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Abstract. AGröbner basis algorithm computes a good basis for an ideal
of a polynomial ring and appears in various situations of cryptography.
In particular, it has been used in the security analysis of multivariate
public key cryptography (MPKC), and has been studied for a long time;
however, it is far from a complete understanding. We consider the al-
gebraic attack using a Gröbner basis algorithm for a new multivariate
encryption scheme proposed by Jiahui Chen et al. at Theoretical Com-
puter Science 2020. Their idea to construct a new scheme was to use the
minus and plus modifiers to prevent known attacks, such as linearization
attack. Moreover, they discussed to have a resistance to the algebraic at-
tack using a Gröbner basis algorithm. However, in our experiments, the
algebraic attack breaks their claimed 80- and 128-bit security parameters
in reasonable times. It is necessary to understand whether their scheme
can avoid such an attack by introducing a slight modification. In this
paper, we theoretically describe why the algebraic attack breaks their
scheme and give a precise complexity of the algebraic attack. As a re-
sult, we demonstrate that the algebraic attack can break the claimed 80-
and 128-bit security parameters in the complexities of approximately 25
and 32 bits, respectively. Moreover, based on our complexity estimation
of the algebraic attack, we conclude that Chen et al.’s scheme is not
practical.

Keywords: Multivariate public key cryptography· Post-quantum cryp-
tography· Encryption schemes· Gröbner basis algorithm

1 Introduction

Multivariate public key cryptography (MPKC) [10] is public key cryptography
using multivariate polynomials over finite fields and is considered as one of the
main candidates for post-quantum cryptography (PQC) [2]. It has been studied
for approximately three decades since the MI scheme [23], which is the first
multivariate encryption scheme, was proposed in 1988. An important ingredient
of MPKC is the central map F . Namely, F = (f1, . . . , fm) is a map from Fn to
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Fm consisting of m multivariate quadratic polynomials f1, . . . , fm in n variables
x1, . . . , xn over a finite field F and has the property that the equation F (x) = y
for any y ∈ Fm can be solved easily. To hide the structure of F , we randomly
choose two affine maps S : Fn → Fn and T : Fm → Fm and the public key
is given by the quadratic polynomial map P = T ◦ F ◦ S : Fn → Fm. The
security of MPKC is based on the MQ-Problem, which asks for a solution to
the system P (x) = y of quadratic equations for a ciphertext y ∈ Fm. From
the fact that the MQ-Problem is proven to be an NP-hard problem even for
quadratic polynomials over F2 [18] and there exist no polynomial-time quantum
algorithms at the moment, MPKC is widely considered to have the potential to
resist quantum computer attacks.

In the area of digital signatures, there exist practical multivariate signature
schemes such as UOV [21] and Rainbow [12]. In fact, they appear in the third
round of NIST PQC standardization [24] as Rainbow [13]. Here Rainbow is an
efficient variant of the UOV scheme. However, it is considered to be difficult to
construct a secure and efficient multivariate encryption scheme. In fact, the MI
encryption scheme [23] was broken by Patarin in 1995 [25] using the lineariza-
tion attack. Subsequently, Patarin proposed a multivariate encryption scheme
extending the MI scheme, called the HFE scheme [26]. However, in a series of
subsequent studies [3,8,11,14,17,19,22], it was found that the HFE scheme has
a serious trade-off between efficiency and security. As a result, the original HFE
scheme is not practical and requires some modifiers such as HFERP [20].

In 2020, Jiahui Chen et al. proposed a new multivariate encryption scheme [7]
at Theoretical Computer Science. Their original central map F = (f1, . . . , fm)
used in [7] is constructed so that it can easily obtain any preimage of F by
reducing a system of linear equations. From such a property, any equation F (x) =
y can be easily solved. Because the original central map F is vulnerable to the
linearization attack, the authors applied the minus and plus modifiers to the
original central map F and constructed the public key P . By doing so, the
paper [7] claimed that the scheme can avoid the linearization attack.

