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Abstract. We present a cryptographic construction for anonymous to-
kens with private metadata bit, called PMBTokens. This primitive en-
ables an issuer to provide a user with anonymous trust tokens that can
embed a single private bit, which is accessible only to the party who holds
the secret authority key and is private with respect to anyone else. Our
construction extends the functionality of Privacy Pass (PETS 2018) with
this private metadata bit capability. It provides unforgeability, unlink-
ability, and privacy for the metadata bit properties based on the DDH
and CTDH assumptions in the random oracle model.
Both Privacy Pass and PMBTokens rely on discrete logarithm proofs
(DLog equality, or OR of DLog equality). We present techniques to re-
move the need for proofs of knowledge in these constructions and achieve
a slightly weaker notion of unlinkability.
We implement our constructions and we report their efficiency costs.

1 Introduction

The need to propagate trust signals while protecting anonymity has mo-
tivated cryptographic constructions for anonymous credentials [14, 12].
While we have constructions that support proofs of complex statements
about the owner of the anonymous credential, this comes with computa-
tion and communication costs. On the other hand, some practical uses
require very simple functionality from the anonymous credential while
having very strict efficiency requirements. One such example is the set-
ting for Privacy Pass [22]. Privacy Pass was designed as a tool for content
delivery networks (CDNs), which need a way to distinguish honest from
malicious content requests, so as to block illegitimate requests that create
malicious traffic, drain network resources, and could be used for denial
of service attacks. Previous solutions leveraged IP reputation to assess



the reputation of users. While helpful in many cases, IP reputation may
also lead to a high rate of false positives because of shared IP use. In
particular, this introduces unfair burden for users of Tor and VPNs in
the context of CDNs. Privacy Pass [22] proposes a solution for this prob-
lem: using anonymous tokens as a mechanism to prove trustworthiness of
the requests without compromising the privacy of the user. Since CDNs
need to potentially handle millions of requests per second, efficiency of
the cryptographic construction is of an extreme importance.

In this paper, we consider the functionality of anonymous tokens that
enable to convey one of two types of trust signals in a way that the
user cannot distinguish which of the two signals is embedded in her to-
kens. This extension is motivated by the fact that in a system relying
on anonymous trust tokens, malicious users who have been identified as
such, will become aware of this fact if the issuer stops providing them
with tokens. However, since real world attackers have means to corrupt
honest users, finding out when they have been detected could serve as
an incentive for them to corrupt more users. Being able to pass on the
information whether a user is whitelisted or blacklisted, and consume it
in appropriate ways on the authentication side, mitigates such behavior.

More concretely, we consider an anonymous token primitive that pro-
vides the following functionality: a user and an issuer interact and as a
result of this interaction, the user obtains a trust token with a private
metadata bit (PMB) embedded in it. The private metadata bit can be
read from a token using the secret key for the scheme when the user
redeems that token with the issuer. Each token is one-time use, which
enables the issuer to update the trust assigned to each user without re-
quiring a complex revocation process by just adjusting the number of
tokens that can be issued at once and the frequency of serving new to-
ken requests. This anonymous token scheme offers the following security
properties: unforgeability, unlinkability, and privacy of the metadata bit.
Unforgeability guarantees that nobody but the issuer, who holds the se-
cret key, can generate new valid tokens. Unlinkability in the presence of
the private metadata bit guarantees that the tokens that were issued with
the same private metadata bit are indistinguishable to the issuer when
redeemed. Privacy of the metadata bit states that no party that does
not have the secret key can distinguish any two tokens, including tokens
issued with different metadata bits.

Our goal is to construct a primitive which achieves the above prop-
erties, and has competitive efficiency introducing minimal overhead over
Privacy Pass.
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1.1 Our Contributions

We present PMBTokens, a construction for anonymous tokens with pri-
vate metadata bit with communication less than twice the communication
of Privacy Pass and computation three times the computation of Privacy
Pass, which improves significantly over general techniques that could be
used to solve the problem. The security of our constructions relies on
the decisional Diffie–Hellman (DDH) and chosen-target Diffie–Hellman
(CTDH) problems, and is proven in the random oracle model (ROM).
We further show how to simplify and optimize both the construction of
Privacy Pass and PMBTokens by using a weaker notion of unlinkability
and removing the discrete log equality proofs (DLEQ) and OR of discrete
log equality proofs (DLEQOR) from the constructions.

Privacy Pass and Its Challenges to Private Metadata. Our start-
ing point is the Privacy Pass construction which uses the VOPRF prim-
itive [32] Fk(t) = kHt(t) that offers an oblivious evaluation mechanism
where the user sends to the issuer rHt(t) for a randomly selected value r,
receives back rkHt(t) from which she recovers kHt(t).

5

The above construction does not suffice for unlinkability since the
issuer could use a different VOPRF key for each user, which would enable
him to fingerprint users. To avoid this issue, Privacy Pass requires the
issuer to publish a public parameter constructed with his secret key and
later provides a DLEQ proof that proves that she has used the same key to
construct the public parameter and the evaluated token. Once all tokens
are guaranteed to be issued with the public key, unlinkability follows from
the blinding factor r which makes the distribution of rHt(t) uniform even
when knowing t. The DLEQ proof guarantees that the token value is
xHt(t), which is independent of the blinding factor.

There is a natural idea to upgrade the above functionality to support
a private metadata bit, which is to use two secret keys and use each of
these keys for one of the bits. However, this idea does not work directly;
the reason for this stems from the fact that the underlying VOPRF is
a deterministic primitive. In particular, this means that if we are using
two different VOPRF keys for tokens issued with different private meta-
data bit values, the VOPRF evaluations on the same input t will be the
same if they are issued with the same key and will be different with high
probability if used with different keys. Thus, if the user obtains multiple

5 In Privacy Pass the resulting value kHt(t) is used for the derivation of a HMAC key
in order to avoid credential hijacking. To simplify our presentation, we skip this step
and simply assume that credentials are redeemed over a secure channel.
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tokens using the same input value t, she will be able to distinguish which
ones where issued with the same bit.

New Randomized Tokens and Private Metadata. To resolve the
above issue we introduce a construction which makes the token issuance
a randomized functionality where the randomness is shared between the
user and the issuer. We use the following function FK:=(x,y)(t;S) = xHt(t)+
yS, where t is the value that will be input of the user and S is the random-
ness of the evaluation, which will be determined by the two parties, more
specifically S = r−1Hs(rHt(t); s) where r is the blinding factor chosen by
the user and s is a random value chosen by the issuer. This functionality
suffices to construct a new anonymized token functionality where during
the oblivious evaluation the user sends T ′ = rHt(t), receives back from
the issuer s,W ′ = xT ′ + yHs(T

′; s), unblinds the values S = r−1Hs(T
′; s)

and W = r−1W ′, and outputs a token (t, S,W ). The token verification
checks that W = xHt(t) + yS. In order to provide verifiability, the issuer
provides an element of the form X = xG + yH and sends a Okamoto–
Schnorr DLEQ proof [39, 43] for the statement that X = xG + yH and
W = xHt(t) + yS are computed using the same secret key (x, y). This
functionality is similar to the blind Okamoto–Schnorr signatures [39], with
the key difference that we redefine this as a secret key primitive which
enables us to have a round-optimal blind evaluation algorithm.

We apply the idea of using two different keys for each private metadata
bit value to the above randomized construction; the resulting construction
is called PMBTokens. The public parameters are now a pair (X0 := x0G+
y0H,X1 := x1G + y1H), a token issued with a private metadata bit b is
of the form W ′ = xbHt(t) + ybS and the DLEQ proof is replaced with
a DLEQOR proof stating that either W ′ and X0, or W ′ and X1, are
computed using the same secret key (x0, y0) or (x1, y1).

Removing Discrete Log Proofs. Both Privacy Pass and PMBTokens
employ zero-knowledge arguments of knowledge to achieve unlinkability.
This approach guarantees that the user can verify that she has obtained
a token issued under the same secret key as in the issuer’s public parame-
ters. Unlinkability follows from the fact that tokens issued under the same
secret key are indistinguishable. We consider a slightly weaker guarantee
for the user from the token issuance, which is that either the token she
has received is issued under the public key or the token is indistinguish-
able from a random value, however, the user cannot distinguish these two
cases. The implication of this weaker issuance guarantee for unlinkability
is that the issuer can distinguish correctly issued tokens from incorrectly
issued tokens. Note that in any of the above constructions the issuer also
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distinguishes valid from invalid, however, the difference is that the verifi-
ability property on the user side also enables her to distinguish whether
her tokens are valid. With the weaker issuance guarantee of above, a user
will not be able to know in advance whether she has a token that will be
valid at redemption. Another difference is that incorrectly formed tokens
issued during an execution where the issuer misbehaves, will be indistin-
guishable for the issuer from incorrectly formed tokens that a malicious
user may try to use.

We present modifications of both Privacy Pass and PMBTokens that
satisfy this version of unlinkability, while removing the need for DLEQ
or DLEQOR proofs and improving the computational cost for the issuer,
which is the bottleneck in systems that need to support large number of
users who perform many transactions and hence need to obtain tokens
regularly.

Our approach for removing the DLEQ proof from Privacy Pass bor-
rows ideas from the construction of a verifiable partially oblivious PRF
of Jarecki et al. [33], but simplifies their construction which has addi-
tional complexity in order to achieve user verifiability. We use the idea
to use not only multiplicative but also additive blinding of the user’s in-
put in the form T ′ = r(Ht(t) − ρG). Now, an honest evaluation of the
issuer W ′ = xr(Ht(t) − ρG) can be unblinded by the user by comput-
ing r−1W + ρX = xHt(t) − ρ(xG) + ρX = xHt(t), where X = xG is
the issuer’s public key. On the other hand, any dishonestly computed W ′

which is of the form W ′ = r−1T ′ + P for some P 6= 0 when unblinded
will contain a random additive factor r−1P , thus the resulting value will
be random. Similarly to Jarecki et al. [33], we can recover verifiability by
doing another oblivious evaluation on the same value t and comparing
the outputs, which will be equal only if the the issuer used the public key
for both executions. We also observe that these checks can be batched
for an arbitrary number of issued tokens by computing a random linear
combination of the values Ht(ti), obtaining a VOPRF evaluation on that
value, and comparing with the same linear combination of the other to-
kens. Thus a user can verify n tokens by running one additional token
request only. We note further that removing the zero knowledge argu-
ment significantly simplifies the issuer work, which now consist only of
one multiplication.

Applying the above idea to the anonymous token construction with
private metadata bit is more challenging since the user does not know
which of the two public keys the issuer will use. However, the client can
unblind the response from the issuer using each of the public keys and thus
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obtain one valid and one random token. This property turns out to be true
if the issuer behaves honestly but if the issuer is malicious, he can create
public keys and a response W ′ such that the two values obtained from the
unblinding with each of the public keys are correlated and this correlation
can be used for fingerprinting the user. Thus, in our construction the user
computes two values T ′d = rd(Ht(t)− ρdG), d ∈ {0, 1}, the issuer uses one
of them to compute his response W ′ = xbT

′
b + ybS

′
b with a private bit b.

The user unblinds W ′ using both public keys and the scalars rd, ρd for
d ∈ {0, 1} to obtain S0,W0, S1,W1, which she uses for the final token.
The resulting token verifies with only one of the issuer’s keys: the key
corresponding to the private metadata value.

Verification Oracle. One last wrinkle in the security proof is whether
the adversary for the unforgeability and the privacy of the metadata bit
properties should have access to a verification oracle for tokens of his
choice. This is not explicitly supported in the current Privacy Pass se-
curity proof [22]. We provide a new proof for unforgeability of Privacy
Pass in the presence of a verification oracle based on a different hardness
assumption, the Chosen Target Gap Diffie–Hellman assumption, which is
a formalization of the Chosen Target Diffie–Hellman in a Gap DH group,
which was defined by Boneh et al. [9]. In the context of anonymous to-
kens with private metadata bit, we distinguish a verification oracle which
just returns one bit about the validity of the token, and a verification
functionality which returns the value of the private metadata bit (which
could be 0, 1, or invalid, and in some applications, e.g. blacklisting, we
can merge the states of value 0 and invalid bit). We present an anony-
mous token construction that provides unforgeability and privacy for the
metadata bit even when the adversary has verification oracle access for
the validity of the token, but we crucially require that the adversary does
not get an oracle access that reads the private metadata bit of a token.

Efficiency of Our Constructions. We consider the most expensive
computation operation in the above schemes, which is elliptic curve mul-
tiplication, and the largest communication overhead, which is the number
of group elements transferred. We report in Table 1 the efficiency of our
constructions. Additionally, the variant of the constructions that supports
validity verification oracle in the PMB security game adds the overhead of
Okamoto–Schnorr Privacy Pass to the overhead of PMBTokens. The mod-
ifications of the constructions that do not use DLEQ or DLEQOR proofs
save work for the issuer with no or moderate increase in communication
and increased user computation. This computation trade-off is benefi-
cial for settings where the issuer handles orders of magnitude more token
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Table 1. Computational and Communication costs of our constructions, with and
without zero-knowledge proofs.

Constructions # multiplications Communication

user issuer (# elements)

Construction 1 (Privacy Pass) [22] 6 3 2

Construction 2 (Okamoto–Schnorr Privacy Pass) 9 6 2

Construction 3 (PMBTokens) 15 12 2

Construction 4 (Privacy Pass no DLEQ) 4 1 2

Construction 5 (PMBTokens no DLEQOR) 12 2 3

issuance requests than any particular user. We further implement our con-
structions in Rust, and report their practicals costs in Section 8. Using a
Ristretto group on Curve25519, PMBTokens issuance runs in 822 µs and
redemption takes 241 µs, while Privacy Pass issuance runs in 297 µs and
redemption takes 95 µs. Without the discrete logarithm proofs, Construc-
tion 5 issuance runs in 144 µs and redemption takes 249 µs. Henceforth,
PMBTokens and Construction 5 introduce a small overhead over Privacy
Pass.

Paper Organization. We overview the hardness assumptions and
the building block primitives we use in Section 2 and Appendices A and B.
Section 3 defines our new anonymous tokens primitive and its security no-
tions. We recall the Privacy Pass construction in Section 4, and present a
(randomized) Okamoto–Schnorr anonymous tokens construction in Sec-
tion 5. Next, Section 6 presents our construction for anonymous tokens
with private metadata bit, called PMBTokens. Section 7 proposes mod-
ifications of Privacy Pass and PMBTokens that avoid the need of zero-
knowledge proofs. Finally, Section 8 reports on the efficiency costs of our
implementation. Due to space constraints we present most of our security
proofs in Appendices C to G, and Appendix H describes a construction
that supports verification oracle functionality.

1.2 Related Work

Starting with the work of Chaum [14], the concept of blind signatures
has been widely used as a tool for building anonymous credentials. Blind
Schnorr and Okamoto–Schnorr signatures, which have been studied and
analyzed in the random oracle model [17, 39, 41, 43, 44, 27], require three
moves of interaction between the user and the issuer. Blind signatures
constructions that achieve one round, which is the goal for our construc-
tion, rely on more expensive building blocks.
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The works of Boldyareva [8] and Bellare et al. [4] achieve round op-
timal (one round) constructions in the random oracle model under in-
teractive assumptions. These constructions use the same blinding idea as
the VOPRF [32] used by Privacy Pass, but are defined over groups where
DDH is easy and CDH holds (or where the RSA assumptions hold), which
enables public verifiability but requires larger group parameters. Other
blind signature constructions have evolved from constructions that need
a CRS [24, 45, 6] to constructions in the standard model [28, 26, 25], but
they rely on bilinear groups with a pairing operation. This adds complex-
ity to the group instantiations for schemes and computational cost, which
we aim to minimize.

Partially blind signatures, for which we also have round-optimal con-
structions [24, 45, 7], allow the issuer to embed some information in the
signature, however, this information is public, unlike the private metadata
bit that is the goal of our construction.

Group signatures [18, 11, 3] present functionality which allows all
member of the group to sign messages, with the property that signatures
from different signers are indistinguishable. At the same time there is a
master secret key that belongs to a group manager, which can be used
to identify the signer of a message. We can view different signer keys as
signing keys for the private metadata bits, and the master secret key as
a way to read that bit value. Group blind signatures [38], which provide
also the oblivious evaluation for the signing algorithm we aim at, provide
a solution for the anonymous token functionality with a private metadata
bit. Existing blind group signatures constructions [38, 42, 29] require mul-
tiple rounds of interaction for the oblivious signing and communication
of many group elements.

Abdalla et al. [2] introduced a notion of blind message authentica-
tion codes (MACs), a secret key analog to blind signatures. They showed
that this notion can exist only assuming a commitment of the private
key, and showed how to instantiate that primitive with Chaum’s blind
signatures [14]. Davidson et al. [22] construct a similar private key func-
tionality for anonymous tokens using a VOPRF [32]; it is called Privacy
Pass and is the basis of this work.

Everspaugh et al. [23] introduce the primitive of a partially oblivious
PRF, which analogously to blind signatures allows the party with the
secret key to determine part of the input for the PRF evaluation. However,
this input needs to be public for verifiability. The presented partially blind
PRF uses bilinear groups and pairings. Jarecki et al. [33] show how to
obtain a threshold variant of the partially oblivious PRF.
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The work of Tsang et al. [48] presents a construction for blacklistable
anonymous credentials using bilinear maps, which enables the issuer to
create a blacklist of identities and the user can only generate an authenti-
cation token if she is not blacklisted; hence the user does find out whether
she has been blacklisted in this process.

