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Abstract. Quantum random number generators (QRNGs) produce the-
oretically unpredictable random numbers. A typical QRNG is imple-
mented in quantum optics [Herrero-Collantes, M., Garcia-Escartin, J.
C.: Quantum Random Number Generators. Rev. Mod. Phys. 89, 015004
(2017)]. Quantum computers become QRNGs when given certain pro-
grams. The simplest example of such a program applies the Hadamard
gate on all qubits and performs measurement. As a result of repeatedly
running this program on a 20-qubit superconducting quantum computer
(IBM 20Q Tokyo), we obtained a sample with a length of 43,560. How-
ever, statistical analysis showed that this sample was biased and corre-
lated. One of the post-processed samples passed statistical tests. To show
the effectiveness of post-processing, a larger sample size is required. The
present study of quantum random number generation and statistical test-
ing may provide a potential candidate for benchmarking tests of actual
quantum computing devices.

Keywords: true number generator· quantum random number genera-
tor· IBM Q· randomness extraction· min-entropy.

1 Introduction

Random numbers are a fundamental resource in various fields of science and
industry [1]. This is for two reasons: Firstly, random numbers are used to simulate
stochastic phenomena such as Brownian motion. Secondly, random numbers are
a source of unpredictability. Examples of such applications are below.

Cryptography. Binary information can be encrypted with the use of random
numbers. By XORing the binary representation of a message with a ran-
dom number sequence of equal length, an information-theoretically secure
encrypted message is obtained.
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Simulation. Random numbers are used to simulate random events such as
Brownian motion.

Gambling. Various situations in gambling require randomness. To simulate a
fair shuffle of a deck of cards, for example, random numbers are essential.

Sampling. In situations where samples need to be extracted from a group,
random numbers enable unbiased and uncorrelated extraction.

Given the wide variety of applications above, the generation of random numbers
is still an ongoing field of research.

There are three main types of random number generators (RNGs): pseudo-
random number generators (PRNGs), classical physical random number gen-
erators, and quantum physical random number generators (QRNGs). PRNGs
adopt deterministic functions that produce seemingly random bits when given
an initial value called a seed. There are several advantages to PRNGs. Firstly,
they can be easily implemented on the classical computer. Secondly, one needs
only to store the function and the seed in order to reproduce the output. Fi-
nally, the generation rate is generally faster than other types of random number
generators. The problem with PRNGs is that the output can be predicted with
knowledge of the seed and function. While PRNGs use deterministic functions
to produce pseudorandom numbers, physical random number generators apply
measurement to physical phenomena and convert the resulting values into bits.
In the case of classical physical random number generators, the output can be
predicted from the initial condition of the physical phenomena. QRNGs, on the
other hand, produce theoretically unpredictable bits. The reason behind this is
that under the axioms of quantum physics, the measurement outcome is proba-
bilistic.

Quantum computers can be taken as QRNGs when assigned certain pro-
grams. In this study, we experimented with a program that applies the Hadamard
gate and performs measurement on all qubits available. A sample sequence with
a length of 43,560 was obtained by repeatedly running this program on IBM’s
superconducting computer (IBM 20Q Tokyo). It became clear through statis-
tical tests that this sample was biased and correlated. In order to see whether
the bias and correlation can be corrected, we applied several post-processors.
Among the ones we applied, the combination of Samuelson’s extractor and von
Neumann’s extractor produced a sample that passed the six statistical tests.
As the combination of post-processing significantly reduced the sample size, the
effectiveness is of the post-processor is debatable.

The existence of bias and correlation in the quantum random numbers gen-
erated by the quantum computer carries information about the device. Our next
task is to determine the reason behind these flaws.

The rest of this paper is organized as follows. Section 2 briefly reviews ran-
domness, random number generators, tests for randomness, and post-processing.
We present the procedure for quantum random number generation on the IBM
20Q Tokyo and show the test results for the sample before and after post-
processing in Sec. 3. An interpretation for the results are also discussed. Sec-
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tion 4 is devoted to the summary. In Sec. 5, we discuss some open questions on
QRNGs.

2 Preparation

2.1 Randomness

The key to understanding randomness is to acknowledge the distinction between
the following two types of randomness.