In this paper, we analyze the algebraic attack using a Gröbner basis algo-
rithm for Chen et al.’s scheme. In our experiments, the algebraic attack using
a Gröbner basis algorithm breaks their claimed 80- and 128-bit parameters in
a few seconds. However, it is not clear why the Gröbner basis algorithm breaks
their scheme. It is necessary to understand whether their scheme can avoid such
an attack by introducing a slight modification, and we theoretically have to de-
scribe why the algebraic attack breaks their scheme. Thus, we consider a precise
complexity estimation of the algebraic attack in this paper. In general, the com-
plexity of the attack using a Gröbner basis algorithm is difficult to analyze in
MPKC. Therefore, it is important for future development of MPKC to analyze
the Gröbner basis algorithm against such a scheme in detail.

In our analysis, we focus on the property that the original central map F can
easily obtain any preimage of F by reducing a system of linear equations. To
be precise, we can recover many degree-one polynomials from the vector space
spanned by the public key P even if minus and plus modifiers are applied. By
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substituting such degree-one polynomials into the equation P (x) = y with a
ciphertext y, we reduce the original MQ-problem P (x) = y with m quadratic
equations and n variables to a smaller MQ-problem P ′(x′) = y′. Thus, the
complexity to solve the original MQ-problem P (x) = y by a Gröbner basis
algorithm is the same as that of the smaller MQ-problem P ′(x′) = y′, and
we can obtain a precise complexity estimation of the algebraic attack using a
Gröbner basis algorithm. In fact, we show that the algebraic attack can break the
claimed 80- and 128-bit security parameters in the complexities of approximately
25 and 32 bits, respectively. Moreover, based on our complexity estimation of
the algebraic attack, we conclude that Chen et al.’s scheme is not practical.

Our paper is organized as follows. In Section 2, we briefly recall the general
construction of multivariate encryption schemes, Chen et al.’s encryption scheme
and the algebraic attack. In Section 3, we propose our attack and give experi-
mental results. In Section 4, we describe the security analysis for the algebraic
attack in detail. Finally, we conclude our paper in Section 5.

2 Preliminaries

In this section, we describe the general construction of multivariate encryption
schemes, Chen et al.’s encryption scheme [7] and the algebraic attack.

2.1 Multivariate public key cryptography (MPKC)

Let F be a finite field with q elements, and let n and m be positive integers. The
public key of a multivariate public key cryptosystem consists of m multivariate
quadratic polynomials P = (p1, . . . , pm) in n variables x1, . . . , xn over the finite
field F. Each polynomial pk(x1, . . . , xn) (1 ≤ k ≤ m) is in the form of

pk(x1, . . . , xn) =

n∑
i=1

n∑
j=1

aijxixj +

n∑
i=1

bixi + c, (1)

where aij , bi, c ∈ F. The security of multivariate public key schemes is based
on the MQ-Problem, which asks for a solution of a given system of multivariate
quadratic polynomials over the finite field F. In fact, the MQ-Problem is proven
to be an NP-hard problem even for quadratic polynomials over the binary field
F2 [18].

We introduce the general construction of multivariate encryption schemes.
First, the most important ingredient is a central map F : Fn → Fm, which is an
easily invertible quadratic map. Namely, we can compute a solution of F (x) = y
for any element y ∈ Fm with low complexity. Second, to hide the structure of
the central map F , we randomly choose two invertible affine (or linear) maps
T : Fm → Fm and S : Fn → Fn. Then the public key is given by the composite

P = T ◦ F ◦ S : Fn → Fm
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and the secret key is given by {T, F, S}.

Encryption: For a plaintext α ∈ Fn, the ciphertext is given by y = P (α) ∈ Fm.

Decryption: For a given ciphertext y ∈ Fm, one computes β = T−1(y), γ =
F−1(β) and y′ = S−1(γ). Then y′ is the plaintext of the ciphertext y.

2.2 Chen et al.’s Encryption Scheme

In this subsection, we briefly describe the construction of Chen et al.’s encryption
scheme [7]. Let n be a positive integer. Assume that the characteristic of F is not
2. For an (n+ 1)× n matrix C = (ci,j)i,j ∈ F(n+1)×n, we define n+ 1 quadratic
polynomials fC,1, . . . , fC,n+1 in n variables x1, . . . , xn as follows:

fC,1 = (x1 − c1,1)
2 + (x2 − c1,2)

2 + · · ·+ (xn − c1,n)
2,

...

fC,n+1 = (x1 − cn+1,1)
2 + (x2 − cn+1,2)

2 + · · ·+ (xn − cn+1,n)
2.

