
ISA Extensions for Finite Field Arithmetic
Accelerating Kyber and NewHope on RISC-V

Erdem Alkim1, Hülya Evkan1, Norman Lahr1, Ruben Niederhagen1 and
Richard Petri1

Fraunhofer SIT, Darmstadt, Germany
erdemalkim@gmail.com, hevkan@gmail.com, norman.lahr@lahr.email,

ruben@polycephaly.org, rp@rpls.de

Abstract. We present and evaluate a custom extension to the RISC-V instruction set
for finite field arithmetic. The result serves as a very compact approach to software-
hardware co-design of PQC implementations in the context of small embedded
processors such as smartcards. The extension provides instructions that implement
finite field operations with subsequent reduction of the result. As small finite fields are
used in various PQC schemes, such instructions can provide a considerable speedup
for an otherwise software-based implementation. Furthermore, we create a prototype
implementation of the presented instructions for the extendable VexRiscv core,
integrate the result into a chip design, and evaluate the design on two different FPGA
platforms. The effectiveness of the extension is evaluated by using the instructions to
optimize the Kyber and NewHope key-encapsulation schemes. To that end, we also
present an optimized software implementation for the standard RISC-V instruction
set for the polynomial arithmetic underlying those schemes, which serves as basis
for comparison. Both variants are tuned on an assembler level to optimally use the
processor pipelines of contemporary RISC-V CPUs. The result shows a speedup
for the polynomial arithmetic of up to 85% over the basic software implementation.
Using the custom instructions drastically reduces the code and data size of the
implementation without introducing runtime-performance penalties at a small cost in
circuit size. When used in the selected schemes, the custom instructions can be used
to replace a full general purpose multiplier to achieve very compact implementations.

Keywords: PQC · lattice-based crypto · NewHope · Kyber · RISC-V · ISA extension

1 Introduction
Since the beginning of the 21st century, the developments in quantum computing have been
building up momentum. Given the current state of the art with the first small but promising
quantum computers in the research labs of Google, IBM, and Microsoft, it is general
consensus that we can expect larger quantum computers to be available and operational in
the next decades. The most prominent quantum algorithms are Grover’s algorithm, which
gives a square-root speedup on brute-force search problems, and Shor’s algorithm, which
solves the integer factorization and the discrete logarithm problem in polynomial time.
Both algorithms threaten information security: While the impact of Grover’s algorithm
generally can be mitigated by tuning security parameters (e.g., by doubling key sizes
of symmetric ciphers), Shor’s algorithm renders most of the currently used asymmetric
cryptography like RSA, DSA, and DH as well as Elliptic Curve Cryptography (ECC)
insecure.

mailto:erdemalkim@gmail.com
mailto:hevkan@gmail.com
mailto:norman.lahr@lahr.email
mailto:ruben@polycephaly.org
mailto:rp@rpls.de


2 ISA Extensions for Finite Field Arithmetic

These developments in quantum computing and the devastating impact of Shor’s algo-
rithm on our current IT security has spawned active research into alternative cryptographic
systems that are secure against attacks with the aid of quantum computers. This field
of research is called Post-Quantum Cryptography (PQC). There are five popular families
of PQC schemes: code-based, hash-based, lattice-based, multivariate, and isogeny-based
cryptography. The research in PQC has culminated in a NIST standardization process
that has started in December 2016 and is expected to be finished in 2022 to 2024.

An important aspect of PQC research is the efficient and secure implementation of
PQC algorithms. In contrast to current algorithms, which require efficient arithmetic on
medium to large integers of a few hundred bits (e.g., modular arithmetic for ECC) to a
few thousand bits (e.g. RSA-2048), many PQC schemes require operations over small
finite fields with a size of typically less than 20 bits. In this paper, we investigate the
impact of providing finite field extensions to an Instruction Set Architecture (ISA) on
the performance of PQC schemes with the example of the lattice-based key-encapsulation
mechanisms Kyber and NewHope (see Section 2.1). Our metrics are:

• cycle count: What speedup can we gain?
• issued instructions: How efficiently are the cycles used?
• clock frequency: What is the impact on the longest path?
• wall-clock time: Can we exploit improvements in cycle count?
• area: What is the cost in FPGA resources?
• time-area product: What is the trade-off between time and area?

In order to perform these measurements, we require a prototype implementation of a
CPU with our experimental ISA extensions and optimized software using this extension.
To build such a platform, we need an open ISA, which enables us to add extensions, and
an open implementation of this ISA for FPGAs, which we can easily be used as basis
for our new finite-field instruction-set extensions. The RISC-V ISA and its VexRiscv
implementation (see Section 2.2) are an ideal platform for these requirements.

Related work. For lattice-based schemes, there exist three classes of implementations:
pure software implementations, dedicated hardware modules, and software-hardware co-
designs. In the survey paper [NDR+19] the spectrum of existing implementation variants
for lattice-based schemes is summarized. It covers implementations on general purpose
processors as well as implementations on resource constraint microcontrollers and FPGAs.
Some implementations also utilize graphics cards or Digital Signal Processors (DSPs) for
acceleration. Furthermore, the authors identified discrete noise sampling (Gaussian or
Binomial) and matrix or polynomial multiplications, which also include the finite field
arithmetic, as the main bottlenecks over all lattice-based schemes. The most common
approach used for polynomial multiplication is the Number-Theoretic Transform (NTT).
Among others, in software implementations the modular arithmetic is optimized by
platform-specific Single-Instruction-Multiple-Data (SIMD) instructions (e.g. SSE, AVX2,
or ARM NEON) and by applying optimizations on the assembly level.

There are several projects implementing software libraries for general purpose processors
that include the Kyber and NewHope schemes: PQClean1, liboqs2, libpqcrypto3, and
SUPERCOP4. On constrained devices, the authors in [ABCG20] presented an optimized
software implementation of Kyber and NewHope for an ARM Cortex-M4 platform
with a small memory footprint. They reached a speedup of ca. 10% for both Kyber and
NewHope implementation compared to the ARM Cortex-M4 implementations in [BKS19]

1https://github.com/PQClean/PQClean
2https://openquantumsafe.org/#liboqs
3https://libpqcrypto.org/
4https://bench.cr.yp.to/supercop.html

https://github.com/PQClean/PQClean
https://openquantumsafe.org/#liboqs
https://libpqcrypto.org/
https://bench.cr.yp.to/supercop.html


Erdem Alkim, Hülya Evkan, Norman Lahr, Ruben Niederhagen and Richard Petri 3

and [KRSS]. They achieved this speedup by optimizing finite field arithmetic and NTT
operations. The results were integrated to the pqm45 project, which is a post-quantum
crypto library for the ARM Cortex-M4. We refer to this work in more detail in Section 3
and Section 5.

In [AHH+19] Albrecht et al. show an adapted variant of Kyber and NewHope on a
commercially available smartcard (Infineon SLE 78). They utilize the existing RSA/ECC
co-processor to accelerate finite field operations and the AES and SHA-256 co-processor
to speed up the pseudo random number generation and the hash computation of their
Kyber and NewHope adaption.

Other software-based works on constrained devices in the area of lattice-based schemes
are an implementation of NTRU [BSJ15] on a smart card microprocessor, of BLISS on ARM
Cortex-M4F microcontroller [OPG14] and on Atmel ATxmega128 [LPO+17]. Furthermore,
there are implementations of Ring-LWE schemes on Atmel ATxmega128 [LPO+17], on
Texas Instruments MSP430 as well as on ARM Cortex-A9 using the NEON engine to
vectorize the NTT [LAKS18], and on ARM Cortex-M4F [dCRVV15]. For the scheme
NewHope, an implementation on ARM Cortex-M0 and M4 is presented in [AJS16]. Also
for ARM Cortex-M4 the authors of [KMRV18] present an implementation of the module
lattice-based scheme Saber.

To the best of our knowledge there are no dedicated hardware implementations for
Kyber or other module lattices-based schemes. However, there are hardware implementa-
tions for standard and ideal lattices that share the common requirement for polynomial
multiplication and finite field arithmetic with our work: In [GFS+12], the first hardware
implementation of Ring-LWE-based PKE was presented instantiating a high-throughput
NTT with the cost of high area consumption. The smallest Ring-LWE implementation was
proposed in [PG14] and a high-speed implementation using DSPs on the FPGA in [PG13].
Also the NewHope implementation presented in [OG17] utilizes DSPs for the NTT. A
performance improvement is further reached by the authors of [KLC+17] because they are
using four butterfly units for the NTT.

For the RISC-V there already exist a few software-hardware co-designs for PQC schemes:
In [FSM+19] the authors present an implementation of the lattice-based scheme NewHope-
CPA-KEM. They are using the RISC-V processor-core variant from the Pulpino distribution
(RI5CY, RV32I ISA with RV32M multiplier, four stage in-order pipeline) and accelerate the
NTT and the hash operations with distinct co-processors. The co-processors are connected
to the RISC-V core by memory mapped IO via the AHB data bus. Furthermore, the
signature scheme XMSS is implemented on RISC-V with a memory mapped acceleration
core by the authors of [WJW+19]. They are using the Murax SoC setup of the VexRiscv
ecosystem6. Finally, in [KZDN18] the authors presented a realization of a memory mapped
and formally verified AES co-processor for RISC-V. Outside of the context of RISC-V, a
small instruction set extension is proposed in [GKP04], which introduces a few specialized
multiply-accumulate instructions. The goal was to accelerate the reduction operation of
the subfield in the context of elliptic curves with optimal extension fields.

