. In the current analysis, we have
analyzed settlement and CP violations through their connections with the UVP and Catalan slots; thus balanced
forks are not necessary in our analysis. However, it is instructive to see whether the statement “a CP violation
implies a balanced fork” still holds in our model and, importantly, how the existing proof needs to be modi�ed.

Thus the the goal of this section is to prove Theorem 7 below which would yield an alternative proof of
Theorem 6 without using the Catalan slots. However, the simplicity of the proof of Theorem 6 in Section 8
demonstrates the expressive power of the UVP and Catalan slots compared to relative margin and balanced forks.

A k-CPslot violation implies a k-settlement violation. Let w be a characteristic string, written w = xy, and
let F be a fork for w. Recall that a slot s = |x| + 1 is not k-settled if and only if F contains two maximally long
tines that diverge prior to s, i.e., F is x-balanced (see De�nition 21).

De�nition 24 (Slot divergence). Let w ∈ {h, H, A}∗ and let F be a fork for w. De�ne the slot divergence of two tines
t1, t2 ∈ F as

divslot(t1, t2) ≜ l(t1) − l(t1 ∩ t2) where l(t1) ≤ l(t2) . (19)

We can generalize this notion for forks and characteristic strings as follows: divslot(F) ≜ maxt1,t2∈F divslot(t1, t2) and
divslot(w) ≜ maxF⊢w divslot(F).

By de�nition, a k-CPslot violation implies the existence of a fork with a slot divergence at least k+1. Theorem 7
below shows that a if a fork has a slot divergence at least k+1 then there is a balanced fork for a pre�x of the same
characteristic string so that two maximally long tine diverge prior to last k slots. Therefore, a k-CPslot violation
implies an (s, k)-settlement violation for some slot s.

Theorem 7. Let k, T ∈ ℕ. Let w ∈ {h, H, A}T be a characteristic string so that divslot(w) ≥ k + 1. Then there is a
decomposition w = xyz and a fork F̂ ⊢ xy, where |y| ≥ k, so that F̂ is x-balanced.

Recall that l(t) is the slot index of the last vertex of tine t. De�ne A ≜ ⋃
F⊢w AF where, for a given fork F ⊢ w,

de�ne
AF ≜ {(�1, �2) ∶

�1, �2 are two viable tines in the fork F,
l(�1) ≤ l(�2), and divslot(�1, �2) ≥ k + 1 } .

Notice that there must be a tine-pair (t1, t2) ∈ A which satis�es the following two conditions:

divslot(t1, t2) is maximal over A , (20)

|l(t2) − l(t1)| is minimal among all tine-pairs in A for which (20) holds , (21)

28

and
For a �xed t2, the tine t1 has the maximal length over all tines t′1,l(t

′
1) = l(t1)

such that (t′1, t2) satis�es (20) and (21) . (22)

(Note that t1, t2 are not uniquely identi�ed.) The tines t1, t2 will play a special role in our proof; let F be a fork
containing these tines.

Recall given a characteristic string w ∈ {h, H, A}∗, a uniquely honest slot contains the symbold h, a multiply-
honest slot contains the symbold H, and an adversarial slot contains the symbold A. We call a slot honest if it
contains either an h or an H; otherwise, we call it an adversarial slot.

The pre�x x, fork Fx, and vertex u. Let u denote the last vertex on the tine t1 ∩ t2, as shown in the diagram
below, and let � ≜ l(u) = l(t1 ∩ t2). Let x ≜ w1,… , w� and let Fx be the fork-pre�x of F supported on x. We
will argue that � must be a uniquely honest slot and, in addition, that Fx must contain a unique longest tine tu
terminating at the vertex u. We will also identify a substring y, |y| ≥ k such that w can be written as w = xyz.
Then we will construct a balanced fork F̃y ⊢ y by modifying the subgraph of F supported on y. We will �nish the
proof by constructing an x-balanced fork by suitably appending F̃y to Fx.