We recall that the polynomial map FC = (fC,1, . . . , fC,n+1) : Fn → Fn+1 is an
easily invertible quadratic map. For an element y = (y1, . . . , yn+1) ∈ Fn+1, we
would like to solve the system of equations

fC,1(x1, . . . , xn) = y1, · · · , fC,n+1(x1, . . . , xn) = yn+1. (2)

It is clear that for any 1 ≤ i ≤ n, we have

yi+1 − yi

= fC,i+1(x1, . . . , xn)− fC,i(x1, . . . , xn)

= 2(ci,1 − ci+1,1)x1 + · · ·+ 2(ci,n − ci+1,n)xn +

n∑
j=1

(c2i+1,j − c2i,j).

From this, we have the linear equations
y2 − y1
y3 − y2

...
yn+1 − yn

 = C ′


x1

x2

...
xn

+


∑n

j=1(c
2
2,j − c21,j)∑n

j=1(c
2
3,j − c22,j)
...∑n

j=1(c
2
n+1,j − c2n,j)

 , (3)

where C ′ := (2ci,j − 2ci+1,j)i,j ∈ Fn×n. Thus, if C ′ is invertible, then we can
obtain the solution to (2) by solving the system of linear equations (3).

Now, we explain the key-generation of Chen et al.’s encryption scheme [7].
Let a and s be two positive integers and set m := n+1− a+ s. First, randomly
choose a matrix C = (ci,j)i,j ∈ F(n+1)×n such that C ′ is invertible. Define the
polynomials FC = (fC,1, . . . , fC,n+1) as above. Next, randomly choose quadratic
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polynomials g1, . . . , gs in n variables x1, . . . , xn over F. Then the central map is
given by

F = (fC,1, . . . , fC,n+1−a, g1, . . . , gs) : Fn → Fm.

Next, randomly choose invertible affine maps S : Fn → Fn and T : Fm → Fm.
Then, the public key is the polynomial map P := T ◦ F ◦ S, and the secret key
consists of FC = (fC,1, . . . , fC,n+1), S, and T . Note that the central map F is
applied to the minus and plus modifiers, as fC,n+1−a+1, . . . , fn+1 are removed
and some quadratic polynomials g1, . . . , gs are added.

Encryption: For a plaintext α ∈ Fn, the ciphertext is given by y = P (α) ∈ Fm

by substituting into the public key P .

Decryption: For a given ciphertext y ∈ Fm, first compute β = (β1, . . . , βm) :=
T−1(y). Second, for an element β′ = (β′

1, . . . , β
′
a) ∈ Fa, solve the system of

quadratic equations

fC,1(x1, . . . , xn) = β1,

...

fC,n+1−a(x1, . . . , xn) = βn+1−a,

fC,n+1−a+1(x1, . . . , xn) = β′
1,

...

fC,n+1(x1, . . . , xn) = β′
a,

as explained above. Let γ = (γ1, . . . , γn) be the solution. If we have

g1(γ) = βn+1−a+1, . . . , gs(γ) = βm,

then y′ = S−1(γ) is the plaintext of y; otherwise, re-choose another β′ =
(β′

1, . . . , β
′
a) ∈ Fa.

2.3 Algebraic attack and previous analysis against Chen et al’s
scheme

In this subsection, we first explain the algebraic attack. Subsequently, we describe
how the authors in [7] decided the concrete parameters.

For a public key P = (p1, . . . , pm) and a ciphertext y = (y1, . . . , ym), the
algebraic attack finds the plaintext by solving the system of equations p1(x) =
y1, . . . , pm(x) = ym. In the HFE challenge presented by Patarin to cryptanalysis
for HFE and its minus variant [25], HFE challenge 1 was solved by this attack in
[17]. The algebraic attack uses Gröbner basis algorithms such as XL [31], F4 [15]
and F5 [16] which compute a Gröbner basis of the ideal ⟨p1 − y1, . . . , pm − ym⟩.
The complexity of the Gröbner basis algorithm dominates that of the algebraic
attack and is estimated by

O
((

n+Dreg

Dreg

)ω)
,
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Table 1. Selected parameters of Chen et al.’s scheme in [7] at 80- and 128-bit security
levels. Here, q is the cardinality of the finite field F.