2 Preliminaries

Notation. When sampling the value x uniformly at random from the
set S, we write x←$S. When sampling the value x from a probabilistic
algorithm M, we write x ← M. We use := to denote assignment. For an
integer n ∈ N, we denote with [n] the interval {0, . . . , n− 1}. We denote
vectors in bold. For a vector a, we denote with ai the i-th element of a.

The output resulting form the interaction of two (interactive) algo-
rithms A,B ∈ PPT is denoted as Ja, bK ← 〈A,B〉. If only the first party
receives a value at the end of the interaction, we write a← 〈A,B〉 instead
of Ja,⊥K← 〈A,B〉.

We assume the existence of a group generator algorithm GrGen(1λ)
that, given as input the security parameter in unary form outputs the
description Γ = (G, p,G,H) of a group G of prime order p; G and H
are two nothing-up-my-sleeve (NUMS) generators of G. For simplicity,
we will assume that the prime p is of length λ.

2.1 Security assumptions

We recall in Appendix A the classical discrete logarithm (DLOG), deci-
sional Diffie–Hellman (DDH), and computational Diffie–Hellman (CDH)
assumptions, and recall here the chosen-target Diffie–Hellman (CTDH)
assumption.

Chosen-target Diffie–Hellman. The chosen-target Diffie–Hellman (CTDH)
assumption [8, 31], for the group generator GrGen, states that for all `
and for all A ∈ PPT, A has negligible advantage in solving CDH on `+ 1
target group elements, even when given access to a CDH helper oracle for
` instances. More formally, for all ` and for all A ∈ PPT,

AdvctdhGrGen,A,`(λ) := Pr
[
CTDHGrGen,A,`(λ) = 1

]
≤ negl(λ) ,

where CTDHGrGen,A,`(λ) is defined in Fig. 1. Note that for CTDHGrGen,A,0(λ)
is equivalent to CDH.
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Game CTDHGrGen,A,`(λ)

Γ := (G, p,G)← GrGen(1λ)

x←$Zp; X := xG

q := 0; T := [ ]

{ti, Zi}`+1
i=1 ← ATarget,Help(Γ,X)

return (ti, Yi) ∈ T all different

and xYi = Zi ∀i ∈ [1, `+ 1] and q ≤ `

Oracle Target(ti)

if ∃(ti, Yi) in T

return Yi

else

Yi ←$G
append (ti, Yi) to T

return Yi

Oracle Help(Y )

q := q + 1

return xY

Fig. 1. The Chosen-Target Diffie–Hellman security game.

2.2 Non-interactive arguments of knowledge

A non-interactive zero-knowledge (NIZK) argument of knowledge Π for a
relation R consists of the following three algorithms:

– (σ, τ) ← Π.Setup(Γ ), the common reference string (CRS) generation
algorithm that outputs a CRS σ together with some trapdoor infor-
mation τ .

– π ← Π.P(σ, φ, w), a prover which takes as input some (φ,w) ∈ R and
a CRS σ, and outputs a proof π.

– bool ← Π.V(σ, φ, π) a verifier that, given as input a statement φ to-
gether with a proof π outputs true or false, indicating acceptance of
the proof.

Π must satisfy the following three properties:

Completeness: A proof system Π is (perfectly) complete if for any Γ ∈
[GrGen(1λ)], σ ∈ [Π.Setup(Γ )] and (φ,w) ∈ R:

Pr[Π.V(σ, φ,Π.P(σ, φ, w))] = 1.

Knowledge soundness: A proof system Π is knowledge-sound for R if for
any PPT adversary A there exists a PPT extractor Ext such that:

AdvksndΠ,R,A,Ext(λ) := Pr
[
KSNDΠ,R,A,Ext(λ)

]
= negl(λ)

and KSNDΠ,R,A,Ext(λ) is defined in Fig. 2 and A.rl(λ) is the randomness
length for the machine A. An argument of knowledge is a knowledge-sound
proof system.

Remark. In our proofs for ease of notation we will omit to specify explicitly
that the extractor takes as input the coins of the adversary.

Zero Knowledge: A proof system Π is zero-knowledge if for any PPT
adversary A:

AdvzkΠ,R,A,Ext(λ) :=
∣∣Pr
[
ZK0

Π,R,A(λ)
]
− Pr

[
ZK1

Π,R,A(λ)
]∣∣ = negl(λ) .
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Game KSNDΠ,R,A,Ext(λ)

Γ := Setup(1λ); (σ, τ)← Π.Setup(Γ )

r←$ {0, 1}A.rl(λ); (φ, π) := A(σ; r)

w ← Ext(σ, r)

return (Π.V(σ, φ, π) and R(φ,w) = false)

Game ZKβ
Π,R,A(λ)

Γ ← GrGen(1λ)

(σ, τ)← Π.Setup(Γ )

β′ ← AProveβ (σ)

return β′

Oracle Proveβ(φ,w)

if (φ,w) 6∈ R then

return ⊥
π0 ← Π.P(σ, φ,w)

π1 ← Π.Sim(σ, τ, φ)

return πβ

Fig. 2. Games for knowledge soundness (KSND), and zero knowledge (ZK).

where ZKβ
Π,R,A(λ) is defined in Fig. 2.

In our constructions we will use Sigma proof protocols made non-
interactive using the Fiat-Shamir transform in the random oracle model.
More specifically we will be using proof systems for the following lan-
guages (cf. Appendix B for constructions).

Proof systems for discrete logarithms knowledge (DLOG) with one and
two generators, defined by the following languages

LDLOG1 :=

 X ∈ G :

Kx ∈ Zp , X = xG

 ; LDLOG2 :=

 X ∈ G : Kx, y ∈ Zp
X = xG+ yH

 ;

A proof system for discrete logarithms equality (DLEQ) with one gener-
ator defined by the following language

LDLEQ1 :=

(X,T,W ) ∈ G3 : Kx ∈ Zp ,

X
W

 = x

G
T

 ;

A proof system for discrete logarithms equality (DLEQ) with two gener-
ators defined by the following language

LDLEQ2 :=

(X,T, S,W ) ∈ G4 : K(x, y) ∈ Z2
p ,

X
W

 = x

G
T

+ y

H
S

 ;

A proof system for OR of discrete logarithms equalities (DLEQOR) with
two generators defined by the following language

LDLEQOR2 :=


(X := (X0, X1), T, S,W ) ∈ G5 :

K(b, x, y) ∈ [2]× Zp × Zp ,

Xb

W

 = x

G
T

+ y

H
S


 .
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3 Anonymous Tokens

In this section, we describe the functionality and the security properties
of the anonymous tokens primitive we construct.

3.1 Anonymous token functionality

We describe two flavors of the anonymous token functionality: the basic
anonymous token functionality enables a user to obtain a token from
an issuer that authenticates a particular value t that the user has. The
user can later use the token as a trust signal. The second variant is an
anonymous token with a private metadata bit. In this functionality, the
issuer has an additional input bit during the token issuance and it is used
to tag the token. The private metadata bit is hidden, but can be recovered
by the issuer when the token is redeemed.

The following definition captures both functionalities where the shaded text
refers only to the anonymous token with private metadata bit.

Definition 1 (Anonymous Token).
An anonymous token with private metadata bit scheme AT consists

of the following algorithms:

– (pp, sk)← AT.KeyGen(1λ) – a key generation algorithm that generates
a private key sk along with some set of public parameters pp;

– token← 〈AT.Usr(pp, t),AT.Sig(pp, sk, b)〉 – a signing protocol that in-
volves the interactive algorithms AT.Usr (run by the user) with input
value t ∈ {0, 1}λ and AT.Sig (run by the issuing server) with input its
private key and a bit b . At the end of the interaction, the server out-
puts nothing while the user outputs a anonymous token token := (t, σ)
if it terminates correctly and token :=⊥ otherwise. For a 1-round pro-
tocol, the interaction can be realized by the following algorithms:

(msgU , stU ) ← AT.Usr0(pp, t)

msgS ← AT.Srv1(pp, sk, b,msgU )

token = (t, σ) ← AT.Usr1(stU ,msgS)

– bool ← AT.VerValid(sk, (t, σ)) – a verification algorithm that takes as
input a token (t, σ) and a private key. It returns a boolean indicating
the validity of the token.

– ind← AT.ReadBit(sk, (t, σ)) – an algorithm that takes as input a token
(t, σ) and a private key. It returns an indicator value ind ∈ {⊥, 0, 1}
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which either returns the value of the private metadata bit or an invalid
state.

An anonymous token protocol AT is (statistically) correct, if any honestly-
generated token verifies for validity and the correct private metadata bit is retrieved
with overwhelming probability, i.e. for all (pp, sk) ∈ [AT.KeyGen(1λ)], all
t ∈ {0, 1}∗, and b ∈ {0, 1} :

Pr[AT.VerValid(sk, 〈AT.Usr(pp, t),AT.Sig(pp, sk, b)〉) = 1] = 1− negl(λ) ,

Pr[AT.ReadBit(sk, 〈AT.Usr(pp, t),AT.Sig(pp, sk, b)〉) = b] = 1− negl(λ).

3.2 Security Properties for Anonymous Tokens

We proceed to define the security properties relevant for the anonymous
tokens (with 1-round signing protocols).

Unforgeability. The first security property that we want from an anony-
mous token is unforgeability, which guarantees that no party that does
not have the secret key can generate valid anonymous tokens. In partic-
ular, an adversary who obtains ` valid tokens cannot generate `+ 1 valid
tokens. In the case when there is private metadata bit value, the adver-
sary can query a token oracle ` times for each bit value, but should not be
able to generate `+ 1 valid tokens that have the same private metadata
bit value.

Definition 2 (One-More Unforgeability). An anonymous token scheme
AT with 1-round signing protocol is one-more unforgeable, if for all A ∈
PPT, for all `,

Advomuf
AT,A,`(λ) := Pr

[
OMUFAT,A,`(λ) = 1

]
≤ negl(λ) ,

where OMUFAT,A,`(λ) is defined in Fig. 3, and where A can invoke the or-
acle AT.Srv1(pp, sk, ·, ·) ` times for each private metadata bit value, the
validity verification oracle AT.VerValid(sk, ·), and the bit reading oracle AT.ReadBit(sk, ·).

Unlinkability. This security property is concerned with the user anonymity,
and guarantees that an issuer cannot link a token to a particular execu-
tion of the signing protocol. More precisely, if the issuer has yet to redeem
m tokens, and is presented a token, we limit the probability that it can
guess from which execution this token was coming from, even if it sees all
the m− 1 remaining tokens in a permuted order.

13



Game OMUFAT,A,`(λ)

(pp, sk)← AT.KeyGen(1λ)

(ti, σi)
`+1
i=1 ← AAT.Srv1(p,sk, ·,·), AT.VerValid(sk,·), AT.ReadBit(sk, ·)(pp)

return ti all different and AT.VerValid(sk, (ti, σi)) = 1 ∀i ∈ [1, `+ 1]

and ∃b′ ∈ {0, 1} such that AT.ReadBit(sk, (ti, σi)) = b′ ∀i ∈ [1, `+ 1]

Fig. 3. One-more unforgeability game for an anonymous token scheme AT with a 1-
round signing protocol.

Game UNLINKAT,A,m(λ)

Γ ← GrGen(1λ); (st, pp)← A(Γ )

k1 := 0; k2 := 0;U := ∅
(st, {msgi}i∈U )← AUsr0(),Usr1(·,·)(st)

if U = ∅ then return 0

// compute a challenge token

j ←$U ; U := U \ {j}
tokenj := AT.Usr1(stj ,msgj)

// compute and permute other tokens

∀i ∈ U, tokeni := AT.Usr1(sti,msgi)

φ← SU
j′ ← A(st, tokenj , {tokenφ(i)}i∈U )

return k1 − k2 ≥ m and j′ = j

Oracle Usr0()

k1 := k1 + 1// session id

tk1 ←$ {0, 1}λ

(T ′k1 , stk1)← AT.Usr0(pp, tk1)

U := U ∪ {k1}// open sessions

return (k1, T
′
k1)

Oracle Usr1(j,msg)

if j /∈ U then return ⊥
token← AT.Usr1(stj ,msg)

if token 6=⊥ then

U := U \ {j}; k2 := k2 + 1

return token

Fig. 4. Unlinkeability game for an anonymous token scheme AT with a 1-round signing
protocol. For a set X, SX denotes the symmetric group of X, i.e., the group of all
permutations of X.

Definition 3 (Unlinkability). An anonymous token scheme AT with
1-round signing protocol is κ-unlinkable, if for all adversaries A ∈ PPT
and for all m ∈ Z,m > 0:

AdvunlinkAT,A,m(λ) := Pr
[
UNLINKAT,A,m(λ) = 1

]
≤ κ

m
+ negl(λ) ,

where UNLINKAT,A,m(λ) is defined in Fig. 4, and where A can invoke the
oracle Usr1(·, ·) at most m times less than the number of times it invokes
Usr0().

Private metadata bit. The last security property that we define con-
cerns only anonymous tokens with private metadata bit. It guarantees
that a user cannot learn any information about the private metadata bit
associated with the token she receives. Intuitively, our definition guaran-
tees that an adversary who can obtain tokens for messages of its choice

14



Game PMBβAT,A(λ)

(pp, sk)← AT.KeyGen(1λ)

β′ ← AAT.Srv1(pp,sk,·,·),AT.Srv1(pp,sk,β,·),AT.VerValid(sk,·)(pp)

return β′

Fig. 5. Private metadata bit game for an anonymous token scheme AT with a 1-round
signing protocol.

with metadata bit of its choice, an arbitrary number of tokens for mes-
sages with the fixed challenge bit, and can access a validity verification
oracle for the tokens, cannot guess the challenge bit with a probability
non-negligibly better than 1/2.

Definition 4 (Private Metadata Bit). An anonymous token scheme
AT with 1-round signing protocol provides private metadata bit if for all
adversary A ∈ PPT the advantage:

Advpmb
AT,A(λ) :=

∣∣Pr
[
PMB0

AT,A(λ)
]
− Pr

[
PMB1

AT,A(λ)
]∣∣ ≤ negl(λ) ,

where PMBβ
AT,A(λ) is defined in Fig. 5, and where A has access to the fol-

lowing oracles: a signing oracle AT.Srv1(pp, sk, ·, ·) where A can provide
both the message and the bit to be used for the token, a signing oracle
AT.Srv1(pp, sk, β, ·) with the fixed challenge bit β ∈ {0, 1} where the ad-
versary can provide only the message, and a validity verification oracle
AT.VerValid(sk, ·) where A provide a token for verification.

4 Privacy Pass

We start by recalling, using the notation from Section 3, the anonymous
token protocol proposed in [22] (under the name Privacy Pass), and built
on top of the VOPRF as described in [32]. The Privacy Pass construction
uses a Schnorr-style DLEQ proof for the verifiability in the issuance phase.
Note that this anonymous token protocol is deterministic, i.e., there will
exist a unique value σ ∈ G corresponding to a string t ∈ {0, 1}λ such
that (t, σ) is a valid token. This property will make difficult to directly
extend the construction to support private metadata bit. In the following
sections, we will generalize Privacy Pass to enable randomized tokens
(Section 5) and we will eventually extend the construction to support
private metadata bit (Section 6 and Appendix H).
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Usr(pp, t ∈ {0, 1}λ) Sig(pp, sk := x)

AT.Usr0(pp, t)

r←$Z∗p
T := Ht(t)

T ′ := r−1 · T
return (T ′, (pp, r, t))

T ′

W ′, π

AT.Srv1(pp, sk, T ′)

W ′ := xT ′

π ← PDLEQ1((pp, T ′,W ′), x)

return (W ′, π)

AT.Usr1((pp, r, t), (W ′, π))

if not VDLEQ1((pp, T ′,W ′), π) return ⊥
σ := rW ′

return (t, σ)

Fig. 6. Token issuance for Construction 1 (Privacy Pass).

Construction 1 (Privacy Pass) Let Γ := (G, p,G) ← GrGen(1λ) be
an algorithm that generates a group G of order p and outputs a random
generator G. Let (PDLEQ1,VDLEQ1) be a proof system for the DLEQ re-
lationship defining the language LDLEQ1.

We construct an anonymous token scheme AT defined by the following
algorithms:

– (pp, sk)← AT.KeyGen(1λ):

• Run Γ := (G, p,G) ← GrGen(1λ) to obtain group parameters. Γ
will be an implicit input to all other algorithms.

• Sample a random invertible value x←$Z∗p, and set sk := x, pp :=
xG.

– (t, σ)← 〈AT.Usr(pp, t),AT.Sig(pp, sk)〉 – the anonymous token issuance
protocol is defined in Fig. 6.

– bool ← AT.VerValid(sk, (t, σ)): if σ = xHt(t), return 1. Otherwise,
return 0.

Correctness. The protocol never aborts: this follows by perfect correct-
ness of the underlying proof system. Therefore, the client always returns
a tuple (t, σ) ∈ {0, 1}λ ×G such that

σ = rW ′ = r(xT ′) = xT = xHt(t).

Security. We prove unforgeability and 1-unlinkability in Appendix C.
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5 Okamoto–Schnorr Privacy Pass

In this section, we describe a novel anonymous token protocol that builds
on top of Privacy Pass (Section 4). Our anonymous token protocol can
be viewed as a generalization of Privacy Pass that enables randomized
tokens, which will be an important property when we extend the con-
struction to support private metadata bit (Section 6 and Appendix H).
While Privacy Pass uses a Schnorr-style DLEQ proof for the verifiabil-
ity in the issuance phase, this new construction uses the corresponding
Okamoto–Schnorr-style [39] variant of the DLEQ proof protocol. A dif-
ferent approach towards randomization of the deterministic evaluation
algorithm could be leveraging pairings (cf. Section 1.2), but we do not
pursue this approach here for efficiency reasons.