Product randomness. The apparent randomness that can be statistically iden-
tified by examining the output of a random process is called product ran-
domness. Product randomness is practically important, as the length of a
random number sequence is always finite. To check whether a coin toss yields
a random number sequence, one can toss the coin a finite number of times
and see if the heads and tails outcomes are unbiased and independent. This
is the idea of product randomness.

Process randomness. The inherent randomness of the process of generation
is called process randomness, which is an important factor of a true ran-
dom number generator. In the example of a coin toss, process randomness
corresponds to a symmetrically designed coin and a fair tossing process. By
making sure that the process is random, one can expect the output to have
product randomness as well.

Fig. 1. Product randomness and process randomness of a coin toss.

While the goal of random number generation is to identify whether a generator
is capable of producing random numbers, one can only observe finite samples
of outputs. In practice, therefore, a generator is characterized from the samples
obtained. For example, to check whether a coin toss is fair, one must toss the
coin repeatedly and look for signs of bias and correlation.
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2.2 Essential Characteristics of Random Number Generators

There are three main qualities that a random number generator must possess in
order to qualify as legitimate.

Uniformity. A coin (random variable) with uniformity yields heads “1” and
tails “0” with equal probability.

Independence. Independent coin tosses (trials) are such that any toss does not
affect any of the other tosses. In other words, the tosses are not correlated.

Unpredictability. Unpredictability means that it is impossible to predict any
of the future outcomes.

Ideally, every random number generator should possess all qualities shown above.
However, only quantum random number generators possess all three qualities.
Because one can only ever hope to examine a random number sequence of finite
length, identifying the qualities above can only be done by applying randomness
tests to the output.

2.3 Types of Random Number Generators

Random number generators can be classified into the following groups. Each
group has its advantages and disadvantages, and the means of generation is cho-
sen in light of what application the user has in mind. Only the final group can
be considered true random number generators, which produce uniform, indepen-
dent, and unpredictable bits.

Pseudorandom Number Generators The present computer (classical com-
puter) is deterministic due to the deterministic principles of classical physics. As
a result, classical computers are incapable of producing true random numbers.
In order to overcome this problem, pseudorandom numbers have been used as a
substitute for true random numbers.

The idea behind pseudorandom numbers is that as far as product randomness
is concerned, a deterministic function that produces seemingly random outputs
suffices for some applications. For instance, random numbers used in simulation
need not be unpredictable.

While pseudorandom numbers are predictable and do not possess process
randomness, advantages do exist: pseudorandom numbers are reproducible. This
means that one needs only to remember the initial value and generation process
to obtain the same sequence, which is not the case with true random numbers. In
other words, pseudorandom numbers can be compressed. Under circumstances
where the same random number sequence is required multiple times, pseudoran-
dom numbers are convenient. Another advantage is that the generation of pseu-
dorandom numbers is generally faster than physical random numbers [1]. This
is convenient for simulation purposes where long sequences of random numbers
are required.

Despite such advantages, there exist applications where pseudorandom num-
bers cannot be used as a substitute for true random numbers. These applications
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require unpredictability or fairness. In cryptography, for example, it is crucial
that the future values are unpredictable. This cannot be achieved by pseudo-
random numbers alone. Furthermore, pseudorandom numbers are not fair. This
means that with knowledge of the initial value called a seed along with the func-
tion, one can easily manipulate the output. This is why pseudorandom numbers
should not be used for choosing winning lottery tickets.

In areas where unpredictability or fairness is required, true random numbers
cannot be replaced with pseudorandom numbers.

Fig. 2. Conceptual diagram of pseudorandom number generation.

As shown in Fig. 2, pseudorandom number generators are functions that when
given an initial value called a seed, the rest of the output is automatically de-
termined in the form of a recurrence formula. Random numbers produced in
this manner have patterns (the generation formula itself) and periods. It is thus
crucial that the user understands the limitations of pseudorandom number gen-
erators. For a better grasp of this concept, several examples of such functions or
algorithms are presented in this section.

Middle-Square Method. The middle-square method is one of the first meth-
ods of pseudorandom number generation. It produces pseudorandom num-
bers based on the following algorithm. In this example, the seed is a decimal
integer with 4 or more digits. The resulting sequence consists of 4-digit dec-
imal integers.