u

t1

t2

�must be a uniquely honest slot. Weobserve, �rst of all, that the slot � can neither be adversarial normultiply
honest: otherwise it is easy to construct a fork F′ ⊢ w and a pair of tines in F′ that violate (20). Speci�cally,
construct F′ from F by adding a new vertex u′ to F for which l(u′) = l(u), adding an edge to u′ from the vertex
preceding u, and replacing the edge of t1 following u with one from u′; then the other relevant properties of the
fork are maintained, but the slot divergence of the resulting tines has increased by at least one. (See the diagram
below.)

u

u′
t1

t2

Fx has a unique, longest (and honest) tine tu. A similar argument implies that the fork Fx has a unique
vertex of depth depth(u): namely, u itself. In the presence of another vertex u′ (of Fx) with depth depth(u),
“redirecting” t1 through u′ (as in the argument above) would likewise result in a fork with a larger slot divergence.
To see this, notice that l(u′)must be strictly less than l(u) since l(u) is an honest slot (which means u is the only
vertex at that slot). Thus l(⋅) would indeed be increasing along this new tine (resulting from redirecting t1). As �
is the last index of the string x, this additionally implies that Fx has no vertices of depth exceeding depth(u). Let
tu ∈ Fx be the tine with l(tu) = �.

The honest tine tu is the unique longest tine in Fx . (23)

Identifying y. Let � denote the smallest honest index ofw for which � ≥ l(t2), with the convention that if there
is no such index we de�ne � = T + 1. Thus � ≥ l(t2) ≥ l(t1). These indices, � and �, distinguish the substrings
y = w�+1…w�−1 and z = w� …wT; we will focus on y in the remainder of the proof. Since the function l(⋅) is
strictly increasing along any tine, observe that

|y| = (� − 1) − (� + 1) + 1 = � − � − 1 ≥ (l(t1) − l(u)) − 1 ≥ (k + 1) − 1 = k .

29

Hence y has the desired length and it su�ces to establish that it is forkable.6

Honest indices in xy have small depths. The minimality assumption (21) implies that any honest index ℎ
for which ℎ < � has depth no more thanmin(length(t1), length(t2)): speci�cally, we claim that

ℎ < � ⟹ d(ℎ) ≤ min(length(t1), length(t2)) . (24)

To see this, consider an honest indexℎ, ℎ < � and a tine tℎ forwhichl(tℎ) = ℎ. Ifl(t2) is honest thenℎ < � = l(t2).
Otherwise, ℎ < l(t2) < � since l(t2) is adversarial. In any case, ℎ < l(t2) and, since t2 is viable, it follows
immediately that d(ℎ) ≤ length(t2). Similarly, if ℎ < l(t1) then d(ℎ) ≤ length(t1) since t1 is viable as well.

Now consider the case ℎ = l(t1). We claim that

If ℎ = l(t1) < � then d(ℎ) = length(t1) . (25)

We can rule out the case ℎ = l(t1) = l(t2) since if this happens, l(t2) is honest and � = l(t2), contradicting our
assumption that ℎ < �. Thus, it must be the case that ℎ = l(t1) < l(t2). In this case, the claim follows trivially if
l(t1) is a uniquely honest slot. Otherwise, let t be a tine with maximal length among all tines labeled with the
multiply-honest slot ℎ = l(t1) < l(t2). We wish to show that length(t1) = length(t). There are four contingencies
to consider; the �rst three of these lead to contradictions and for the last one, we get length(t1) = d(ℎ) = length(t).

• If (t, t2) ∉ A, divslot(t, t2) is at most k. Since divslot(t1, t2) is at least k + 1, t must share a vertex with t2 after
slot l(u). But this means l(t ∩ t1) = l(u) and divslot(t, t1) = divslot(t1, t2) ≥ k + 1. As a result, (t, t1) ∈ A.
However, this violates (21) since |l(t) − l(t1)| = 0 < |l(t2) − l(t1)| by assumption.

• If (t, t2) is in A and l(t ∩ t1) < l(u), then divslot(t, t1) > divslot(t1, t2), violating (20).