Usr(pp, t ∈ {0, 1}λ) Sig(pp, sk := (x, y))

AT.Usr0(pp, t)

r←$Z∗p
T := Ht(t)

T ′ := r−1 · T
return (T ′, (pp, r, t, T ′))

T ′

s,W ′, π

AT.Srv1(pp, sk = (x, y), T ′)

s←$ {0, 1}λ

S′ := Hs(T
′, s)

W ′ := xT ′ + yS′

π ← PDLEQ2((pp, T ′, S′,W ′), (x, y))

return (s,W ′, π)

AT.Usr1((pp, r, t, T ′), (s,W ′, π))

S′ := Hs(T
′, s)

if not VDLEQ2((pp, T ′, S′,W ′), π) then

return ⊥
S := rS′

W := rW ′

σ := (S,W )

return (t, σ)

Fig. 7. Token issuance for Construction 2 (Okamoto–Schnorr Privacy Pass).

Construction 2 (Okamoto–Schnorr Privacy Pass) Let Γ := (G, p,G,H)←
GrGen(1λ) be algorithm that generates a group G of order p and outputs
two distinct random generators G and H (in particular, the discrete log of
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H with respect to G is unknown). Let Hs : G× {0, 1}∗ → G be a random
oracle mapping a group element and a string into group elements. Let
(PDLEQ2,VDLEQ2) be a proof system for the DLEQ relationship defining
the language LDLEQ2.

We construct an anonymous token scheme AT defined by the following
algorithms:

– (pp, sk)← AT.KeyGen(1λ):

• Run Γ := (G, p,G,H) ← GrGen(1λ) to obtain group parameters.
Γ will be an implicit input to all other algorithms.

• Sample two random invertible values x, y←$Z∗p, and set X := xG+
yH.

• Set sk := (x, y) and pp := X.

– (t, σ)← 〈AT.Usr(pp, t),AT.Sig(pp, sk)〉 – the anonymous token issuance
protocol is defined in Fig. 7.

– bool← AT.VerValid(sk, (t, σ)):

• Parse σ = (S,W ) and sk = (x, y).

• If W = xHt(t) + yS, return 1. Otherwise, return 0.

Remark 5. A observation of the above protocol is that if we set y = 0,
then we obtain Privacy Pass as defined in Section 4.

Correctness. The protocol never aborts: this follows by perfect correct-
ness of the underlying proof system. Therefore, the client always returns
a tuple (t, (S,W )) ∈ {0, 1}λ ×G2 such that

W = rW ′ = r(xT ′ + yS′) = xT + yS = xHt(t) + yS.

Unforgeability. We prove one-more unforgeability of the construction
in Appendix D.

5.1 Unlinkability

In this section, we will prove that Construction 2 is 1-unlinkable (cf. Def-
inition 3), which means that the probability that an adversary can guess
which of m tokens not redeemed yet is upper-bounded by 1/m+ negl(λ).

Theorem 6. Construction 2 provides 1-unlinkability (Definition 3) as-
suming the hardness of DDH and a knowledge sound proof system for the
language LDLEQ2.
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Proof. The theorem trivially holds for m = 1. Let m > 1. We prove the
theorem by a sequence of hybrids presented in Fig. 8.

Hyb1 This hybrid is the execution of the unlinkability game, where the
adversary is given as a challenge the j-th token.

Hyb2 This hybrids unrolls AT.Usr0 in Usr0. The distribution is unchanged.

Hyb3 This hybrid returns 0 if U is empty after having removed j (i.e., if
the set U was equal to {j} in the first place). Note that, in that case,
|U | = k1 − 1 − k2 and the winning condition 1 = k1 − k2 ≥ m is
not verified; hence the output is indistinguishable from the previous
hybrid.

Hyb4 This hybrid extracts another element k from U , and shuffles the rest.
The distribution is the same as in the previous hybrid.

Hyb5 This hybrid uses the knowledge extractor for the DLEQ proof to ex-
tract a witness (x, y) in AT.Usr1, and check that the witness verifies
the relation. This hybrid is indistinguishable from the previous by the
knowledge soundness of the proof system. Hence we have

k1AdvksndDLEQ2,B(λ) ≥
∣∣∣AdvHyb4

AT,A(λ)− AdvHyb5

AT,A(λ)
∣∣∣ ,

where k1 is the total number of calls to AT.Usr1.

Hyb6 In this hybrid, instead of computing all the W ’s by unblinding the el-
ements W ′’s provided by the adversary, we compute it ourselves using
the (valid) extracted witnesses (x, y). The distribution is unchanged.

Hyb7 This hybrid proceeds exactly as the previous one, except now all S’s
are sampled uniformly at random from G.

If there exists A ∈ PPT for which the outcome of the two hybrids is
different, then it is possible to construct an adversary B ∈ PPT for
DDHβ

GrGen,B(λ) by exploiting the random self-reducibility property of
DDH. The adversary B takes as input the group description together
with a tuple (P,A := aP,B := bP,C) ∈ G4 where a, b←$Zp and has
to distinguish C := abP (the case β = 0) from a uniformly distributed
element over G (the case β = 1). B runs the game as per Hyb6, except
in AT.Usr0, instead of sampling T ′k1 uniformly at random from G, B
sets them as T ′k1 = γk1P where γk1 is random. Instead of computing
Tk1 = rk1T

′
k1

, B sets Tk1 = γk1αk1A+ γk1α
′
k1
P = (αk1a+ α′k1)γk1P =

(αk1a + α′k1)T ′k1 , i.e. implicitly setting rk1 := αk1a + α′k1 . For ev-
ery query Hs(T

′
k1
, s), B sample βk1,s, β

′
k1,s

at random and programs
Hs(T

′
k1
, s) = γk1βk1,sB + γk1β

′
k1,s

P = (βk1,sb + β′k1,s)γk1P . Finally,
when computing S at index i, B sets Si := αiβi,siγiC + αiβ

′
i,si
γiA +
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α′iβi,siγiB + α′iβ
′
i,si
γiP . If C is random, then Si is random and the

distribution coincides with that of Hyb7. If C = abP , then

Si = αiβi,siγi(abP ) + αiβ
′
i,siγi(aP ) + α′iβi,siγi(bP ) + α′iβ

′
i,siγiP

= αiβi,siab(γiP ) + αiaβ
′
i,si(γiP ) + α′ibβi,si(γiP ) + α′iβ

′
i,si(γiP )

= (αia+ α′i)(βi,sib+ β′i,si)(γiP ) ,

which results in the distribution of Hyb6. It follows therefore that the
advantage in distinguishing the two hybrids is, for all A ∈ PPT:

AdvddhGrGen,B(λ) ≥
∣∣∣AdvHyb7

AT,A(λ)− AdvHyb6

AT,A(λ)
∣∣∣ .

Hyb8 This hybrid aborts if the adversary has already queried Ht(tk1) before
running AT.Usr0. This happens with negligible probability:

k1
2λ
≥
∣∣∣AdvHyb8

AT,A(λ)− AdvHyb7

AT,A(λ)
∣∣∣ .

Hyb9 In this hybrid, we program the random oracle so that T ′k1 is sampled at
random, and we program the random oracle so that Tk1 = Ht(tk1) :=
rk1T

′
k1

. The distribution is unchanged.
Hyb10 This hybrid aborts if the extracted witnesses at positions j and k

differ, and then sets Wj := xkHt(tj)+ykSj and Wk := xjHt(tk)+yjSk
(which does not change the distributions).
If the game aborts at this step, by soundness of the proof system
we would have that pp = xjG + yjH = xkG + ykH and thus (yk −
yj)/(xj −xk) is the discrete log of H base G. (if the two witnesses are
different, it must be that xj 6= xk, and thus the inverse of (xj − xk)
exists.) It is therefore possible to construct an adversary B ∈ PPT for
DLOGGrGen,B(λ): the adversary B obtains a group description Γ :=

(G, p, G̃) and a challenge H̃. It sets G := G̃ and H := H̃ and runs
exactly as per Hyb5. It extracts the two witnesses (xj , yj), and (xk, yk)
and returns (yk − yj)/(xj − xk). The adversary wins every time that
Hyb10 aborts.

Hyb11 In the previous hybrid, rj and rk are only used in order to compute
Tj and Tk. Therefore, they look completely random to the adversary,
and so do Sj and Sk. In this hybrid, we can therefore swap the indices
j and k without the adversary noticing.

We obtain that

AdvHyb11

AT,A (λ) ≤ AdvHyb1

AT,A(λ) + k1AdvksndDLEQ,A(λ) + AdvdlogGrGen,A(λ) + AdvddhGrGen,A(λ) +
k1
2λ

= AdvHyb1

AT,A(λ) + negl(λ) .
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Game UNLINKAT,A,m(λ) in Hyb1, Hyb3 , Hyb4 , Hyb10

Γ := (G, p,G,H)← GrGen(1λ)

(st, pp)← A(Γ )

k1 := 0; k2 := 0;U := ∅
(st, {(si,W ′i , πi)}i∈U )← AUsr0(),Usr1(·,·)(st)

if U = ∅ then return 0

j ←$U ; U := U \ {j}
tokenj := AT.Usr1(stj , (sj ,W

′
j , πj))

if U = ∅ then return 0

k←$U ; U := U \ {k}
tokenk := AT.Usr1(stk, (sk,W

′
k, πk))

∀i ∈ U, tokeni := AT.Usr1(sti, (si,W
′
i , πi))

if not (xi, yi) = (xk, yk) then abort

Wj := xkHt(tj) + ykSj

if VDLEQ2((pp, T ′j , S
′
j ,W

′
j), πj) then tokenj := (tj , (Sj ,Wj))

Wk := xjHt(tk) + yjSk

if VDLEQ2((pp, T ′k, S
′
k,W

′
k), πk) then tokenk := (tk, (Sk,Wk))

φ← SU
j′ ← A(st, tokenj , {tokenφ(i)}i∈U )

j′ ← A(st, tokenj , tokenk, {tokenφ(i)}i∈U )

return k1 − k2 ≥ m and j′ = j

Oracle Usr1(i,msg = (si,W
′
i , π
′
i)) in Hyb1

if i /∈ U then return ⊥
tokeni ← AT.Usr1(sti,msg)

if tokeni 6=⊥ then

U := U \ {i}
k2 := k2 + 1

return tokeni

Oracle Usr0() in Hyb2 , Hyb8 , Hyb9

k1 := k1 + 1

tk1 ←$ {0, 1}λ

if Ht(tk1) was queried then abort

(T ′k1 , stk1)← AT.Usr0(pp, tk1)

rk1 ←$Z∗p
Tk1 := Ht(tk1)

T ′k1 := r−1
k1
· Tk1

T ′k1 ←$G

Tk1 := Ht(tk1) := rk1T
′
k1

stk1 := (pp, rk1 , tk1 , T
′
k1

)

U := U ∪ {k1}
return (k1, T

′
k1)

AT.Usr1(st, (s,W ′, π)) in Hyb1, Hyb5 , Hyb6 , Hyb7

(pp, r, t, T ′) := st

S′ := Hs(T
′, s)

if not VDLEQ2((pp, T ′, S′,W ′), π) then return ⊥

S := rS′; S ←$G
(x, y)← Ext((X,T ′, S′,W ′), π)

if not R((x, y), (X,T ′, S′,W ′)) then abort

W := rW ′; W := xHt(t) + yS

σ := (S,W )

return (t, σ)

Fig. 8. Summary of hybrid changes for proof of unlinkability of Construction 2. We
recall that SX denotes the symmetric group of X, i.e., the group of all permutations
of X.

Now, it is sufficient to bound the probability of success adversary in
Hyb11. Since the index that the adversary needs to guess j is independent
of the challenge it receives, we conclude that

Pr
[
UNLINKAT,A,m(λ) = 1

]
≤ 1

k1 − k2
+ negl(λ) ≤ 1

m
+ negl(λ) .

which completes the proof. ut

6 Private Metadata Bit Tokens

In this section, we present PMBTokens, an extension of the anonymous
token construction from Section 5 that supports a private metadata bit,
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Usr(pp, t) Sig(pp, ((x0, y0), (x1, y1)), b)

AT.Usr0(pp, t)

r←$Z∗p
T := Ht(t)

T ′ := r−1 · T
return (T ′, (pp, r, t, T ′))

T ′

s,W ′, π

AT.Srv1(pp, ((x0, y0), (x1, y1)), b, T ′)

s←$ {0, 1}λ

S′ := Hs(T
′, s)

W ′ := xbT
′ + ybS

′

π ← PDLEQOR2((pp, T ′, S′,W ′), (xb, yb))

return (s,W ′, π)

AT.Usr1((pp, r, t, T ′), (s,W ′, π))

S′ := Hs(T
′, s)

if not VDLEQOR2((pp, T ′, S′,W ′), π) then

return ⊥
S := rS′

W := rW ′

σ := (S,W )

return (t, σ)

Fig. 9. Token issuance for Construction 3 (PMBTokens).

as specified in Definition 1. The high level idea is that we will use different
secret keys for tokens that have different private metadata bit values, and
we will “commit” to both secret keys (by creating public keys). In order to
hide which bit is associated with the token, we will use DLEQOR proofs
instead of DLEQ proofs, which will convince the user that one of the two
public keys has been used.

Note that our construction generalizes directly to more than two val-
ues for the private metadata, since using more public keys and a DLE-
QOR argument of knowledge for statement with more clauses. However,
for clarity of presentation, we focus on the setting of one private bit, and
also since this comes with a trade-off for the unlinkability property.

Remark 7. Our construction will not provide a (meaningful) AT.VerValid
functionality, but only a AT.ReadBit functionality. The reason for this is
that this scheme cannot provide privacy for the metadata bit if the user
can access to a validity oracle, which is given to the adversary in the
security Definition 4. We will use this construction as a building block for
a scheme in Appendix H that will provide a validity verification.
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Construction 3 (PMBTokens) Let Γ := (G, p,G,H) ← GrGen(1λ)
be algorithm that generates a group G of order p and outputs two dis-
tinct random generators G and H (in particular, the discrete log of H
with respect to G is unknown). Let Hs : G × {0, 1}∗ → G be a random
oracle mapping a group element and a string into group elements. Let
(PDLEQ2,VDLEQ2) be a proof system for the DLEQ relationship defining
the language LDLEQ2.

We construct an anonymous token scheme AT defined by the following
algorithms:

– (pp, sk)← AT.KeyGen(1λ):

• Run Γ := (G, p,G,H) ← GrGen(1λ) to obtain group parameters.
Γ will be an implicit input to all other algorithms.

• Sample four random invertible values x0, x1, y0, y1←$Z∗p, and set
X0 := x0G+ y0H and X1 := x1G+ y1H. Restart if X0 = X1.

• Set sk := ((x0, y0), (x1, y1)) and pp := (X0, X1).

– (t, σ) ← 〈AT.Usr(pp, t),AT.Sig(pp, sk, b)〉 – the anonymous token is-
suance protocol is defined in Fig. 9.

– bool← AT.VerValid(sk, (t, σ)): return 1.

– ind← AT.ReadBit(sk, (t, σ)):

• Parse σ = (S,W ).

• If W = x0Ht(t) + y0S and W 6= x1Ht(t) + y1S, return 0

• If W 6= x0Ht(t) + y0S and W = x1Ht(t) + y1S, return 1

• Else, return ⊥.

Correctness. The protocol never aborts: this follows by perfect cor-
rectness of the underlying proof system DLEQOR. Therefore, the client
always returns a tuple (t, (S,W )) ∈ {0, 1}λ × G2 such that there exists
b ∈ {0, 1} such that

W = rW ′ = r(xbT
′ + ybS

′) = xbT + xbS = xbHt(t) + ybS.

If W = x0Ht(t) + y0S = x1Ht(t) + y1S and y0 6= y1 (if y0 = y1, the
equation holds only if x0 = x1, which is impossible by construction), it
means that:

Ht(t) =
x0 − x1
y0 − y1

S.

However, the left hand side of the equation is distributed uniformly at
random from G and independently from the terms on the right-hand side.
The terms of the right hand-side are distributed uniformly at random as
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well. Therefore, the probability that more than one term satisfies the ver-
ification equation is the probability that two elements sampled uniformly
at random over G are equal. This probability is 1/p. It follows that, for
all b ∈ {0, 1},

Pr[AT.ReadBit(sk, 〈AT.Usr(pp, t),AT.Sig(pp, sk, b)〉) = b] = 1− negl(λ) .

6.1 Security.

In Appendix E, we prove the one-more unforgeability and 2-unlinkability
of the construction, which means that the probability that an adver-
sary can guess which of m tokens not redeemed yet is upper-bounded
by 2/m + negl(λ). Indeed, they key idea is that the adversary can now
embed different private metadata bits during the issuances, halving its
search space at most.

6.2 Privacy of the Metadata Bit

Theorem 8. Construction 3 provides privacy for the metadata bit (Def-
inition 4) assuming the hardness of DDH and a zero-knowledge proof
system for the language LDLEQOR2.

Proof. We consider the sequence of hybrids presented in Fig. 21 that tran-
sitions from an execution of PMBb

AT,A(λ) to an execution of PMB1−b
AT,A(λ)

(see Definition 4). We argue that each pair of consecutive hybrids are

indistinguishable for the adversary and thus Advpmb
AT,A(λ) = negl(λ). We

do not explicitly write the verification validity oracle in the games since
in this construction this functionality is dummy and can always be sim-
ulated.