Asserted security level (q, n, a, s,m) Public key (KB) Secret key (KB)

(A) 80-bit (3, 59, 10, 25, 75) 134 53.9

(B) 128-bit (3, 83, 12, 27, 99) 345 108

where n is the number of variables, Dreg is the degree of regularity of the input
system p1(x) = y1, . . . , pm(x) = ym, and 2 < ω ≤ 3 is a linear algebra constant.
If {p1, . . . , pm} is semi-regular [3], then the degree of regularity Dreg is given
by the degree of the first term whose coefficient in the following power series is
non-positive (see [1]): ∏m

i=1(1− tdeg pi)

(1− t)n
.

Chen et al. show in [7] that the degree of regularity against their scheme
without the minus and plus modifications is low; however, such modifiers can
increase the degree of regularity. In fact, they showed in some experiments that
the larger the parameter a is, the more the degree of regularity increases under
the condition a = s. Here, a is the number of removed polynomials, and s is
the number of added polynomials. Then, in order to select an 80-bit security
parameter for q = 3 and n = 59, they concluded that the degree of regularity
needs at least 8, and it is accomplished by a, s ≥ 8. They performed experiments
under the condition a = s; in such a condition, the decryption failure rate is
very high; q−s+a−1 = q−1. Thus, a is required to be moderately small compared
with s. As a result, they selected two 80- and 128-bit security parameters (A)
and (B) in [7], as shown in Table 1. Here, we mention that they did not perform
experiments under the condition a < s.

3 Revisiting the algebraic attack against Chen et al.’s
scheme

In this section, we revisit the algebraic attack against Chen et al.’s scheme. We
first perform some experiments for the algebraic attack and confirm that the
algebraic attack breaks 80 and 128-bit security parameters of their scheme in
reasonable times. Second, we observe the property of the public key to see why
the algebraic attack works. Finally, we apply the property to the algebraic attack
and reconstruct the algebraic attack to make it theoretically easy to handle.

3.1 Experiments for Algebraic attack

In this subsection, we discuss the experiments conducted in this study and show
that the algebraic attack using a Gröbner basis algorithm breaks the 80 and
128-bit security parameters of their scheme in reasonable times.
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Table 2. Experimental results for the algebraic attack using the Gröbner basis al-
gorithm F4 at two selected 80- and 128-bit parameters (A) and (B) of Chen et al.’s
scheme in [7]

Asserted security level (q, n, a, s,m)
Experiments

Time (s) Memory (MB)

(A) 80-bit (3, 59, 10, 25, 75) 0.35 32.1

(B) 128-bit (3, 83, 12, 27, 99) 1.07 81.6

Our experimental results are the average timing of 1000 experiments for each
parameter in Table 1. All experiments were performed on a 3.2GHz Intel Core
i7 CPU with Magma V2.24-4 [5]. The Gröbner basis algorithm we used was the
F4 algorithm [15] with the graded reverse lexicographic monomial order, whose
Magma command is “GroebnerBasis”. In addition, to measure the memory,
we used the Magma command “GetMaximumMemoryUsage()”.

For example, Table 2 shows that the 80-bit parameter (A) is broken in 0.35
seconds with 32.1 megabytes. However, because it is not clear why the Gröbner
basis algorithm breaks their parameters, we must theoretically describe it.

3.2 A key property of the public key P

Here, we observe a property of the public key P in Subsection 2.2.
The polynomial fC,i+1 − fC,i is denoted by li for each 1 ≤ i ≤ n − a. This

li is a polynomial of degree one from the definition of fC,i. Moreover, the set
{l1, . . . , ln−a} is linearly independent, as C ′ is invertible. Denote by SpanFF the
subspace in F[x1, . . . , xn] generated by the polynomials

{fC,1, . . . , fC,n+1−a, g1, . . . , gs}

in the central map F over the finite field F. We can easily show the following.

Lemma 1. SpanFF is generated by

{l1, . . . , ln−a, fC,1, g1, . . . , gs}.

Therefore, SpanFF has a linearly independent set of n − a degree-one poly-
nomials and s+ 1 quadratic polynomials.

Let SpanFP be the subspace in F[x1, . . . , xn] generated by the polynomials
P = {p1, . . . , pm} over F. It is clear that SpanFP = SpanFF ◦ S because P =
T ◦ F ◦ S and T is invertible. By Lemma 1, SpanFF ◦ S is generated by the set

{l1 ◦ S, . . . , ln−a ◦ S, fC,1 ◦ S, g1 ◦ S, . . . , gs ◦ S},

which is linearly independent since S is invertible. As a result, we have the
following theorem.