1. Square the seed.
e.g.) If seed = 12345, seed2 = 152399025.

2. Add zeroes at the beginning of the outcome until the number of digits be-
comes an even number of 4 or larger.
e.g.) 152399025 has 9 digits, so a single 0 is added. The number becomes
0152399025.

3. Extract the middle four digits and assign it as the new seed.
e.g.) 0152399025→ 2399. New seed = 2399.

4. Go back to initial step.

The problem with this method is that firstly, once the seed degenerates to zero,
the following numbers will all be zero and secondly, that the sequence can end
up in a cycle (e.g. 6100→ 2100→ 4100→ 8100→ 6100) [2].
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Pseudorandom numbers are predictable, periodic, and correlated. While pseu-
dorandom numbers produced by more recent methods are less predictable and
have longer periods, they still cannot be considered true random numbers.

Classical Physical Random Number Generators The simplest form of
classical random number generation is through coin tosses: when the coin yields
heads the generator outputs 1, and when the coin yields tails it outputs 0. This
example captures the essence of classical physical random number generation,
which is that a classical physical phenomena is measured and encoded to binary
numbers.

Fig. 3. Conceptual diagram of classical physical sources.

In classical physical random number generation, the initial condition of the phys-
ical phenomena is the seed. The problem is that in classical physics, all future
measurement values are determined by this initial condition. Therefore, like pseu-
dorandom numbers, classical physical random numbers are deterministic and
thus predictable in theory [1].

Quantum Physical Random Number Generators A quantum physical
random number generator is similar to its classical counterpart. The only differ-
ence is that the source is quantum physical instead of classical. Unlike classical
physics, the measurement results in quantum physics cannot be determined by
the initial condition [1]. This is due to the stochastic laws of quantum physics
which state that the measurement results are not predetermined.

Fig. 4. Conceptual diagram of quantum physical sources.
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A qubit is a quantum coin. While a classical coin is either heads or tails at all
times, a qubit can be in multiple states at once (superposition). For example,
Figure 4 shows a qubit that is initially prepared as a superposition between |0〉
and |1〉. Note that |0〉 is a state that when measured, its measurement value is
0 with certainty. Likewise, |1〉 always yields 1. One can control the probability
of 0s and 1s at will, creating a quantum coin whose output is unpredictable.

Various quantum phenomena can be considered qubits. One example is the
two paths of a photon after passing through a beam splitter as shown in Fig. 5.

Fig. 5. Quantum random number generation using a photon source [1].

When a photon is detected by detector A, the output is 1. If it is detected by
detector B, the output is 0. Optical qubits are a popular means of quantum
random number generation. Firstly, optical qubits are easy to prepare compared
to other types such as superconducting qubits. Secondly, optical methods tend to
achieve a higher generation rate compared to other quantum physical methods.
As large samples are required in both application and randomness testing, optical
qubits are convenient.

2.4 Tests of Randomness

The goal of randomness testing is to statistically evaluate the generator’s capa-
bility of producing unbiased and uncorrelated bits. This is done by examining the
generator’s output. Common test suites are the NIST test suite [3], TestU01 [4],
and the dieharder test [5].

Let there be a coin with certain probabilities for yielding heads and tails. By
flipping the coin 10 times, one obtains a sequence of heads and tails of length 10.
Randomness tests aim to decide whether the sequence in question was obtained
from an ideal random number generator that outputs unbiased and uncorrelated
bits. This is done with the following steps.



8 K. Tamura and Y. Shikano

1. Obtain a sample of appropriate length.
e.g.) 0111111111

2. Characterize the sample with a test statistic.
e.g.) the number of 1s within the sequence is 9.

3. Calculate the probability (p-value) that an ideal random number generator
outputs a sample with such a test statistic.
e.g.) the probability that an ideal random number generator outputs a se-
quence of length 10 containing 9 ones is approximately 0.009765625.

4. Decide whether the probability (p-value) is acceptable by comparing it to
the level of significance α.
e.g.) if α = 0.01, then p-value < α. In this case, the test result is that the
sample was not obtained from an ideal random number generator.

One could apply various tests by characterizing the sample using various test
statistics. One must, however, keep in mind that the ideal probability distribu-
tion of the test statistic must be known beforehand.