In July 2018, the RISC-V Foundation announced a security standing committee that,
among other topics, intends to extend the RISC-V ISA with instructions to accelerate
cryptographic operations7. In June 2019, the project XCrypto8 was presented at the
RISC-V Workshop Zurich [MPP19]. The authors define an extension of the RISC-V
instruction set with the focus on classical cryptography. There does not yet seem to be
comparable work regarding the requirements for post-quantum schemes.

There are several cryptographic instruction set extensions for modern CPUs, e.g., the
5https://github.com/mupq/pqm4
6https://github.com/SpinalHDL/VexRiscv
7https://riscv.org/2018/07/risc-v-foundation-announces-security-standing-committee-

calls-industry-to-join-in-efforts/
8https://github.com/scarv/xcrypto

https://github.com/mupq/pqm4
https://github.com/SpinalHDL/VexRiscv
https://riscv.org/2018/07/risc-v-foundation-announces-security-standing-committee-calls-industry-to-join-in-efforts/
https://riscv.org/2018/07/risc-v-foundation-announces-security-standing-committee-calls-industry-to-join-in-efforts/
https://github.com/scarv/xcrypto


4 ISA Extensions for Finite Field Arithmetic

AES-NI extension and the Intel SHA Extensions for x86 processors. To the best of our
knowledge, there is no previous work providing instruction set extensions for finite field
arithmetic or other operations required for lattice-based cryptography.

Our contribution. This paper offers two contributions: First, we present optimized
RISC-V implementations of the polynomial arithmetic used by the Kyber and NewHope
schemes. These implementations target the standardized RISC-V ISA, adapting recent
developments of optimizations for the ARM instruction set to the features of the RISC-V
instruction set to achieve fast implementations with optimal usage of the processor pipeline.
We integrate the results into implementations of the Kyber and NewHope schemes and
evaluate their performance. The second contribution is a custom instruction set extension
for finite field arithmetic for small fields. We introduce four new instructions and create a
prototype implementation of an extended RISC-V processor for two FPGA platforms. We
evaluate Kyber and NewHope implementations that utilize these custom instructions
and compare the results to our first contribution. The result serves as a suitable alternative
to larger accelerators, especially in size constrained applications.

Structure. We provide information about the lattice-based PQC schemes NewHope
and Kyber as well as the RISC-V ISA and the VexRiscv implementation in Section 2. In
Section 3 we describe how we port and optimize NewHope and Kyber to the official
RISC-V ISA in order to obtain a base line for our performance measurements. Section 4
gives details about our ISA extensions and the implementation and the integration of the
extensions into VexRiscv. Finally, we provide an evaluation of our work in Section 5.

We will make our implementation publicly available under an open source license.

2 Background
In this section, we introduce the lattice-based PQC schemes Kyber and NewHope as
well as the RISC-V ISA and the RISC-V implementation VexRiscv that we use as base for
our implementation and experiments.

2.1 Lattice-based Cryptography
The construction of lattice-based cryptography is based on the assumed hardness of lattice
problems. The Shortest Vector Problem (SVP) is the most basic example of such problems.
The goal of the SVP is to find the shortest nonzero vector in a lattice represented by
an arbitrary basis. The first lattice-based cryptographic constructions were proposed by
Ajtai in 1996 [Ajt96] using the Short Integer Solution (SIS) problem. The goal of the SIS
problem is to find a small solution for a linear system over a finite field, which Ajtai proved
in the average case to be as hard as the SVP in the worst case.

In 2005, Regev introduced a lattice-based public-key scheme [Reg05] that relies on
the learning with error problem (LWE), which Regev showed to be as hard as several
worst-case lattice problems. The goal in LWE is to find an n-based linear function over a
finite field ring from a given sample where some of the function samples may be incorrect.
For example, let (xi, yi) be a given sample where each xi ∈ Zqn is a vector of n integers
modulo q, and yi ∈ Zq is an integer modulo q. The goal is to find the linear function
f : Zqn 7−→ Zq where yi = f(xi) for any given sample. Solving this problem is not hard,
since in this case one needs only n different samples to define f using linear algebra.
However, if some of the samples are erroneous, the LWE problem becomes a hard problem
requiring many samples for a solution.

There are two variants of the LWE problem that are as hard as the original problem.
Both variants are used in some of the NIST PQC submissions. The first variant is the



Erdem Alkim, Hülya Evkan, Norman Lahr, Ruben Niederhagen and Richard Petri 5

Table 1: NewHope parameter sets (see [AAB+19]). The failure probability is given as δ.

n q η δ NIST level
NewHope512 512 12289 8 2−213 I
NewHope1024 1024 12289 8 2−216 V

learning with error over rings (Ring-LWE) problem, which uses polynomial rings over
finite fields as domain for the LWE. It was proposed by Lyubashovsky, Peikert, and Regev
in 2010 [LPR10]. Basically, the secrets and errors are not integer vectors but polynomials
coming from a polynomial ring. The other variation of LWE is the learning with error on
modules (Module-LWE) problem, introduced, e.g., by Langlois and Stelé in 2012 [LS15].
Module-LWE is based on the Ring-LWE but replaces ring elements with module elements
over the same ring. While Ring-LWE uses a polynomial ring, Module-LWE uses a matrix of
these polynomials on the same ring. The secrets and errors turn into vectors of polynomials.
Comparing Ring-LWE and Module-LWE at an implementation level, using modules makes
it possible to choose the dimensions of the module for a given ring, which gives more
freedom to balance security and efficiency.

Although NewHope and Kyber use different polynomial rings, their structure is the
same, Zq[X]/(Xn + 1), denoted as Rq. Moreover, both schemes use a centered binomial
distributions (Bη) for generating noise.

2.1.1 NewHope

NewHope is a key-encapsulation mechanism based on the Ring-LWE problem. It has two
variants named NewHope-CPA-KEM and NewHope-CCA-KEM for semantic security
under adaptive chosen plaintext (CPA) and adaptive chosen ciphertext (CCA) attacks
respectively. The authors use an CPA-secure public-key encryption (CPA-PKE) scheme
inside both versions with a simple transformation from CPA to CCA security using the
Fujisaki Okamoto (FO) transformation [FO99].

The NewHope submission to the NIST standardization process provides two security
levels [AAB+19]. While the degree of polynomial changes (n = 512 or n = 1024), other
parameters, e.g., the modulus (q = 12289) and the parameter of the noise distribution
(η = 8), remain same for both security levels. Table 1 gives an overview on the proposed
parameters and their failure probabilities.

NewHope-CPA-PKE. For key generation, a random bit string seeda is selected and a
uniformly random polynomial a ∈ Rq, is generated using seeda. Then, coefficients of
s, e ∈ Rq are sampled from a centered binomial distribution with parameter η = 8. After
all the polynomials have been generated, the public key is computed as b = as+ e and
packed together with seeda, while the secret key contains the polynomial s.

For the encryption of a message µ, a secret s′ ∈ Rq and an error e′′ ∈ Rq are sampled
from the centered binomial distribution. Then, the message is encrypted by computing
v = bs′ + e′′ + Encode(µ). In addition, a corresponding R-LWE sample is generated using
the same a and s′ with a freshly generated e′ ∈ Rq as u = as′ + e′. Finally, u and v are
packed as ciphertext.

For decryption, u and v are decoded and the message µ is deciphered using the secret
key s by computing µ = Decode(v − us). (The functions Encode() and Decode() map
between the message space and Rq.)

Key encapsulation. The KEM key generation performs exactly same computations as
NewHope-CPA-PKE key generation except for the packing of the secret key: While



6 ISA Extensions for Finite Field Arithmetic

for NewHope-CPA-KEM the secret key only contains the polynomial s in a packed
form, NewHope-CCA-KEM requires the public key to be added to secret key to perform
additional checks that are required by the FO transform.

The encapsulation algorithm selects a random message µ and uses the CPA-PKE
encryption algorithm to encrypt it.

The decapsulation algorithm uses the CPA-PKE decryption to obtain µ. The CPA
secure version of the scheme directly uses a hash of µ as shared key, while the CCA secure
version re-computes the entire encryption process (using µ instead of a randomly selected
message) to ensure u and v have been generated using the encryption of the same message.
This additional check is called FO transform. The decapsulation returns a random shared
secret if the check fails and a hash of µ otherwise.

NewHope utilizes NTT as a part of the scheme. This means that is a generated in the
NTT domain by default. Both key and ciphertext (b, s, u) are packed in the NTT domain
except for the polynomial v with the added message. Keeping objects in the NTT domain
allows to use less inverse NTT operations and therefore to increase the efficiency.

2.1.2 CRYSTALS-Kyber

Kyber [ABD+19] is a KEM based on the Module-LWE problem. At its core, Kyber
is using an IND-CPA secure public key encryption scheme (Kyber.CPAPKE) that is
converted to a IND-CCA2 secure KEM (Kyber.CCAKEM) using an adapted FO transform.
Kyber is part of the Cryptographic Suite for Algebraic Lattices (CRYSTALS)9 together
with its sibling signature scheme Dilithium [DKL+19]. Both CRYSTALS schemes have
been submitted to the NIST standardization process. For the following brief and simplified
description of Kyber.CPAPKE and Kyber.CCAKEM (from the round 2 version), we closely
follow the notation of the Kyber specification [ABD+19]; please refer to [ABD+19] for
further details. Vectors are written as bold lower-case letters, matrices as bold upper-case
letters.

Kyber.CPAPKE. The underlying public-key encryption scheme of Kyber has several
integer parameters: n = 256, q = 3329, η = 2, and k, du, and dv with integer values
depending on the security level. Parameter k ∈ {2, 3, 4} is the main parameter for
controlling the security level by setting the lattice dimension nk; du, and dv are chosen
accordingly for balancing security, ciphertext size, and failure probability.