Theorem 1. SpanFP has a linearly independent set of n−a degree-one polyno-
mials and s+ 1 quadratic polynomials.

Therefore, one can generate a linearly independent set of n − a degree-one
polynomials from only the public key P .



8 Y. Ikematsu et al.

3.3 Reduction to a smaller MQ problem

In this subsection, by using the result in Subsection 3.2, we see that solving the
MQ problem P (x) = y is essentially equivalent to solving a smaller MQ problem.

Let y = (y1, . . . , ym) ∈ Fm be a ciphertext. We would like to solve the system
of m quadratic equations

p1(x1, . . . , xn) = y1, . . . , pm(x1, . . . , xn) = ym (4)

in n variables x1, . . . , xn without the secret key {FC , S, T}.

Step 1: We solve the system of linear equations in m variables z1, . . . , zm;

m∑
i=1

zi ·Quad(pi) = 0, (5)

where Quad(pi) stands for the quadratic part of pi. Here, the system
∑m

i=1 zi ·
Quad(pi) = 0 implies the linear equations arising from the relation that each
coefficient of

∑m
i=1 zi ·Quad(pi) vanishes.

Step 2: If a1, . . . , am be a solution of (5), then
∑m

i=1 aipi is a degree-one polyno-
mial. By Theorem 1, the space of such degree-one polynomials is of dimension
n− a. Thus, the solution space of this system (5) is of dimension n− a. Choose
a basis z(1), . . . , z(n−a) ∈ Fm of the solution space. Then we can obtain n − a
linearly independent degree-one polynomials

r1(x1, . . . , xn) := z
(1)
1 p1 + · · ·+ z(1)m pm,

...

rn−a(x1, . . . , xn) := z
(n−a)
1 p1 + · · ·+ z(n−a)

m pm,

where z(k) = (z
(k)
1 , . . . , z

(k)
m ) (1 ≤ k ≤ n − a). Thus, SpanFP is generated by

r1, . . . , rn−a and other s+ 1 quadratic polynomials.

Step 3: From (4), we have the linear equations

r1(x1, . . . , xn) = z
(1)
1 β1 + · · ·+ z(1)m βm,

...

rn−a(x1, . . . , xn) = z
(n−a)
1 β1 + · · ·+ z(n−a)

m βm.

(6)

By substituting the linear equation (6) into (4), we have a small system of
m− (n− a) = s+ 1 quadratic equations in n− (n− a) = a variables.

As a result, the MQ problem P (x) = y, the system of m quadratic equations
in n variables, associated with Chen et al.’s scheme, can be reduced to the smaller
MQ problem with s + 1 quadratic equations in a variables. Algorithm 1 shows
the attack stated in this subsection.
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Algorithm 1: Reconstructed algebraic attack in 3.3

Input : finite field F, public key P = (p1, . . . , pm), and ciphertext
y = (y1, . . . , ym) ∈ Fm,

Output: the plaintext α ∈ Fn of the ciphertext y, namely, P (α) = y.

Solve the system of linear equations
∑m

i=1 zi ·Quad(pi) = 0;

z(1), . . . , z(n−a) ∈ Fm ← a basis of the solution space;

ri ← z
(1)
i p1 + · · ·+ z

(m)
i pm for 1 ≤ i ≤ n− a;

Ri ← z
(1)
i y1 + · · ·+ z

(m)
i ym for 1 ≤ i ≤ n− a;

Substitute ri −Ri = 0 (1 ≤ i ≤ n− a) into P (x)− y = 0 and solve it by a
Gröbner basis algorithm ;

4 Security analysis for Chen et al.’s scheme

In this section, we describe the security analysis for the algebraic attack in detail.
In Subsection 4.1, we provide the precise complexity estimation for the recon-
structed algebraic attack in Subsection 3.3 and that for the original algebraic
attack in Subsection 2.3. In Subsection 4.2, using the complexity estimation,
we compute the actual security level for the selected parameters (A) and (B).
Moreover, we consider a parameter satisfying 80-bit security against the alge-
braic attack and discuss its efficiency.

