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ABSTRACT

The absence of deployed vehicular communication sys-
tems, which prevents the advanced driving assistance systems
(ADASs) and autopilots of semi/fully autonomous cars to
validate their virtual perception regarding the physical en-
vironment surrounding the car with a third party, has been
exploited in various attacks suggested by researchers. Since
the application of these attacks comes with a cost (exposure
of the attacker’s identity), the delicate exposure vs. application
balance has held, and attacks of this kind have not yet
been encountered in the wild. In this paper, we investigate a
new perceptual challenge that causes the ADASs and autopi-
lots of semi/fully autonomous to consider depthless objects
(phantoms) as real. We show how attackers can exploit this
perceptual challenge to apply phantom attacks and change
the abovementioned balance, without the need to physically
approach the attack scene, by projecting a phantom via a
drone equipped with a portable projector or by presenting a
phantom on a hacked digital billboard that faces the Internet
and is located near roads. We show that the car industry has
not considered this type of attack by demonstrating the attack
on today’s most advanced ADAS and autopilot technologies:
Mobileye 630 PRO and the Tesla Model X, HW 2.5; our
experiments show that when presented with various phantoms,
a car’s ADAS or autopilot considers the phantoms as real
objects, causing these systems to trigger the brakes, steer into
the lane of oncoming traffic, and issue notifications about
fake road signs. In order to mitigate this attack, we present
a model that analyzes a detected object’s context, surface,
and reflected light, which is capable of detecting phantoms
with 0.99 AUC. Finally, we explain why the deployment
of vehicular communication systems might reduce attackers’
opportunities to apply phantom attacks but won’t eliminate
them.

I. INTRODUCTION

After years of research and development, automobile tech-
nology is rapidly approaching the point at which human
drivers can be replaced, as cars are now capable of supporting
semi/fully autonomous driving [1, 2]. While the deployment
of semi/fully autonomous cars has already begun in many
countries around the world, the deployment of vehicular
communication systems [3], a set of protocols intended for
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Fig. 1: Perceptual Challenge: Would you consider the projec-
tion of the person (a) and road sign (b) real? Telsa considers
(a) a real person and Mobileye 630 PRO considers (b) a real
road sign.

exchanging information between vehicles and roadside units,
has been delayed [4]. The eventual deployment of such sys-
tems, which include V2V (vehicle-to-vehicle), V2I (vehicle-to-
infrastructure), V2P (vehicle-to-pedestrian), and V2X (vehicle-
to-everything) communication systems, is intended to supply
semi/fully autonomous cars with information and validation
regarding lanes, road signs, and obstacles.

Given the delayed deployment of vehicular communication
systems in most places around the world, autonomous driving
largely relies on sensor fusion to replace human drivers.
Passive and active sensors are used in order to create 360◦

3D virtual perception of the physical environment surrounding
the car. However, the lack of vehicular communication system
deployment has created a validation gap which limits the
ability of semi/fully autonomous cars to validate their virtual
perception of obstacles and lane markings with a third party,
requiring them to rely solely on their sensors and validate one
sensor’s measurements with another. Given that the exploita-
tion of this gap threatens the security of semi/fully autonomous
cars, we ask the following question: Why haven’t attacks
against semi/fully autonomous cars exploiting this validation
gap been encountered in the wild?

Various attacks have already been demonstrated by re-
searchers [5–14], causing cars to misclassify road signs [5–10],
misperceive objects [11, 12], deviate to the lane of oncoming
traffic [13], and navigate in the wrong direction [14]. These
attacks can only be applied by skilled attackers (e.g., an expert
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in radio spoofing or adversarial machine learning techniques)
and require complicated/extensive preparation (e.g., a long
preprocessing phase to find an evading instance that would
be misclassified by a model). In addition, these methods
necessitate that attackers approach the attack scene in order
to set up the equipment needed to conduct the attack (e.g.,
laser/ultrasound/radio transmitter [11, 12, 14]) or add physical
artifacts to the attack scene (e.g., stickers, patches, graffiti [5–
10, 13]), risky acts that can expose the identity of the attacker.
As long as the current exposure vs. application balance holds,
in which attackers must "pay" for applying their attacks in
the currency of identity exposure, the chance of encountering
these attacks [5–14] in the wild remains low.

In this paper, we investigate a perceptual challenge, which
causes the advanced driving assistance systems (ADASs) and
autopilots of semi/fully autonomous cars to consider the depth-
less objects (phantoms) as real (demonstrated in Fig. 1). We
show how attackers can exploit this perceptual challenge and
the validation gap (i.e., the inability of semi/fully autonomous
cars to verify their virtual perception with a third party)
to apply phantom attacks against ADASs and autopilots of
semi/fully autonomous cars without the need to physically
approach the attack scene, by projecting a phantom via a drone
equipped with a portable projector or by presenting a phantom
on a hacked digital billboard that faces the Internet and is
located near roads.