For key generation, a matrix A ∈ Rk×kq is generated randomly. The vectors s, e ∈ Rkq
are sampled from distribution Bη using a pseudo-random function (PRF). The vector
t ∈ Rkq is computed as t = As + e. The public key pk is an encoding of t and the secret
key sk is an encoding of s.

For encryption of a message m ∈ Rq, first t is decoded from pk. Then, a matrix
A ∈ Rk×kq is generated. Vectors r, e1 ∈ Rkq and e2 ∈ Rq are sampled from Bη using
the PRF. Vector u ∈ Rnq is computed as u = AT r + e1 and v ∈ Rq is computed as
v = tT r + e2 +m. The ciphertext c is a concatenation of encodings of u and v.

For decryption of a ciphertext c, c is decoded back to u and v and the secret key sk is
decoded to s. Then the plaintext message is simply obtained by computing m = v − sTu.

One important optimization is built into the Kyber scheme: Vector-vector and
matrix-vector multiplication can efficiently be performed in the NTT domain. This allows
the Kyber team to exploit trade-offs between ciphertext size (using compression) and
computing time. In order to avoid conversions into and out of NTT domain, the Kyber
specification requires the public key to be stored and transmitted in the NTT domain.
Furthermore, performing operations in the NTT domain allows the matrix A to be directly
sampled in the NTT domain, which gives further speedups.

9https://pq-crystals.org/

https://pq-crystals.org/


Erdem Alkim, Hülya Evkan, Norman Lahr, Ruben Niederhagen and Richard Petri 7

Table 2: Kyber parameter sets (see [ABD+19]). The failure probability is given as δ.

n k q η (du, dv) δ NIST level
Kyber512 256 2 3329 2 (10, 3) 2−178 I
Kyber768 256 3 3329 2 (10, 4) 2−164 III
Kyber1024 256 4 3329 2 (10, 5) 2−174 V

Kyber.CCAKEM. The public-key encryption scheme Kyber.CPAPKE is transformed
into a KEM scheme using an FO transform. This requires several hash operations, e.g.,
for computing a message digest, and a key-derivation function (KDF). The hash functions
are instantiated with SHA-3 or SHA-2 for a “90s” variant and the PRF and KDF with
SHAKE-256. The cost of these symmetric operations typically exceeds the cost of finite
field and polynomial arithmetic in Kyber.CPAPKE.

There are three parameter sets Kyber512, Kyber768, and Kyber1024 of Kyber that
match to NIST levels I, III, and V and vary mainly in lattice dimension and compression
parameters. Table 2 gives an overview over the parameter sets.

2.2 RISC-V
The RISC-V project was started in 2010 by the University of California, Berkley. Since
2015 it is organized in the RISC-V Foundation10 with more than 275 memberships from
academia and industry. The goal for the RISC-V project is to provide a free and open ISA
suitable for processor designs (in contrast to simulation or binary translation) without
dictating a specific micro-architecture style or implementation technology. The ISA itself
is designed to satisfy the reduced instruction set computing (RISC) principles and is a
small base integer instruction set with several sets of modular extensions (e.g., for integer
multiplication, floating point operations, etc.) as well as designated space for future or
custom extensions. There are several implementations of the RISC-V ISA, for example
the Rocket Chip11, the PicoRV3212, and the VexRiscv13. In the following, we provide a
short introduction into several implementations and a rationale for our choice of a specific
implementation as basis for the work in this paper.

Extendable RISC-V implementations. One of the earliest implementations of the RISC-V
ISA is the Rocket Chip with UC Berkeley as one of the main contributors. It is not a
monolithic design but rather a system-on-chip (SoC) generator written in the hardware
construction language Chisel14. The Rocket Chip design is also the basis of the SiFive
Freedom E300 chip15. Chips generated with the Rocket Chip generator implement the
RISC-V ISA including some standard extensions with a five-stage pipeline. The designs
can be extended via a simple co-processor interface called “Rocket Custom Coprocessor”
(RoCC). This interface can be used to implement custom instructions using one of the un-
used opcode spaces of the RISC-V ISA. While this interface is easy to use for development,
it is also fairly inflexible since it does not allow the extension of the existing pipeline stages
for creating multi-stage instructions. The much smaller PicoRV32 implementation follows
a similar approach for implementing extensions. The core itself is tailored to very small
designs and is also fully parametrizable. For instruction set extensions, the core offers the

10https://riscv.org/
11https://github.com/freechipsproject/rocket-chip
12https://github.com/cliffordwolf/picorv32
13https://github.com/SpinalHDL/VexRiscv
14https://chisel.eecs.berkeley.edu/
15https://github.com/sifive/freedom

https://riscv.org/
https://github.com/freechipsproject/rocket-chip
https://github.com/cliffordwolf/picorv32
https://github.com/SpinalHDL/VexRiscv
https://chisel.eecs.berkeley.edu/
https://github.com/sifive/freedom


8 ISA Extensions for Finite Field Arithmetic

“Pico Co-Processor Interface” (PCPI), following a similar approach as the Rocket Chip
generator.

VexRiscv. The VexRiscv project aims at providing a highly modular implementation of
the RISC-V ISA. Instead of using a fixed extension interface for co-processor cores, the
VexRiscv core itself is extendable by design. The design is based on a flexible pipeline
that is extended by plugins. VexRiscv is written in the SpinalHDL hardware description
language16, which is a domain specific language for designing digital circuits. SpinalHDL
is built on top the Scala programming language. Hardware is described using a software
oriented approach, however, without using high-level synthesis. The fundamental building
blocks of the VexRiscv core are the pipeline stages defined by registers between the stages
called stageables. During generation of the hardware, plugins are adding processing logic
to stages to processes input stageables and insert output stageables. VexRiscv provides a
RISC-V CPU implemented with five pipeline stages: (1) fetch, (2) decode, (3) execute,
(4) memory, and (5) writeback. All functionality of the CPU is implemented using plugins
as described above. The following describes some of the plugins, which make up the basic
functionality of the RISC-V implementation.

The fetch stage is primarily built up by the IBusSimplePlugin, which has a simple
memory interface from which it will fetch instructions starting at a configurable reset
vector. This plugin also features an interface for other plugins to access the program
counter, e.g., to implement jump instructions. The instructions fetched from memory are
passed to the decode stage, which is primarily implemented by the DecoderSimplePlugin.
The decoder itself is not tailored to RISC-V but built as a simple detector for bit patterns
in a given bit string, i.e., the instruction. It offers a simple interface for other plugins
to describe patterns that are to be detected and associated actions, i.e., values that the
decoder needs to insert into specific stageables. For the most part, this is used to inject
flags that control the behavior of the logic defined by each plugin. The register file is
implemented as a plugin as well and injects the register values into pipeline stageables. If
a flag in the pipeline indicates that an instruction produces a result, the register-file plugin
writes the value to the register file in the final writeback stage. The HazardSimplePlugin
tracks the usage of registers and delays an instruction in the decoding stage whenever a
dependency to a preceding unretired instruction exists. If the result of an instruction is
available in earlier stages, this plugin can also be configured to bypass the result directly
to the depending instruction instead of delaying it. Register values are rarely used directly
by plugins; instead the values are processed by the SrcPlugin. Depending on flags from
the decoder, this plugin detects instruction-variants with immediate values and injects
these values instead of register values to the following stages as source operands.

The described plugins are used to build up the core framework of the processor as
shown in Figure 1. Most other plugins then build on top of this to implement the basic
integer ALU, shifters, or multipliers. Note that a plugin is not necessarily restricted to a
single stage. For example, a multiplication plugin can spread its logic over multiple stages
to avoid long unregistered signal paths. A branching plugin interprets branch instructions
and indicates jumps to the IBusSimplePlugin. The DBusSimplePlugin implements the
load- and store instructions and offers a memory interface similar to the instruction bus.
Further plugins implement the special machine registers, such as cycle counters or trap
vectors, and a debug plugin offers a JTAG interface to control the core.

Due to this flexible architecture, we chose the VexRiscv core as a basis for our ex-
periments. In particular, we are making use of its ability to implement instruction set
extensions that utilize the entire pipeline instead of providing a restricted coprocessor
interface.

16https://github.com/SpinalHDL/SpinalHDL

https://github.com/SpinalHDL/SpinalHDL


Erdem Alkim, Hülya Evkan, Norman Lahr, Ruben Niederhagen and Richard Petri 9

fetch decode exec memory writeback

IBus

RegFile
(read)

Decoder

RS1

RS2

..
.

SrcPlugin

IntALU

Mul
(stage 1)

SRC1
SRC2

DBus

Mul
(stage 2)

RegFile
(write)

Mul
(stage 3)

Figure 1: The simplified architecture of the VexRiscv core.

3 Kyber and NewHope on RISC-V
This section covers the implementation of the polynomial arithmetic used by NewHope
and Kyber, using the standardized RISC-V ISA. To the best of our knowledge, there are
no previous optimization attempts of these schemes for the RISC-V platform. Accordingly,
we follow the approach for optimization in the reference implementations as well as previous
publications for platforms similar to RISC-V like the ARM Cortex-M4. The optimization
target is the RISC-V integer base instruction set with the standardized multiplication
extensions, designated rv32im by the GCC compiler. While the multiplication extensions
feature dedicated division and remainder instructions, we decided not to use them based
on the assumption that smaller embedded devices, e.g., smartcards, would not feature a
single (or few) cycle logic for division due to its prohibitive cost in terms of circuit size.
Similarly, the ARM Cortex-M4 also does not feature a single cycle division instruction. In
the following, we describe the implementation of the finite field used for the coefficients of
the polynomials in Section 3.1. Section 3.2 follows with details on the NTT implementation
and related operations on polynomials.