Hyb0 This is the game PMB0
AT,A(λ). Here, the adversary is provided the

public parameters pp := (X0, X1). The adversary has access to the
signing oracle for a bit of its choosing, and a challenge oracle that
signs new tokens with the bit b. Additionally, it has access to the
random oracles: Ht,Hs,Hc. At the end of its execution, it outputs a
bit b′.

Hyb1 This hybrid replaces the way zero-knowledge proofs are generated in
AT.Srv1: instead of using the proving algorithm PDLEQOR2, we use
the zero-knowledge simulator SimDLEQOR2.

If there exists an adversary A ∈ PPT whose output is different be-
tween the two games, then it is possible to construct an adversary for

24



Oracle AT.Srv1(pp, sk, b̂, T ′) in Hyb1(λ), Hyb2(λ), Hyb3(λ)

s←$ {0, 1}λ

if Hs(T
′, s) was queried then abort

S′ := H(T ′, s)

W ′ := xb̂T
′ + yb̂S

′

π ← PDLEQOR2((X0, X1, T
′, S′,W ′), (xb̂, yb̂))

π ← SimDLEQOR2(X0, X1, T
′, S′,W ′)

return (s,W ′, π)

Oracle AT.Srv1(pp, sk, b, T ′) in Hyb1(λ), Hyb2(λ), Hyb3(λ)

s←$ {0, 1}λ

if Hs(T
′, s) was queried then abort

S′ := H(T ′, s)

W ′ := xbT
′ + ybS

′

π ← PDLEQOR2((X0, X1, T
′, S′,W ′), (xb, yb))

π ← SimDLEQOR2(X0, X1, T
′, S′,W ′)

return (s,W ′, π)

Oracle AT.Srv1(pp, sk, b̂, T ′) in Hyb4(λ),Hyb5(λ),Hyb6(λ)

s←$ {0, 1}λ

if Hs(T
′, s) was queried then) : abort

S′ := H(T ′, s)

W ′ := xb̂T
′ + yb̂S

′

π ← SimDLEQOR2(X0, X1, T
′, S′,W ′)

return (s,W ′, π)

Oracle AT.Srv1(pp, sk, b, T ′) in Hyb4(λ), Hyb5(λ), Hyb6(λ)

s←$ {0, 1}λ

if Hs(T
′, s) was queried then abort

S′ := H(T ′, s)

W ′ := xbT
′ + ybS

′

y′ ←$Z∗p; W ′ := xbT
′ + y′S′

W ′ := x1−bT
′ + y′S′

W ′ := x1−bT
′ + y1−bS

′

π ← SimDLEQOR2(X0, X1, T
′, S′,W ′)

return (s,W ′, π)

Fig. 10. Summary of the proof for privacy of the metadata bit of Construction 3.

the underlying zero-knowledge of the proof system: consider the ad-
versary B ∈ PPT for the game ZKβ

DLEQOR2(λ) that, given as input the

group description Γ , generates X0, X1 as per AT.KeyGen(1λ) and then
invokes the adversary A. All random oracles queries are performed ex-
actly as per Hyb2, except for signing queries. In a AT.Srv1(pp, sk, ·, ·)
(and a AT.Srv1(pp, sk, b, ·)) query, after generating the values s, S′,
and W ′ as per Hyb0, the proof π is generated via the Proveβ oracle
for the statement ((X0, X1), T

′, S′,W ′) ∈ LDLEQOR2. At the end of
its execution, A (and so B) return a guess b′.
If the Proveβ oracle outputs proofs via PDLEQOR2, the game is iden-
tical to Hyb0, else the game is identical to Hyb1. It follows that, for any
adversary A ∈ PPT, the advantage in distinguishing the two hybrids
is at most the advantage of zero-knowledge in DLEQOR, i.e.:

AdvzkLDLEQOR2,A
(λ) ≥

∣∣∣AdvHyb1

AT,A(λ)− AdvHyb0

AT,A(λ).
∣∣∣

Hyb2 We strengthen the game: if during any of the signing queries the or-
acle Hs already had received a query of the form (T ′, s), we abort.
Clearly, the output of the two hybrids is distinguishable only in the
case of a collision on the choice of s between the signing oracles, or
a collision between the signing oracles themselves. For an adversary
A ∈ PPT making at most q = poly(λ) queries to any of the oracles
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Hs, AT.Srv1(pp, sk, ·, ·), or AT.Srv1(pp, sk, b, ·), the probability that the
game aborts is at most q(q − 1)/2p. It follows that:

q(q − 1)/(2p) ≥
∣∣∣AdvHyb2

AT,A(λ)− AdvHyb1

AT,A(λ)
∣∣∣

Hyb3 We now change the way W ′ is computed: at key generation phase we
sample an additional element y′←$Zp, and for any query to the ran-
dom oracle AT.Srv1(pp, sk, b, ·) we construct W ′ as xbT

′+y′S′ instead
of xbT

′ + ybS
′. The proof π gets simulated as before.

We prove that if, by contradiction, the two games are distinguishable,
then there exists an adversary B for the game DDHβ

B,GrGen(λ). The
adversary B wins every time the output of the two hybrids is different.
The adversary B receives as input a DDH tuple (P,A := aP,B :=
bP,C) ∈ G4 such that C = abP in the case DDH0

B,GrGen(λ) and C←$G
in the case DDH1

B,GrGen(λ). Given a single challenge (P,A,B,C), B can
exploit the random self-reducibility property of DDH to construct q
random instances of the DDH challenge: for any i ≤ q the adversary
B can select αi, βi←$Zp and construct the challenge:

(P, A, βiB + αiP, βiC + αiB)

The adversary B proceeds as per Hyb2, embedding the challenge in
the public key and oracle replies. It fixes H := P , and instead of
generating Xb := xbG+ ybH, it constructs it as Xb := xbG+A. Then,
it runs the adversary A. The adversary A will make queries to any
of the random oracles Ht and Hs, wheret B programs the RO the
response to Hs as we discuss next. We replace queries to the signing
oracles:

– for any query AT.Srv1(pp, sk, b, T ′), we sample s←$ {0, 1}λ and
check for collisions w.r.t. previous queries to Hs as per Hyb2.
Then, we sample α, β←$Zp and we program the random oracle
on Hs(T

′, s) = S′ to reply with (βiB+αiP ), for some αi, βi←$Zp.
Then, B computes W ′ := xbT

′+βiC+αiA and produces the proof
π using the simulator. B returns (s,W ′, π)

– for any query AT.Srv1(pp, sk, b̂ = b, T ′), after sampling s←$ {0, 1}λ,
we program the random oracle on H(T ′, s) = S′ to reply with αiH
for some αi←$Zp. B computes W ′ := xbT

′ + αiA, and simulates
the proof. It returns (s,W ′, π).

– any query to AT.Srv1(pp, sk, b̂ = 1 − b, T ′) is handled exactly as
per Hyb2.
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At the end of A’s execution, B returns whatever guess A returned. We
note that if the challenge C is provided according to DDH0

A,GrGen(λ), B
behaves exactly as per Hyb2; if the challenge C is provided according
to DDH1

A,GrGen(λ), B behaves exactly as per Hyb3. Additionally, if the
simulator fails to simulate this statement as it’s not in the language,
then B also wins the game DDHβ

A,GrGen(λ). Therefore, every time that
A’s output is different between the two hybrids (or every time that
SimDLEQOR2 fails), B will distinguish a random tuple from a DDH
tuple. It follows therefore that:

AdvddhB,GrGen(λ) ≥
∣∣∣AdvHyb3

AT,A(λ)− AdvHyb2

AT,A(λ)
∣∣∣

Hyb4 In this game, we remark that W ′ := xbT
′ + y′S′, and that y′←$Zp is

used only for computing W ′. Therefore, the distribution of W ′ in Hyb3

is uniform (plus a constant xbT
′, i.e., uniform) as long as S′ 6= 0G.

Therefore, we change once again the way we compute W ′, swapping b
with 1−b: in this hybrid, W ′ := x1−bT

′+y′S′. For the above remarks,
the two games can be distinguished only if S′ is the identity element,
which happens with probability 1/p.

Hyb5 In this hybrid, we remove y′ and we compute W ′ using the witness
1−b. The proof for this hybrid follows an argument similar to the one
used for the transition Hyb2 → Hyb3. Therefore, it follows that:

AdvddhB,GrGen(λ) ≥
∣∣∣AdvHyb5

AT,A(λ)− AdvHyb4

AT,A(λ)
∣∣∣

At this point we note that the oracle AT.Srv1(pp, sk, b, ·) is issuing signa-
tures under the witness x1−b, y1−b. It is possible, through a sequence of
hybrids, to remove the condition on the collision of s introduced in Hyb2

(via the same argument used for the transition Hyb1 → Hyb2), and swap
back the zero-knowledge simulator with the prover’s algorithm PDLEQOR2

(via the same argument used for the transition Hyb0 → Hyb1). Therefore,

the advantage of an adversary A in winning the game PMBβ
AT,A(λ)

AdvhbAT,A(λ) ≤ q(q − 1)

2λ
+

1

2λ
+ 2AdvddhGrGen(λ) + 2AdvzkDLEQOR(λ)

where q is the number of queries to the signing oracles or to the random
oracle Hs and the prime p outputted by GrGen satisfies λ = blog2 pc. ut

6.3 Enabling Validity Verification in the PMB Game

PMBTokens (Construction 3) does not support validity verification func-
tionality, which could be accessible by the adversary for the private meta-
data security game. We can enable such functionality by combining it
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with the Okamoto–Schnorr Privacy Pass token functionality into one to-
ken that has two parts: a token that has no private metadata and can
be used for validity verification, and a second token, which provides a
private metadata bit. It is important that these two parts could not be
separated (they will depend on the same Ht(t), S values) and used in-
dependently for the purpose of reading the metadata bit. We present in
detail in Appendix H the design combining Constructions 2 and 3.

Jumping ahead, we can also instantiate this design by combining Con-
structions 4 and 5 that do not use ZK proofs. In the later case the un-
linkability will degrade to 6-unlinkability since the issuer can cause each
of the two token to be invalid independently.

7 Anonymous Tokens Without ZK

In this section, we present modifications of both Privacy Pass and PMBTo-
kens constructions that avoids the DLEQ and the DLEQOR proofs. We
recall that these proofs provide verifiability for the user that allows her
to check that the tokens she has received are consistent with the issuer’s
public key(s). This verifiability property was motivated by the unlinkabil-
ity requirement – in particular it prevents the issuer from fingerprinting
users by having a unique key per user. In the following constructions we
consider a weaker verifiability property which guarantees that the user
receives a valid token issued with the “committed” key(s) or a random
value. The new verifiability property implies that the issuer can distin-
guish valid tokens from invalid tokens since the user cannot verify whether
she has a valid token. Hence, the issuer is able to distinguish users for
which it issued valid tokens from users holding invalid tokens. This means
that the issuer can partition the users into sets that receive valid and in-
valid tokens and he will be able to identify these sets – this affects the
success probability of the adversary in the unlinkability game, which we
discuss in the corresponding proofs in Theorems 19 and 21.

7.1 Privacy Pass Without ZK

We start with our new construction for the functionality of Privacy Pass.
The change that we make is that the user blind its token hash Ht(t) using
both multiplicative and additive mask. The additional additive mask can
be removed during the unblinding if the issuer used the correct secret key.
Otherwise, the additive mask is sent to a random group element, which
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Usr(pp = X, t ∈ {0, 1}λ) Sig(pp, sk := x)

AT.Usr0(pp, t)

r, ρ←$Z∗p
T := Ht(t)

T ′ := r · (T − ρG)

return (T ′, (pp, r, ρ, t, T ′))

T ′

W ′
AT.Srv1(pp, x, T ′)

W ′ := xT ′

return W ′

AT.Usr1((pp, r, ρ, t, T ′),W ′)

σ := r−1W ′ + ρX

return (t, σ)

Fig. 11. Token issuance for Construction 4 (Privacy Pass without DLEQ).

makes the whole token indistinguishable from random. Next we provide
the detailed construction.

Construction 4 (Privacy Pass without DLEQ) Let Γ := (G, p,G)←
GrGen(1λ) be an algorithm that generates a group G of order p and out-
puts a random generator G. Let (PDLOG1,VDLOG1) be a proof system for
the DLOG relationship defining the language LDLOG1.

We construct an anonymous token scheme AT defined by the following
algorithms:

– (pp, sk)← AT.KeyGen(1λ):
• Sample a random invertible value x←$Zp and set sk := x,X :=
xG.
• Generate a proof of knowledge π ← PDLOG1(X,x) and set pp :=

(X,π).

– (t, σ)← 〈AT.Usr(pp, t),AT.Sig(pp, sk)〉 – the anonymous token issuance
protocol is defined in Fig. 11.

– bool ← AT.VerValid(sk, (t, σ)): parse sk = x. If σ = xHt(t), return 1.
Otherwise, return 0.

Correctness. If the issuer is honest, the user computes σ = r−1W ′ +
ρX = r−1xr(T − ρG) + ρX = xT − ρ(xG) + ρX = xT .

Security. We prove unforgeability and unlinkability for the construc-
tion in Appendix F.
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User Verifiability. The protocol presented in the previous section does
not enable the user to verify that she has received valid token at the end
of an execution. We can enable such verifiability for any number of tokens
at the cost of one additional issuance interaction between the user and the
issuer. In particular, let (ti, σi)i∈[m] be m token that the user has been
issued. She sends a token issuance request T ′ =

∑
i∈[m] ciHt(ti) where

ci←$Zp for i ∈ [m]. Let σ be the issuer’s response after unblinding, then
the user checks that σ =

∑
i∈[m] ciσi.

If the issuer was honest, then σi = xHt(ti) and

σ = x

( ∑
i∈[m]

ciHt(t)

)
=
∑
i∈[m]

ci(xHt(ti)) =
∑
i∈[m]

ciσi .

Next, we argue that if σ =
∑

i∈[m] ciσi, then the issuer could be cheat-
ing on any of the m token executions only with negligible probability. We
will prove this by induction on m. Let m = 1, then we have σ = c1σ1
and at the same time σ1 6= xHt(t1). By the unlinkability argument above
we know that σ1 and hence c1σ1 are uniformly distributed. Hence, the
adversary has only negligible probability to guess the value σ.

Now, let us assume that the statement holds for m ≤ k and we will be
prove it for m = k+1. We have σ =

∑
i∈[m] ciσi and at the same time there

exists an index j such that σj 6= xHt(tj). If there is an index k such that
σk = xHt(tk), then σ− xHt(tk) =

∑
i∈[m]\{k} ciσi and j ∈ [m]\{k}, which

contradicts the induction assumption. Therefore, it must be the case that
σi 6= xHt(ti) for all i ∈ [m]. However, by the arguments in the unlinkability
proof, we know that all σi’s, and hence

∑
i∈[m] ciσi, will be distributed

uniformly at random. Hence, the adversary has only negligible probability
in guessing the value of σ, which concludes the inductive proof.

7.2 PMBTokens without ZK

The challenge to generalizing the construction of the previous section
to the setting of private metadata is that the user should not find out
what metadata bit value the issuer used and hence which public key it
should use when unblinding. Our solution will be to have the user run the
unblinding with both keys where only one of the resulting values will be a
valid token under the corresponding key for the bit value while the other
unblinded value will be completely random. When we do this we need to
be careful that the issuer who also generates the public keys should not
be able to make the two unblinded values correlated, which would open
an avenue for fingerprinting.
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To guarantee that the unblinded value with the public key that does
not correspond to the embedded private metadata bit is random and
hence it is independent of the other unblinded value, even in the case when
the issuer is misbehaving, we will need to have that the user generate two
independent blinded values which it sends in its first message. The issuer
will be using only one of the received blinded tokens to sign and embed his
metadata bit, however, the user will be unblinding the message coming
from the issuer using two independent sets of blinding parameters, which
would thwart the issuer from embedding correlations.

Construction 5 (PMBTokens without DLEQOR) Let Γ := (G, p,G,H)←
GrGen(1λ) be algorithm that generates a group G of order p and outputs
two distinct random generators G and H (in particular, the discrete log of
H with respect to G is unknown). Let Hs : G× {0, 1}∗ → G be a random
oracle mapping a group element and a string into group elements. Let
(PDLOG2,VDLOG2) be a proof system for the DLOG relationship defining
the language LDLOG2.

We construct an anonymous token scheme AT defined by the following
algorithms:

– (pp, sk)← AT.KeyGen(1λ):

• Run Γ := (G, p,G,H) ← GrGen(1λ) to obtain group parameters.
Γ will be an implicit input to all other algorithms.

• Sample four random invertible values x0, y0, x1, y1←$Z∗p, and com-
pute X0 = x0G + y0H, X1 = x1G + y1H. Generate two proofs of
knowledge π0 ← PDLOG2(X0, (x0, y0)) and π1 ← PDLOG2(X1, (x1, y1)).

• Set sk := ((x0, y0), (x1, y1)), pp := (X0, X1, π0, π1).

– (t, σ)← 〈AT.Usr(pp, t),AT.Sig(pp, sk)〉 – the anonymous token issuance
protocol is defined in Fig. 12.

– bool← AT.VerValid(sk, (t, σ)): return 1.

– ind← AT.ReadBit(sk, (t, σ)):

• Parse σ = (S0, S1,W0,W1) and sk = ((x0, y0), (x1, y1)).

