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Abstract. Primality testing is a basic cryptographic task. But developers
today are faced with complex APIs for primality testing, along with
documentation that fails to clearly state the reliability of the tests being
performed. This leads to the APIs being incorrectly used in practice, with
potentially disastrous consequences. In an effort to overcome this, we
present a primality test having a simplest-possible API: the test accepts a
number to be tested and returns a Boolean indicating whether the input
was composite or probably prime. For all inputs, the output is guaranteed
to be correct with probability at least 1− 2−128. The test is performant:
on random, odd, 1024-bit inputs, it is faster than the default test used in
OpenSSL by 17%. We investigate the impact of our new test on the cost
of random prime generation, a key use case for primality testing. The
OpenSSL developers have adopted our suggestions in full; our new API
and primality test are scheduled for release in OpenSSL 3.0.

1 Introduction

Primality testing, and closely related tasks like random prime generation and
testing of Diffie-Hellman parameters, are core cryptographic tasks. Primality
testing is by now very well understood mathematically; there is a clear distinction
between accuracy and running time of different tests in settings that are malicious
(i.e. where the input may be adversarially-selected) and non-malicious (e.g. where
the input is random, as is common in prime generation).

Yet recent research by Albrecht et al. [AMPS18] on how primality testing is
actually done in practice has highlighted the failure of popular cryptographic
libraries to provide primality testing APIs that are “misuse-resistant”, that is,
which provide reliable results in all use cases even when the developer is crypto-
naive. Extending [AMPS18], Galbraith et. al. [GMP19] showed how failure to
perform robust primality testing in the popular OpenSSL library has serious
security consequences in the face of maliciously generated Diffie-Hellman param-
eter sets (see also Bleichenbacher [Ble05] for an earlier example involving the
GNU Crypto library).



The main underlying issue identified in [AMPS18] is that, while all libraries
examined performed well on random inputs, some failed miserably on mali-
ciously crafted ones in their default settings. Meanwhile code documentation
was generally poor and did not distinguish clearly between the different use
cases. And developers were faced with complex APIs requiring them to under-
stand the distinctions between use cases and choose parameters to the APIs
accordingly. An illustrative example is provided by the OpenSSL primality test-
ing code that existed prior to our work. This required the developer using the
function BN_is_prime_fasttest_ex3 to pass multiple parameters, including
checks, the number of rounds of Miller-Rabin testing to be carried out; and
do_trial_division, a flag indicating whether or not trial division should be per-
formed. Setting checks to 0 makes the test default to using a number of rounds
that depends only on the size of the number being tested;4 then the number
of rounds decreases as the size increases, this being motivated by average-case
error estimates for the Miller-Rabin primality test operating on random num-
bers [DLP93,MVOV96]. This makes the default setting performant for random
prime generation, but dangerous in potentially hostile settings, e.g. Diffie-Hellman
parameter testing.

As an illustration of how this can go wrong in practice, Galbraith et. al.
[GMP19] pointed out that OpenSSL itself makes the wrong choice in using the
default setting when testing finite field Diffie-Hellman parameters. Galbraith et.
al. exploited this choice to construct Diffie-Hellman parameter sets (p, q, g) of
cryptographic size that fool OpenSSL’s parameter validation with a non-trivial
success rate. OpenSSL’s Diffie-Hellman parameter validation was subsequently
changed to remedy this issue (though without changing the underlying primality
test).5 This example provides prima facie evidence that even very experienced
developers can misunderstand how to correctly use complex primality testing
APIs.

One may argue that developers who are not cryptography experts should not
be using such security-sensitive APIs. However, they inevitably will, and, as our
OpenSSL example shows, even expert developers can get it wrong. This motivates
the search for APIs that are “misuse-resistant” or “robust”, and that do not
sacrifice too much performance. This search accords with a long line of work
that identifies the problem of API design as being critical for making it possible
for developers to write secure cryptographic software (see [Gut02,WvO08,GS16]
amongst others).

1.1 Our Contributions

Given this background, we set out to design a performant primality test that
provides strong security guarantees across all use cases and that has the simplest

3 See https://github.com/openssl/openssl/blob/
3e3dcf9ab8a2fc0214502dad56d94fd95bcbbfd5/crypto/bn/bn prime.c#L186.

4 Strictly, the default is invoked by setting checks to BN prime checks, an environ-
mental variable that is set to 0.

5 See https://github.com/openssl/openssl/pull/8593.



possible API: it takes just one input, the number being tested for primality, and
returns just one integer (or Boolean) indicating that the tested number is highly
likely to be prime (1) or is definitely composite (0). We note that none of the
many crypto libraries examined in [AMPS18] provide such an API.

We examine different options for the core of our test – whether to use many
rounds of Miller-Rabin (MR) testing (up to 64 or 128, to achieve false positive
rates of 2−128 or 2−256, respectively), or to rely on a more complex primality test,
such as the Baillie-PSW test [PSW80] which combines MR testing with a Lucas
test. Based on a combination of code simplicity, performance and guaranteed
security, we opt for 64 rounds of MR as the core of our test.

We also study the performance impact of doing trial division prior to more
expensive testing. This is common practice in primality testing code, with the
idea being that one can trade fast but inaccurate trial division for much slower
but more accurate number theoretic tests such as Miller-Rabin. For example,
OpenSSL tests for divisibility using a fixed list of the first 2047 odd primes. We
show that this is a sub-optimal choice when testing random inputs of common
cryptographic sizes, and that the running time can be reduced substantially by
doing trial division with fewer primes. That the optimal amount of trial division
to use depends on the size of the input being tested is not a new observation – see
for example [MVOV96,Mau95,Jun87]. What is more surprising is that OpenSSL
chooses so conservatively and with a fixed list of primes (independent of the input
size). For example, with 1024-bit random, odd inputs, trial division using the first
128 odd primes already removes about 83% of candidates, while extending the
list to 2047 primes, as OpenSSL does, only removes a further 5.5%. On average,
it turns out to be faster to incur the cost of an MR test on that additional 5.5%
than it is to do the full set of trial divisions.

The outcome of our analysis is a primality test whose performance on random,
odd, 1024-bit inputs is on average 17% faster than the current OpenSSL test, but
which guarantees that composites are identified with overwhelming probability
(1−2−128), no matter the input distribution. The downside is that, for inputs that
are actually prime rather than random, our test is significantly slower than with
OpenSSL’s default settings (since we do 64 MR tests compared to the handful of
tests used by OpenSSL). This is the price to be paid for a misuse-resistant API.

We then examine how our choice of primality test affects the performance
of a crucial use case for primality testing, namely generation of random k-bit
primes. OpenSSL already includes code for this. It makes use of a sieving step to
perform trial division at reduced cost across many candidates, obviating the need
to perform per-candidate trial division internally to the primality test. OpenSSL
avoids the internal trial division via the above-mentioned do_trial_division

input to the primality test in OpenSSL. Since we do not allow such an input in our
simplified primality testing API, a developer using our API would be (implicitly)
forced to do trial division on a per candidate basis, potentially increasing the cost
of prime generation. Moreover, our primality test may use many more rounds of
MR testing than OpenSSL selects in this case, since our API does not permit
the user to vary the number of rounds according to the use case. However, for



random prime generation, most candidates are rejected after just one MR test,
and so the full cost of our test (trial division plus 64 rounds of MR testing) is only
incurred once, when a prime is actually encountered. So we seek to understand the
performance impact of plugging our new API and primality test into the existing
OpenSSL prime generation code. We find that, for generation of random 1024-bit
primes OpenSSL’s primality generation code is 35-45% slower when using our
primality test internally. For this cost, we gain an API for primality testing that
is as simple as possible and where the test has strong security guarantees across
all use cases.

We communicated our findings to the OpenSSL developers, and they have
adopted our suggestions with only minor modifications: the forthcoming OpenSSL
3.0 (scheduled for release in Q4 of 2020) will include our simplified API for
primality testing, and the OpenSSL codebase has been updated to use it almost
everywhere (the exception is prime generation, which uses the old API in order
to avoid redundant trial division). Moreover, OpenSSL will now always use our
suggested primality test (64 rounds of MR) on all inputs up to 2048 bits, and
128 bits of MR on larger inputs. This represents the first major reform of the
primality testing code in OpenSSL for more than 20 years.

1.2 Related Work

The topic of API design for cryptography has a long history and connections to
related fields such as usable security and API design for security more generally.

As early as 2002, Gutmann [Gut02] identified the need to carefully define
cryptographic APIs, recommending to “[p]rovide crypto functionality at the
highest level possible in order to prevent users from injuring themselves and
others through misuse of low-level crypto functions with properties they aren’t
aware of.” This is precisely what we aim to do for primality testing in this paper.