We start by discussing why phantoms are considered a per-
ceptual challenge for machines (section III). We continue by
analyzing phantom attack characteristics using Mobileye 630
PRO (section IV), which is currently the most popular external
ADAS, and investigate how phantom attacks can be disguised
such that human drivers in semi-autonomous cars ignore/fail to
perceive them (in just 125 ms). We continue by demonstrating
how attackers can apply phantom attacks against the Tesla
Model X (HW 2.5), causing the car’s autopilot to automatically
and suddenly put on the brakes, by projecting a phantom of
a person, and deviate toward the lane of oncoming traffic, by
projecting a phantom of a lane (section V). In order to detect
phantoms, we evaluate a convolutional neural network model
that was trained purely on the output of a video camera. The
model, which analyzes the context, surface, and reflected light
of a detected object, identifies such attacks with high accuracy,
achieving an AUC of 0.99 (section VI). We also present the
response of both Mobileye and Tesla to our findings (section
VII). At the end of the paper (section VIII), we discuss why the
deployment of vehicular communication systems might limit
the opportunities attackers have to apply phantom attacks but
won’t eliminate them.

The first contribution of this paper is related to the attack:
We present a new type of attack which can be applied remotely
by unskilled attackers and endanger pedestrians, drivers, and
passengers, and changes the existing exposure vs. application
balance. We demonstrate the application of this attack in two
ways: via a drone equipped with a projector and as objects
embedded in existing advertisements presented on digital
billboards; further, we show that this perceptual challenge
is currently not considered by the automobile industry. The
second contribution is related to the proposed countermeasure:

We present an approach for detecting phantoms with a model
that considers context, surface, and reflected light. By using
this approach, we can detect with 0.99 AUC.

II. BACKGROUND, SCOPE & RELATED WORK

In this section, we provide the necessary background about
advanced driving assistance systems (ADASs) and autopilots,
discuss autonomous car sensors and vehicular communication
protocols, and review related work. The Society of Auto-
motive Engineers defines six levels of driving automation,
ranging from fully manual to fully automated systems [15].
Automation levels 0-2 rely on a human driver for monitoring
the driving environment. Most traditional cars contain no
automation and thus are considered Level 0; countries around
the world promote/mandate the integration of an external
ADAS (e.g., Mobileye 630) in such cars [16, 17] to enable
them to receive notifications and alerts during driving about
lane deviation, road signs, etc. Many new cars have Level 1
automation and contain an internal ADAS that supports some
autonomous functionality triggered/handled by the car (e.g.,
collision avoidance system). Semi-autonomous driving starts
at Level 2 automation. Level 2 car models are currently being
sold by various companies [18] and support semi-autonomous
driving that automatically steers by using an autopilot but
requires a human driver for monitoring and intervention. In
this study, we focus on Mobileye 630 PRO, which is the most
popular commercial external ADAS, and on the Tesla Model
X’s (HW 2.5) autopilot, which is the most advanced autopilot
currently deployed in Level 2 automation cars.

Cars rely on sensor fusion to support semi/fully autonomous
driving and create virtual perception of the physical envi-
ronment surrounding the car. They contain a GPS sensor
and road mapping that contains information about driving
regulations (e.g., minimal/maximal speed limit). Most semi/-
full autonomous cars rely on two types of depth sensors
(two of the following types: ultrasound, radar, and LiDAR)
combined with a set of video cameras to achieve 360◦ 3D
perception (a review about the use of each sensor can be
found in [12]). Sensor fusion is used to improve single sensor-
based virtual perception which is considered limited (e.g., lane
detection can only be detected by the video camera and cannot
be detected by other sensors), ambiguous (due to the low
resolution of the information obtained), and not effective in
adverse weather/light conditions. In this study, we focus on the
video cameras that are integrated into autopilots and ADASs.

Vehicular communication protocols (e.g., V2I, V2P, V2V,
V2X) are considered the X factor of a driverless future
[19] (a review of vehicular communication protocols can be
found in [3]). Their deployment is expected to improve cars’
virtual perception regarding their surroundings by providing
information about nearby (within a range of 300 meters)
pedestrians, cars, road signs, lanes, etc. sent via short-range
communication. They are expected to increase the level of
semi/fully autonomous car safety, however these protocols are
currently not in use for various reasons [3, 4], and it is not
clear when these protocols will be more widely used around
the world. In this study, we focus on the validation gap that
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exists as a result of the delay in the deployment of vehicular
communication systems.