• If W0 = x0Ht(t) + y0S0 and W1 6= x1Ht(t) + y1S1, return 0

• If W0 6= x0Ht(t) + y0S0 and W1 = x1Ht(t) + y1S1, return 1

• Else, return ⊥.
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Usr(pp = (X0, X1, π0, π1), t) Sig(pp, sk = ((x0, y0), (x1, y1)), b)

AT.Usr0(pp, t)

T := Ht(t)

∀d ∈ {0, 1}
rd, ρd ←$Z∗p
T ′d := rd · (T − ρdG)

return ((T ′0, T
′
1), (pp, {rd, ρd, T ′d}d=0,1, t))

T ′0, T
′
1

s,W ′

AT.Srv1(pp, x, T ′)

s←$ {0, 1}λ

S′b := Hs(T
′
b, s)

W ′ := xbT
′
b + ybS

′
b

return (s,W ′)

AT.Usr1((pp, {rd, ρd, T ′d}d=0,1, t), (s,W
′))

∀d ∈ {0, 1}

Sd := r−1
d Hs(T

′
d, s) + ρdH

Wd := r−1
d ·W

′ + ρdXd

σ := (S0, S1,W0,W1)

return (t, σ)

Fig. 12. Token issuance for Construction 5 (PMBTokens without DLEQOR).

Correctness. If the issuer is honest, the user obtains Sb = r−1b Hs(T
′
b, s)+

ρbH and

Wb = r−1b W ′ + ρbXb = r−1b (xbT
′
b + ybS

′
b) + ρbXb

= r−1b xb(rb(T − ρbG)) + ybr
−1
b Hs(T

′
b, s) + ρbXb

= xbT + ybr
−1
b Hs(T

′
b, s) + ρbXb − ρb(xbG) = xbT + ybr

−1
b Hs(T

′
b, s) + ρbybH

= xbT + yb(r
−1
b Hs(T

′
b, s) + ρbH) = xbT + ybSb.

Security. We provide the proofs for the security properties of the con-
struction in Appendix G.

8 Implementation

We implemented our construction in pure Rust (stable, version 1.41.0),
using the Ristretto group6 on the top of Curve25519 [?], as provided

6 https://datatracker.ietf.org/doc/draft-hdevalence-cfrg-ristretto/
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Table 2. Benchmarks for our constructions.

Constructions DLEQ/DLEQOR Client Server

Prove Verify Token Gen. Unblinding Key Gen. Signing Redemption

Construction 1
(Privacy
Pass)

212 µs 180 µs 108 µs 329 µs 80 µs 297 µs 95 µs

Construction 3
(PMBTo-
kens)

680 µs 823 µs 108 µs 922 µs 235 µs 822 µs 241 µs

Construction 4
(Privacy
Pass w/o
DLEQ)

– – 166 µs 148 µs 130 µs 75 µs 86 µs

Construction 5
(PMBTo-
kens w/o
DLEQOR)

– – 309 µs 566 µs 323 µs 144 µs 249 µs

by curve25519-dalek7. Hashing into the group is done with a Elligator
2 map [47] with SHA-512. Using rust-wasm8, we were able to compile
the Rust implementation into WebAssembly, and generate blinded tokens
from JavaScript in Chromium (version 79.0.3945.130). Our implemen-
tation is not copyrighted and is released in the public domain.

We benchmarked our own implementation on a single thread of an
Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz, running Ubuntu 18.04.3
LTS (kernel version 4.15.0). They are summarized in Table 2. Proving
time for a DLEQ relation is 212 µs; verification is 180 µs. The total time
for issuing a Privacy Pass token (Construction 1) is 297 µs; unbliding
329 µs. Generating a blinded token is 108 µs; key generation is 80 µs. The
total time for issuing a PMBToken in Construction 3 is 822 µs; unbliding
922 µs. Generating a blinded token is 108 µs; key generation is 235 µs. As
expected, Constructions 4 and 5 feature very fast issuance time. When
compiled to WebAssembly, we measured 0.6 ms for key generation. Our
results are between ten and one thousand faster than the previous imple-
mentation proposed in [22] due to the different choice9 of elliptic curve
(NIST P-256) as well as the programming language used.
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A Security Assumptions

A.1 DLOG, DDH, CDH

We recall here the classical discrete logarithm, decisional Diffie–Hellman,
and computational Diffie–Hellman assumptions that we will use through-
out the paper.

Discrete Logarithm. The discrete logarithm assumption for a group
generator GrGen states that given a tuple of elements (G,H) whereG←$G
and X←$G, any PPT adversary has negligible advantage in returning
x ∈ Zp such that X = xG. That is,

AdvdlogGrGen,A(λ) := Pr
[
DLOGGrGen,A(λ) = 1

]
≤ negl(λ) ,

where DLOGGrGen,A(λ) is defined in Fig. 13.

Decisional Diffie–Hellman. The decisional Diffie–Hellman (DDH) as-
sumption for a group generator GrGen states that given a tuple of ele-
ments (P,A := aP,B := bP ) where P ←$G, and a, b←$Zp, any adver-
sary A ∈ PPT has negligible advantage in distinguishing C←$G from the
Diffie–Hellman C = abP . That is,

AdvddhGrGen,A(λ) :=
∣∣Pr
[
DDH0

GrGen,A(λ) = 1
]
− Pr

[
DDH1

GrGen,A(λ) = 1
]∣∣ ≤ negl(λ) ,

where DDHβ
GrGen,A(λ) is defined in Fig. 13.

Game DLOGGrGen,A(λ)

Γ := (G, p,G)← GrGen(1λ)

x←$Zp; X := xG

y ← A(Γ,X)

return (y = x)

Game DDHβ
GrGen,A(λ)

Γ, := (G, p,G)← GrGen(1λ)

P ←$G
a←$Zp; A := aP

b←$Zp; B := bP

C0 := abP ; C1 ←$G
b′ ← A(Γ, P,A,B,Cβ)

return b′

Game CDHGrGen,A(λ)

Γ := (G, p,G)← GrGen(1λ)

P ←$G
a←$Zp; A := aP

b←$Zp; B := bP

C ← A(Γ, P,A,B)

return (C = abP )

Fig. 13. The games for discrete logarithm, decisional Diffie–Hellman, and computa-
tional Diffie–Hellman.
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Computational Diffie–Hellman. The computational Diffie–Hellman
(CDH) assumption for a group generator GrGen states that given a tuple
of elements (P,A := aP,B := bP ) where P ←$G, and a, b←$Zp, any
adversary A ∈ PPT has negligible probability in outputting C = abP .
That is,

AdvcdhGrGen,A(λ) := Pr
[
CDHGrGen,A(λ) = 1

]
≤ negl(λ) .

where CDHGrGen,A(λ) is defined in Fig. 13.

A.2 Discussion on Assumptions

The Chosen-target Diffie–Hellman (CTDH) assumption [8], where an ad-
versary is able to observe some honest “handshakes”, has proven itself
very useful for a range of applications: Password-Authenticated Key Ex-
changes [34], signatures [37], and private-set intersection [35]. One can
also find it called in the literature as One-More Diffie–Hellman (1MDH)
assumption [5, 4], both in the “chosen-target” flavor (where the adversary
can chose the `+ 1 subset of challenges to solve) and the “known-target”
flavor (where the adversary must solve a fixed set of ` + 1 challenges).
In the known-target version of one-more Diffie–Hellman, an adversary re-
ceives as input a group description Γ , a group element X = xG ∈ G,
and challenges (Y0, . . . , Y`) ∈ G`+1 sampled uniformly at random. The
adversary wins the game 1MDHGrGen,A,`(λ) if it outputs Zi = xYi for all
i ∈ [` + 1], even when given access to at CDH oracle for at most ` ar-
bitrary elements. Known-target one-more Diffie–Hellman is equivalent to
chosen-target Diffie–Hellman [36].

B Okamoto–Schnorr DLEQOR Proofs

In the section we provide the constructions for the DLEQ and DLEQOR
arguments of knowledge that we use for our token constructions.

Given a group description Γ := (G, p,G,H) ← GrGen(1λ) and n =
poly(λ), we provide a zero-knowledge argument of knowledge for the lan-
guage

Ln :=


(X := (X0, X1, . . . , Xn−1), T, S,W ) ∈ Gn+3 :

K(b, x, y) ∈ [n]× Zp × Zp ,

Xb

W

 = x

G
T

+ y

H
S


 .
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DLEQOR.P((X, T, S,W ), (xb, yb))

(G, p,G,H) := Γ

k0, k1 ←$Z2
p

Kb := k0 · (G;T ) + k1 · (H;S)

for i ∈ [n], i 6= b

ci, ui, vi ←$Zp
Ki := ui · (G;T ) + vi · (H;S)− ci · (Xi;W )

c := Hc(Γ, (X, T, S,W ),K0, . . . ,Kn)

cb := c−
∑
i 6=b ci

ub := k0 + cbxb

vb := k1 + cbyb

return (c,u,v)

DLEQOR.V((X, S, T,W ), (c,u,v))

∀i ∈ [n] : Ki := ui(G;T ) + vi · (H;S)− ci(Xi;W )

c :=
∑
i ci

return c = Hc(Γ, (X, T, S,W ),K0, . . . ,Kn)

Fig. 14. Okamoto–Schnorr proof for DLEQOR.

Note that for n = 1, the above language is Okamoto–Schnorr [39] for the
DLEQ relation, i.e., LDLEQ2, and for n = 2 is LDLEQOR2. Also, when
y = 0 and n = 1, the language is the same of Privacy Pass [22], i.e.,
LDLEQ1. As such, we only introduce the construction for Ln below, and
one can directly obtain the constructions used throughout the paper.

We present our construction in Fig. 14. The setup algorithm gener-
ates the group description Γ ← GrGen(1λ), and instantiates a random
oracle Hc that maps any sequence of elements (Γ,G1, . . . , Gm) ∈ Γ ×Gm,
for m ≥ 0, to a scalar c ∈ Zp. The prover and verifier algorithms are the
OR-composition of Okamoto–Schnorr [39]. We present the non-interactive
version of the protocol, after applying the Fiat-Shamir reduction, for prac-
tical convenience.

The proving algorithm (Fig. 14, left) proceeds simulating the tran-
scripts for all i ∈ [n], i 6= b, and choosing the challenges uniformly at
random, constrained that their sum is the challenge provided by Hc. The
verification algorithm (Fig. 14, right) checks the validity of all transcripts,
and that the sum of the challeges

∑
i ci = c is the hash of the commit-

ments Hc(X, T, S,W,K0, . . . ,Kn).

When n = 1, we will use the notation DLEQ(Γ,X, T, S,W ) to explicit
the protocol is using only one public key.

The protocol has special soundness by standard or-composition of
sigma protocols [21]: from two transcripts (c,u,v) and (c′,u′,v′) verifying
simultaneously, some b ∈ [n] such that cb 6= c′b it is possible to extract a
witness (xb, yb) by computing xb := (ub − u′b)/(cb − c′b) and yb := (vb −
v′b)/(cb − c′b).
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DLEQORbatched.P((X,T,S,W), (x, y))

e0, . . . , em := Hc(Γ,X,T,S,W)

T :=
∑m
j ejTj

S :=
∑m
j ejSj

W :=
∑m
m ejWj

return DLEQOR.P((X, T , S,W ), (x, y))

DLEQORbatched.V((X,T,S,W), π)

e0, . . . , em := Hc(Γ,X,T,S,W)

T :=
∑m
j ejTj

S :=
∑m
j ejSj

W :=
∑m
m ejWj

return DLEQOR.V((X, T , S,W ), π)

Fig. 15. Batched Okamoto–Schnorr proof for DLEQOR.

The (non-interactive Fiat-Shamir reduction of the) protocol is also
zero-knowledge: the simulator simply produces valid transcripts for all
i ∈ [n] by selecting ci, ui, vi←$Zp, and computing Ki := ui(G;T ) +
vi(H;S)−ci(Xi,W ). Then, it computes c :=

∑n
i ci and programs the ran-

dom oracle to reply with c when queried on (Γ,X, T, S,W,K0, . . . ,Kn).
The simulator aborts if such a query was already made, which since Ki

are all distributed randomly happens with probability at most q(λ)/pn,
where q(λ) is an upper-bound on the number of queries of the adversary
to Hc.

Batching. The proof can be batched via the same technique of Henry [30]:
it is possible to prove knowledge of a witness (b, x, y) for m different state-
ments (X, Tj , Sj ,Wj)

m
j=0 with a single proof.

Theorem 9. Assuming the discrete logarithm is hard for GrGen, the
DLEQOR proof system depicted in Fig. 15 is a zero-knowledge argument
of knowledge.

Proof (Knowledge soundness). Knowledge soundness for the batched pro-
tocol follows from the knowledge soundness of the underlying DLEQ proof
system, except for a small statistical error. By soundness of the underlying
proof system we have that, except with a negligible extraction error,

DLEQ(Γ,X, T , S,W, π) = true implies K(b, x, y) .
(
(X, T , S,W ), (b, x, y)

)
∈ R(Ln),

where R(Ln) denotes the relation associated to the language Ln. In other
words, there exists an PPT extractor that outputs b, x, y such that Xb =
xG+yH and W = xT +yS. The values T , S, and W are a random linear
combination of the elements (Ti, Si,Wi)

m−1
i=0 . We prove by induction on m

that the probability that there exists any i ∈ [m] such that the (batched)
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protocol verifies and Wi 6= xTi + ySi is at most 2(m + 1)/p = negl(λ).
Logically, it will follow that, except with negligible probability, (b, x, y) ∈
[n]×Zp×Zp is a valid witness for the statement (X, Ti, Si,Wi) ∈ Ln, for
each i ∈ [m].

If m = 1, then W = xT +yS can be written as e0W0 = e0(xT0 +yS0).
Therefore, W0 = xT0 + yS0 iff e0 6= 0, which happens with probability
1/p < 3/p. Let us denote with Pr[Em ] the probability that the (batched)
verification equation is satisfied, but the witness is invalid for at least
one of the m statements. Note that for the case Pr[Em+1 ] there are two
possibilities: either Wm = xTm + ySm, in which case we are left with the
equation of the inductive step:

m−1∑
j

ejWj =

xm−1∑
j

ejTj + y
m−1∑
j

ejSj

 ,

Alternatively, if Wm 6= xTm + ySm, then either the coefficient em is zero
or also the other statement must be invalid. It follows that:

Pr[Em+1 ] ≤ Pr[Em ] +
1

p
(1− Pr[Em ]) +

p− 1

p
Pr[Em ] .

(In fact, if em = 0 we fall in the inductive case; and the probability that
the verification equation is invalid is at least 1−Pr[Em ].) It follows that
Pr[Em+1 ] ≤ 2 Pr[Em ]−2/pPr[Em ]+1/p ≤ 2 Pr[Em ]+1/p ≤ 2(m+1)/p.
Thus:

AdvksndDLEQORbatched
(m,λ) ≤ AdvksndDLEQORsimple

(λ) +
2(m+ 1)

p

ut

C Security Proofs for Construction 1

C.1 Unforgeability

The one-more unforgeability security notion from Privacy Pass [22] did
not provide the adversary with a validity oracle. One-more unforgeabil-
ity without validity oracle is proven under the one-more decryption of
El Gamal problem, which we prove to be equivalent to the chosen-target
Diffie–Hellman problem in Appendix C.2. We therefore prove the follow-
ing corollary:
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Corollary 10. Construction 1 is one-more unforgeable assuming the hard-
ness of the chosen-target gap Diffie–Hellman problem.

Proof. The proof follows directly from the proofs of Lemma 13 and The-
orem 15. We detail here the differences:

– In the hybrid, the proof system is with respect to the language LDLEQ1

instead of LDLEQ2.
– In the reduction to chosen-target gap Diffie–Hellman, B sets pp := A,

and answers the signing queries with whatever Help answers and
the simulated proof. At the end of the game, it outputs whatever A
outputs.

This shows that

Advomuf
AT,A,`(λ) ≤ AdvctgdhGrGen,A,`(λ) + AdvzkLDLEQ1,A

(λ).

and concludes the proof. ut

C.2 Equivalence of CTDH and 1MD

In [22], Privacy Pass is proved unforgeable under one-more decryption
security of Elgamal. One-more decryption security states that it is difficult
for any PPT adversary A to decrypt `+ 1 Elgamal ciphertexts of random
messages, even when given access to an oracle for ` Elgamal encryptions.

Elgamal (denoted Elg) is a public-key cryptosystem based on a group
generator algorithm GrGen. Elgamal achieves semantic security if DDH
holds, i.e., if AdvddhGrGen,A(λ) is negligible. The key generation algorithm
Elg.KeyGen(Γ ) outputs a pair (sk, pk) := (x,X := xG) where x←$Zp. The
encryption algorithm Elg.Enc(M) outputs a ciphertext (C := cG,D :=
cX + M) where c←$Zp. The decryption algorithm Elg.Dec(x, (C,D))
takes as input the secret key and the ciphertext, and otuputs the message
M = D − xC.

Theorem 11. Chosen-Target Diffie–Hellman for GrGen holds if and only
if One-More Decryption Security for Elg[GrGen] holds. More precisely, for
all ` ∈ N, CTDHGrGen,A,`(λ) is equivalent to 1MDElg[GrGen],A,`(λ).