Later, Wurster and van Oorschot [WvO08] (in the broader context of security)
argued that attention should be focussed on those developers who produce core
functionality used by other developers, e.g. producers of APIs. They identified
the need to design APIs which can be easily used in a secure fashion.

Green and Smith [GS16] extensively discuss the need for usable security APIs,
and focus on cryptographic ones. They give an extensive list of requirements for
good APIs, including: APIs should be easy to learn, even without cryptographic
expertise; defaults should be safe and never ambiguous; APIs should be easy to
use, even without documentation; APIs should be hard to misuse and incorrect
use should lead to visible errors. These precepts have influenced our API design
for primality testing.

Acar et al. [AFM16] adovcate for a research agenda for usable security and pri-
vacy research that focusses on developers rather than end users. This encompasses
cryptography. Recent research related to this agenda and having a cryptographic
focus includes [EBFK13,FHP+13,LCWZ14,ABF+17,NDT+17,NKMB17,GIW+18].

Nonce-based Authenticated Encryption (AE), a primitive introduced by
Rogaway [Rog04], can be seen as an attempt to simplify the symmetric encryption
API for developers, replacing the need to understand various requirements on IVs



with the arguably simpler need to be able to supply unique (per key) inputs to an
encryption algorithm. It has become the standard target for algorithm designers.
However, as [BZD+16] showed, developers can accidentally misuse even this
simplified API, with disastrous results for nonce-sensitive modes like AES-GCM.
This motivated the development of misuse-resistant AE schemes, which attempt to
preserve as much security as possible even when nonces are repeated. Prominent
examples include SIV [RS06], Deoxys-II (part of the CAESAR competition
final portfolio), and AES-GCM-SIV [GLL17] (see also RFC 8452). Later authors
identified the fact that developers may want an even higher-level API, for example
a secure streaming channel like that provided by TLS [FGMP15,PS18] or channels
that tolerate some forms of reordering and repetition [BHMS16]; the mismatch
between what developers want and what nonce-based AE can provide can lead
to attacks, cf. [BDF+14].

Bernstein’s design for DH key exchange on Curve25519 [Ber06] deliberately
presents a simple API for developers: public and private keys are represented by
32-byte strings, and the need for public key validation is avoided.

The NaCl crypto library [BLS12] has provision of a simple API to devel-
opers as one of its primary aims. It gives the user a crypto_box function
that encrypts and authenticates messages, with a simple API of the form:
c = crypto_box(m,n,pk,sk), where m is a message, n is a nonce, pk is the
public key of the recipient and sk is the private key of the sender. Its security
does rely on developers correctly handling nonces; we are unaware of reports of
any misuse of this type. Some criticism of NaCl’s approach, especially the way in
which it breaks the developer’s expected paradigm, can be found in [GS16].

There is an extensive literature on primality testing and generation, nicely
summarised in [MVOV96, Chapter 4]. The state-of-the-art has not changed
significantly since the publication of that book in 1996. On the other hand, as
Albrecht et al. [AMPS18] showed, primality testing and generation as it is done
in practice has many shortcomings. Our work can be seen as an effort to narrow
the gap between the literature and its practical application.

1.3 Paper Organisation

The remainder of this paper is organised as follows. In Section 2 we give further
background on primality testing and detail the approach used in OpenSSL. In
Section 3 we describe four different candidate primality tests and analyse them
theoretically and experimentally. Our chosen primality test (64 rounds of Miller-
Rabin with trial division on the first 128 odd primes) emerges from this analysis
as our preferred test. We then evaluate the performance of this chosen test in
the use case of prime generation in Section 4. Section 5 briefly discusses how our
test is being adopted in OpenSSL, while Section 6 contains our conclusions and
avenues for future work.



2 Further Background

2.1 Primality Testing

We begin by giving further details on the core primality tests that we will consider
in this work.

Miller-Rabin The Miller-Rabin (MR) [Mil75,Rab80] primality test is a widely-
used and efficient algorithm.

A single round of the test proceeds as follows. Suppose n > 1 is an odd integer
to be tested for primality. We first write n = 2ed+ 1 where d is odd. If n is prime,
we know that there are are no non-trivial roots of unity modulo n, thus for any
integer a with 1 ≤ a < n, we have:

ad ≡ 1 mod n or a2
id ≡ −1 mod n for some 0 ≤ i < e.

The test then consists of choosing a value a (often referred to as a base), and then
checking the above conditions on n. We declare a number to be (probably) prime
if either of the two conditions hold and to be composite if both conditions fail. If
n is composite and at least one condition holds, then we say n is a pseudoprime
to base a, or that a is a non-witness to the compositeness of n (since n may be
composite, but a does not demonstrate this fact). It is evident that computational
cost of the test is that of a full-size exponentiation modulo n.

In practice, the test is iterated t times, using a different, random choice of
base a in each round (though as observed in [AMPS18], fixed bases are often
used in crypto libraries, which makes it possible to construct composites that are
always declared prime by the test). The test is probabilistic, in that a t-round
MR test using uniformly random bases declares any composite number to be
composite with probability at least 1− 4−t. Moreover, this bound is tight: there
are composites which are not identified as being such over t rounds of testing
with probability 4−t. Such numbers, then, are worst-case adversarial inputs for
the test. They are treated extensively in [AMPS18]. On the other hand, the test
never declares a prime to be composite.

The above discussion holds for any input n, no matter how it is chosen. When
n is a uniformly random odd k-bit integer, much better performance can be
assured. For example, a result of [DLP93] assures that the probability pk,1 that
a composite n chosen in this way passes one round of random-base MR testing

is bounded by k242−
√
k. Thus, for k = 1024, we have pk,1 ≤ 2−40. Using more

precise bounds from [DLP93], this can be improved to pk,1 ≤ 2−42.35. These
bounds are what motivates the rather small numbers of rounds of MR testing in
the default setting in OpenSSL’s primality test, for example.

Lucas The Lucas primality test [BW80] makes use of Lucas sequences, defined
as follows:



Definition 1 (Lucas sequence [BW80]). Let P and Q be integers and D =
P 2 − 4Q. Then the Lucas sequences (Uk) and (Vk) (with k ≥ 0) are defined
recursively by:

Uk = PUk−1 −QUk−2 where, U0 = 0, U1 = 1,

Vk = PVk−1 −QVk−2 V0 = 2, V1 = P.

Since we are concerned with primality testing cryptographic sized numbers,
we can use efficient techniques for computing large Lucas sequences such as binary
Lucas chains as described in [Mon92]. The Lucas probable prime test then relies

on the following theorem (in which
(
x
p

)
denotes the Legendre symbol, with value

1 if x is a square modulo p and value -1 otherwise):

Theorem 1 ([CP06]). Let P , Q and D and the Lucas sequences (Uk), (Vk) be
defined as above. If p is a prime with gcd(p, 2QD) = 1, then

Up−(D
p ) ≡ 0 (mod p). (1)

The Lucas probable prime test repeatedly tests property (1) for different pairs
(P,Q). This leads to the notion of a Lucas pseudoprime with respect to such a
pair.

Definition 2 (Lucas pseudoprime). Let n be a composite number such that
gcd(n, 2QD) = 1. If Un−(D

n ) ≡ 0 (mod n), then n is called a Lucas pseudoprime

with respect to parameters (P,Q).

Similar results to those for the MR primality test can be established for the
Lucas test: a single Lucas test will declare a given composite number as being
composite with probability at least 1−(4/15) and as being prime with probability
at most (4/15), with these bounds being tight [Arn97].

Baillie-PSW The Baillie-PSW test [PSW80] is a deterministic primality test
consisting of a single Miller-Rabin test with base 2 followed by a single Lucas
test. A slight variant of the test in which the Lucas test is replaced with a more
stringent version, known as a strong Lucas test is mentioned in [BW80]. Generally,
the consensus that has emerged over time is that the Lucas test should be used
with the parameters (P,Q) set as defined by Selfridge’s method A:

Definition 3 (Selfridge’s Method A [BW80]). Let D be the first element
of the sequence 5,−7, 9,−11, 13, . . . for which

(
D
n

)
= −1. Then set P = 1 and

Q = (1−D)/4.

If no such D can be found, then n must be a square and hence composite.
In practice, one might attempt to find such a D up to some bound Dmax, then
perform a test for squareness using Newton’s method for square roots (see
Appendix C.4 of [KSD13]), before reverting to a search for a suitable D if needed.
This is generally more efficient than doing a test of squareness first.