3.1 Finite Field Arithmetic
In the reference implementations of both Kyber and NewHope, the authors used two
different reduction algorithms for multiplication and addition/subtraction to be able to
make use of specific 16-bit operations, e.g., to perform 16 operations in parallel using AVX2
extensions or to use specific DSP instructions defined in some Cortex-M4 cores. Because
the targeted RISC-V ISA does not support 16-bit arithmetic operations, we implement a
32-bit reduction algorithm. The following paragraphs describe our RISC-V-specific design
choices.

Polynomial representation. Our representation of the polynomials and their coefficients
follows the C reference implementation by the NewHope and Kyber authors as well
as some of the improvements described in [BKS19]. The polynomials have 256, 512, or
1024 coefficients, each of which being an element in Fq with either a 14-bit (q = 12289)
or a 12-bit (q = 3329) prime. The reference implementations uses a signed 16-bit integer
representation, which avoids the need for handling underflows during the Montgomery
reduction step. Without slight modification, this approach does not lend itself well to the
RISC-V ISA, as the RISC-V does not feature a sign-extension operation as, e.g., the ARM



10 ISA Extensions for Finite Field Arithmetic

Algorithm 1: Barrett reduction on
32-bit inputs.

Input: Integer a < 232 (register a0)
Input: Prime q (register a1)
Input: Integer b 232

q
c (register a2)

Output: reduced a < 214 (register a0)
1 mulh t0, a0, a2 // t← a · b 232

q
c

2 mul t0, t0, a1 // t← t · q
3 sub a0, a0, t0 // a← a− q

Algorithm 2: 4× interleaved Bar-
rett reduction on 32-bit inputs.

Input: Integer ai < 232, with 1 ≤ i ≤ 4
(registers a0 to a3)

Input: Prime q (register a4)
Input: Integer b 232

q
c (register a5)

Output: reduced a < 214 (register a0)
1 mulh t0, a0, a5 // first batch
2 mulh t1, a1, a5 // second batch
3 mulh t2, a2, a5 // third batch
4 mulh t3, a3, a5 // forth batch
5 mul t0, t0, a4 // first batch
6 mul t1, t1, a4 // second batch
7 . . .
8 sub a0, a0, t0 // first batch
9 . . .

ISA with its sxth instruction.
The multiplication extension for RISC-V features an instruction that returns the high

32-bit of a 32 × 32-bit multiplication, which can be used to remove shifting operations
during the modular reduction. Thus, we decided to implement a 32-bit Barrett reduction
for a better fit to the target ISA, as shown in Algorithm 1. This optimization approach
only requires three instructions, which is less than the approach for unsigned Montgomery
reduction with four instructions as used in [AJS16]. This and similar other approaches
used for the ARM instruction set cannot be used here, since RISC-V does not feature
a fused multiply-and-add instruction. In contrast to a Montgomery reduction, we can
perform modular reduction after both multiplication and addition/subtraction without
the need for any base transformation of the coefficients.

Instruction interleaving. The processor pipeline of the VexRiscv features five pipeline
stages. The instructions of the reduction may block this pipeline considerably, as each
instruction depends on the result of its predecessor (see Algorithm 1). Therefore, each
instruction blocks the following dependent one from progressing beyond the decoding
stage until the instruction is retired. The processor can bypass the later stages for some
instructions, which shortens these stalls. For example, the result of the addition and
subtraction instructions (sub in Algorithm 1) become ready during the execute stage (stage
three of five) and can be bypassed directly to the following instruction in the decoding
stage. This however is not possible for multiplication (mul and mulh in Algorithm 1), as
the result of this instruction is only readied during the final fifth stage.

Since the RISC-V features a large number of registers, this problem can be alleviated
considerably by reducing multiple results in an interleaved manner. Algorithm 2 shows (in
abbreviated form) how we interleave the execution of four independent reductions to avoid
pipeline stalls due to interdependence of consecutive instructions. While this optimization
likely is not as effective for RISC-V CPUs with shorter pipelines, it does not harm the
performance, as the number of instructions remains the same as with four consecutive
reductions. A more than four-fold interleave is not necessary for the VexRiscv, as the fifth
instruction is only just fetched, as the first makes its result ready. We also apply the same
optimization to the polynomial multiplication, addition, and subtraction.



Erdem Alkim, Hülya Evkan, Norman Lahr, Ruben Niederhagen and Richard Petri 11

1 2 3 4

5 6 7 8

9 10 11 12

Figure 2: The order of butterfly operations for an NTT with three merged layers.

3.2 Number Theoretic Transform

At the core of NewHope and Kyber is the NTT, which is used to speed up polynomial
multiplication. Previous results from [GOPS13], [AJS16], [BKS19], and [ABCG20] reduce
the number of memory loads and stores by merging several layers of the NTT. The
NTT transformation requires powers of the primitive n-th root of unity during butterfly
operations, which are called twiddle factors. Because the implementation might require
the twiddle factors to be in some special order, these factors are often precomputed and
kept in memory.

Unmerged implementations load one pair of coefficients from memory, load the appro-
priate twiddle factor from memory, perform the butterfly operation, and store the result.
When merging layers, as illustrated in Figure 2, the number of loaded pairs and butterfly
operations per layer is doubled, i.e., for n layers, 2n coefficients and 2n − 1 twiddle factors
are loaded and 2n−1 · n butterfly operations can be performed before storing the results.

The RISC-V ISA features a sufficient amount of registers to merge up to three layers,
i.e., eight coefficients are processed with twelve butterfly operations before the next set is
loaded. Each four of the twelve butterfly operations are then interleaved to further avoid
pipeline stalls as described above. The NTT used in Kyber features seven layers. Thus,
we can process the first three layers in one block and the next three in eight sequential
blocks. The last layer cannot be merged and is processed with four interleaved butterfly
operations. Although there are not enough registers to merge four layers, the last layer
can be merged with the previous chunk by loading only half of the coefficients. This idea
was used in [AJS16] to combine the 10th layer of NewHope1024 with merged 7th, 8th,
and 9th layers.

While this technique can be helpful in NewHope, Kyber has a slightly different
structure that makes it hard to get improvements using this technique. Kyber imple-
mentations are terminating the NTT computation at the 7th layer, thus the last layer is
performed on degree-two polynomials. This means that at the merged 4th, 5th, and 6th
layers should be performed on each coefficients of the small polynomials, i.e., performing a
scalar multiplication, addition, and subtraction of degree-two polynomials, while the above
technique loads new values into the registers that were used for twiddle factors. Thus, the
technique can save 2n loads per merged butterfly operation, while bringing the need of
loading 2n−1 twiddle factors to use them for the other coefficient of degree-two polynomials.
Thus we decided to use this technique only for our NewHope implementations.

Our implementation employs a moderate amount of code unrolling, e.g., to enable
interleaving. Due to the high number of registers, unrolling is not necessary to free registers
otherwise used for counters. Accordingly, we are using a looped approach for the iteration
through the merged blocks to reduce the code-size. The inner twelve butterfly operations
are, however, fully unrolled and reused by each of the blocks.



12 ISA Extensions for Finite Field Arithmetic

3.3 On-The-Fly Computation of Twiddle Factors
In this section, we describe a technique to reduce memory consumption during the NTT
computation. This version of the algorithm is often called Iterative NTT [LRCS01]. The
order of the twiddle factors used during the NTT varies depending on the choice of the
butterfly operation, e.g., Gentelemen-Sande [GS66] or Cooley-Tukey [CT65], and the order
of the input polynomial such as bit-reversed order or normal order, and also the order in
which the coefficients are processed. Our first design decision was not to use the bit-reversal
process with the goal to reduce memory instructions. Thus, we implemented a forward
NTT for normal order to bit-reversed order as well as an inverse NTT for bit-reversed
order to normal order.

Although on-the-fly computation of twiddle factors reduces the memory usage, mul-
tiplication with reduction is more expensive than a single memory operation on most
platforms. Therefore, this version of the algorithm is often used in FPGA implementations,
where implementers can design efficient modular arithmetic circuits [RVM+14]. Software
implementations usually opt for precomputation of all twiddle factors [BKS19], or at least
some part of them [AJS16] to reduce the running time.

While the RISC-V ISA only contains general purpose computing instructions, the
instruction code space also reserves opcodes for custom instructions. Hence both FPGA
implementation tricks and the tricks used in implementations on constrained microcon-
trollers can be used on the RISC-V by providing instruction set extensions for modular
arithmetic. In Section 4, we describe a single cycle multiplication operation in Zq that
makes the on-the-fly computation of twiddle factors possible without any performance
penalty. Furthermore, when interleaved, this multiplication does not stall the pipeline of
the processor, unlike a memory load instruction.

Changing the order of twiddle factors. To implement Iterative NTT, one needs to
arrange the order of the twiddle factors in a way that can be computed on-the-fly. This
can be done by changing the order of the input polynomial and the distance between the
coefficients that are processed in the butterfly operation. Two different implementations
for three layer butterfly operations are given in Figure 3. Note that two implementations
compute same result, but the order of the twiddle factors that are being processed in each
layer is different.

In Figure 3, wir , wjr and wkr , where r = 0, 1, 2, 3, are some arbitrary powers of n-th
root of unity for a selected chunk of the NTT computation. Both implementations use the
Gentlemen-Sande butterfly. In case that the order of the input polynomial should not be
changed, the same result can be achieved by changing the butterfly operation used, i.e.,
Cooley-Tukey butterfly can be used instead of Gentlemen-Sande or vice-versa.