Proof. Let ` ∈ N. We start by proving that 1MD =⇒ CTDH. Let A ∈
PPT be an adversary for 1MDElg[GrGen],A,`(λ). We use it to construct an

adversary B for the game CTDHGrGen,A,`(λ). The adversary B receives as
input a group description Γ and a group element X ∈ G. Additionally,
it has access to two oracles: a Target oracle and a Help oracle. It start
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Game 1MDElg[GrGen],A,`(λ)

Γ ← GrGen(1λ)

(x,X)← Elg.KeyGen(Γ )

for i ∈ [`+ 1] :

Mi ←$G
ci ← Elg.Enc(X,Mi)

(M∗i )`i = AElg.Dec(`)(x,·)(X, c0, . . . , c`)

return M∗i = Mi for all i ∈ [`+ 1]

Adversary B(Γ,X) for CTDHGrGen,B,`(λ)

for i ∈ [`+ 1] :

Yi ← Target(i); Ri ←$G
ci := (Ci, Di) := (Yi, Yi +Ri)

// Dec(i) := Yi +Ri −Help(Yi)

(M0, . . . ,M`)← ADec(X, c0, . . . , c`)

for i ∈ [`+ 1] : Zi := Yi +Ri −Mi

return (i, Zi)
`
i=0

Fig. 16. Game for one-more decryption (left) and reduction to chosen-target Diffie–
Hellman (right).

by querying the Target oracle `+ 1 times on i ∈ [`+ 1], thus receiving
Target(i) = Yi ∈ G. It samples uniformly at random Ri←$G for all i ∈
[`+1] and invokes A(X, (Ci, Di)

`
i), where (Ci, Di) := (Yi, Yi+Ri). During

its execution, the adversary A may ask for ` decryption queries. We answer
to those queries returning Mi := (Yi + Ri) − Zi where Zi := Help(Yi).
At the end of its execution, the adversary B returns ` + 1 decryption
(M0, . . . ,M`) ∈ G`+1. The adversary B returns (i, Zi := Yi +Ri−Mi) for
each i ∈ [`+ 1].

The distribution of each ciphertext is uniform over G2, exactly as in
the game 1MDElg[GrGen],A,`(λ) (because each message is uniformly ran-

dom in G). Decryption queries are responded exactly in the same way
(subtracting off the CDH of the randomness Yi with the public key X).
Furthermore, if the adversary wins the game 1MDElg[GrGen],A,`(λ), it must

be the case that it returned Mi for all i ∈ [`+ 1] such that:

Mi = Elg.Dec(x, (Ci, Di)) =⇒ Zi := (Yi +Ri)−Mi = CDH(X,Yi)

The adversary B wins the game CTDHGrGen,B,`(λ) every time that the
adversary A wins the game 1MDElg[GrGen],A,`(λ), therefore for all A ∈ PPT:

AdvctdhGrGen,A,`(λ) ≥ Adv1md
GrGen,B,`(λ).

We now prove the reverse implication, that is, CTDH =⇒ 1MD. Let
A ∈ PPT be an adversary for CTDHGrGen,A,`(λ). We use it to construct
an adversary B for 1MDElg[GrGen],A,`(λ).

The adversary B receives as input a group description Γ together with
a group element X = xG ∈ G (for some secret x ∈ Zp) and a sequence
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of ` + 1 ciphertexts c0, . . . , c` such that ci = (Ci, Di) for all i ∈ [` + 1].
B starts off by selecting a random into map µ : {0, 1}λ → Zp. Then, it
invokes the adversary A on (Γ,X), overriding random oracle queries in
the following way:

− for any query of the form Target(t), the adversary B returns Y =∑`
j=0 a

µ(t)jCi;
− for any query of the form Help(C), the adversary B samples D←$G,

and queries the decryption oracle Dec((C,D)), thus obtaining M =
Elg.Dec(x, (C,D)) = R−CDH(X,Y ). It returns R−M = CDH(X,Y ).

At the and of its execution, the adversary A returned `+ 1 pairs (ti, Zi).
By winning condition of CTDHGrGen,A,`(λ), for each i ∈ [`+1], Zi satisfies:

x ·


Y0
...

Y`

 = x ·


a0·µ(t0) · · · a`·µ(t0)

a0·µ(t1) · · · a`·µ(t1)

...
. . .

...

a0·µ(t`) · · · a`·µ(t`)



C0

...

C`

 =
[
Z0 · · · Z`+1

]
.

The matrix A := [ajµ(ti)]i,j is a Vandermonde matrix. The second winning
condition states that ti 6= tj for all i, j ∈ [`+ 1], i 6= j. Therefore, aµ(ti) 6=
aµ(tj). Therefore, A is invertible for all i 6= j. Let A′ be the inverse of
A; then, Z ′i =

∑
j a
′
i,jZi = CDH(X,Ci). The adversary B returns Mi :=

Di − Zi, for all i ∈ [`+ 1].
The replies to the Help oracle are identical to the ones in CTDHGrGen,B,`(λ).

The replies to the Target oracle follow the uniform distribution in G too,
since µ is a random injective map hidden from the view of the adversary.

It follows that the adversary B wins the game 1MDHElg[GrGen],B,`(λ)

every time that the adversary A wins the game CTDHGrGen,A,`(λ), there-
fore for all A ∈ PPT:

AdvctdhGrGen,A,`(λ) ≤ Adv1md
GrGen,B,`(λ).

ut

C.3 Unlinkability

In [22], the Privacy Pass protocol is proved to be unconditionally unlink-
able (up to the soundness error of the proof system). This can be recov-
ered from the proof of Theorem 6 by removing all the elements about
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Oracle AT.Srv1(pp, sk, T ′) in Hyb1, Hyb2 .

s←$ {0, 1}λ

S′ := H(T ′, s)

W ′ := xT ′ + yS′

π ← PDLEQ2((pp, T ′, S′,W ′), (x, y)) π ← SimDLEQ2((pp, T ′, S′,W ′))

return (s,W ′, π)

Fig. 17. Summary of hybrid changes for unforgeability of Construction 2.

the elements s, S′, y,H and S. In particular, all hybrids become indistin-
guishable assuming the soundness of the proof system, which yields the
following corollary.

Corollary 12. Construction 1 provides 1-unlinkability according to Def-
inition 3 and assuming a knowledge sound proof system for the language
LDLEQ1.

D Unforgeability of Construction 2

We show that Construction 2 is one-more unforgeable. In particular, this
will show that a client cannot use knowledge of already signed tokens,
received during the issuance phase, to produce more additional valid to-
kens.

D.1 One-more unforgeability without validity oracle

We start by first proving that our construction provides one-more un-
forgeability when the adversary does not have access to the AT.VerValid
oracle.

Lemma 13. Construction 2 is one-more unforgeable, when the adversary
does not have access to the AT.VerValid oracle, assuming the hardness of
the chosen-target Diffie–Hellman (CTDH) problem.

Proof. We prove this lemma using a hybrid argument. First, we replace
the proving algorithm PDLEQ2 by the zero-knowledge simulator SimDLEQ2,
and then show a direct reduction to the chosen-target Diffie–Helman prob-
lem. Let ` ∈ N.

Hyb1 This is the game OMUFAT,A,`(λ). The adversary is provided with the
public parameters pp. The adversary has access to the signing oracle
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AT.Srv1 and the various random oracles Hs (used for the response of
the server), Ht (used for blinding the message by the user), and Hc

(used for computing the DLEQ proof). At the end of its execution, it
outputs `+ 1 tokens.

Hyb2 This hybrid replaces the way zero-knowledge proofs are generated
when answering signing oracles: instead of using the proving algo-
rithm PDLEQ2, we use the zero-knowledge simulator SimDLEQ2 for all
signing queries. If there exists an adversary A ∈ PPT whose advan-
tage is different between the two games, then it is possible to con-
struct an adversary for the underlying zero-knowledge of the DLEQ
proof system. Consider the following adversary B ∈ PPT for the game
ZKβ

DLEQ2(λ). B generates correctly the public parameters pp, and
generate the proofs π’s in the signing queries via the Proveb oracle
for the statement (pp, T ′, S′,W ′) ∈ LDLEQ2. At the end of the execu-
tion, A returns ` + 1 tokens. If A wins the game, then B outputs 1,
otherwise it outputs 0. It follows that, for any adversary A ∈ PPT, the
advantage in distinguishing the two hybrids is at most the advantage
of zero-knowledge, i.e.:

AdvzkLDLEQ2,B
(λ) ≥

∣∣∣AdvHyb1

AT,A,`(λ)− AdvHyb2

AT,A,`(λ)
∣∣∣ .

We will prove that if there is an adversary A ∈ PPT that has non-
negligible advantage AdvHyb2

AT,A,`(λ), then we can construct an adversary
B ∈ PPT that has non-negligible advantage in the chosen-target Diffie–
Hellman game CTDHGrGen,B,`(λ).

Assuming the existence of A, we construct B as follows. B receives the
group description and A ∈ G as input, samples y ← Zp invertible, and
computes pp := A+ yH. Then, it runs A(pp). Note that pp is distributed
as in Hyb2. We need now to specify how B answers oracle queries. The
adversary B overrides the queries to the random oracles Ht and AT.Srv1,
using the oracles Target and Help from Fig. 1, in the following way:

– to any query to the oracle Ht(t), the adversary B invokes the oracle
Target(t) and returns whatever it returns;

– to any query of the form AT.Srv1(pp, sk, T ′), B samples s←$ {0, 1}λ
and defines S′ := Hs(T

′, s). Then it invokes the oracle Z := Help(T ′),
defines W ′ = Z + yS′, and simulates the proof π. Finally, it returns
(s,W ′, π).

All other random oracle queries are left unchanged. First, note that the
distributions of Ht and AT.Srv1 are identical to the ones of Hyb2. At the
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end of the execution, A returns `+ 1 tuples (ti, (Si,Wi)) ∈ {0, 1}λ ×G2,
and B finally returns {ti,Wi − ySi}`+1

i=1 .
We claim that the adversary B wins the game CTDHGrGen,B(λ) every

time that A wins. By the winning condition of game Hyb2, A won if
and only if all ti are different and Wi = xTarget(ti) + ySi where x
is the unique element of Zp such that A = xG. Furthermore, by the
winning condition, A only called the signing oracle AT.Srv1 at most `
times; therefore Help was called at most ` times. Finally, this shows that

Advomuf
AT,A,`(λ) := AdvHyb1

AT,A(λ) ≤ AdvctdhGrGen,A,`(λ) + AdvzkLDLEQ2,A
(λ).

and this concludes the proof. ut

D.2 Handling a validity oracle

The previous proof only handles the case where an adversary does not
have access to a validity oracle (more precisely, to the AT.VerValid oracle).
However, in practice, when a user is redeeming anonymous tokens, it is
likely (expected) that the behavior will change depending on whether
this token was valid or not. In other words, when deploying anonymous
tokens, an adversary is likely to be able to learn, by submitting (t, (S,W ))
as token, whether (X−yH,Ht(t),W−yS) is a valid Diffie–Hellman tuple,
for t, S,W of its choice. Note that this holds both for our construction
and for Privacy Pass. In Privacy Pass, giving access to the AT.VerValid
oracle enables the adversary to learn if (X = xG,Ht(t),W ) is a DDH
tuple for inputs t,W of its choice.

This specific behavior is not unique to our anonymous tokens prim-
itive. In particular, a similar issue arised many times in the literature,
including (without being exhaustive):

– when proving the CCA security of the (hashed) El Gamal encryption
scheme in [1, 13];

– when proving the unforgeability of Chaum’s undeniable signature
scheme in [16, 15, 40];

– when proving the security of blind signatures [9];
– when proving the security of the VOPRF [32], and so on.

Instead, all these schemes are proved under a gap problem [40], i.e., a
computational problem that gives oracle access to the underlying decision
problem.10 For example, [40] defines the Gap DH problem, which given a

10 We follow the name usage of [40, 9, 32], but the Gap DH problem is also known
under the name of strong Diffie–Hellman problem [1, 13].
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Game CTGDHGrGen,A,`(λ)

Γ := (G, p,G)← GrGen(1λ)

x←$Zp; X := xG

q := 0; T = [ ]

{ti, Zi}`+1
i=1 ← ATarget,Help,Ddh(Γ,X)

return (ti, Yi) ∈ T all different

and xYi = Zi ∀i ∈ [1, `+ 1] and q ≤ `

Oracle Target(ti)

if ∃(ti, Yi) to T

return Yi

else

Yi ←$G∗

append (ti, Yi) to T

return Yi

Oracle Help(Y )

q := q + 1

return xY

Oracle Ddh(t,W )

return W
?
= xTarget(t)

Fig. 18. The Chosen-Target Gap Diffie–Hellman assumption.

triple (P, aP, bP ), ask to find the element abP with the help of a Decision
Diffie–Hellman oracle (which answers whether (X,Y, Z) is a valid DH
triple).

Interestingly, the chosen-target DH problem was originally introduced
by Boldyreva [8] in Gap DH groups [9], that is in groups where CDH
is hard but DDH is assumed to be easy. In other words, the original
definition of CTDH was proposed in groups where the adversary has
access to a DDH oracle that reveals if a tuple is a valid DDH tuple, while
our definition of CTDH in Section 2.1 did not ask for the group G to be
a Gap DH group. We therefore formalize the notion of chosen-target gap
Diffie–Hellman (CTGDH) problem, the gap problem equivalent to the
CTDH problem.

Definition 14 (Chosen-target gap Diffie–Hellman.). The chosen-
target gap Diffie–Hellman assumption for the group generator GrGen states
that all A ∈ PPT, for all `, A has negligible advantage in solving CDH on
` + 1 target group elements, even if A is given access to a DDH oracle,
and to a CDH oracle for ` instances. More formally, for all `, for all
A ∈ PPT,

AdvctgdhGrGen,A,`(λ) := Pr
[
CTGDHGrGen,A,`(λ) = 1

]
≤ negl(λ) ,

where CTGDHGrGen,A,`(λ) is defined in Fig. 18.

D.3 One-More unforgeability with validity oracle

We now prove that our construction provides one-more unforgeability
under the chosen-target gap Diffie–Hellman assumption.

Theorem 15. Construction 2 is one-more unforgeable assuming the hard-
ness of the chosen-target gap Diffie–Hellman problem.
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Proof. The only difference with the proof of Lemma 13 is that we need
to specify how the queries to AT.VerValid(sk, ·) are answered to. For any
query to AT.VerValid(sk, (t, σ)), the challenger (who knows the secret y)
will (1) parse σ = (S,W ), (2) let X = W − yS, and (3) return what-
ever Ddh(t,X) returns, where Ddh is defined in Fig. 18. This perfectly
simulates the oracle. Hence, we obtain that

Advomuf
AT,A,`(λ) ≤ AdvctgdhGrGen,A,`(λ) + AdvzkLDLEQ2,A

(λ).

and this concludes the proof. ut

E Unforgeability and Unlinkability of Construc-
tion 3

E.1 Unforgeability

We prove the following theorem using a hybrid argument, similar to the
proof of Lemma 13. The key difference is that, during the reduction to
CTGDH, B will draw a bit b ∈ {0, 1} which will correspond to its guess
on which bit A will succeed for the one-more unforgeability game, and
correctly create tokens for the bit 1− b.

Theorem 16. Construction 3 is one-more unforgeable assuming the hard-
ness of the chosen-target (gap) Diffie–Hellman problem.

Proof. We prove this theorem using a hybrid argument, similar to the
proof of Lemma 13. First, we replace the proving algorithm PDLEQOR2

by the zero-knowledge simulator SimDLEQOR2 (which defines an hybrid
Hyb2), and then show a direct reduction to the chosen-target gap Diffie–
Helman problem.

Let ` be an integer. We will prove that if there is an adversary A ∈
PPT that has non-negligible advantage Adv

hyb2
AT,A,`(λ) in the hybrid with

simulated proofs, then we can construct an adversary B ∈ PPT that has
non-negligible advantage in the CTGDHGrGen,B,`(λ) game.

Assuming the existence of A, we construct B as follows. First, B draws
a bit b ∈ {0, 1} which will correspond to its guess on which bit A will
succeed for the one-more unforgeability game. B receives the group de-
scription and A ∈ G as input, samples yb, xb, y1−b ← Zp invertible, and
computes Xb := A+ ybH and X1−b := x1−bG+ y1−bH. With overwhelm-
ing probability it holds that X0 6= X1. Then, it sets p = (X0, X1) and it
runs A(pp). Note that pp is distributed as in Hyb2.
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We need now to specify how B answers oracle queries. The adversary B
overrides the queries to the random oracles Ht, AT.Srv1, and AT.ReadBit,
using the oracles Target, Help, and Ddh from Fig. 18, in the following
way:

– to any query to the oracle Ht(t), the adversary B invokes the oracle
Target(t) and returns whatever it returns;

– to any query of the form AT.Srv1(pp, sk, b′, T ′), the adversary B pro-
ceeds as follows:

• it samples s←$ {0, 1}λ and defines S′ := Hs(T
′, s);

• If b′ = 1− b, it computes W ′ = x1−bT
′ + y1−bS

′; else (i.e., b′ = b),
it invokes the oracle Z := Help(T ′) and sets W ′ = Z + ybS

′.

• It simulates the proof π, and returns (s,W ′, π).

– to any query of the form AT.ReadBit(sk, (t, σ)), the challenger (who
knows the secrets yb, x1−b, y1−b) will (1) parse σ = (S,W ), (2) let
X = W − ybS, (3) define boolb := Ddh(t,X) and bool1−b := (W =
x1−bHt(t) + y1−bS), and (4) return ⊥ if boolb = bool1−b, or then 1 if
bool1, or then 0 if bool0.

All other random oracle queries are left unchanged. First, note that the
distributions of Ht, AT.Srv1, and AT.ReadBit are identical to the ones of
Hyb2. At the end of the execution, A returns `+ 1 tuples (ti, (Si,Wi)) ∈
{0, 1}λ ×G2, and B finally returns {ti,Wi − ybSi}`+1

i=1 .