4.1 Theoretical description of the algebraic attack and complexity
estimation

As stated in Subsection 3.3, the reconstructed algebraic attack solves the MQ
problem with s+1 quadratic equations in a variables after some linear operations.

The complexity of the reconstructed algebraic attack is given as follows. The
complexity of Step 1 is that of solving the linear system (5) with size m. Thus,
it is O(mω), where 2 < ω ≤ 3 is a linear algebra constant. We can ignore the
complexity of Step 2 because we must define the degree-one polynomials ri. In
Step 3, its complexity is dominated by solving a system of (s + 1) quadratic
equations in a variables. We use a Gröbner basis algorithm to solve the system.
Under the assumption that the system is semi-regular [3], the complexity of Step
3 is

O
((

a+Dreg

Dreg

)ω)
(7)

at most. Note that the degree of regularity Dreg is the degree of the first term
whose coefficient in the following power series is non-positive:

(1− t2)s+1

(1− t)a
.

As a result, the complexity of the reconstructed algebraic attack is

O(mω) +O
((

a+Dreg

Dreg

)ω)
. (8)
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Table 3. Complexities for the algebraic attack using the Gröbner basis algorithm at
two selected 80- and 128-bit parameters (A) and (B) of Chen et al.’s scheme in [7]

Asserted security level (q, n, a, s,m)
Actual security level
Complexity (bits)

(A) 80-bit (3, 59, 10, 25, 75) 24.50

(B) 128-bit (3, 83, 12, 27, 99) 32.49

Note that the linear operations in the reconstructed algebraic attack are con-
tained in the computation process of a Gröbner basis algorithm of the original
algebraic attack in Subsection 2.3. Thus, the degree of regularity for the orig-
inal algebraic attack is the same as that of the reconstructed algebraic attack
because such linear operations do not affect the degree of regularity. Therefore,
the complexity of solving the MQ-problem P (x) = y by the original algebraic
attack is given by

O
((

a+Dreg

Dreg

)ω)
. (9)

4.2 The actual security level for the selected 80- and 128-bit
security parameters (A) and (B) in Table 1

The selected parameters (A) (resp. (B)) are (q, n, a, s,m) = (3, 59, 10, 25, 75)
(resp. (3, 83, 12, 27, 99)). Using the formula (9), the complexities of the attack

against parameters (A) and (B) are
(
10+3

3

)3
= 224.5 and

(
12+4

4

)3
= 232.49, re-

spectively. Here we took ω = 3 as a linear algebra constant. Table 2 shows the
complexity for the original algebraic attack in Subsection 2.3.

Finally, we consider a parameter (q, n, a, s,m) satisfying 80-bit security against
the algebraic attack under q = 3, n = 59. Moreover, we set s = a+15, similarly
to Chen et al. took, from the perspective of the decryption failure rate. Then,
we can take

(q, n, a, s,m) = (3, 59, 32, 47, 75)

as the parameter with the smallest a. However, as seen in [7, Section 10], the
decryption complexity is given by O(qan3). This implies that the parameter
(q, n, a, s,m) = (3, 59, 32, 47, 75) has a very slow decryption. As a result, based
on our complexity estimation of the algebraic attack, we can confirm that Chen
et al.’s scheme is not practical.

5 Conclusion

In this paper, we analyzed the algebraic attack using a Gröbner basis algo-
rithm for Chen et al.’s scheme. We showed that the vector space spanned by the
quadratic polynomials in the public key P has many degree-one polynomials. By
applying such degree-one polynomials to the equation P (x) = y for a ciphertext
y, we reduced the MQ-problem P (x) = y to a smaller MQ-problem with s + 1
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quadratic equations in a variables. As a result, we obtained a precise complexity
estimation for the algebraic attack against Chen et al.’s scheme. Our estimation
shows that the claimed 80- and 128-bit security parameters in [7] are broken
in the complexity of approximately 25 and 32 bits, respectively. Moreover, by
discussing a parameter satisfying 80-bit security against the algebraic attack, we
concluded that Chen et al.’s scheme is not practical.

In Chen et al.’s scheme, the minus and plus modifiers were used in order to
strengthen the security against the linearization attack; however, they did not
succeed in resisting the algebraic attack. As a future work, we would like to
study other modifiers that can resists the algebraic attack.
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