Early termination of NTT computation. For the second round of the NIST process,
Kyber proposed a new and smaller q. However, to be able to perform NTT for polynomial
multiplication, they needed to use a technique by Moenck [Moe76] that will be called “early
termination of NTT computation” in this document. For the second round parameters of
Kyber, the authors performed NTT for only 7 layers, thus their polynomials are written as
n′ = 128 polynomials in Zq/(X2 − wi), where wi is a i-th power of the n′-th root of unity.
The order of these powers is same with the order of the output of the NTT. Thus if we use
a NTT variant that takes polynomials in normal order and returns them in the bit reversed
order, we need to perform degree-2 polynomial arithmetic with some power of w that is in
the bit-reversed order. As a result, we still need to precompute some values. However,
in bit-reversed order, each quadruple has powers in the form of wi, wi+ n′

2 , wi+
n′
4 , wi+

3n′
4 ,

where i = 0, .., n
′

4 in bitreversed order, and this can be written as wi,−wi, wi+ n′
4 ,−wi+ n′

4 .
Thus these four powers of w can be computed using only wi and w n′

4 and we can reduce



Erdem Alkim, Hülya Evkan, Norman Lahr, Ruben Niederhagen and Richard Petri 13

a7

a3

a5

a1

a6

a2

a4

a0

â7

â3

â5

â1

â6

â2

â4

â0

wi0

wi1

wi2

wi3

wj0

wj1

wj2

wj3

wk0

wk1

wk2

wk3

a7

a6

a5

a4

a3

a2

a1

a0

â7

â6

â5

â4

â3

â2

â1

â0

wk0

wk2

wk1

wk3

wj0

wj2

wj1

wj3

wi0

wi2

wi1

wi3

Figure 3: Butterfly operation with bit-reversed twiddle factors.

the size of the precomputed table by only using first n′

4 powers of w in bit-reversed order
and multiply them with w n′

4 on-the-fly when needed. Note that if the starting polynomial
is Zq/(Xn + 1), NTT requires to be able to represent it as Zq/(Xn − γn′) where γ in n′-th
root of −1. Thus, all precomputed values should be multiplied with γ to complete Chinese
remainder representation.

4 Instruction Set Extension for Finite Fields
As introduced in Section 2.2, we chose the VexRiscv core as a baseline RISC-V implemen-
tation, due to its flexible design. In the following we describe the general architecture of
the designed system, as well as the design of the instruction set extension for small finite
fields.

4.1 General Architecture
In addition to the RISC-V implementation, the SpinalHDL and VexRiscv projects also
provide plugins for buses, memory, and IO. These plugins can be freely combined as needed.
The VexRiscv project provides some examples of stand-alone SoC instances. We used
the most simple example, the Murax SoC, as baseline for our implementation. The core
configuration is tailored towards small FPGAs, with many features deactivated. Our goal
is to create a chip with some key features similar to the ARM Cortex-M4 (cf. [Yiu14]).
Since the VexRiscv core features two more pipeline stages than the ARM Cortex-M4,
instructions generally need more cycles to be retired. To ameliorate this disadvantage of
the VexRiscv core, we enabled the hazard management plugin with the pipeline bypass
feature in the configuration, which makes the results of many instructions available already
in the execute stage.

Furthermore, we used two separate plugins for integer multiplication: a full multiplier,
and a simpler multi-cycle multiplier. While the multiplier of the Cortex-M4 operates in a
single cycle, the full VexRiscv multiplier is spread across the three pipeline stages exec,
memory, and writeback. None of the stages in the full multiplier takes more than one cycle
to complete, so several multiplication instructions can be handled in quick succession, as
long as they do not have register interdependencies. The simplified multi-cycle integer
multiplier remains in the memory stage for 32 cycles, blocking the pipeline until the
result is ready. Which of the two multiplier plugins is used, is chosen when the hardware



14 ISA Extensions for Finite Field Arithmetic

is generated. The VexRiscv division instruction plugin also requires multiple cycles to
complete and stalls the pipeline, similar to the Cortex-M4. While we do not use the
division instruction in any of our implementations, we included it to match the feature set
of the Cortex-M4 in order to get a comparable area consumption. As final modification to
the default core configuration, we enabled several machine state registers, e.g., the cycle
and the instruction counter for later performance evaluations. The design also includes
the JTAG debug core plugin by default, which in real-world scenarios may be left out.

The memory architecture of the Murax SoC combines the data and the instruction bus
in order to use a simple single-master bus architecture. To mimic the bus architecture
of a Cortex-M4 core, our modifications to the Murax SoC include a full multi-master
bus matrix with both the instruction and data bus ports of the core as masters. The
memory bus itself is a simple pipelined bus, i.e. using independent command and response
buses. Our design also features two SRAM blocks instead of one as bus slaves. This is to
accommodate the two masters, as well as to mimic the existence of a separate fast on-chip
storage for code and an SRAM block for stack and data, as present in most Cortex-M4
chips. We linked all evaluated programs accordingly to map code into the lower, and
stack and other data to the upper block. This avoids most pipeline stalls, which otherwise
occur in case the instruction and the data bus compete for the same bus slave at the same
time. Apart from memory, the data bus of the core also includes a peripheral bus slave
component with a memory mapped UART controller for communication.

4.2 Instruction Set Extension
To examine the effectiveness of small instruction set extensions, for example in the scenario
of a small specialized processor of a smartcard, TPM, or other HSMs, we target the
underlying finite field of the Kyber and NewHope ciphers. However, this technique can
also be applied to other cryptographic primitives that require finite fields arithmetic with
elements that can be represented with fewer bits than a machine word. There are plenty
such primitives in the PQC domain, e.g., other lattice-based schemes, code-based schemes,
or multivariate schemes. The idea is to implement all arithmetic concerning a small finite
field with a dedicated set of instructions, which perform the respective operation and
the subsequent reduction, instead of using several standard instructions for the operation
and the reduction. Even though implementing a reduction on a standard ISA only takes
a couple of instructions, the time savings can accumulate. Furthermore, the code size
of the implementation can be reduced, which may save valuable space in case of small
embedded implementations. Depending on existing size constraints, such a custom finite
field instruction may be a valuable alternative to much larger dedicated accelerators as
used in, e.g., [OG17] and [WJW+19].

We decided to use the Barrett reduction algorithm as basis for our custom instruction,
as shown in Algorithm 3. Compared to Montgomery reduction, this avoids the need to
convert the elements to the Montgomery domain and back. This would either be necessary
for each single instruction or the programmer would need to keep track of which values
or results are in Montgomery domain. Barrett reduction is generally less efficient than
Montgomery reduction in many scenarios. However, here it simplifies data handling, which
makes a computational overhead worthwhile. Furthermore, depending on the choice of the
prime, the low Hamming weight of the constants can be used to avoid large multipliers.
We use the low Hamming weight of q = 3329 in Kyber (and q = 12289 of NewHope) to
implement the required multiplication with q as four shifts and additions.

Figure 4 illustrates the integrated circuit of the custom instructions for addition,
subtraction, and multiplication in Fq. The calculation begins with the inputs from the
source registers in the execute stage. Then the field operations, i.e. addition, subtraction,
or multiplication, are performed and the desired operation is chosen according to two
of the bits in the instruction word. The output of this stage is the unreduced result of



Erdem Alkim, Hülya Evkan, Norman Lahr, Ruben Niederhagen and Richard Petri 15

exec memory writeback

SRC1[k−1:0]

+

−

×

SRC2[k−1:0]

INSTR[13:12]

×

b22k/qc

� k − 1

−

×

q

� k + 1

[k:0] −

q

0

< q

Figure 4: Circuit diagram for the custom instructions in Fq with q < 2k.

Algorithm 3: Barrett reduction algorithm. [MVO96]

Input: Positive integers x < 22k, 2k−1 < q < 2k and µ = b 22k

m c
Output: Reduced integer r = x (mod q)

1 y1 ← x� (k − 1)
2 y2 ← (y1 · µ)� (k + 1)
3 r ← x− y2 · q (mod 2k)
4 if r ≥ q do: r ← r − q

the intended operation, i.e., the input x of Algorithm 3. In the memory stage, the upper
bits of the unreduced result, i.e. value y1 in Algorithm 3, is multiplied with the Barrett
constant µ and passed on to the writeback stage. Effectively, the result calculated in the
memory stage of the processor is y2 of Algorithm 3. In the writeback stage, the calculated
value y2 is multiplied with the prime q. This multiple of the prime is subtracted from
the unreduced result, which is then guaranteed to be smaller than 2q. A subsequent
conditional subtraction of q then fully reduces the value.

We implemented two variants of the custom instruction: a variant which operates with
a set of primes fixed when the CPU is synthesized, as well as a flexible variant, capable
of setting the prime at run time. The difference between those variants is simply the
origin of the values of k, q, and b22k/qc as used in Figure 4. In the case of the fixed
variant, these values are provided by a mux which selects the constants accordingly. The
flexible variant instead sources these values from internal registers. These registers are
then part of the CPU state and execution context. Overall three finite field operations are
introduced by the plugin: finite field addition ffadd, finite field subtraction ffsub, and
finite field multiplication ffmul. A fourth instruction ffred does not perform finite field
arithmetic, but it simply reduces the value stored in the source register modulo q. Two
further instructions ffset and ffget provide access to the internal state of the flexible
variant and are not implemented by the fixed variant. Figure 5 shows the bit format of
the six instructions. We use standard instruction formats, as specified by the RISC-V ISA.
Bit 0 to 6 designate the custom extension, while bit 12 to 14 pick the finite field operation.
The bit position for the registers are defined by the RISC-V ISA. The higher seven bits are
used as an index by the fixed variant of the custom instruction to select the used prime.