2.5 Post-processing

True random number generators have physical sources. The process of physical
random number generation begins with the measurement of some observable
value of a physical system as shown in Fig. 6. At this stage, the effect of classical
noise becomes a matter of concern. The measured values are then encoded into
binary information. At this encoding stage, errors must be taken into considera-
tion. As a result of these properties, physical random number generators require
post-processing where noise and errors are excluded as much as possible.

Fig. 6. The process of random number generation based on physical sources [1].

von Neumann Extractor The simplest example of a randomness extractor
would be the von Neumann extractor. This extractor interprets the input binary
sequence as pairs and translates 01s to 0s and 10s to 1s [6]. This extractor can
only be effectively used for certain sources, namely, independent and identically
distributed (iid)-bit sources [7]. Iid-bit sources are sources that consist of discrete
random variables X1, X2, · · · , Xn ∈ {0, 1} where for any i ∈ {1, · · ·n}, Pr[Xi =
1] = δ for some unknown constant δ[9, Chapter 6]. A coin toss with a constant
bias throughout the tosses is, for instance, an iid-bit source. Such a source should
yield 01s and 10s with equal probability, hence the method turns the biased
sequence into a uniform one.
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Samuelson Extractor The Samuelson extractor is similar to the von Neumann
extractor, except that it translates 10s to 0s and 11s to 1s [8]. It is often the
case that the use of the Samuelson extractor is followed by the use of the von
Neumann extractor. While using both extractors reduces the sequence to 1/4 on
average[9, Chapter 6], this is sometimes necessary as the Samuelson extractor
targets different sources compared to the von Neumann extractor. This extractor
is effective when used on a source where the previous bit affects the probability of
the next bit. For example, if a source is more likely to produce 0→ 1 than 1→ 0,
the von Neumann extractor cannot be used. The Samuelson extractor, however,
fixes the previous bit to 1, which turns the input into a sequence expected from
an iid-bit source.

3 Experimental Procedure and Results

In light of the recent trend of quantum random number generation and quantum
computing, we wonder if actual quantum computers are capable of producing
random numbers. The following experiment aims to answer this question.

3.1 Random Number Generation

In this section, the procedure for generating random numbers on a quantum
computer is introduced. A quantum computer is a device that contains multiple
qubits. The IBM 20Q Tokyo device contains 20 qubits. Below are the steps for
random number generation.

1. Prepare all qubits in the state of superposition between state |0〉 and |1〉, so
that both states have equal probabilities. This can be achieved with the use
of the Hadamard gate.

2. Measure all qubits once, and collect the result.
e.g.) |00101101 · · · 1〉.

3. Return to step 1.

By repeating the procedure above and concatenating the results in order, a
sequence with a length of 43,560 was obtained. This procedure was conducted
in July of 2018. It took approximately one month to obtain a sequence with a
length of 43,560. Let us call this raw sample rand43560.

When the user specifies how many times which algorithm should be run,
the IBM 20Q Tokyo device returns a histogram showing the probability of each
measurement outcome. In order to obtain a sequence of measurement outcomes,
we set the number of runs at 1 and kept running the same algorithm. This way,
the histogram shows the measurement outcome of each run.

3.2 Post-Processing

The three post-processing extractors presented below were used.
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1. The von Neumann Extractor: 01→ 0, 10→ 1.
Sample name after post-processing: Neumann

2. The Samuelson Extractor: 10→ 0, 11→ 1.
Sample name after post-processing: Samuelson

3. A combination of the above: Samuelson → Neumann.
Sample name after post-processing: SN

The resulting samples were statistically examined along with the raw sample
rand43560.

3.3 Test Results of Post-Processed Samples

The first 6 tests from the NIST test suite were applied to the respective samples.
Figure 7 shows the result of the frequency test, which is a test for uniformity.
The test statistic z is defined as below, and is known to follow a standard normal
distribution.

z ≡ x− np√
np(1− p)

(1)

Note that x is the number of 1s in the sample, n is the length of the sample, and
p is the ideal probability of 1s, which is 0.5. z yields 0 for a sample that contains
equal proportions of 0s and 1s.