• If (t, t2) is in A and l(t ∩ t1) = l(u), this means t is disjoint with t1 after l(u). Then (21) is violated since
divslot(t, t1) = divslot(t1, t2) but |l(t) − l(t1)| = 0 < |l(t2) − l(t1)| by assumption.

• If (t, t2) is in A and l(t ∩ t1) > l(u), this means t shares a vertex with t1 after l(u). Then divslot(t, t2) =
divslot(t1, t2) and |l(t2)−l(t1)| = |l(t2)−l(t)|. By (22), length(t1) ≥ length(t); hence length(t1) = length(t)
since by assumption, t has the maximal length among all tines with label l(t1). Hence length(t1) = d(ℎ).

The remaining case for proving (24), i.e., when l(t1) < ℎ < l(t2), can be ruled out by the argument below.

There is no honest index between l(t1) and l(t2). We claim that

There is no honest index ℎ satisfying l(t1) < ℎ < l(t2) . (26)

The claim above is trivially true if l(t1) = l(t2). Otherwise, suppose (toward a contradiction) that ℎ is an honest
index satisfying l(t1) < ℎ < l(t2). Let tℎ be an honest tine at slot ℎ. The tine-pair (t1, tℎ)may or may not be in A.
We will show that both cases lead to contradictions.

• If (t1, tℎ) is inA and l(t1∩tℎ) ≤ l(u), divslot(t1, tℎ) is at least divslot(t1, t2). In fact, due to (20), this inequality
must be an equality. However, the assumption l(t1) < ℎ < l(t2) contradicts (21).

• If (t1, tℎ) is in A and l(t1 ∩ tℎ) > l(u), it follows that divslot(tℎ, t2) > divslot(t1, t2). As the latter quantity is
at least k + 1, (tℎ, t2)must be in A. The preceding inequality, however, contradicts (20).

• If (t1, tℎ) ∉ A, divslot(t1, tℎ) is at most k. As divslot(t1, t2) is at least k + 1, tℎ and t1 must share a vertex after
slot l(u). Since l(t1) < ℎ < l(t2) by assumption, divslot(tℎ, t2) > divslot(t1, t2) ≥ k + 1 and, as a result,
(tℎ, t2) ∈ A. However, the strict inequality above violates (20).

We conclude that (26)—and thus (24)—is true. (Note that in the above argument, all we needed was that tℎ is a
viable tine since in all cases, tℎ appears in a tine-pair in A. Thus (26) can be generalized as saying “there is no fork
for w with a viable tine t so that l(t1) < l(t) < l(t2).”)

6In Blum et al. [3], |y| was at least k + 1. The di�erence is due to the fact that in their analysis, a slot with multiple vertices was necessarily
adversarial.

30

A fork F⊳u⊲ where all long tines go through u. In light of the remarks above, we observe that the fork F
may be “pinched” at u to yield an essentially identical fork F⊳u⊲ ⊢ w with the exception that all tines of length
exceeding depth(u) pass through the vertex u. Speci�cally, the fork F⊳u⊲ ⊢ w is de�ned to be the graph obtained
from F by changing every edge of F directed towards a vertex of depth depth(u) + 1 so that it originates from u.
To see that the resulting tree is a well-de�ned fork, it su�ces to check that l(⋅) is still increasing along all tines
of F⊳u⊲. For this purpose, consider the e�ect of this pinching on an individual tine t terminating at a particular
vertex v—it is replaced with a tine t⊳u⊲ de�ned so that:

• If length(t) ≤ depth(u), the tine t is unchanged: t⊳u⊲ = t.

• Otherwise, length(t) > depth(u) and t has a vertex v of depth depth(u) + 1; note that l(v) > l(u) because
Fx contains no vertices of depth exceeding depth(u). Then t⊳u⊲ is de�ned to be the path given by the tine
terminating at u, a (new) edge from u to v, and the su�x of t beginning at z. (As l(v) > l(u) this has the
increasing label property.)

Thus the tree F⊳u⊲ is a legal fork on the same vertex set; note that the depths of vertices in F and F⊳u⊲ are identical.