16 ISA Extensions for Finite Field Arithmetic

Bit 31 . . . 25 24 . . . 20 19 . . . 15 14 . . . 12 11 . . . 7 6 . . . 0
ffadd q_idx rs2 rs1 011bin rd 0001011bin

ffsub q_idx rs2 rs1 001bin rd 0001011bin

ffmul q_idx rs2 rs1 010bin rd 0001011bin

ffred q_idx unused rs1 011bin rd 0001011bin

ffset 0000000bin rs2 rs1 100bin unused 0001011bin

ffget 0000000bin unused unused 100bin rd 0001011bin

Figure 5: The instruction format for the custom finite field arithmetic instructions.

5 Evaluation
In this section we evaluate the performance of our optimized RISC-V software implementa-
tion presented in Section 3, as well as the performance of our implementation that utilizes
the custom instructions presented in Section 4. Furthermore, the size and speed of the
chip design on FPGA target platforms is discussed.

NTT and polynomial operations. The cycle count and number of issued instructions
for the polynomial arithmetic is presented in Table 3. We evaluated the C reference
implementation17 by the Kyber authors (C-Ref.), our optimized software implementation
(rv32im), as well as a variant using the custom instructions (custom). The targeted
platform for C-Ref. and rv32im is our RISC-V core (see Section 4.1) with a full multiplier
enabled. The custom implementation does not use the general purpose multiplier within
the implementation of the polynomial arithmetic. Therefore, the multiplier plugin could
be removed from the RISC-V CPU if not needed otherwise. To the best of our knowledge,
no other optimized RISC-V software implementation of Kyber is available. Therefore,
we added recent results from Alkim, Bilgin, Cenk, and Gerard [ABCG20] on an ARM
Cortex-M4 microcontroller as reference.

The optimized software implementation requires 53% to 85% fewer cycles than the C
reference implementation for all polynomial operations. In the optimized implementations,
the average number of cycles per instruction ranges from 1.25 in the case of the polynomial
multiplication down to 1.05 in the case of the inverse NTT suggesting that the utilization
of the processor pipeline is at a near optimum. The use of the custom instructions reduces
the number of cycles by another 20% to 33% compared to the rv32im version (up to 89%
fewer cycles than the C reference).

A much more significant advantage of the custom instruction becomes apparent when the
size of the code is considered. Table 3 shows the size of the code and related precomputed
values for the polynomial arithmetic operations. Note, that the Kyber cipher always
uses the same polynomial arithmetic for all variants. Due to the looped implementation,
the C reference remains the smallest. For the Kyber ciphers, the impact of the custom
instruction is a moderate 24% size decrease, as the precomputed values are fairly moderate
in size (two 128x16 bit tables). The difference becomes much more noticeable for the
NewHope ciphers, with a 46% and 61% decrease in size. Furthermore, the size does not
increase as much when the degree of the polynomial is raised. Here, the size increase of the
custom variant only stems from additional NTT layers, as the code is unrolled. In principle,

17https://github.com/pq-crystals/kyber, commit 46e283ab575ec92dfe82fb12229ae2d9d6246682

https://github.com/pq-crystals/kyber


Erdem Alkim, Hülya Evkan, Norman Lahr, Ruben Niederhagen and Richard Petri 17

Table 3: Number of cycles and executed instructions per cycle (in parenthesis) for a
single polynomial operation of addition, subtraction, multiplication (element-wise in NTT
domain), and NTT as well as overall code size in byte.

poly_
Implementation add / sub basemul ntt invntt Size

Kyber
C-Ref. 3379 (0.69) 13634 (0.51) 34538 (0.55) 56040 (0.52) 1892 B
rv32im 1586 (0.82) 4050 (0.80) 8595 (0.88) 9427 (0.90) 3120 B
custom 1586 (0.82) 2395 (0.81) 6868 (0.82) 6367 (0.83) 2368 B
[ABCG20]a N/A 2325 (N/A) 6855 (N/A) 6983 (N/A) N/A

NewHope512
C-Ref. 6712 (0.69) 19536 (0.53) 134322 (0.54) 137375 (0.56) 3284 B
rv32im 2774 (0.87) 4322 (0.92) 20548 (0.96) 21504 (0.96) 6048 B
custom 2774 (0.87) 2783 (0.87) 14787 (0.92) 14893 (0.92) 3264 B
[ABCG20]a N/A 3127 (N/A) 31217 (N/A) 23439 (N/A) N/A

NewHope1024
C-Ref. 14391 (0.71) 40014 (0.54) 291354 (0.54) 306258 (0.56) 5352 B
rv32im 5462 (0.88) 8547 (0.92) 45252 (0.97) 47711 (0.96) 9568 B
custom 5462 (0.88) 5472 (0.88) 31295 (0.94) 31735 (0.92) 3664 B
[ABCG20]a N/A 6229 (N/A) 68131 (N/A) 51231 (N/A) N/A

a Cortex-M4

a looped implementation should not grow at all. The size of the precomputed values used
by the rv32im variant, however, grows linearly with the degree of the polynomial.

In comparison to the optimized Cortex-M4 implementation, the RISC-V implementation
without custom instructions (rv32im) takes more cycles. Note that, when degree of the
polynomial is high enough, RISC-V implementations become more efficient. The optimized
ARM code uses (to some extent) small SIMD instructions that can handle two 16-bit
halfwords at once. Furthermore, these 16-bit halfwords do not require the expensive
sign extension operations, which are necessary for RISC-V, considerably shortening the
number of instructions for Montgomery reduction. Although SIMD instructions lead
the performance improvements, implementers should keep all inputs small enough to fit
in 16-bit half words with using additional modular reduction procedures. The effect of
these additional modular reductions makes the optimized Cortex-M4 implementation of
NTT become slower for higher degree polynomials while the performance improvement on
basemul operation remain. Our RISC-V implementation with custom instructions and
code interleaving outperforms the Cortex-M4 in terms of cycle count.

Performance comparison. The significant speedups we obtain for the polynomial arith-
metic are diminished when looking at the schemes as a whole. This is due to the time-
dominating role of the hash functions used in Kyber and NewHope, e.g., of the Keccak
permutation used as a PRF and KDF. This problem is aggravated since the only optimized
implementation of the Keccak permutation for RISC-V uses a bit interleaved representation
of the state [Sto19]. Therefore, it requires additional bit manipulation operations that
would be very costly in RISC-V. To alleviate this, we evaluated the ciphers with a simple
unrolled assembly implementation of the Keccak permutation. However, if the cycles
spent within hash functions are subtracted from the measurements, the speedups translate
reasonably well.

Table 4 shows the results for the cycles spent in total (including the hash function,



18 ISA Extensions for Finite Field Arithmetic

marked as “-total”) and cycles spent excluding the hash-function calls. The targeted
platform for C-Ref. and rv32im is our RISC-V core with a full multiplier enabled. In the
following we focus on the performance with the cycles spent in the hash function removed.
The optimized RISC-V implementation (rv32im) then requires 58% to 62% fewer cycles
than the C reference code (C-Ref.), with the larger parameter sets showing the slightly
smaller performance gains.

The table also lists recent optimized results for the ARM Cortex-M4 processor
([ABCG20] (M4)). Compared to a C reference on the Cortex-M4 (C-Ref. (M4)), the
performance gains are slightly less significant compared to our result for RISC-V. In this
case, the optimized implementation requires 45% to 63% fewer cycles.

To evaluate the impact of the custom instructions, we targeted three different platforms
with varying implementations of the general purpose multiplier (i.e., the standard RISC-V
mul instruction): one without a general purpose multiplier (custom-nomul), and one with
the full three-stage multiplier (custom). In the case of custom-nomul, the compiler was
configured not to emit any multiplication instruction (apart from our custom instruc-
tions) but to implement general integer multiplications using a series of other assembler
instructions. As the code for Kyber is mostly free of any multiplications (apart from
the polynomial arithmetic), the impact of a missing multiplier is negligibly small. The
remaining multiplications are mostly by the constant q during polynomial (de-)compression,
or otherwise by powers of two, which a compiler usually implements as shifts.

Overall, the impact of our custom instructions is not as visible as before when looking
only at polynomial arithmetic. However, the results for custom-nomul are still slightly
faster than the rv32im implementation, except in case of the encapsulation. The version
with the custom instruction including a full multiplier (custom) is consistently the fastest
with 20% to 25% fewer cycles than the optimized RISC-V implementation (rv32im) (68%
to 71% fewer cycles than the C reference).

Circuit resource utilization and speed. To evaluate the cost of our custom instructions,
we determined the required resources for our entire extended Murax SoC in various
configurations on two different FPGA platforms. We use the iCE40 UltraPlus FPGA by
LatticeSemi18 as a target platform in order to mimic a low power microcontroller. The
FPGA features 5280 LUTs with four inputs, eight DSP multipliers and four 256Kx16-Bit
SRAM blocks. We used the open-source toolchain of Project Icestorm19 for synthesis. To
mimic higher power microcontrollers, we also target the Xilinx Artix-35T platform, which
is one of the reference platforms in the NIST standardization process. This FPGA features
33280 LUTs with six inputs, as well as 90 DSP multipliers and 50 SRAM blocks of 36 kbit
each. For synthesis, we used the Xilinx Vivado 2019.1 toolchain. While the Artix-35T
features more memory than the iCE40, we instantiate the same amount of memory to
create two feature-identical FPGA RISC-V implementations.

For each of the FPGAs, we generated six different configurations: a reference core
without a custom instruction (rv32im), a custom core for a single prime and once without
and with a general purpose multiplier (custom-nomul and custom), a custom core for
four different primes (custom4) and custom core with the flexible extension, again once
without (flex-nomul) and with (flex) a multiplier. For each configuration we evaluated
the resource usage, maximum frequency Fmax as reported by the synthesis tools.