Finally, it follows that the adversary B wins the game CTGDHGrGen,B,`(λ)
every time that A wins and produced a forgery on b. This shows that

Advomuf
AT,A,`(λ) := Adv

hyb2
AT,A(λ) ≤ AdvctgdhGrGen,A,`(λ)+AdvzkLDLEQ2,A

(λ)+negl(λ) .

and this concludes the proof. ut

E.2 Unlinkability

We prove that Construction 3 is 2-unlinkable instead of 1-unlinkable
(cf. Definition 3), which means that the probability that an adversary
can guess which of m tokens not redeemed yet is upper-bounded by
2/m + negl(λ). Indeed, they key idea is that the adversary can now
embed different private metadata bits during the issuances, halving its
search space at most.

Theorem 17. Construction 3 provides 2-unlinkability (Definition 3) as-
suming the hardness of DDH and a knowledge sound proof system for the
language LDLEQOR2.
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Proof. The theorem trivially holds for m = 1, 2. Let m > 2. The theorem
can be proved by a sequence of hybrids similar to those of the proof of
Theorem 6. Since the user algorithms are the same (besides the DLOE-
QOR instead of DLEQ proof) as in Construction 2, we explicit the key
difference in the reduction below, and refer to Fig. 8 and the proof of
Theorem 6 for the rest of the proof.

The key idea is as follows. We will first extract all the witnesses from
the proofs πi, i ∈ U , and hence we will be able to partition the set U in
two: the indices with a witness starting with the bit 0 and the indices
with a witness starting with the bit 1. We will then sample a biased
bit b depending on the probability |U1|/|U |, then sample j, k in Ub and
perform the same steps as in the proof of Theorem 6, which proves that the
adversary can only guess j with probability 1/|Ub|. Hence, the probability
of success p of the adversary will be upper bounded by

p =
∑
b′=0,1
Ub′ 6=∅

Pr[b′ = b] · 1

|Ub′ |
+ negl(λ) =

∑
b′=0,1
Ub′ 6=∅

|Ub′ |
|U |
· 1

|Ub′ |
+ negl(λ)

=
∑
b′=0,1
Ub′ 6=∅

|Ub′ |
k1 − k2

· 1

|Ub′ |
+ negl(λ) ≤ 2

k1 − k2
+ negl(λ) ≤ 2

m
+ negl(λ) .

ut

F Security Proofs for Construction 4

In this section, we prove that Construction 4 is one-more unforgeable and
unlinkable.

F.1 Unforgeability

The unforgeability of the scheme follows from the unforgeability of Pri-
vacy Pass since here the user receives strictly less information than in the
Privacy Pass construction.

Theorem 18. Construction 4 is one-more unforgeable assuming the hard-
ness of the chosen-target gap Diffie–Hellman problem.

F.2 Unlinkability

We will formally argue that the each token is either a valid token or is a
uniformly distributed value. Indeed, note that there exists P ∈ Zp such
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that σ′ = xT ′ + P . If P = 0 and the issuer was honest, then σ = xHt(t).
Otherwise, σ = xHt(t) + r−1P . The value T ′ is uniformly distributed
since ρ is chosen at random, and then σ is uniformly distributed since r
is chosen at random.

Theorem 19. Construction 4 provides 2-unlinkability according to Def-
inition 3 and assuming a knowledge sound proof system for the language
LDLOG1.

Game UNLINKAT,A,m(λ) in Hyb1, Hyb2

Γ := (G, p,G)← GrGen(1λ)

(st, pp = (X,π))← A(Γ )

x← ExtDLOG1(π)

if not R(x,X) then abort

k1 := 0; k2 := 0;U := ∅
(st, {W ′i}i∈U )← AUsr0(),Usr1(·,·)(st)

if U = ∅ then return 0

j ←$U ; U := U \ {j}
tokenj := AT.Usr1(stj ,W

′
j)

∀i ∈ U, tokeni := AT.Usr1(sti,W
′
i )

φ← SU
j′ ← A(st, tokenj , {tokenφ(i)}i∈U )

return k1 − k2 ≥ m and j′ = j

Oracle Usr0()

k1 := k1 + 1

tk1 ←$ {0, 1}λ

(T ′k1 , stk1)← AT.Usr0(pp, tk1)

U := U ∪ {k1}
return (k1, T

′
k1)

AT.Usr0(pp = (X,π), t)) in Hyb1, Hyb4

r, ρ←$Z∗p
T := Ht(t)

T ′ := r(T − ρG)

T ′ ←$G
st := (p, r, ρ, t)

return (T ′, st)

Oracle Usr1(j,W ′)

if j /∈ U then return ⊥
token← AT.Usr1(stj ,W

′)

U := U \ {j}
k2 := k2 + 1

return token

AT.Usr1(pp, r, ρ, t),W ′) in Hyb1, Hyb3 , Hyb5

(X,π) := pp

σ := r−1W ′ + ρX

P := W ′ − xT ′

σ := xHt(t) + r−1P

if P 6= 0 then σ←$G
return (t, σ)

Fig. 19. Summary of hybrid changes for unlinkability for Construction 4.

Proof. We formally argue that the each token is either a valid token or
is a uniformly distributed value. We do this with a sequence of hybrids
presented in Fig. 19. We argue that the transitions between the hybrids
in Fig. 19 are indistinguishable as follows:

Let m be an integer.

Hyb1 The first hybrid is the unlinkability game.

Hyb2 In this hybrid, we use the knowledge extractor on the public key.
Since the extractor fails only with negligible probability, this hybrid
is indistinguishable from the previous one.

AdvksndA,GrGen(λ) ≥
∣∣∣AdvHyb1

AT,A(λ)− AdvHyb2

AT,A(λ)
∣∣∣ .

Hyb3 In this hybrid we compute the value σ in AT.Usr1 in a different but
equivalent way. First, note that since the challenger knows x, it can
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define P := W ′ − xT ′. Then, we have

σ = r−1W ′ + ρX = r−1(xT ′ + P ) + ρX

= r−1(xr(Ht(t)− ρG) + P ) + ρX

= xHt(t) + r−1P.

The distribution is identical to the previous hybrid.

Hyb4 In this hybrid, we sample T ′ uniformly at random, which results in
the same distributions since the ρ is sampled at random and is used
only in the computation of this specific T ′.

Hyb5 In this hybrid, if P 6= 0, we sample σ at random. Since r is sampled
at random and is only used in this specific computation, the resulting
distribution is the same.

Now, we have that the tokens can be of two types (t, xHt(t)) or (t, R),
where tokens of the same type are indistinguishable for the adversary. Let
U0, U1 be the sets of tokens from each type issued during the unlinkability
game, such that U0 ∪ U1 is a partition of U .

Pr
[
UNLINKAT,A,m(λ)

]
=
∑
d=0,1
Ud 6=∅

Pr
[
UNLINKAT,A,m(λ) | j ∈ Ud

]
Pr[j ∈ Ud ]

≤
∑
d=0,1
Ud 6=∅

1

|Ud|
|Ud|
|U |

+ negl(λ) ≤
∑
d=0,1
Ud 6=∅

1

k1 − k2
+ negl(λ)

≤ 2

m
+ negl(λ) .

ut

G Security Proofs for Construction 5

In this section, we prove that Construction 5 is one-more unforgeable,
unlinkable, and provide privacy for the metadata bit.

G.1 Unforgeability

Theorem 20. Construction 5 is one-more unforgeable assuming the hard-
ness of the chosen-target gap Diffie–Hellman problem.
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Proof. We prove this lemma using a hybrid argument. First, we replace
the proving algorithm by the zero-knowledge simulator, and then show a
reduction to the chosen-target gap Diffie–Hellman problem.

Let ` be an integer.

Hyb1 This is the game OMUFAT,A,`(λ): the adversary is provided with the
public parameters pp = (X,π). The adversary has access to the sign-
ing oracle and the various random oracles Hs (used for the response of
the server), Ht (user for bliding the message by the user), and Hc (used
for computing the proofs). At the end of its execution, it outputs `+1
tokens for the same bit b′.

Hyb2 This hybrid replaces the way the zero-knowledge proof is generated:
instead of using the proving algorithm, we use the zero-knowledge
simulator.

If there exists an adversary A ∈ PPT whose advantage is different
between the two games, then it is possible to construct an adversary
for the underlying zero-knowledge of the proof system. Indeed, we call
the algorithm Proveβ to generate the proofs. If A wins the game, then
B outputs 1, otherwise it outputs 0. We have

AdvzkLDLOG2,B
(λ) ≥

∣∣∣AdvHyb1

AT,A(λ)− AdvHyb2

AT,A(λ)
∣∣∣

We will now prove that if there is an adversary A that has non-
negligible advantage AdvHyb2

AT,A(λ), then we can construct an adversary B
that has non-negligible advantage in the chosen-target gap Diffie–Hellman
game CTGDHGrGen,B,`(λ).

Assuming the existence of A, we construct B as follows. B first guesses
the bit b on which the adversary will succeeds. It receives the group
description and A ∈ G as input, samples yb, x1−b, y1−b ← Zp invertible,
and computes Xb := A + ybH, X1−b := x1−bG + y1−bH, and simulates
the proofs π0, π1. Then, it runs A(pp = (X0, X1, π0, π1)). Note that pp
is distributed as in Hyb2. We need now to specify how B answers oracle
queries. The adversary B overrides the queries to the random oracles Ht

and AT.Srv1(pp, sk, ·, ·) in the following way.

– For any query to the oracle Ht(t), the adversary B invokes the oracle
Target(t) and returns whatever it returns;

– For any query AT.Srv1(pp, sk, b′, (T ′0, T
′
1)), it proceeds as follows.

• If b′ = 1 − b, it correctly follows the issuance protocol described
in Fig. 12, i.e., it samples s←$ {0, 1}λ, define S′1−b := Hs(T

′
1−b, s),

compute W ′ = x1−bT
′
1−b + y1−bS

′
1−b. It then answers (s,W ′) to A.
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• If b′ = b, it samples s←$ {0, 1}λ and defines S′b := Hs(T
′
b, s). Then

it invokes the oracle Z := Help(T ′b), defines W ′ = Z + ybS
′
b.

Finally, it returns (s,W ′).
– For any query AT.ReadBit(sk, (t, σ = (S0, S1,W0,W1))), B uses the

Ddh and its secret scalars yb, x1−b, y1−b ∈ Zp to check if Ddh(t,Wb−
ybSb) and if W1−b = x1−bHt(t) + y1−bSb, and answers correctly de-
pending on the values of the booleans.

All other random oracle queries are left unchanged. First, note that the
distributions of Ht and AT.ReadBit are identical to the ones of Hyb2. At
the end of the execution, A returns `+1 tuples (ti, (Si,Wi)) ∈ {0, 1}λ×G2,
and B finally returns {ti,Wi − ybSi}`i=0.

We claim that the adversary B wins the game CTGDHGrGen,B,`(λ)
every time that A wins if he guesses the bit correctly. By the winning
condition of game Hyb2, A won if and only if all ti are different and
Wi = xTarget(ti) + yb′Si where x is the unique element of Zp such that
A = xG and b′ is the bit on which the forgery happens. Furthermore,
by the winning condition, A only called the signing oracle AT.ReadBit at
most ` times; therefore Help was called at most ` times.

Finally, this shows that

Advomuf
AT,A,`(λ) := AdvHyb1

AT,A(λ) ≤ 1

2
AdvctgdhGrGen,A,`(λ) + AdvzkLDLOG2,A

(λ).

and this concludes the proof. ut

G.2 Unlinkability

Theorem 21. Construction 5 provides 3-unlinkability according to Def-
inition 3, assuming the hardness of DDH and a knowledge sound proof
system for the language LDLOG2.

Proof. We will formally argue that for an adversary (issuer) who knows
the secret key sk := ((x0, y0), (x1, y1)), the values T ′0, T

′
1 received during

the issuance execution, the values S0, S1 from the signature are indistin-
guishable from random, and at most one of the value W0,W1 is distin-
guishable from random and is of the form Wb = xbHt(t) + ybSb.

We present in Fig. 20 the sequence of hybrids that transition from
an honest execution on the user side of a token issuance to an execution
where all the values in the token are random except the relation that
allows to read out one value for the embedded private metadata bit.

Let m be an integer.
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Game UNLINKAT,A,m(λ) in Hyb1, Hyb2

Γ := (G, p,G,H)← GrGen(1λ)

(st, pp = (X0, X1, π0, π1))← A(Γ )

(x0, y0)← ExtDLOG1(π0)

if not R((x0, y0), X0) then abort

(x1, y1)← ExtDLOG1(π1)

if not R((x1, y1), X1) then abort

k1 := 0; k2 := 0;U := ∅
(st, {W ′i}i∈U )← AUsr0(),Usr1(·,·)(st)

if U = ∅ then return 0

j ←$U ; U := U \ {j}
tokenj := AT.Usr1(stj ,W

′
j)

∀i ∈ U, tokeni := AT.Usr1(sti,W
′
i )

φ← SU
j′ ← A(st, tokenj , {tokenφ(i)}i∈U )

return k1 − k2 ≥ m and j′ = j

AT.Usr1((pp, {rd, ρd, T ′d}d=0,1, t), (s,W
′)) in Hyb1, Hyb3 , Hyb4 , Hyb5

(X0, X1, π0, π1) := pp

S0 = r−1
0 Hs(T

′
0, s) + ρ0H; S0 ←$G; W0 := r−1

0 W ′ + ρ0X0

S1 = r−1
1 Hs(T

′
1, s) + ρ1H S1 ←$G; W1 := r−1

1 W ′ + ρ1X1

P0 := W ′ − x0T ′0 − y0Hs(T
′
0, s); W0 := x0Ht(t) + y0S0 + r−1

0 P0

P1 := W ′ − x1T ′1 − y1Hs(T
′
1, s); W1 := x1Ht(t) + y1S1 + r−1

1 P1

σ := (S0, S1,W0,W1)

return (t, σ)

AT.Usr1((pp, {rd, ρd, T ′d}d=0,1, t), (s,W
′)) in Hyb8 , Hyb9

(X0, X1, π0, π1) := pp

S0 ←$G
S1 ←$G
P0 := W ′ − x0T ′0 − y0Hs(T

′
0, s); W0 := x0Ht(t) + y0S0 + r−1

0 P0

P1 := W ′ − x1T ′1 − y1Hs(T
′
1, s); W1 := x1Ht(t) + y1S1 + r−1

1 P1

if P0 6= 0 then W0 ←$G
if P1 6= 0 then W1 ←$G
σ := (S0, S1,W0,W1)

return (t, σ)

Oracle Usr0()

k1 := k1 + 1

tk1 ←$ {0, 1}λ

(T ′k1 , stk1)← AT.Usr0(pp, tk1)

U := U ∪ {k1}
return (k1, T

′
k1)

AT.Usr0(pp = (X,π), t)) in Hyb1, Hyb6 , Hyb7

T := Ht(t)

r0, ρ0 ←$Z∗p
r1, ρ1 ←$Z∗p
T ′0 := r0(T − ρ0G)

T ′1 := r1(T − ρ1G)

T ′0 ←$G
T ′1 ←$G
st := (pp, {rd, ρd}d=0,1, t)

return ((T ′0, T
′
1), st)

Oracle Usr1(j,W ′)

if j /∈ U then return ⊥
token← AT.Usr1(stj ,W

′)

U := U \ {j}
k2 := k2 + 1

return token

Fig. 20. Summary of hybrid changes for unlinkability of Construction 5.

Hyb1 This is the execution where the adversary interacts with an honest
user side for the token issuance.

Hyb2 In this hybrid, we run the knowledge extractor on the public keys in
the public parameters. This hybrid is indistinguishable from the pre-
vious since the extractor succeeds with all but negligible probability.

2AdvkdnsA,GrGen(λ) ≥
∣∣∣AdvHyb1

AT,A(λ)− AdvHyb2

AT,A(λ)
∣∣∣ .

Hyb3 In this hybrid, we compute W0 and W1 in a different but equivalent
way in AT.Usr1. First, note that since the challenger knows x0, y0, x1
and y1, it can define Pd := W ′−xdT ′d−ydHs(T

′
d, s) for d = 0, 1. Then,
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for d = 0, 1, we have

Wd = r−1d W ′ + ρdXd = r−1d (xdT
′
d + ydHs(T

′
d, s) + Pd) + ρXd

= r−1d (xdrd(Ht(t)− ρdG) + ydHs(T
′
d, s) + Pd) + ρdXd

= xdHt(t)− ρdxdG+ ydr
−1
d Hs(T

′
d, s) + r−1d Pd + ρdxdG+ ρdydH

= xdHt(t) + yd
(
r−1d Hs(T

′
d, s) + ρdH

)
+ r−1d Pd

= xdHt(t) + ydSd + r−1d Pd.

Hyb4 In this hybrid, we sample S0 uniformly at random. We show that if
there is an adversary B that distinguishes Hyb3 and Hyb4, then we
can construct an adversary that breaks DDH.

Let (P, aP, bP, cP ) be a DDH challenge. We set G = P and H = aP .
We will use the self-reducibility of DDH: for each call to AT.Usr1, we
sample γ, γ′←$Z∗p and set ρ0G = γbP + γ′P , which is used in the
computation of T ′0 that is the only other element that depends on ρ0.
Then, we set ρ0H = γcP + γ′aP and use it for the computation of
S0. Now if cP = abP , then the execution coincides with Hyb3, and if
cP is a random element, then the execution is Hyb4. Hence,

AdvddhA,GrGen(λ) ≥
∣∣∣AdvHyb3

AT,A(λ)− AdvHyb4

AT,A(λ)
∣∣∣ .