The idea of the Baillie-PSW test is that its two components are in some
sense “orthogonal” and should between them catch all composites. Extensive
computations have never produced a pseudo-prime for the Baillie-PSW test,
that is, a composite number that passes it. Indeed there are (moderate) cash
prizes available for providing one. However, none of these computations extend
to numbers of cryptographic size. Moreover, Pomerance [Pom84] has given a
heuristic argument for the existence of infinitely many Baillie-PSW pseudo-primes.
There do not appear to exist any bounds demonstrating the test’s strength on
uniformly random k-bit inputs, in contrast to the results of [DLP93] for the MR
test. In summary, while the Baillie-PSW test appears to be very strong, there
are no proven guarantees concerning its accuracy. One positive feature is that,
being deterministic, it does not consume any randomness (whereas a properly
implemented MR test does).

Supplementary and Preliminary Tests It is often more efficient to perform
some supplementary or preliminary testing on an input n before executing the
main work of the primality test. A common strategy is to first perform trial
division on n using a list of r small primes. This can be done directly or by or
equivalently, checking gcd(

∏r
i pi, n) 6= 1 where {p1, . . . , pr} is the list of primes

used. The list of primes can be partitioned and multiple gcds computed, so as to
match the partial products of primes with the machine word-size. This is a very
cheap test to perform, and can be quite powerful when testing random inputs.
The question arises of how r, the number of primes to use in trial division, should
be set. We shall return to this question later.

Primality Testing in OpenSSL Since we will extensively compare our pri-
mality test and its API with those of OpenSSL, we give a detailed description of
OpenSSL’s approach here.

OpenSSL provides two functions for primality testing: BN is prime ex and
BN is prime fasttest ex, both in file bn prime.c. The core part of the code is
in the second of these, while the first simply acts as a wrapper to this function
that forces omission of trial division. The second function call has the form:

int BN is prime fasttest ex(const BIGNUM *w, int checks, BN CTX *ctx passed,

int do trial division, BN GENCB *cb)

Here, w is the number being tested. The option to do trial division is defined via
the do_trial_division flag. When set, the function will perform trial division
using the first 2047 odd primes (excluding 2), with no gcd optimisations (the
code also separately tests whether the number being tested is equal to 2 or 3,
and whether it is odd). After this, the function calls bn miller rabin is prime

to invoke the MR testing with pseudo-random bases. The number of MR rounds
is set using the argument checks. When checks is set to BN prime checks, a
value that defaults to zero, then the number of MR rounds is chosen such that
the probability of the test declaring a random composite number n with k bits
as being prime is at most 2−λ, where λ is the security level that a 2k-bit RSA



k t λ (bits)

k ≥ 3747 3 192
k ≥ 1345 4 128
k ≥ 476 5 80
k ≥ 400 6 80
k ≥ 347 7 80
k ≥ 308 8 80
k ≥ 55 27 64
k ≥ 6 34 64

Table 1. The default number of rounds t of Miller-Rabin performed by OpenSSL when
testing k-bit integers determined by the function BN prime checks for size and the
associated bits of security λ.

modulus should provide. Thus, the number of MR rounds performed is based on
the bit-size k, as per Table 1. The entries here are based on average case error
estimates taken from [MVOV96], which in turn references [DLP93].

2.2 Prime Generation

A critical use case for primality testing is prime generation (e.g. for use in RSA
keys). The exact details of the algorithms used vary across implementations,
but the majority follow a simple technique based on first generating a random
initial candidate n of the desired bit size k, possibly setting some of its bits, then
doing trial division against a list of small primes, before performing multiple
rounds of primality testing using a standard probabilistic primality test such
as MR. If the trial division reveals a factor or the MR test fails, then another
candidate is generated. This can be a fresh random value, but more commonly,
implementations add 2 to the previous candidate n. This allows an important
optimisation: if a table of remainders for the trial divisions of n is created in
the first step, then this table of remainders can be quickly updated for the new
candidate n+ 2. Fresh divisions can then be avoided – one just needs to inspect
the updated table of remainders. We refer to this procedure as trial division by
sieving or just sieving. It is, of course, much more efficient than performing trial
divisions anew for each candidate. Note that this approach leads to a slightly
non-uniform distribution on primes: primes that are preceded by a long run of
composites are more likely to result from it than primes that are close to their
preceding primes. However, it is known that the deviation from the uniform
distribution is small [BD93].

OpenSSL OpenSSL adopts the above high-level procedure, with one important
difference. The code is found in BN generate prime ex in file bn prime.c. The
function call has the following form:

int BN generate prime ex(BIGNUM *ret, int bits, int safe, const BIGNUM

*add, const BIGNUM *rem, BN GENCB *cb)



Here bits is the desired bit-size, safe is a flag that, when set, asks the function
to produce a safe prime p = 2q + 1, and add and rem allow the callee to set
additional conditions on the returned prime. We will ignore safe, add and rem

in our further work; an analysis of how they affect prime generation when using
our primality test is left to future work.

The initial steps are performed together in a separate function called probable-

prime. A cryptographically strong pseudo-random number is first generated
by BN priv rand. The two most significant bits and the least significant bit are
then set to ensure the resulting candidate n is odd and of the desired bit-size.
This number is then sieved using a hard-coded list of the first 2047 odd primes
p2, . . . , p2048, so p1 = 2, p2 = 3, . . . , p2048 = 17863. If a candidate passes the siev-
ing stage, it is tested for primality by BN is prime fasttest ex. This function
carries out the default number of Miller-Rabin rounds, as per Table 1. Trial
division is omitted by setting the do_trial_division flag in the function call.
This is because trial division has already been carried out externally via sieving.
This exploits the complexity of the OpenSSL API for primality testing to gain
performance, an option not available if a simplified API is desired (as we do).
Importantly, if the MR tests fail, then instead of going to the next candidate
that passes sieving, a fresh, random starting point is selected and the procedure
begins again from the start.

3 Construction and Analysis of a Primality Test With a
Misuse-resistant API

We now propose how to construct a performant primality test with a misuse-
resistant API. Our design goal is to ensure good performance in the most
important use cases (malicious input testing, prime generation) while still main-
taining strong security. At the same time, we want the simplest possible API for
developers: a single input n (the number being tested) and single a 1-bit output
(0 for composite, 1 for probably prime).

We propose four different primality testing functions, all built from the
algorithms described in Section 2.1. The first of these follows OpenSSL with
its default settings, and we name this Miller-Rabin Average Case (MRAC). It
provides a baseline for analysis and comparison. The second and third use 64 and
128 rounds of MR testing, respectively. We name them MR64 and MR128. The
fourth uses the Baillie-PSW test, and we name it BPSW for short. For each of these
four options, we provide an assessment (both by analysis and by simulation) of
its security and performance when considering random composite, random prime,
and adversarially generated composite inputs. We also consider the influence of
trial division on each test’s performance. For concreteness, throughout we focus
on the case of 1024-bit inputs, but of course the results are easily extended to
other bit-sizes.



3.1 Miller-Rabin Average Case (MRAC)

The first test we introduce, MRAC, is a reference implementation of OpenSSL’s
primality test, as per the function BN is prime fasttest ex described in Sec-
tion 2.1 with input checks set to BN prime checks, so that the number of MR
rounds performed is based on the bit-size k, as per Table 1. Recall that this
function either does no trial division or does trial division with the first 2047
odd primes. Of course, this test is quite unsuitable for use in general, because it
performs badly on adversarial inputs: [AMPS18] showed that it has a worst case
false positive rate of 1/22t where for example t = 5 for 1024-bit inputs. On the
other hand, it is designed to perform well on random inputs.

MRAC on Random Input We now consider the expected number of MR
rounds performed when receiving a random 1024 bit odd input. For now, we
ignore the effect of trial division. The probability that a randomly chosen odd
k-bit integer is prime is qk := 2/ ln(2k) by standard estimates for the density of
primes (for k = 1024, qk ≈ 1/355). In this case MRAC will do t MR rounds, as
per Table 1. Otherwise, for composite input, up to t rounds of MR testing will be
done. One could use the bounds from [DLP93] to obtain bounds on the expected
number of MR rounds that would be carried out on composite input. However, for
numbers of cryptographic size (e.g. k = 1024 bits), to a very good approximation,
the number needed is just 1, since with very high probability, a single MR test is
sufficient to identify a composite (recall that the probability that a single round
of MR testing fails to identify a 1024-bit composite is less than 2−40!). From this,
one can compute the expected number of rounds needed for a random, odd input:
it is approximately the weighted sum t · qk + 1 · (1 − qk) = 1 + (t − 1)qk. For
k = 1024, we have t = 5 and qk = 0.0028, and this expression evaluates to 1.026.

MRAC on Random Input with Trial Division Now we bring trial division
into the picture. Its overall effectiveness will be determined by the collection
of small primes in the list P = {p1, p2, . . . , pr} used in the process (where we
assume all the pi are odd) and the relative costs of MR testing and trial division
(about 800:1 in our experiments).