Table 5 and Table 6 each show the device utilization for the iCE40 UltraPlus and
Xilinx Artix-35T FPGAs. The overhead of a custom instruction for single prime (here
q = 12289) is small with a LUT size increase of about 6% in both FPGAs. Note that this
variant only requires one additional DSP, as the instruction will share a DSP with the

18http://www.latticesemi.com/en/Products/DevelopmentBoardsAndKits/
iCE40UltraPlusBreakoutBoard

19http://www.clifford.at/icestorm/

http://www.latticesemi.com/en/Products/DevelopmentBoardsAndKits/iCE40UltraPlusBreakoutBoard
http://www.latticesemi.com/en/Products/DevelopmentBoardsAndKits/iCE40UltraPlusBreakoutBoard
http://www.clifford.at/icestorm/


Erdem Alkim, Hülya Evkan, Norman Lahr, Ruben Niederhagen and Richard Petri 19

Table 4: Performance (in kilo cycles) of the cipher implementations for key generation
(K), encapsulation (E), and decapsulation (D).

Cipher Implementation K-total K E-total E D-total D

Kyber512

C-Ref. 928 307 1301 472 1345 676
rv32im 738 118 1009 181 923 253
custom 710 89 971 143 870 200
C-Ref. (M4) 650 296 885 412 985 603
[ABCG20] (M4) 456 110 587 124 544 169

Kyber1024

C-Ref. 2745 796 3319 1029 3356 1358
rv32im 2274 325 2703 414 2535 537
custom 2203 253 2619 330 2429 431
C-Ref. (M4) 1895 782 2257 950 2409 1268
[ABCG20] (M4) 1405 310 1606 322 1526 413

NewHope512

C-Ref. 1192 421 1863 648 1892 859
rv32im 945 175 1477 262 1372 338
custom 904 134 1424 209 1302 268
C-Ref. (M4) 720 278 1134 514 1192 598
[ABCG20] (M4) 579 145 859 172 807 218

NewHope1024

C-Ref. 2395 881 3697 1367 3816 1822
rv32im 1862 349 2856 526 2676 682
custom 1776 263 2742 412 2528 535
C-Ref. (M4) 1460 592 2265 927 2411 1264
[ABCG20] (M4) 1158 302 1675 352 1588 461

Table 5: iCE40 UltraPlus device utilization and speed for varying configurations.

Configuration LUTs RAM SPRAM DSP Fmax

rv32im 4072 6 4 4 16.4 MHz
custom 4292 5 16.6 MHz
custom4 4366 6 15.8 MHz
custom-nomul 3300 2 16.0 MHz
flex 4584 6 15.9 MHz
flex-nomul 3588 3 16.1 MHz

Table 6: Xilinx Artix-35T device utilization and speed for varying configurations.

Configuration LUTs FFs RAM DSP Fmax

rv32im 1738 1599 34 4 59.6 MHz
custom 1842 1634 5 59.2 MHz
custom4 1826 1624 7 57.6 MHz
custom-nomul 1496 1298 2 59.6 MHz
flex 1907 1658 7 59.4 MHz
flex-nomul 1593 1336 4 62.8 MHz



20 ISA Extensions for Finite Field Arithmetic

Table 7: Xilinx Artix-35T Time-Area performance of a DSP-less implementation for
varying core configurations.

Configuration LUTs Fmax Time Time×Area Relative
rv32im 2833 58.8 MHz 11.60 ms 32855 1.00
custom 3046 57.7 MHz 9.27 ms 28223 0.86
custom4 3255 57.2 MHz 9.36 ms 30466 0.93
custom-nomul 1749 55.3 MHz 10.65 ms 18634 0.57
flex 3524 52.4 MHz 10.21 ms 35989 1.10
flex-nomul 2316 55.5 MHz 10.62 ms 24595 0.75

general purpose multiplier, and another DSP can be avoided if the q has a low Hamming
weight (synthesized as three shifts and additions). If more than one prime is supported
(here q = 251, 3329, 12289, 18433), one DSP will still be shared, however the multiplication
with q will use a DSP. Hence, the increase in LUTs is small (or in the case of the Artix-35T
even negative), but additional DSPs will be used. The flex variant adds a further 5%,
but no additional DSPs. The custom-nomul variant offers an attractive option, with a
significant size decrease of 13.9 to 18.9% to the reference, without any detriment to the
polynomial math performance. Even the flexible variant flex-nomul offers a significant
decrease of 8.3 to 11.8%. We used the timing reporting tools of the FPGA toolchains to
determine the maximum frequency. The maximum frequency remains mostly unaffected
by the design changes, with an average 16.14 MHz for the iCE40 and 59.7 MHz for the
Artix-35T.

Due to the presence of DSPs in the synthesized designs, we cannot simply determine a
“time-area-product”, as there is no reasonable conversion between LUTs and DSPs. To
emulate a “time-area-product”, we also synthesized the designs for the Artix-35T without
DSPs, i.e. by forcing the toolchain to use LUTs to implement the multipliers, and evaluated
the performance of the NewHope1024 decryption function. Table 7 shows the according
time-area-product of the NewHope1024 cipher decapsulation function (again excluding
the hash function). The implementations using the custom instructions are consistently
faster, despite the slightly lower maximum frequency. Due to the low hardware overhead of
the custom instruction, the time-area-product is accordingly lower, when put into relation
to the standard reference core. Variants without a general purpose multiplier are especially
attractive here, as the performance loss due to a missing multiplier is mostly mitigated by
the custom instruction20. The exception here is the flex variant, which should, however,
be considered an outlier, as synthesizing the core with DSPs does not result in lower
frequency. Furthermore, the variants using the custom instruction would also use less
memory, which is not part of the area estimation here.

Our results show that using instruction set extensions for finite field arithmetic gives
a significant performance benefit and helps to reduce memory consumption not only of
program code but also of data in situations where constants can be recomputed on-the-fly
instead of storing them explicitly. This is particularly beneficial on architectures with
small or slow memory. Even for an overall algorithm that performs only a small number
of finite field operations alongside, e.g., hash operations, such extensions can be effective
given their small area overhead.

20For the *-nomul variants, the rest of the code was compiled for the rv32i architecture.



Erdem Alkim, Hülya Evkan, Norman Lahr, Ruben Niederhagen and Richard Petri 21

References
[AAB+19] Erdem Alkim, Roberto Avanzi, Joppe Bos, Leo Ducas, Antonio de la Piedra,

Thomas Pöppelmann, Peter Schwabe, Douglas Stebila, Martin R. Albrecht,
Emmanuela Orsini, Valery Osheter, Kenneth G. Paterson, Guy Peer, and
Nigel P. Smart. Newhope — submission to the NIST post-quantum project.
Specification document (part of the submission package), 2019.

[ABCG20] Erdem Alkim, Yusuf Alper Bilgin, Murat Cenk, and François Gérard. Cortex-
M4 optimizations for {R,M}LWE schemes. Cryptology ePrint Archive, Report
2020/012, 2020. https://eprint.iacr.org/2020/012.

[ABD+19] Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim
Lyubashevsky, John M. Schanck, Peter Schwabe, Gregor Seiler, and Damien
Stehlé. CRYSTALS-Kyber (version 2.0) — submission to round 2 of the
NIST post-quantum project. Specification document (part of the submission
package), 2019.

[AHH+19] Martin R. Albrecht, Christian Hanser, Andrea Höller, Thomas Pöppelmann,
Fernando Virdia, and Andreas Wallner. Implementing RLWE-based schemes
using an RSA co-processor. IACR Transactions on Cryptographic Hardware
and Embedded Systems — TCHES, 2019(1):169–208, 2019.

[AJS16] Erdem Alkim, Philipp Jakubeit, and Peter Schwabe. NewHope on ARM
Cortex-M. In Claude Carlet, M. Anwar Hasan, and Vishal Saraswat, editors,
Security, Privacy, and Applied Cryptography Engineering — SPACE 2016,
volume 10076 of LNCS, pages 332–349. Springer, 2016.

[Ajt96] Miklós Ajtai. Generating hard instances of lattice problems (extended ab-
stract). In Gary L. Miller, editor, ACM Symposium on the Theory of Com-
puting, pages 99–108. ACM, 1996.

[BKS19] Leon Botros, Matthias J. Kannwischer, and Peter Schwabe. Memory-efficient
high-speed implementation of Kyber on Cortex-M4. In Johannes Buchmann,
Abderrahmane Nitaj, and Tajje-eddine Rachidi, editors, Progress in Cryptology
— AFRICACRYPT 2019, volume 11627 of LNCS, pages 209–228. Springer,
2019.

[BSJ15] Ahmad Boorghany, Siavash Bayat Sarmadi, and Rasool Jalili. On constrained
implementation of lattice-based cryptographic primitives and schemes on smart
cards. ACM Transactions on Embedded Computing Systems, 14(3):42:1–42:25,
April 2015.

[CT65] James W. Cooley and John W. Tukey. An algorithm for the machine calcula-
tion of complex fourier series. Mathematics of computation, 19(90):297–301,
1965.

[dCRVV15] Ruan de Clercq, Sujoy Sinha Roy, Frederik Vercauteren, and Ingrid Ver-
bauwhede. Efficient software implementation of Ring-LWE encryption. In
Wolfgang Nebel and David Atienza, editors, Design, Automation & Test in
Europe Conference & Exhibition – DATE 2015, pages 339–344. ACM, 2015.