Many methods that exploit the validation gap have been
demonstrated in the last four years [5–13]. Physical attacks
against computer vision algorithms for traffic sign recognition
were suggested by various researchers [5–9]. Sitawarin et al.
[6] showed that they could embed two traffic signs in one
with a dedicated array of lenses that causes a different traffic
sign to appear depending on the angle of view. Eykholt et
al. [5], Zhao et al. [9], Chen et al. [8], and Song et al. [7]
showed that adding a physical artifact (e.g., stickers, graffiti)
that looks innocent to the human eye misleads traffic sign
recognition algorithms. These methods [5–9] rely on white-
box approaches to create an evading instance capable of being
misclassified by computer vision algorithms, so the attacker
must know the model of the targeted car.

Several attacks against commercial ADASs and autopilots
have also been demonstrated in recent years [10–14]. An
adversarial machine learning attack against a real ADAS was
implemented by Morgulis et al. [10] against a car’s traffic
sign recognition system. Spoofing and jamming attacks against
the radar and ultrasound of the Tesla Model S which caused
the car to misperceive the distance to nearby obstacles were
demonstrated by Yan et al. [12]. Keen Labs [13] recently
demonstrated an attack that causes the autopilot of the Tesla
Model S to deviate to the lane of oncoming traffic by placing
stickers on the road. Petit et al. [11] showed that a laser
directed at MobilEye C2-270 can destroy its optical sensor
permanently. Other attacks against LiDAR sensors were also
demonstrated by Petit et al. [11] and Cao et al. [20], however
the success rate of these attacks in real setups against commer-
cial cars is unknown. Another interesting attack against Tesla’s
navigation system was recently demonstrated by Regulus [14]
and showed that GPS spoofing can cause Tesla’s autopilot to
navigate in the wrong direction.

A few cyber-attacks against connected cars with 0-5 au-
tomation levels have been demonstrated [21–25]. However,
we consider this type of attacks beyond of the scope of this
paper, because they don’t result from the validation gap. These
attacks do not target sensors and are simply the result of poor
implementation in terms of security.

III. PHANTOM ATTACKS & THREAT MODEL

In this section, we define phantoms, discuss the perceptual
challenge they create for machines, present remote threat
models, and discuss the significance of phantom attacks. We
define a phantom as a depthless object intended at causing
ADASs and autopilot systems to perceive the object and
consider it real. A phantom object can be projected by a
projector or presented on a screen (e.g., billboard). The object
can be an obstacle (e.g., person, car, truck, motorcycle), lane,
or road sign. The goal of the attack is to trigger an undesired
reaction from a target autopilot/ADAS. In the case of an
ADAS, the reaction would be a driver notification about an
event (e.g., lane changes) or even an alarm (e.g., collision
avoidance). For autopilot systems, the phantom could trigger
a dangerous reaction like sudden braking.

Fig. 2: An example showing how object classifiers are only
concerned with matching geometry. In this case, Google
Cloud’s Vision API is used: https://cloud.google.com/vision/.

Fig. 3: An example demonstrating that object detectors aren’t
concerned about context. Here, the Faster R-CNN Inception
ResNet model from [26] is used.

A. The Vulnerability

We consider phantom attacks as perceptual challenge for
intelligence of machines. We do not consider phantom attacks
bugs, since they don’t exploit poor code implementation. There
are two fundamental reasons why phantoms are considered
a perceptual challenge for ADASs and autopilots. The first
reason is because phantoms exploit the validation gap, i.e.,
the inability of semi/fully autonomous cars to verify their
virtual perception with a third party. Instead, the semi/fully
autonomous car must rely on its own sensor measurements.
Therefore, when the camera detects an imminent collision or
some other information critical for road safety, the system
would rather trust that information alone, even if other sensors
"disagree" in order to avoid accidents ("a better safe than
sorry" approach).

The second reason is because the computer vision algo-
rithms are trained to identify familiar geometry, without con-
sideration for the object’s context or how realistic they look.
Most object detection algorithms are essentially feature match-
ers, meaning that they classify objects with high confidence if
parts of the object (e.g., geometry, edges, textures) are similar
to the training examples (see Fig. 2 for an example). Moreover,
these algorithms don’t care whether the scene makes sense or
not; an object’s location and local context within the frame are
not taken into account. Fig. 1b presents an example where an

https://cloud.google.com/vision/
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TABLE I: Phantom Projection Mapped to a Desired Result