For random odd inputs, the fraction σ(P ) of non-prime candidates that are
removed by the trial division of the primes in P can be computed using the
formula:

σ(P ) = 1−
r∏
i=1

(
1− 1

pi

)
. (2)

This means that any candidate that passes the trial division stage is 1/(1−σ(P ))
times more likely to be a prime than an odd candidate of equivalent bit-size
chosen at random. But simply adding more primes to the list P is not necessarily
effective: fewer additional composites are removed at a fixed cost (one additional
trial division per prime), and eventually it is better to move on to a more
heavyweight test (such as rounds of MR testing). Moreover, from inspecting the



formula for σ(P ), it is evident that, for a given size r of set P (and hence a
given cost for trial division), it is better to set P as containing the r smallest
odd primes (including 2 is not useful as the input n is already assumed to be
odd). Henceforth, we assume that when P is of size r, then it consists of the first
r odd primes. We write σr in place of σ(P ) in this case. Using Mertens’ theorem,
we can approximate σr as follows:

σr ≈ 1− 2e−γ/ ln(pr).

where γ = 0.5772 . . . is the Euler-Mascheroni constant.
As an example, BN is prime fasttest ex in OpenSSL performs trial division

on the first 2047 odd primes (ending at p2047 = 17863). As shown in Figure 1,
using the first r = 2047 primes gives a value of σ2047 = 0.885. This is only a little
larger than using, say, the r = 128 smallest primes yielding σ128 = 0.831.

Now we build a cost model for MRAC including trial division. This will also
be applicable (with small modifications) for our other tests.

Let Ci denote the cost of a trial division for prime pi and let CMR denote
the cost of a single MR test.6 Then the total cost of MRAC on random prime
k-bit inputs is:

r∑
i=1

Ci + t · CMR (3)

since the test then always performs all r trial divisions (assuming k is large
enough) and all t MR tests. For random, odd composite inputs, the average cost
is approximately:

σ1 · C1 + (σ2 − σ1) · (C1 + C2) + . . .+ (σr − σr−1) · (C1 + · · ·+ Cr)

+(1− σr) · (
r∑
i=1

Ci + CMR).

This is because a fraction σ1 of the composites are identified by the first trial
division, a further fraction σ2 − σ1 are identified after 2 trial divisions, etc, while
a fraction (1−σr) require all r trial divisions plus (roughly) 1 round of MR. Here
we assume that the MR test performs in the same way on numbers after trial
division as it does before. After some manipulation, this last expression can be
simplified to:

r∑
i=1

(1− σi−1) · Ci + (1− σr) · CMR (4)

where we set σ0 = 0. This expression can be simplified further if we assume that
the Ci are all equal to some CTD (a good approximation in practice), and apply
Mertens’ theorem again. For details, see the equivalent analysis in [Mau95].

From expressions (3) and (4), the expected cost for random, odd, k-bit input
can be easily computed via a weighted sum with weights qk and 1− qk. However,

6 In practice, we could set Ci to be a constant CTD for the range of i we are interested
in, but using a more refined approach is not mathematically much more complex.



Fig. 1. Proportion of candidates removed by trial division, σr, as a function of r, the
number of primes used.

the cost is dominated by expression (4) for the composite case. From (4), the
futility of trial division with many primes is revealed: adding a prime by going
from r to r + 1 on average adds a term (1 − σr) · Cr+1, but only decreases by
a fraction σr+1 − σr the term in front of CMR. As can be seen from Figure 1,
when r is large, 1 − σr is around 0.1, while σr+1 − σr becomes very small. So
each increment in r only serves to increase the average cost by a fraction of a
trial division (and with the cost of trial division increasing with r).

Figure 2 shows a sample (theoretical) plot of the average cost of MRAC
as a function of r for k = 1024. This uses as costs CTD = 0.000371ms and
CMR = 0.298ms obtained from our experiments (reported below) for k = 1024 and
the weighted sum of expressions (3), (4). This curve broadly confirms the analysis
of [Mau95] which suggests setting pr = CMR/CTD to minimise the running
time of primality testing with trial division; here we obtain CMR/CTD ≈ 800,
corresponding to r ≈ 140.7

MRAC on Adversarial Input Recall from [AMPS18] that worst-case adver-
sarial inputs can fool random-base MR testing with probability 1/4 per round.
The expected number of rounds needed to identify such inputs as composite is
then 1.33. However, with t rounds of testing, MRAC will fail to identify such
composites as being so with probability 1/22t (and will indicate that the input
was prime). Note that this analysis is unaffected by trial division, since the
adversarial inputs used have no small primes factors – the trial division just
increases the running time of the test.

7 The analysis of [Mau95] technically applies to prime generation, but ignores certain
terms in such a way as to actually analyse the cost of primality testing of composite
numbers. In this sense, it is only valid when the cost of primality testing for prime
inputs can be ignored compared to the case of composite inputs; this is not the case
in general, but is a reasonable approximation for MRAC.



Fig. 2. A plot of the theoretical running time of MRAC as a function of r, the number
of primes r used in trial division for k = 1024, using CTD = 0.000371ms and CMR =
0.298ms obtained from our experiments.

3.2 Miller-Rabin 64 (MR64)

Next we consider trial division followed by up to 64 rounds of MR testing with
random bases (the test will exit early if a base that is a witness to compositeness
of the input n is found). We refer to this test as MR64. By design, this test
guarantees a failure of 2−128, no matter the input distribution, so it offers robust
security guarantees without the user needing to understand the context of the
test (i.e. whether the test is being done with adversarial inputs or not).

MR64 on Random Input As for MRAC, for a random, odd composite, k-bit
input, the expected number of rounds of MR testing (without trial division) is
very close to 1. On the other hand, for prime, k-bit input, the number of rounds
is exactly 64. This enables the average cost without trial division on random,
odd, k-bit input to be computed: it is approximately given by the weighted sum

(64 · qk + 1 · (1− qk)) · CMR = (1 + 63qk) · CMR

For k = 1024, we again have qk = qk = 2/ ln(2k) = 0.0028, and this sum evaluates
to 1.18CMR, about 17% higher than MRAC for the same input distribution.

MR64 on Random Input with Trial Division Following the analysis for
MRAC, we can compute the cost of MR64 on random, prime, k-bit input as:

r∑
i=1

Ci + 64 · CMR

since here all trial divisions are performed, together with 64 rounds of MR testing.
For random, odd, composite input with r-prime trial division, the expected cost
is very close to that of MRAC with the same r, since whenever MR testing is



Fig. 3. Comparing the theoretical running time of MR64 and MRAC as a function of r
(the number of primes r used in trial division) for k = 1024, using CTD = 0.000371ms
and CMR = 0.298ms obtained from our experiments.

invoked, almost always one round suffices. As for the case of MR64 without trial
division, it is the prime inputs that make the cost difference here: they involve
64 rounds of MR testing instead of the (close to) 1 needed for composite inputs.
Again, a theoretical prediction for random, odd input can be made by combining
the expressions for odd, composite and prime input using a weighted sum. We
omit the details, but Figure 3 shows the theoretical curve for MR64 as compared
to MRAC (using costs CTD = 0.000371ms and CMR = 0.298ms for k = 1024 as
before).

MR64 on Adversarial Input By design, the MR64 test will fail to identify
a worst-case adversarial input as a composite with probability at most 2−128,
this after 64 rounds of MR testing. The expected number of rounds needed to
successfully classify such inputs is again 1.33.

3.3 Miller-Rabin 128 (MR128)

The test is identical to MR64, but up to 128 rounds of MR testing are invoked.
The intention is to reduce the false positive rate from 2−128 to 2−256. The analysis
is almost identical to that for MR64, replacing 64 by 128 where it appears in
the relevant formulae. We include it for comparison purposes and because the
OpenSSL documentation does target 256 bits of security when testing very large
numbers (larger than 6394 bits in size8). The headline figure for this test is its
expected cost (without trial division) of (1+127qk) ·CMR, equating to 1.36 ·CMR

on random, odd, 1024-bit inputs, roughly 35% higher than MRAC at the same
input size.

8 See the man page https://www.openssl.org/docs/man1.1.0/
man3/BN is prime fasttest ex.html and code documentation
https://github.com/openssl/openssl/blob/fa4d419c25c07b49789df96b32c4a1a85a984fa1
/include/openssl/bn.h#L159.