[DKL+19] Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, Peter Schwabe,
Gregor Seiler, and Damien Stehlé. CRYSTALS-Dilithium — submission to
round 2 of the NIST post-quantum project. Specification document (part of
the submission package), 2019.

https://newhopecrypto.org/data/NewHope_2019_07_10.pdf
https://eprint.iacr.org/2020/012
https://pq-crystals.org/kyber/data/kyber-specification-round2.pdf
https://pq-crystals.org/dilithium/data/dilithium-specification-round2.pdf


22 ISA Extensions for Finite Field Arithmetic

[FO99] Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric
and symmetric encryption schemes. In Michael J. Wiener, editor, Advances in
Cryptology — CRYPTO 1999, volume 1666 of LNCS, pages 537–554. Springer,
1999.

[FSM+19] Tim Fritzmann, Uzair Sharif, Daniel Müller-Gritschneder, Cezar Reinbrecht,
Ulf Schlichtmann, and Johanna Sepúlveda. Towards reliable and secure post-
quantum co-processors based on RISC-V. In Design, Automation & Test in
Europe — DATE 2019, pages 1148–1153. IEEE, 2019.

[GFS+12] Norman Göttert, Thomas Feller, Michael Schneider, Johannes A. Buchmann,
and Sorin A. Huss. On the design of hardware building blocks for modern
lattice-based encryption schemes. In Emmanuel Prouff and Patrick Schaumont,
editors, Cryptographic Hardware and Embedded Systems – CHES 2012, volume
7428 of LNCS, pages 512–529. Springer, 2012.

[GKP04] Johann Groszschaedl, Sandeep S. Kumar, and Christof Paar. Architectural
support for arithmetic in optimal extension fields. In Proceedings. 15th IEEE
International Conference on Application-Specific Systems, Architectures and
Processors, 2004., pages 111–124, Sep. 2004.

[GOPS13] Tim Güneysu, Tobias Oder, Thomas Pöppelmann, and Peter Schwabe. Soft-
ware speed records for lattice-based signatures. In Philippe Gaborit, editor,
Post-Quantum Cryptography — PQCrypto 2013, volume 7932 of LNCS, pages
67–82. Springer, 2013.

[GS66] W. Morven Gentleman and Gordon Sande. Fast fourier transforms: for fun
and profit. In Proceedings of the November 7-10, 1966, fall joint computer
conference, pages 563–578. ACM, 1966.

[KLC+17] Po-Chun Kuo, Wen-Ding Li, Yu-Wei Chen, Yuan-Che Hsu, Bo-Yuan Peng,
Chen-Mou Cheng, and Bo-Yin Yang. High performance post-quantum key
exchange on FPGAs. Cryptology ePrint Archive, Report 2017/690, 2017.
https://eprint.iacr.org/2017/690.

[KMRV18] Angshuman Karmakar, Jose M. Bermudo Mera, Sujoy Sinha Roy, and Ingrid
Verbauwhede. Saber on ARM CCA-secure module lattice-based key encapsula-
tion on ARM. IACR Transactions on Cryptographic Hardware and Embedded
Systems — TCHES, 2018(3):243–266, 2018.

[KRSS] Matthias J. Kannwischer, Joost Rijneveld, Peter Schwabe, and Ko Stoffelen.
PQM4: Post-quantum crypto library for the ARM Cortex-M4. https://
github.com/mupq/pqm4.

[KZDN18] Joseph R. Kiniry, Daniel M. Zimmerman, Robert Dockins, and Rishiyur
Nikhil. A formally verified cryptographic extension to a RISC-V processor. In
Computer Architecture Research with RISC-V – CARRV 2018, 2018. https:
//carrv.github.io/2018/papers/CARRV_2018_paper_5.pdf.

[LAKS18] Zhe Liu, Reza Azarderakhsh, Howon Kim, and Hwajeong Seo. Efficient
software implementation of Ring-LWE encryption on IoT processors. IEEE
Transactions on Computers, pages 1–11, 2018.

[LPO+17] Zhe Liu, Thomas Pöppelmann, Tobias Oder, Hwajeong Seo, Sujoy Sinha Roy,
Tim Güneysu, Johann Großschädl, Howon Kim, and Ingrid Verbauwhede.
High-performance ideal lattice-based cryptography on 8-bit AVR microcon-
trollers. ACM Transactions on Embedded Computing Systems, 16(4):117:1–
117:24, 2017.

https://eprint.iacr.org/2017/690
https://github.com/mupq/pqm4
https://github.com/mupq/pqm4
https://carrv.github.io/2018/papers/CARRV_2018_paper_5.pdf
https://carrv.github.io/2018/papers/CARRV_2018_paper_5.pdf


Erdem Alkim, Hülya Evkan, Norman Lahr, Ruben Niederhagen and Richard Petri 23

[LPR10] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and
learning with errors over rings. In Henri Gilbert, editor, Advances in Cryptology
— EUROCRYPT 2010, volume 6110 of LNCS, pages 1–23. Springer, 2010.

[LRCS01] Charles Eric Leiserson, Ronald L. Rivest, Thomas H. Cormen, and Clifford
Stein. Introduction to algorithms, volume 6. MIT press Cambridge, MA, 2001.

[LS15] Adeline Langlois and Damien Stehlé. Worst-case to average-case reductions
for module lattices. Designes, Codes and Cryptography, 75(3):565–599, 2015.
IACR Cryptology ePrint Archive, Report 2012/090.

[Moe76] Robert T. Moenck. Practical fast polynomial multiplication. In Proceedings
of the third ACM symposium on Symbolic and algebraic computation, pages
136–148. ACM, 1976.

[MPP19] Ben Marshall, Daniel Page, and Thinh Pham. XCrypto: A gen-
eral purpose cryptographic ISE for RISC-V. In RISC-V Workshop
Zurich 2019, 2019. https://github.com/scarv/xcrypto/blob/master/
doc/riscv-meetup-bristol-slides.pdf.

[MVO96] Alfred J. Menezes, Scott A. Vanstone, and Paul C. Van Oorschot. Handbook
of Applied Cryptography. CRC Press, Inc., Boca Raton, FL, USA, 1st edition,
1996.

[NDR+19] Hamid Nejatollahi, Nikil D. Dutt, Sandip Ray, Francesco Regazzoni, Indranil
Banerjee, and Rosario Cammarota. Post-quantum lattice-based cryptography
implementations: A survey. ACM Computing Surveys, 51(6):129:1–129:41,
2019.

[OG17] Tobias Oder and Tim Güneysu. Implementing the NewHope-simple key
exchange on low-cost FPGAs. In Tanja Lange and Orr Dunkelman, editors,
Progress in Cryptology — LATINCRYPT 2017, volume 11368 of LNCS, pages
128–142. Springer, 2017.

[OPG14] Tobias Oder, Thomas Pöppelmann, and Tim Güneysu. Beyond ECDSA
and RSA: lattice-based digital signatures on constrained devices. In Design
Automation Conference – DAC 2014, pages 110:1–110:6. ACM, 2014.

[PG13] Thomas Pöppelmann and Tim Güneysu. Towards practical lattice-based
public-key encryption on reconfigurable hardware. In Tanja Lange, Kristin E.
Lauter, and Petr Lisonek, editors, Selected Areas in Cryptography – SAC 2013,
Revised Selected Papers, volume 8282 of LNCS, pages 68–85. Springer, 2013.

[PG14] Thomas Pöppelmann and Tim Güneysu. Area optimization of lightweight
lattice-based encryption on reconfigurable hardware. In IEEE International
Symposium on Circuits and Systems – ISCAS 2014, pages 2796–2799. IEEE,
2014.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryp-
tography. In Harold N. Gabow and Ronald Fagin, editors, ACM Symposium
on Theory of Computing, pages 84–93. ACM, 2005.

[RVM+14] Sujoy Sinha Roy, Frederik Vercauteren, Nele Mentens, Donald Donglong
Chen, and Ingrid Verbauwhede. Compact Ring-LWE cryptoprocessor. In
Lejla Batina and Matthew Robshaw, editors, Cryptographic Hardware and
Embedded Systems - CHES 2014, volume 8731 of LNCS, pages 371–391.
Springer, 2014.

https://eprint.iacr.org/2012/090
https://github.com/scarv/xcrypto/blob/master/doc/riscv-meetup-bristol-slides.pdf
https://github.com/scarv/xcrypto/blob/master/doc/riscv-meetup-bristol-slides.pdf


24 ISA Extensions for Finite Field Arithmetic

[Sto19] Ko Stoffelen. Efficient cryptography on the RISC-V architecture. In Peter
Schwabe and Nicolas Thériault, editors, Progress in Cryptology — LATIN-
CRYPT 2019, volume 11774 of LNCS, pages 323–340. Springer, 2019.

[WJW+19] WenWang, Bernhard Jungk, Julian Wälde, Shuwen Deng, Naina Gupta, Jakub
Szefer, and Ruben Niederhagen. XMSS and embedded systems — XMSS
hardware accelerators for RISC-V. In Kenneth G. Paterson and Douglas
Stebila, editors, Selected Areas in Cryptography — SAC 2019, volume 11959
of LNCS, pages 523–550. Springer, 2019.

[Yiu14] Joseph Yiu. The Definitive Guide to ARM Cortex-M4 and ARM Cortex-M4
Processors. Newnes, 3rd edition, 2014.


	Introduction
	Background
	Lattice-based Cryptography
	RISC-V

	Kyber and NewHope on RISC-V
	Finite Field Arithmetic
	Number Theoretic Transform
	On-The-Fly Computation of Twiddle Factors

	Instruction Set Extension for Finite Fields
	General Architecture
	Instruction Set Extension

	Evaluation