Hyb5 In this hybrid, we sample S1 uniformly at random. As before, we can
show that if there is an adversary B that distinguishes Hyb4 and Hyb5,
then we can construct an adversary that breaks DDH.

AdvddhA,GrGen(λ) ≥
∣∣∣AdvHyb4

AT,A(λ)− AdvHyb5

AT,A(λ)
∣∣∣ .

Hyb6 In this hybrid, we sample T ′0 uniformly at random. Since ρ0 is sampled
at random and this is the only place where it is used Hyb5 and Hyb6

have exactly the same distribution.

Hyb7 In this hybrid, we make an analogous change sampling T ′1 uniformly at
random. The distribution in this hybrid is the same as in the previous
since ρ1 is sampled at random and used only in the computation of
T ′1.

Hyb8 If P0 6= 0, we sample W0 uniformly at random. Since r0 is sampled
at random and only used for the computation of W0 the resulting
distributions of Hyb7 and Hyb8 are the same.

Hyb9 We analogously replace r−11 P1 with a random value of P1 6= 0. As
above the change does not change the distribution of values.
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We argue that it cannot be the case that both P0 = 0 and P1 = 0.
Indeed, if there is an adversary B that generated W ′ such that W ′ =
x0T

′
0 + y0S

′
0 and W ′ = x1T

′
1 + y1S

′
1, it follows that (r0x0 − r1x1)Ht(t) +

y0Hs(T
′
0, s) − y1Hs(T

′
1, s) = 0, and the adversary needs to find a s so

that the previous equation is true. This can only happen with negligible
probability since Hs is modeled as a random oracle. Considering Hyb9 the
view of the adversary for tokens can one of three types

(t, S0, S1, x0Ht(t)+y0S0,W1), (t, S0, S1,W0, x1Ht(t)+y1S1), or (t, S0, S1,W0,W1)

where all variables S0, S1,W0,W1 are uniformly distributed. Let U1, U2, U3 ⊂
U be the the indices of tokens that are in each of these three forms. The
above hybrids that tokens that have the same type are indistinguishable
for the adversary. Therefore,

Pr
[
UNLINKAT,A,m(λ)

]
=

∑
d=1,2,3
Ud 6=∅

Pr
[
UNLINKAT,A,m(λ) | j ∈ Ud

]
Pr[j ∈ Ud ]

≤
∑

d=1,2,3
Ud 6=∅

1

|Ud|
|Ud|
|U |

+ negl(λ) ≤
∑

d=1,2,3
Ud 6=∅

1

k1 − k2
+ negl(λ)

≤ 3

m
+ negl(λ) .

ut

G.3 Privacy of the Metadata Bit

Theorem 22. Construction 5 provides privacy for the metadata bit (Def-
inition 4) assuming the hardness of DDH.

Proof. We consider the sequence of hybrids presented in Fig. 21 that tran-
sitions from an execution of PMBβ

AT,A(λ) to an execution of PMB1−β
AT,A(λ)

(see Definition 4). We argue that each pair of consecutive hybrids are

indistinguishable for the adversary and thus Advpmb
AT,A(λ) = negl(λ). We

do not explicitly write the verification validity oracle in the games since
in this construction this functionality is dummy and can always be sim-
ulated.

Hyb1 This is the game PMB0
AT,A(λ): here, the adversary is provided the

public parameters pp := (X0, X1, π0, π1). The adversary has access
to the signing oracle for a bit of its choosing, and a challenge oracle
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Oracle AT.Srv1(pp, sk, b̂, T ′) in Hyb1(λ), Hyb3(λ)

s←$ {0, 1}λ

if Hs(T
′
b̂
, s) was queried then abort

S′b̂ := H(T ′b̂, s)

W ′ := xb̂T
′
b̂ + yb̂S

′
b̂

return (s,W ′)

Oracle AT.Srv1(pp, sk, b, T ′) in Hyb1(λ), Hyb3(λ)

s←$ {0, 1}λ

if Hs(T
′
b, s) was queried then abort

S′b := H(T ′b, s)

W ′ := xbT
′
b + ybS

′
b

return (s,W ′)

Oracle AT.Srv1(pp, sk, b̂, T ′) in Hyb4(λ),Hyb5(λ),Hyb6(λ)

s←$ {0, 1}λ

if Hs(T
′
b̂, s) was queried then abort

S′b̂ := H(T ′b̂, s)

W ′ := xb̂T
′
b̂ + yb̂S

′
b̂

return (s,W ′)

Oracle AT.Srv1(pp, sk, b, T ′) in Hyb4(λ), Hyb5(λ), Hyb6(λ)

s←$ {0, 1}λ

if Hs(T
′
b, s) was queried then abort

S′b := H(T ′b, s)

W ′ := xbT
′
b + ybS

′
b

y′ ←$Z∗p; W ′ := xbT
′
b + y′S′b

W ′ := x1−bT
′
1−b + y′S′1−b

W ′ := x1−bT
′
1−b + y1−bS

′
1−b

return (s,W ′)

Fig. 21. Summary of the proof for privacy of the metadata bit of Construction 5.

that signs new tokens with the bit b. Additionally, it has access to the
random oracles: Ht,Hs,Hc. At the end of its execution, it outputs a
bit b′.

Hyb2 This hybrid replaces the way zero-knowledge proofs are generated:
instead of using the proving algorithm PDLOG2, we use the zero-
knowledge simulator SimDLOG2.
If there exists an adversary A ∈ PPT whose output is different between
the two games, then it is possible to construct an adversary for the
underlying zero-knowledge of the proof system: consider the adversary
B ∈ PPT for the game ZKβ

DLOG2(λ) that generates X0, X1 as per
AT.KeyGen(1λ) and uses the Proveβ oracle for the statements (X0) ∈
LDLOG2 and (X1) ∈ LDLOG2. At the end of its execution, A (and so
B) return a guess b′.
If the Proveβ oracle outputs proofs via PDLOG2, the game is identical
to Hyb1, else the game is identical to Hyb2. It follows that, for any
adversary A ∈ PPT, the advantage in distinguishing the two hybrids
is at most the advantage of zero-knowledge in DLEQOR, i.e.:

AdvzkLDLOG2,A
(λ) ≥

∣∣∣AdvHyb2

AT,A(λ)− AdvHyb1

AT,A(λ).
∣∣∣

Hyb3 We strengthen the game: if during any of the signing queries the or-
acle Hs already had received a query of the form (T ′b, s), we abort.
Clearly, the output of the two hybrids is distinguishable only in the
case of a collision on the choice of s between the signing oracles, or
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a collision between the signing oracles themselves. For an adversary
A ∈ PPT making at most q = poly(λ) queries to any of the oracles
Hs, AT.Srv1(pp, sk, ·, ·), or AT.Srv1(pp, sk, b, ·), the probability that the
game aborts is at most q(q − 1)/2p. It follows that:

q(q − 1)

2p
≥
∣∣∣AdvHyb3

AT,A(λ)− AdvHyb2

AT,A(λ)
∣∣∣

Hyb4 We now change the way W ′ is computed: at key generation phase we
sample an additional element y′←$Z∗p, and for any query to the ran-
dom oracle AT.Srv1(pp, sk, b, ·) we construct W ′ as xbT

′
b +y′S′b instead

of xbT
′ + ybS

′
b.

We prove that if, by contradiction, the two games are distinguishable,
then there exists an adversary B for the game DDHβ

B,GrGen(λ). The
adversary B wins every time the output of the two hybrids is different.
The adversary B receives as input a DDH tuple (P,A := aP,B :=
bP,C) ∈ G4 such that C = abP in the case DDH0

B,GrGen(λ) and C←$G
in the case DDH1

B,GrGen(λ). Given a single challenge (P,A,B,C), B can
exploit the random self-reducibility property of DDH to construct q
random instances of the DDH challenge: for any i ≤ q the adversary
B can select αi, βi←$Zp and construct the challenge:

(P, A, βiB + αiP, βiC + αiA)

The adversary B proceeds as per Hyb3, embedding the challenge in
the public key and oracle replies. It fixes H := P , and instead of
generating Xb := xbG+ ybH, it constructs it as Xb := xbG+A. Then,
it runs the adversary A. The adversary A will make queries to any of
the random oracles Ht and Hs, where B programs the RO the response
to Hs as we discuss next. We replace queries to the signing oracles:

– for any query AT.Srv1(pp, sk, b, T ′), we sample s←$ {0, 1}λ and
check for collisions w.r.t. previous queries to Hs as per Hyb3.
Then, we sample α, β←$Zp and we program the random oracle
on Hs(T

′
b, s) = S′b to reply with (βiB+αiP ), for some αi, βi←$Zp.

Then, B computes W ′ := xbT
′ + βiC + αiA. B returns (s,W ′)

– for any query AT.Srv1(pp, sk, b̂ = b, T ′), after sampling s←$ {0, 1}λ,
we program the random oracle on H(T ′b, s) = S′b to reply with
αiH for some αi←$Zp. B computes W ′ := xbT

′
b + αiA. It returns

(s,W ′).

– any query to AT.Srv1(pp, sk, b̂ = 1 − b, T ′) is handled exactly as
per Hyb3.
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At the end of A’s execution, B returns whatever guess A returned. We
note that if the challenge C is provided according to DDH0

A,GrGen(λ), B
behaves exactly as per Hyb3; if the challenge C is provided according to
DDH1

A,GrGen(λ), B behaves exactly as per Hyb4. Therefore, every time
that A’s output is different between the two hybrids, B will distinguish
a random tuple from a DDH tuple. It follows therefore that:

AdvddhB,GrGen(λ) ≥
∣∣∣AdvHyb4

AT,A(λ)− AdvHyb3

AT,A(λ)
∣∣∣

Hyb5 In this game, we remark that W ′ := xbT
′
b + y′S′, and that y′←$Z∗p is

used only for computing W ′. Therefore, the distribution of W ′ in Hyb4

is uniform (plus a constant xbT
′
b, i.e., uniform) as long as S′b 6= 0G.

Therefore, we change once again the way we compute W ′, swapping
b with 1 − b: in this hybrid, W ′ := x1−bT

′
1−b + y′S′1−b. For the above

remarks, the two games can be distinguished only if S′b pr S′1−b is the
identity element, which happens with probability 2/p.

Hyb6 In this hybrid, we remove y′ and we compute W ′ using the witness
1−b. The proof for this hybrid follows an argument similar to the one
used for the transition Hyb3 → Hyb4. Therefore, it follows that:

AdvddhB,GrGen(λ) ≥
∣∣∣AdvHyb6

AT,A(λ)− AdvHyb5

AT,A(λ)
∣∣∣

At this point we note that the oracle AT.Srv1(pp, sk, b, ·) is issuing signa-
tures under the witness x1−b, y1−b. It is possible, through a sequence of
hybrids, to remove the condition on the collision of s introduced in Hyb3

(via the same argument used for the transition Hyb2 → Hyb3), and swap
back the zero-knowledge simulator with the prover’s algorithm PDLEQOR2

(via the same argument used for the transition Hyb1 → Hyb2). Therefore,

the advantage of an adversary A in winning the game PMBβ
AT,A(λ)

AdvhbAT,A(λ) ≤ q(q − 1)

2λ
+

2

2λ
+ 2AdvddhGrGen(λ) + 4AdvzkDLOG2(λ)

where q is the number of queries to the signing oracles or to the random
oracle Hs and the prime p outputted by GrGen satisfies λ = blog2 pc. ut

H PMBTokens with Validity Verification

In this section, we present a design for an anonymous token that provides
both private metadata bit as well as verification validity functionality
that can be queried by any party.
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Usr(pp, t) Sig(pp, sk, b)

AT.Usr0(pp, t)

r←$Z∗p
T := Ht(t)

T ′ := r−1 · T
return (T ′, (pp, r, t, T ′))

T ′

AT.Srv1(pp, sk, b, T ′)

(X0, X1, X̃) := pp

((x0, y0), (x1, y1), (x̃, ỹ)) := sk

s←$ {0, 1}λ

S′ := Hs(T
′, s)

W ′ := xbT
′ + ybS

′

π ← PDLEQOR2((X0, X1, T
′, S′,W ′), (xb, yb))

W̃ ′ := x̃T ′ + ỹS′

π̃ ← PDLEQ2((X̃, T ′, S′, W̃ ′), (x̃, ỹ))

return (s,W ′, W̃ ′, π, π̃)

s,W ′, W̃ ′, π, π̃

AT.Usr1((pp, r, t, T ′), (s,W ′, W̃ ′, π, π̃))

(X0, X1, X̃) := pp

S′ := Hs(T
′, s)

if not VDLEQOR2((X0, X1, T
′, S′,W ′), π)

or not VDLEQ2((X̃, T ′, S′, W̃ ′), π̃) then

return ⊥
S := rS′

W := rW ′

W̃ := rW̃ ′

σ := (S,W, W̃ )

return (t, σ)

Fig. 22. Token issuance for Construction 6 (anonymous token with private metadata
bit and validity verification).

Construction 6 Let Γ := (G, p,G,H) ← GrGen(1λ) be an algorithm
that generates a group G of order p and outputs two distinct random gen-
erators G and H. Let Hs : G× {0, 1}∗ → G be a random oracle mapping
a group element and a string into group elements. Let (PDLEQ2,VDLEQ2)
(resp. (PDLEQOR2,VDLEQOR2)) be a proof system for the DLEQ (resp. DLE-
QOR) relationship defining the language LDLEQ2 (resp. LDLEQOR2).

We construct an anonymous token scheme AT defined by the following
algorithms:

– (pp, sk)← AT.KeyGen(1λ):
• Run Γ := (G, p,G,H) ← GrGen(1λ) to obtain group parameters.
Γ will be an implicit input to all other algorithms.
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• Sample four random invertible values x0, x1, y0, y1←$Z∗p, and set
X0 := x0G+ y0H and X1 := x1G+ y1H. Restart if X0 = X1.

• Sample two random invertible values x̃, ỹ←$Z∗p, and set X̃ = x̃G+
ỹH.

• Set sk := ((x0, y0), (x1, y1), (x̃, ỹ)) and pp := (X0, X1, X̃).

– (t, σ)← 〈AT.Usr(pp, t),AT.Sig(pp, sk, b)〉 – the anonymous token singing
protocol is defined in Fig. 22.

– bool← AT.VerValid(sk, t, σ):

• Parse σ = (S,W, W̃ ).
• If W̃ = x̃Ht(t) + ỹS, return 1. Otherwise, return 0.

– ind← AT.ReadBit(sk, t, σ):

• Parse σ = (S,W, W̃ ).
• If W = x0Ht(t) + y0S and W 6= x1Ht(t) + y1S, return 0
• If W 6= x0Ht(t) + y0S and W = x1Ht(t) + y1S, return 1
• Else, return ⊥.

H.1 Unforgeability

Theorem 23. Construction 6 is one-more unforgeable assuming the hard-
ness of the chosen-target gap Diffie–Hellman problem.

Proof. The one-more unforgeability of this construction follows from the
one-more unforgeability of Construction 3. We can construct an adversary
for Construction 3 by interacting with an adversary for Construction 6 in
the same way as the reduction in the proof of Theorem 16 since the user
messages in both constructions are the same, and the server’s response in
Construction 3 is a subset of the server’s response in Construction 6. ut

H.2 Unlinkability

Theorem 24. Construction 6 provides 2-unlinkability according to Defi-
nition 3 assuming the hardness of DDH, a knowledge sound proof system
for the language LDLEQ2, and a knowledge sound proof system for the
language LDLEQOR2.

Proof. The unlinkability of this construction follows from the unlinkabil-
ity of Construction 3. We can construct an adversary for Construction 3
by interacting with an adversary for Construction 6 in the same way as
the reduction in the proof of Theorem 17 since the user messages in both
constructions are the same, and the server’s response in Construction 3
is a subset of the server’s response in Construction 6. ut
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H.3 Privacy of Metadata Bit

Theorem 25. Construction 6 provides privacy for the metadata bit ac-
cording to Definition 4 assuming the hardness of DDH.

Proof. The proof for the private metadata bit here follows closely the
proof of Theorem 8. The only difference is that we need to handle validity
queries from the adversary. However, since the validity is checked only on
the part of the token, which is independent of the private metadata bit,
the reduction can always have the private parameters for that part of the
token and answer the validity oracle query honestly. ut

I Choice of Curve

Because our constructions rely on the presence of a so-called static DH
oracle, special care must be taken when choosing the group, as in fact
stronger cryptanalytic attacks are at disposal for the adversary. These
are Brown-Gallant [10] and Cheon’s attack [19], as already studied in-
dependently by Taylor Campbell11 in the context of Privacy Pass, by
Thomas et al. [46] in the context of OPRFs, and by Chiesa et al. [20] in
the context of SNARKs. Both attacks exploit the smoothness of p ± 1,
where p is the order of the group; if p± 1 is smooth, such as in the case
of NISTP224, the security drops to O(288.5) for O(247) queries [46]. In
the case of Ristretto, p − 1 is not smooth. The p − 1 attacks have best
complexity O(

√
p/d +

√
d) and demand a number of sequential queries

proportional to max(d, p/d), where d is a divisor of p± 1. This concretely
provides a best attack of complexity O(2124). The case p+ 1 has instead
complexity O(

√
p/d+d), and requires a similar number of oracle queries.

In this case, for Ristretto the security drops to O(294) with O(264) se-
quential queries. Therefore, due to the large number of sequential queries
needed to mount the attack, even for adversaries with close proximity,
this attack can be mitigated with appropriate key rotation mechanisms.

11 https://mailarchive.ietf.org/arch/msg/cfrg/YDVS5Trpr6suig_VCFEOH6SOn8Q
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