3.4 Baillie-PSW (BPSW)

The final test we consider is the Baillie-PSW test. Recall that this is the combi-
nation of a single Miller-Rabin test to base 2, with a Lucas test using Selfridge’s
Method A to select D. If the input n we are testing is a perfect square, then
there does not exist a valid choice of D (see Section 2.1). So we must decide upon
a point to test for this. Baillie and Wagstaff [BW80] show that, when n is not
square, the average number of D values that need to be tried until a suitable one
is found is 1.78. We choose to run a test to check if n is a perfect square only
after 7 unsuccessful attempts to select D. This provides a balance between the
relatively cheap process of testing a choice of D with the more expensive test for
n being a perfect square. We perform the Miller-Rabin part of the test first, since
it is the more efficient of the two techniques, omitting the Lucas test early if this
indicates compositeness. We then search for D using Selfridge’s Method A, using
it to carry out a Lucas test if found. We abort the search for D after 7 attempts
and then test n for being a perfect square. If this test fails, we revert to searching
for a suitable D and then perform the Lucas test when one is eventually found.

BPSW on Random Input The analysis without trial division is much like
that of MRAC, assuming that MR with a fixed base 2 performs as well as MR
with a random base when the number being tested is uniformly random. For
prime inputs, the average cost is CMR + CL, where CL is average the cost of
doing the Lucas part of the test (and any tests of squareness); for composite
inputs, the cost is roughly CMR since the MR test catches the vast majority of
composites. The performance on random inputs is the weighted sum of these, as
usual. In our implementation, the average for CL is equal to 17.04 ·CMR (5.078ms
compared to 0.298ms on average for 1024-bit inputs, based on 220 trials). Overall,
then, this test has an expected cost (without trial division) of 1.05 · CMR on
random, odd, 1024-bit inputs, roughly 4% more than MRAC.

The analysis with trial division is again similar to that for MRAC: when
the input is prime, the average cost is

∑r
i=1 Ci + CMR + CL, while when the

input is composite, it is of the same form as in (4) (where we are able to omit a
term CL under the assumption that the base 2 MR test is effective in detecting
composites). We omit further detail.

BPSW on Adversarial Input It is relatively easy to construct composites
passing a base 2 MR test. For example, integers of the form (2x + 1)(4x + 1)
with each factor a prime have a roughly 1 in 4 chance of doing so (see [AMPS18]
for further discussion). Such inputs are highly likely to be detected by the
Lucas part of the BPSW test, so the cost of BPSW on such inputs would be∑r
i=1 Ci + CMR + CL. However, we do not know if such numbers are worst-case

adversarial inputs for BPSW, and indeed, we cannot rule out the existence of
BPSW pseudo-primes, that is, composites which are declared probably primes
by the test. Recall that Pomerance [Pom84] has given heuristic evidence that
there are infinitely many such pseudo-primes. Perhaps the smallest is beyond



r Declared Composite
MRAC MR64 MR128 BPSW

0 0.312 0.313 0.312 0.302
128 0.063 0.063 0.063 0.061

2047 0.135 0.134 0.134 0.133

r Declared Prime
MRAC MR64 MR128 BPSW

0 1.50 19.1 38.1 5.39
128 1.55 19.1 38.2 5.44

2047 2.26 19.8 38.9 6.15

r Overall
MRAC MR64 MR128 BPSW

0 0.315 0.366 0.419 0.316
128 0.067 0.117 0.170 0.077

2047 0.141 0.190 0.244 0.150

Table 2. The mean running time (in ms) for each test when testing MRAC, MR64,
MR128 and BPSW for random 1024-bit, odd inputs and various amounts of trial division
(r). We show the breakdown of means for inputs declared as either prime or composite,
as well as the overall averages. Results based on 225 trials.

the bit-size we care about in cryptographic applications, but we cannot be sure.
Note also that such a pseudo-prime, if it can be found, would always fool the
BPSW test (because the test is deterministic). This is in sharp contrast to MR64
and MR128, where we can give precise bounds on the false positive rate of the
tests. We consider this, along with the relative complexity of implementing the
BPSW test, to be a major drawback.

3.5 Experimental Results

Having described our four chosen primality tests and given a theoretical evaluation
of them, we now turn to experimental analysis. This analysis gives us a direct
comparison with the current approach of OpenSSL (MRAC with trial division
either off or based on 2047 primes). It also allows us to study how the Baillie-
PSW test performs against Miller-Rabin testing in practice, something that does
not appear to have been explored before. We focus initially on testing 1024-bit
numbers to avoid deluging the reader with data; results for other bit-sizes are
presented later in the section.

Random Input Our results for random, odd, 1024-bit inputs to the tests are
shown in Table 2. We worked with 225 inputs, produced using OpenSSL’s internal
random number generator. All timings are in milliseconds, and are broken down
into results for composite inputs, inputs that were declared prime, and overall



results. We also report results for different amounts of trial division — none,
r = 128 (which, from our theoretical analysis above, we consider to be a sensible
amount of trial division for 1024-bit inputs) and r = 2047 (as in OpenSSL). All
results were obtained using a single core of a Intel(R) Xeon(R) CPU E5-2690 v4
@ 3.20GHz processor, with code written in C using OpenSSL 1.1.1b (26-Feb-
2019) for big-number arithmetic and basic Miller-Rabin functionality. We also
computed standard deviations to accompany each timing, but omit the details
due to lack of space.

Of the 225 random, odd, 1024-bit numbers that we generated, 94947 were
prime. This is closely in line with the estimated q1024 × 225 ≈ 94548 given by the
usual density estimate.

The results in Table 2 are broadly in-line with our earlier theoretical analysis.
Some highlights:

– MRAC is fast overall, but with r = 2047, OpenSSL is doing far too much
trial division on 1024-bit inputs. Much better performance could be achieved
for this input size in OpenSSL by setting r = 128 (more than 2x speed-up
overall can be gained).

– MR64 is 8-9 times slower than MRAC on prime input, reflecting the many
more rounds of MR testing being done in MR64.

– MR128 is roughly twice as slow as MR64 on prime input (reflecting the
doubling of rounds of MR testing). On random input, the gap between MR64
and MR128 is not so large (because most composites are identified by trial
division or after just one round of MR testing).

– BPSW is quite competitive with MRAC overall and only 2-3 times slower for
prime input. This is because the Lucas test part of BPSW is expensive but
rarely invoked for random input, but always done for prime input.

– Based on overall figures, MR64 with r = 128 outperforms MRAC with
r = 2047 (as used in OpenSSL) by 17% on 1024-bit input. This indicates that,
by tuning parameters carefully, it is possible to obtain improved performance
over the current approach used in OpenSSL whilst enjoying strong security
across all use cases (i.e. a guaranteed false positive rate of 2−128). Even
MR128 with r = 128 is not far behind MRAC with r = 2047 on overall
figures at this input size.

Further improvements in running time can be obtained by fine-tuning the
value of r on a per test basis, and according to input size. Importantly, the latter
is feasible even with a simple API (and indeed seems to be the only general,
input-dependent optimisation possible). To illustrate this, we show in Figure 4 the
average running times for MRAC and MR64 on random, odd, 1024-bit input for
varying r. The figure also shows the theoretical curves obtained previously. There
is excellent agreement between the experimental data and the curves obtained
from the model. In both cases, the curve is quite flat around its minimum, but
we see that using r = 128 gives close to optimal performance for this value of
k = 1024. The figure also illustrates that using large amounts of trial division
(as per OpenSSL) harms performance for this input size, as was also explained
theoretically in Section 3.1. Specifically, OpenSSL uses r = 2047, putting its



Fig. 4. Experimental and theoretical performance of MRAC and MR64 on random,
odd, 1024-bit input for varying amounts of trial division, r.

performance with default settings (MRAC) well above the minimum obtainable
with MR64 with a carefully tuned choice of r.

Adversarial Input To bring into sharp relief the failings of MRAC as a general-
purpose primality test, we generated a set of 220 1024-bit composites of the
form n = (2x+ 1)(4x+ 1) in which the factors 2x+ 1, 4x+ 1 are both prime.
Numbers of this special form are known to pass random-base MR tests with
probability 1/4. We then put these n through our MRAC and MR64 tests without
trial division,9 tracking how many rounds of MR were used on each input by
each test. Table 3 shows the results. MR64 needed a maximum of 10 rounds
of MR testing to correctly classify all the inputs, while MRAC, using only 5
rounds of MR for inputs of this size, incorrectly classified exactly 1000 of the
inputs. This performance is in-line with expectations, as the expected number of
misclassifications is 220 × (1/4)5 = 210.

3.6 Other Bit Sizes

So far in our experimental evaluation, we have focussed on k = 1024, i.e. testing
of 1024-bit inputs. We have carried out similar testing also for k = 512, 2048, 3072.
Figures 5, 6 and 7 show these additional results for the MRAC and MR64 tests,
focussing on the effect of varying r on running time. Notice the characteristic
“hockey-stick” shape of the curves in all the figures.