Figure 7 shows the values of z for each sample, as well as the corresponding
probability densities. The probability that an ideal random number generator
generates a sample with a value of z falling into the regions colored in green is
lower than 1 %. When the value of z is in the green region, the sample is not
uniform. This decision is based on a level of significance of α = 0.01.

Fig. 7. Uniformity of rand43560 before and after randomness extraction.

We observe that the raw sample rand43560 is not uniform. This points to the
possibility that the qubits were not prepared to yield equal probabilities of 0s
and 1s, which provides insight into the accuracy of the gates and measurement
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of the device. Another reason is that the device is unstable. With the device
going through calibration on a daily basis, it is questionable whether the device
maintains the same properties from one day to another.

The fact that the von Neumann extractor failed to sufficiently correct the
bias in the sequence suggests that the 20 qubits cannot be considered an iid-bit
source.

The Samuelson extractor and the combination of the Samuelson extractor
and the von Neumann extractor, on the other hand, proved effective. The effec-
tiveness of the former extractor implies a Markovian property in the sequence.
This means that the output of adjacent qubits tend to be correlated. The latter
extractor is not as effective as the former, which suggests that even after the
Samuelson extractor is applied, the sequence is still not iid.

Table 1. The NIST test results and corresponding p-values of samples.

Test Rand43560 Neumann Samuelson SN

Length 43560 10463 10116 2538
Frequency 0.0000 0.0024 0.7204 0.0954
Frequency (block) 0.0000 (396) 0.0052 (126) 0.0161 (85) 0.2099 (22)
Runs 0.0000 0.1135 0.2333 0.7388
Runs (block) 0.0000 (128) 0.3125 (128) 0.0325 (128) 0.3952 (8)
Matrix rank 0.5285 0.9523 0.7138 0.7419
DFT 1.0000 0.1493 0.0003 0.4072
Result Fail Fail Fail Pass

Table 1 shows the p-values corresponding to the 6 tests from the NIST test
suite of the respective samples. If a p-value is lower than α = 0.01, the test is
a failure. Unless the sample passes all six tests, it is not regarded as random.
Block means that the sequence was divided into blocks of certain lengths, which
are shown next to the p-values in brackets.

According to Table 1, only sample SN passes all 6 tests. This could be due
to the fact that the size of the sample is small. In general, smaller samples are
more likely to pass these tests.

4 Conclusion

The sequence of length 43,560 was obtained by repeatedly performing a quantum
coin toss using all 20 qubits of the IBM 20Q Tokyo device. Following the conven-
tional treatment of physical random number generation, three post-processing
extractors were applied to the raw sample. The extractors are the von Neumann
extractor, the Samuelson extractor, and the two combined.

As a result of applying the first 6 tests from the NIST test suite, it was
revealed that only the combination of the von Neumann and Samuelson extrac-
tors succeeded in producing a sample that passes all 6 tests. Due to the limited
sample size, however, it was not clear whether this method was effective.
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Regarding the generation rate (approximately 43,560 digits per month) and
precision of the device, using the IBM 20Q Tokyo device as a QRNG is not a
practical idea. However, examining the quality of the output quantum random
numbers may lead to benchmarking of actual quantum computing devices.

5 Open Questions

While using the IBM 20Q Tokyo device as a quantum random number generator
is impractical, producing quantum random numbers with the device may not be
an entirely pointless attempt.

In theory, quantum computers should be capable of producing quantum ran-
dom numbers without post-processing. Therefore, the reason why the IBM 20Q
Tokyo device failed to achieve this is worth pursuing.

A quantum computer is a multipurpose device, and judging its condition in
light of a single purpose is of no use. However, there is a need for a comprehensive
indicator of the device’s condition, such that the user could refer to that indicator
when deciding which device to use and when to use it. We believe that the quality
of quantum random numbers produced by the device is a potential candidate of
such an indicator.

The following are some open questions.

1. How can the quality of quantum random numbers and generators be quan-
tified and compared?

2. What is the relationship between the quality of the random numbers and
the device’s condition?

3. Given that the quality of the random numbers is poor, what can be done to
improve their quality?

4. How does the poor quality of random numbers affect other algorithms run
on the same device?

5. What is the relationship between randomness and quantum computers?
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