Constructing a fork Fy ⊢ y containing two long tines. By excising the tree rooted at u from this pinched
fork F⊳u⊲, we may extract a fork for the string w�+1…wT . Speci�cally, consider the induced subgraph Fu⊲ of
F⊳u⊲ given by the vertices {u} ∪ {v ∶ depth(v) > depth(u)}. By treating u as a root vertex and suitably de�ning the
labels lu⊲ of Fu⊲ so that lu⊲(v) = l(v) − l(u), this subgraph has the de�ning properties of a fork for w�+1…wT .
In particular, considering that � is honest, it follows that each honest index ℎ > � has depth d(ℎ) > length(u) and
hence any vertex with label ℎ is also present in Fu⊲. For a tine t of F⊳u⊲, we let tu⊲ denote the su�x of this tine
beginning at u, which forms a tine in Fu⊲. (If length(t) ≤ depth(u), we de�ne tu⊲ to consist solely of the vertex
u.) Considering t1u⊲ and t2u⊲, let ťi , i ∈ {1, 2} be the longest pre�x of tiu⊲ so that ťi is labeled by a slot in y. Since
the tines t1u⊲, t2u⊲ are disjoint in Fu⊲, so are ť1, ť2.

Recall that that y is as a pre�x of w�+1…wT . Let ℎ∗ be the largest honest index in y. Let Fy denote the subtree
of Fu⊲, with the same root as Fu⊲, containing the following tines: ť1, ť2, and all tines tu⊲ ∈ Fu⊲ ⧵ {ť1, ť2} so that
l(tu⊲) is drawn from y and

length(tu⊲) ≤ d(ℎ∗) . (27)
Note that the length of every honest tine labeled by y is at most d(ℎ∗); hence, thanks to (24), Fy contains all honest
tines from Fu⊲ that have labels in y. Note, in addition, that the tines ť1 and ť2 are consistently labeled in Fy . Thus
Fy satis�es all properties of a legal fork.

Having de�ned Fy , we claim that

min
(
length(ť1), length(ť2)

)
≥ d(ℎ∗) . (28)

Let i ∈ {1, 2}. If l(ti) < � then ťi = tiu⊲ and, by (24), length(ťi) = length(tiu⊲) ≥ d(ℎ∗). Othereise, we have
l(ti) = � which means l(ti) is an honest slot. Thus tiu⊲ must be an honest tine, building directly on top of the
viable tine ťi . Therefore, we have length(ťi) ≥ d(ℎ∗).

Constructing a balanced fork F̃y ⊢ y. If length(ť1) = length(ť2), set F̃y = Fy and, due to (27) and (28), the
fork F̃y ⊢ y must be balanced. Otherwise, let a, b ∈ {1, 2}, a ≠ b be two integers so that length(ťa) > length(ťb).
We modify Fy by deleting some trailing nodes from ťa so that the surviving pre�x—let it be denoted by t̃a—has
the same length as ťb. That is, we achieve

length(t̃a) = length(ťb) = min
(
length(ť1), length(ť2)

)
.

Let F̃y be the resulting fork. Equations (27) and (28) imply that F̃y has at least two maximally long tines (i.e., t̃a
and ťb) and therefore, it is balanced. It remains to show that the longer tine, ťa, has su�ciently many trailing
adversarial vertices so that after deleting them, we obtain length(t̃a) = length(ťb). (If we had to delete an honest
vertex in this process, F̃y may have violated property (F3) in the de�nition of a fork.) Let ℎa be the label of the last
honest vertex on ťa. Thanks to (28), we have length(ťa) > length(ťb) ≥ d(ℎ∗) ≥ d(ℎa). Hence all vertices in ťa
with labels in [ℎa +1,l(ťa)]must be adversarial; we can safely delete | length(ťa)− length(ťb)| of these adversarial
vertices.

31

An x-balanced fork F̂ ⊑ F. Let us identify the root of the fork F̃y with the vertex u of Fx and let F̂ be the
resulting graph (after “gluing” the root of F̃y to u). By (23), it is easy to see that the fork F̂ ⊑ F is indeed a valid fork
on the string xy. Moreover, F̂ is x-balanced since F̃y is balanced. The claim in Theorem 7 follows immediately
since |y| ≥ k.