In each figure, the dashed horizontal time highlights the minimum running
time for MR64. Notably, for k = 512, this is significantly lower than MRAC with
r = 2047 (as in OpenSSL). We saw the same effect for k = 1024 in Figure 4. For
k = 2048, MR64 with the best choice of r is slightly slower than MRAC with
r = 2047 (but still competitive). For k = 3072, the influence of r on running time

9 Including trial division would not change the results.



Rounds MRAC MR64

1 787054 786765
2 196110 196268
3 49167 49305
4 12157 12103
5 4088 3129
6 – 776
7 – 169
8 – 44
9 – 13
10 – 4

Table 3. Number of rounds of MR testing needed to identify as composite 1024-bit
numbers of the form n = (2x+ 1)(4x+ 1) with 2x+ 1, 4x+ 1 prime from an initial set
of 220 candidates. MRAC only performs 5 rounds of MR testing for this bit-size and
failed to identify exactly 1000 candidates.

is quite small, and MRAC consistently comes out ahead of MR64 (but recall that
MRAC is unsafe for maliciously chosen inputs).

These experiments confirm our earlier observation: the choice of r, the amount
of trial division, can have a significant effect on running time of primality tests,
and should be taken into account when selecting a test.

Fig. 5. Experimental and theoretical performance of MRAC and MR64 on random,
odd, 512-bit input for varying amounts of trial division, r.

3.7 Selecting a Primality Test

We select MR64 with the amount of trial division, r, depending on the input size
as our preferred primality test. Our reasons are as follows:



Fig. 6. Experimental and theoretical performance of MRAC and MR64 on random,
odd, 2048-bit input for varying amounts of trial division, r.

Fig. 7. Experimental and theoretical performance of MRAC and MR64 on random,
odd, 3072-bit input for varying amounts of trial division, r.



k r

k ∈ [1, 512] 64
k ∈ [513, 1024] 128
k ∈ [1025, 2048] 384
k ∈ [2049, 3072] 768
k ∈ [3073,∞) 1024

Table 4. Recommended values of r for use with the MR64 primality test.

– MR64 has strong security guarantees across all use cases (unlike MRAC and
BPSW). These guarantees can be improved by switching to MR128, but we
consider the guarantees of MR64 to be sufficient for perhaps all but the most
stringent requirements.

– MR64 is easy to implement, while a test like BPSW requires significant
additional code (see supplementary material).

– MR64 with an input-size-dependent choice of r outperforms the current
approach used in OpenSSL (MRAC with fixed r = 2047) up to k = 1024 and
remains competitive with MRAC even for larger inputs. (Obviously OpenSSL
could also be made faster by tuning r, but this would not improve security
for malicious inputs).

– MR64 permits a very simple API, with a single input (the number being
tested) and a single output (whether the input was composite or probably
prime), whilst still allowing input-size-dependent tuning of r.

Table 4 shows our recommended values of r to use with MR64, based on the
experimental results obtained above. Further small improvements in performance
could be obtained by being more precise in setting r values and by further
partitioning the set of k values, but the gains would be marginal.

We further validate this selection of MR64 in the next section, where we
examine the performance of different tests when used as part of prime generation
(as opposed to testing).

4 Prime Generation

In this section, we want to assess the impact of our choice of primality test on a
key use case, prime generation. We focus on the scenario where our primality
test is used as a drop-in replacement for the existing primality test in OpenSSL,
without making any modifications to the prime generation code. We are not
suggesting this should be done in practice, but merely evaluating the impact on
a strawman application when switching to our proposed test.

4.1 Experimental Approach

In order to establish a benchmark, we first use OpenSSL’s prime number gener-
ating function BN generate prime ex as it appears in the standard library. As



k r used MR64 MRAC Overhead

512 64 12.37 8.859 40%
1024 128 60.83 45.20 35%
2048 384 385.2 268.5 43%
3072 768 1379 946.7 46%

Table 5. Running time (in ms) for primality generation using our proposed primality
test (MR64 with input-length-dependent trial division) and current OpenSSL primality
test (MRAC with no trial division). Each timing is based on 220 trials.

discussed in detail in Section 2.2, this involves sieving with s = 2047 primes
and using the OpenSSL primality test that consumes t rounds of MR testing
on a sequence of candidates n, n+ 2, . . ., restarting the procedure from scratch
whenever an MR test fails. Here t is determined as in Table 1 (i.e. the test is what
we call MRAC). Importantly, OpenSSL exploits the rich API of its primality
test to switch off trial division in the primality tests, since that trial division is
already taken care of by the cheaper sieving step.

Next, we change the underlying primality test to use our selected test: MR64
with input-length-dependent trial division (as per Table 4), keeping all other
aspects of OpenSSL’s prime generation procedure the same. All the trial division
done in our underlying primality test is of course redundant, because of the
sieving step carried out in OpenSSL’s prime generation code. However, with
our deliberately simplified API for primality testing, that extra work would be
unavoidable. Similarly, our underlying primality test performs more rounds of MR
testing (64 instead of the 3-5 used in MRAC) when a prime is finally encountered.
It is the amount of this extra work that we seek to quantify here.

Our experimental results are shown in Table 5. It can be seen that the
overhead of switching to our primality test in this use case ranges between 35%
and 46%. This is a significant cost for this use case, but recall that the gain is a
primality test that has strong security guarantees across all use cases, along with
a simple and developer-friendly API.

We can build simple cost models which illustrate the performance differences
we have observed; see also [Mau95] for a similar model. Details are deferred to
Appendix A

5 Implementation and Integration in OpenSSL

We communicated our findings to the OpenSSL development team, specifically to
Kurt Roeckx, one of the OpenSSL core developers. He did his own performance
testing, and concluded that our new API and primality test should be deployed
in OpenSSL. In personal communication with Roeckx, we were informed that
these changes are slated for inclusion in OpenSSL 3.0, which is scheduled for
release in Q4 of 2020.

In more detail, the following changes were made:



– Our proposed API is included via a new, external facing function (see
https://github.com/openssl/openssl/blob/master/crypto/bn/bn prime.c#L253):

int BN_check_prime(const BIGNUM *p, BN_CTX *ctx, BN_GENCB *cb)

{

return bn_check_prime_int(p, 0, ctx, 1, cb);

}

This code wraps the existing “internal” primality testing function
bn check prime int. Note that the API has 3 parameters, instead of our
desired 1: OpenSSL still needs to pass pointers to context and callback objects
for programmatic reasons.

– The “internal” primality testing function bn check prime int has been
updated to do a minimum of 64 rounds of MR testing (and 128 rounds
for 2048+ bit inputs). This deviates slightly from our recommendation to
always do 64 rounds of testing – it is more conservative. Note that the
average case analysis of [DLP93] is no longer used to set the number of
rounds of MR testing in the default case. This function also uses a small
table to determine how many primes to use in trial division; the numbers are
aligned with our recommendations in Table 4. Details are in the new function
calc trial divisions.10

– The rest of the OpenSSL codebase has been updated to use the new API,
except for the prime generation code. That code has also been updated (see
https://github.com/openssl/openssl/blob/master/crypto/bn/bn prime.c#L123).
It now uses yet a third internal function for its primality testing (see
bn prime.c#L170):

bn_is_prime_int(ret, checks, ctx, 0, cb);

Here, checks determines the number of rounds of MR testing done, and is
set to either 64 or 128 according to the input size. In the call, ”0” indicates
that trial division is no longer done. The number of MR rounds here could
have been set based on average case performance, as was formerly the case,
rather than worst case, but it seems the OpenSSL developers have opted for
simplicity over performance. Not doing trial division inside the primality test
is appropriate here because the inputs have already been sieved to remove
numbers with small prime factors by this point.

– The “old” and complex external-facing APIs in the functions BN is prime ex

and BN is prime fasttest ex have been marked for deprecation in OpenSSL
3.0: they will only be included in a build of the library in case the environ-
mental variable OPENSSL NO DEPRECATED 3 0 is set (see
https://www.openssl.org/docs/manmaster/man3/BN is prime fasttest ex.html
for details).

10 See https://github.com/openssl/openssl/blob/master/crypto/bn/bn prime.c#L74.



5.1 Reference Implementation of Baillie-PSW

For completeness, in Appendix B, we give a reference implementation of the
Baillie-PSW test as it could be implemented in OpenSSL. This also helps to
provide an understanding of the increase in code complexity involved in using
this test.

6 Conclusions and Future Work

We have proposed a primality test that is both performant and misuse-resistant,
in the sense of presenting a simplest-possible interface for developers. The test
balances code simplicity, performance, and security guarantees across all use
cases. We have not seen a detailed treatment of this fundamental problem in
the literature before, despite the by-now classical nature of primality testing
as a cryptographic task. Our recommendations – both for the API and for the
underlying primality test – have been adopted in full by OpenSSL and are
scheduled for inclusion in OpenSSL 3.0, which is expected to be released in Q4
2020.11

We have focussed in this work on regular prime generation. Our work could be
extended to consider efficiency of safe-prime generation. Special sieving procedures
can be used in this case: if one creates a table of values n mod pi, then one can
also test 2n+ 1 for divisibility by each of the pi very cheaply; techniques like this
were used in [GMP19] in a slightly different context. Further work is also needed
to fully assess the impact of the amount of sieving (s) on the performance of
prime generation at different input lengths (k). Our work could also be extended
to make a systematic study of prime generation code in different cryptographic
libraries. For example, we have already noted that the OpenSSL code aborts and
restarts whenever a Miller-Rabin test fails; this behaviour leads to sub-optimal
performance, and it would be interesting to see how much the code in OpenSSL
and in other leading libraries could be improved

One can view our work as addressing a specific instance of the problem of
how to design simple, performant, misuse-resistant APIs for cryptography. In our
discussion of related work, we highlighted other work where this problem has also
been considered, in symmetric encryption, key exchange, and secure channels. A
broader research effort in this direction seems likely to yield significant rewards
for the security of cryptographic software. As here, it may occasionally also yield
improved performance.
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A Cost Model for Prime Generation

Sieving can be recast as a one-time trial division of the first candidate n with the
first s odd primes (OpenSSL uses s = 2047), followed by per candidate updating
of a table of remainders. We assume the latter can be done essentially for free
compared to other operations and ignore its cost henceforth. Then the average
cost of primality generation when the underlying primality test uses up to t
rounds of MR testing but no trial division, is given by:(

s∑
i=1

Ci

)
+
(
ln(2k) · (1− σs)/2

)
· CMR + (t− 1) · CMR. (5)

Here the first term comes from sieving. The second term comes from, on average,
inspecting ln(2k) · (1− σs)/2 odd, composite candidates in the sieved version of
the list n, n+ 2, n+ 4, . . . before encountering a prime, and doing 1 MR test to
reject each composite (recall that, because of sieving, the density of primes in the
list n, n+ 2, n+ 4, . . . is boosted by a factor 1/(1− σs); recall also that almost
every random composite is rejected with just 1 MR test). The third term comes
from doing a further t − 1 MR tests when a prime is finally found. To model
OpenSSL’s performance, we would set t according to Table 1.

It should be evident from expression (5) that, as with trial division, working
with large s in the initial sieve is not profitable: eventually, the gains made
from decreasing the term 1− σs are outweighed by the cost of initial sieving by
trial division. Moreover, this model neglects the true cost of updating the table
of remainders between candidates. This cost is linear in s (albeit with a small
constant) and so heightens the effect. A more detailed model including this cost
could of course be developed.

If we now assume that (redundant) trial division with r ≤ s primes is also
carried out in the underlying primality test, and that the test uses up to t′ rounds
of MR testing, then the average cost becomes:(

s∑
i=1

Ci

)
+
(
ln(2k) · (1− σs)/2

)
· ((

r∑
i=1

Ci) + CMR) + (t′ − 1) · CMR (6)

Here, the additional cost compared to (5) is precisely that of doing a full set of
r trial divisions for each candidate – this cost is always incurred because when
r ≤ s, all the candidates which might fail trial division at some early stage have
already failed on sieving. To model the performance of OpenSSL with our chosen
primality test, MR64, t′ must be set to 64 rather than the values in Table 1; the
difference means that, when a prime is finally encountered, the cost of testing it
will be higher.

The difference in the costs as expressed in (5) and (6) is given by:

(
ln(2k) · (1− σs)/2

)
· (

r∑
i=1

Ci) + δt · CMR (7)



where δt = t′ − t, depending on k, is the difference in the maximum number of
rounds of MR testing carried out in the two cases.

For MR64 and MRAC, and for k of cryptographic size, δt ranges between 59
and 61. For our selected primality test, MR64 with input-length-dependent trial
division, r in the above expression is also k-dependent, and is set by Table 4. The
first term in (7) accounts for the cost of redundant trial division over the first
r primes for N := ln(2k) · (1 − σs)/2 different candidates. Here both r and N
are in the range of a few hundred. For example, when k = 1024 we set r = 128,
and when s = 2047, we have N ≈ 41. Hence, when k = 1024, we do about 5200
redundant trial divisions, compared to an extra δt = 59 MR tests. For this k,
the extra MR tests are about 8 times more expensive than the redundant trial
divisions (roughly 17.5ms versus 2ms based on our experimental timings). This
indicates that the redundant trial division contributes much less to the overhead
of prime generation than do the extra MR tests that are necessary to make our
primality test secure in all use cases.

Note that this analysis ignores the fact that OpenSSL aborts and restarts with
a fresh, random value whenever an MR test fails; this effect may be significant
in practice and we leave a detailed evaluation to future work. Note also that
this modelling deficiency does not affect our experimental results reported in
the main body, since they were obtained by measuring the running time of the
actual OpenSSL code.

B Reference Implementation of the Baillie-PSW test

For completeness, we include here our code that implements a Baillie-PSW
primality test in the context of OpenSSL’s bn prime.c. Functions from the
existing OpenSSL code-base have been omitted.
bn prime bpsw.c

int BN_is_prime_BPSW_ex(BIGNUM *a, BN_CTX *ctx_passed ,

int do_trial_division , BN_GENCB *cb)

{

int i, j, l, ret = -1;

int k;

BN_CTX *ctx = NULL;

BIGNUM *A1 , *A1_odd , *check = BN_new (); /* taken from ctx */

BN_MONT_CTX *mont = NULL;

TRIAL_DIVISION_PRIMES = 129;

BN_set_word(check , 2); //only testing MR to base 2

/* Take care of the really small primes 2 & 3 */

if (BN_is_word(a, 2) || BN_is_word(a, 3))

return 1;

/* Check odd and bigger than 1 */

if (! BN_is_odd(a) || BN_cmp(a, BN_value_one ()) <= 0)

return 0;

/* first look for small factors */

if (do_trial_division) {

for (i = 1; i < TRIAL_DIVISION_PRIMES; i++) {

BN_ULONG mod = BN_mod_word(a, primes[i]);

if (mod == (BN_ULONG )-1)

goto err;

if (mod == 0)

return BN_is_word(a, primes[i]);

}

if (! BN_GENCB_call(cb, 1, -1))

goto err;

}



if (ctx_passed != NULL)

ctx = ctx_passed;

else if ((ctx = BN_CTX_new ()) == NULL)

goto err;

BN_CTX_start(ctx);

A1 = BN_CTX_get(ctx);

A1_odd = BN_CTX_get(ctx);

if (check == NULL)

goto err;

/* compute A1 := a - 1 */

if (! BN_copy(A1, a) || !BN_sub_word(A1, 1))

goto err;

/* write A1 as A1_odd * 2^k */

k = 1;

while (! BN_is_bit_set(A1, k))

k++;

if (! BN_rshift(A1_odd , A1, k))

goto err;

/* Montgomery setup for computations mod a */

mont = BN_MONT_CTX_new ();

if (mont == NULL)

goto err;

if (! BN_MONT_CTX_set(mont , a, ctx))

goto err;

j = witness(check , a, A1, A1_odd , k, ctx , mont);

if (j == -1)

goto err;

if (j) {

ret = 0;

goto err;

}

if (! BN_GENCB_call(cb, 1, i))

goto err;

ret = 1;

l = BN_lucas_test_ex(a);

if (!l) {

ret = 0;

goto err;

}

err:

if (ctx != NULL) {

BN_CTX_end(ctx);

if (ctx_passed == NULL)

BN_CTX_free(ctx);

}

BN_MONT_CTX_free(mont);

return ret;

}

int BN_lucas_test_ex(BIGNUM * n){

// performs a Lucas test (with Selfridge ’s paramters) on n

BIGNUM *two = BN_new ();

BN_set_word(two , 2);

// sanity check input , n odd and > 2

if (BN_cmp(two ,n)==1) { // 1 if a > b i.e b < a

BN_free(two);

return 0;

}

if (BN_cmp(n,two )==0) {

BN_free(two);

return 1;

}

if (! BN_is_odd(n)) {

BN_free(two);

return 0;

}

BN_CTX *ctx = BN_CTX_new ();

BIGNUM *result = BN_new ();

BIGNUM *zero= BN_new ();

BIGNUM *np1 = BN_new ();

BIGNUM *minusone = BN_new ();