References
[1] Christian Badertscher, Peter Gaži, Aggelos Kiayias, Alexander Russell, and Vassilis Zikas. Ouroboros genesis:

Composable proof-of-stake blockchains with dynamic availability. In Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, CCS ’18, page 913–930, 2018.

[2] Iddo Bentov, Rafael Pass, and Elaine Shi. Snow white: Provably secure proofs of stake. page 919, 2016. URL
http://eprint.iacr.org/2016/919.

[3] Erica Blum, Aggelos Kiayias, Cristopher Moore, Saad Quader, and Alexander Russell. Linear consistency
for proof-of-stake blockchains. Technical report, Cryptology ePrint Archive, Report 2017/241, 2018. URL
https://eprint.iacr.org/2017/241.

[4] Erica Blum, Aggelos Kiayias, Cristopher Moore, Saad Quader, and Alexander Russell. The combinatorics of
the longest-chain rule: Linear consistency for proof-of-stake blockchains. In Proceedings of the 2020 ACM
Symposium on Discrete Algorithms, SODA ’20, 2020.

[5] Bernardo David, Peter Gaži, Aggelos Kiayias, and Alexander Russell. Ouroboros praos: An adaptively-secure,
semi-synchronous proof-of-stake blockchain. In Advances in Cryptology – EUROCRYPT 2018, pages 66–98,
2018.

[6] Juan Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol with chains of variable
di�culty. In Annual International Cryptology Conference, pages 291–323. Springer, 2017.

[7] Juan A. Garay and Aggelos Kiayias. Sok: A consensus taxonomy in the blockchain era. IACR Cryptology
ePrint Archive, 2018:754, 2018. URL https://eprint.iacr.org/2018/754.

[8] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol: Analysis and appli-
cations. In Advances in Cryptology - EUROCRYPT 2015, pages 281–310, 2015. URL https://doi.org/10.

1007/978-3-662-46803-6_10.

[9] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov. Ouroboros: A provably secure
proof-of-stake blockchain protocol. In Advances in Cryptology - CRYPTO 2017 - 37th Annual International
Cryptology Conference, volume 10401 of Lecture Notes in Computer Science, pages 357–388, 2017.

[10] Silvio Micali. ALGORAND: the e�cient and democratic ledger. CoRR, abs/1607.01341, 2016. URL http:

//arxiv.org/abs/1607.01341.

[11] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. http://bitcoin.org/bitcoin.pdf, 2008.

[12] Rafael Pass and Elaine Shi. The sleepy model of consensus. In Advances in Cryptology - ASIACRYPT 2017,
pages 380–409, 2017. URL https://doi.org/10.1007/978-3-319-70697-9_14.

[13] Herbert S Wilf. generatingfunctionology. AK Peters/CRC Press, 3 edition, 2005.

32

http://eprint.iacr.org/2016/919
https://eprint.iacr.org/2017/241
https://eprint.iacr.org/2018/754
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-662-46803-6_10
http://arxiv.org/abs/1607.01341
http://arxiv.org/abs/1607.01341
https://doi.org/10.1007/978-3-319-70697-9_14

	Introduction
	The model; statement of the main theorems
	Slot settlement and the Unique Vertex Property
	Adversarial attacks on settlement time; the settlement game
	A consistent longest-chain selection rule

	Structure of forks
	Catalan slots and the UVP
	UVP from a uniquely honest Catalan slot
	UVP from consecutive Catalan slots and consistent chain selection

	Proofs of main theorems
	Proofs of Bounds 1 and 2
	Proof of Bound 1
	Proof of Bound 2

	The semisynchronous setting
	Some structural and stochastic ingredients
	Proof of Theorem 5

	The common prefix property
	Catalan slots and relative margin
	Relative margin and balanced forks
	Catalan slots and relative margin

	CP violations and balanced forks with concurrent honest leaders