BIGNUM *u = BN_new ();

BIGNUM *d = BN_new ();

BIGNUM *seventeen = BN_new ();

int32_t J;

int32_t res;



const char *m1 = "-1";

BN_add(np1 ,n,BN_value_one ());

BN_zero(zero);

BN_dec2bn (&minusone , m1);

BN_set_word(d, 5);

BN_set_word(seventeen , 17);

// while jacobi(d,n) != -1

while ((J = BN_jacobi(d,n))!= -1) {

if (J==0) { // if jacobi(d,n) == 0 then d | n, i.e n is composite

res = 0;

goto free;

}

if (BN_cmp(zero ,d)==1) { // 0>d

BN_mul(d,d,minusone ,ctx);

BN_add(d,d,two);

}

else{

BN_add(d,d,two);

BN_mul(d,d,minusone ,ctx);

}

if (BN_cmp(d,seventeen )==0 && !( BN_cmp(BN_is_perfect_square(n),zero )==0)) {

res = 0;

goto free;

}

}

u = BN_lucas_sequence(d,np1 ,n);

BN_mod(result ,u,n,ctx);

if (BN_cmp(result ,zero )==0) {

res = 1;

goto free;

}

else{

res = 0;

goto free;

}

free:

BN_CTX_free(ctx);

BN_free(result );

BN_free(zero);

BN_free(np1);

BN_free(minusone );

BN_free(two);

BN_free(u);

BN_free(d);

return res;

}

int BN_jacobi(BIGNUM *a, BIGNUM *n){

// computes jacobi symbol of (a/n), currently returns 2 if a,n are invalid input

BIGNUM *x = BN_new ();

BIGNUM *y = BN_new ();

BIGNUM *halfy = BN_new ();

BIGNUM *r = BN_new ();

BIGNUM *s = BN_new ();

BN_CTX *ctx = BN_CTX_new ();

BN_nnmod(x,a,n,ctx);

BN_copy(y,n);

int J = 1;

int k = 0;

BIGNUM *three = BN_new ();

BN_set_word(three , 3);

BIGNUM *four = BN_new ();

BN_set_word(four , 4);

BIGNUM *five = BN_new ();

BN_set_word(five , 5);

BIGNUM *eight = BN_new ();

BN_set_word(eight , 8);

if (! BN_is_odd(n)|| BN_cmp(n,BN_value_one ()) <= 0) {

J = 2;

goto free;

}

while (BN_cmp(y,BN_value_one ()) == 1) { // while y > 1

BN_mod(x,x,y,ctx);

BN_rshift1(halfy ,y);

if (BN_cmp(x,halfy )==1) {

BN_sub(x,y,x);

BN_mod(r,y,four ,ctx);

if (BN_cmp(r,three )==0) {

J = -J;

}

}

if (BN_is_zero(x)) {



//gcd(a,n)!=1 so we return 0

J = 0;

goto free;

}

//count the zero bits in x, i.e the largest value of n s.t 2^n divides x evenly.

k = 0;

while (! BN_is_bit_set(x, k)) {

k++;

}

BN_rshift(x,x,k);

if (k%2) {

BN_mod(s,y,eight ,ctx);

if (BN_cmp(s,three )==0 || BN_cmp(s,five )==0) {

J = -J;

}

}

BN_mod(r,x,four ,ctx);

BN_mod(s,y,four ,ctx);

if (BN_cmp(r,three )==0 && BN_cmp(s,three )==0) {

J = -J;

}

BN_swap(x,y);

}

free:

BN_CTX_free(ctx);

BN_free(x);

BN_free(y);

BN_free(halfy );

BN_free(r);

BN_free(s);

BN_free(three );

BN_free(four);

BN_free(five);

BN_free(eight );

return J;

}

void BN_rshift1_round(BIGNUM *r, BIGNUM *a){

// temporary fix as part of code demo , but the rounding in BN_rshift1

// is not consistant with python/java across positive and negative numbers.

// This function adds one before the shift if a is negative and performs

// BN_rshift1 normally otherwise. e.g this function rounds -127/2 = -63.5

// to -64 (toward -infinity), where as BN_rshift1 would round to -63 (toward 0)

// This is needed in my implementation of jacobi symbol calculation.

//Can ’t simply negate result , as we still want 127/2 = 63.

BIGNUM *zero= BN_new ();

BIGNUM *one= BN_new ();

BN_zero(zero);

BN_one(one);

if (BN_cmp(zero ,a)==1) { //a < 0

BN_sub(r,a,one);

BN_rshift1(r,r);

}

else{

BN_rshift1(r,a);

}

BN_free(zero);

BN_free(one);

}

BIGNUM * BN_lucas_sequence(BIGNUM *d, BIGNUM *k, BIGNUM *n){

// computes the Lucas sequence U_k modulo n, where d = p^2 -4q

BN_CTX *ctx = BN_CTX_new ();

BIGNUM *kp1 = BN_new ();

BIGNUM *u = BN_new ();

BIGNUM *v = BN_new ();

BIGNUM *u2 = BN_new ();

BIGNUM *v2 = BN_new ();

BIGNUM *r= BN_new ();

BIGNUM *zero= BN_new ();

BIGNUM *one= BN_new ();

BN_add(kp1 ,k,BN_value_one ());

BN_zero(zero);

BN_one(one);

BN_one(u);

BN_one(v);

size_t k_bits = BN_num_bits(kp1) -1;

for (size_t i = k_bits -1; i != (size_t) -1; --i) {

BN_mod_mul(u2,u,v,n,ctx);

BN_mod_sqr(r,u,n,ctx); //r = u^2 mod n

BN_mod_mul(r,r,d,n,ctx); // r = r *d = u^2 *d (mod n)

BN_mod_sqr(v2,v,n,ctx); //v2 = v^2 mod n

BN_mod_add(v2,v2,r,n,ctx); // v2 = v2 + r = v^2 + (u^2*d) (mod n)



if (BN_is_odd(v2)) {

BN_sub(v2,v2 ,n);// v2 = v2 - n

}

BN_rshift1_round(v2,v2);

BN_copy(u,u2);

BN_copy(v,v2);

if (BN_is_bit_set(k,i)) {

BN_nnmod(r,v,n,ctx); //r= v mod

BN_add(u2,u,r); // u2 = u + v mod n

if (BN_is_odd(u2)) {

BN_sub(u2,u2 ,n);

}

BN_rshift1_round(u2,u2);

BN_mod_mul(r,d,u,n,ctx); // r = d*u mod n

BN_add(v2,v,r); // v2 = r + v = v + d*u mod n

if (BN_is_odd(v2)) {

BN_sub(v2,v2 ,n);

}

BN_rshift1_round(v2,v2);

BN_copy(u,u2);

BN_copy(v,v2);

}

}

BN_CTX_free(ctx);

BN_free(kp1);

BN_free(v);

BN_free(u2);

BN_free(v2);

BN_free(r);

BN_free(zero);

BN_free(one);

return u;

}

BIGNUM * BN_is_perfect_square(BIGNUM * C){

//https :// nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS .186 -4. pdf sec C.4

// checks if C is a perfect square. If so, function returns X where C = X^2

// else function returns 0

BIGNUM *one= BN_new ();

BIGNUM *zero= BN_new ();

BIGNUM *ret= BN_new ();

BN_one(one);

BN_zero(zero);

if (BN_cmp(one ,C)==1) {

printf (" is_perfect_square requires C >=1 \n");

BN_free(one);

return zero;

}

if (BN_cmp(one ,C)==0) {

BN_free(zero);

return one;

}

BN_CTX *ctx = BN_CTX_new ();

BIGNUM *B = BN_new ();

BIGNUM *X = BN_new ();

BIGNUM *r = BN_new ();

BIGNUM *s = BN_new ();

BIGNUM *X2 = BN_new ();

BIGNUM *two= BN_new ();

size_t c_bits = BN_num_bits(C);

size_t m = (c_bits +1)/2;

BN_set_word(two , 2);

BN_set_bit(B,m);

BN_add(B,B,C);

BN_set_bit(X,m);

BN_sub(X,X,one);

BN_mul(X2,X,X,ctx);

for (;;) {

BN_add(r,X2,C);

BN_mul(s,X,two ,ctx);

BN_div(X,NULL ,r,s,ctx);

BN_mul(X2,X,X,ctx);

if (BN_cmp(B,X2)==1) {

break;

}

}

if (BN_cmp(X2,C)==0) {

ret = X;

goto free;



}

else {

ret = zero;

goto free;

}

free:

BN_CTX_free(ctx);

BN_free(B);

BN_free(r);

BN_free(s);

BN_free(X2);

BN_free(one);

BN_free(two);

BN_free(zero);

return ret;

}