Desired Result Triggered
Reaction

Type of
Phantom

Place of
Projection

Traffic
collision

Deviation to
pavement/lane
of oncoming
traffic

Lane Road

Trigger
sudden
brakes

Stop sign Building,
billboardNo entry sign

Obstacles (cars,
people, etc.) Road

Reckless/illegal
driving behavior

Triggering
fast driving Speed limit

Building,
billboardTraffic

jam

Decreasing
speed
limitation

Speed limit

Stopping cars No entry sign
Directing traffic
to chosen roads

Closing
alternative roads No entry sign

ADAS positively identifies a road sign in an irregular location
(on a tree), and Fig. 3 demonstrates this concept using a
state-of-the-art road sign detector. Also, because an object’s
texture is not taken into account, object detectors still classify a
phantom road sign as a real sign with high confidence although
the phantom road sign is partially transparent and captures
the surface behind it (see Fig. 1). Finally, these algorithms
are trained with a ground truth that all objects are real and
are not trained with the concept of fakes. Therefore, although
projected images are perceived by a human as obvious fakes
(florescent, transparent, defective, or skewed), object detection
algorithms will report the object simply because the geometry
matches their training examples (see Fig. 1b).

B. The Threat Model

We consider an attacker as any malicious entity with a
medium sized budget (a few hundred dollars is enough to
buy a drone and a portable projector) and the intention of
creating chaos by performing a phantom attack that will
result in unintended car behavior. The attacker’s motivation
for applying a phantom attack can be terrorism (e.g., a desire
to kill a targeted passenger in a semi/full autonomous car or
harm a nearby pedestrian by causing an accident), criminal
intent (e.g., an interest in creating a traffic jam on a specific
road by decreasing the allowed speed limit), or fraud (e.g.,
a person aims to sue Tesla and asks someone to attack
his/her car). Table I maps a desired result (causing a traffic
collision, triggering illegal driving behavior, routing cars to
specific roads, and causing a traffic jam), a triggered reaction
(triggering the car’s brakes, deviating the car to the lane of
oncoming traffic, reckless driving), and the phantom required
(lane, road sign, obstacle). In this study, we demonstrate
how attackers can cause a traffic collision and illegal driving
behavior by applying phantom attacks against Mobileye 630
PRO and Tesla’s Model X.

While many methods that exploit the validation gap have
been demonstrated in the last four years [5–14], we con-
sider their application as less desirable, because they can
only be applied by skilled attackers with expertise in sensor
spoofing techniques (e.g., adversarial machine leaning [5–10]
or radio/ultrasound/LiDAR spoofing/jamming [11, 12, 14]).

Fig. 4: The Threat Model: An attacker (1) either remotely
hacks a digital billboard (2) or flies a drone equipped with a
portable projector (3) to create a phantom image. The image is
perceived as a real object by a car using an ADAS/autopilot,
and the car reacts unexpectedly.

Some of the attacks [5–9] rely on white-box approaches that
require full knowledge of the deployed models and a complex
preprocessing stage (e.g., finding an evading instance that
would be misclassified by a model). Moreover, the forensic
evidence left by the attackers at the attack scene (e.g., stickers)
can be easily removed by pedestrians and drivers or used by
investigators to trace the incident to the attackers. Additionally,
these attacks necessitate that the attackers approach the attack
scene in order to manipulate an object using a physical
artifact (e.g., stickers, graffiti) [5–10, 13] or to set up the
required equipment [11, 12, 14], acts that can expose attackers’
identities. The exposure vs. application balance which requires
that attackers "pay" (with identity exposure) for the ability to
perform these attacks is probably the main reason why these
attacks have not been seen in the wild.

The phantom attack threat model is much lighter than
previously proposed attacks [5–14]. Phantom attacks do not
require a skilled attacker or white-box approach, and the
equipment needed to apply them is cheap (a few hundred
dollars). Any person with malicious intent can be an attacker.
Since phantoms are the result of a digital process they can
be applied and immediately disabled, so they do not leave
any evidence at the attack scene. Finally, phantom attacks
can be applied by projecting objects using a drone equipped
with a portable projector or presenting objects on hacked
digital billboards for advertisements that face the Internet
[27, 28] and are located near roads, thereby eliminating the
need to physically approach the attack scene, changing the
exposure vs. application balance. The abovementioned reasons
make phantom attacks very dangerous. The threat model is
demonstrated in Fig. 4. In this study, we demonstrate the
application of phantom attacks via a drone equipped with
a projector and objects embedded in existing advertisements
presented on digital billboards.

IV. PHANTOM ATTACKS ON ADAS (MOBILEYE)

Commercial ADASs have been shown to decrease the
volume of accidents in various studies [29] by notifying drivers
about road signs, imminent collisions, lane deviations, etc.
As a result, countries around the world promote/mandate the
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Fig. 5: (a) Mobileye 630 PRO consists of a video camera
(boxed in green), which is installed on the windshield, and a
display (boxed in purple). (b) Experimental setup: the phantom
(boxed in red) projected from a portable projector placed on a
tripod (boxed in blue), and the attacked vehicle equipped with
Mobileye 630 (boxed in yellow).

use of ADASs in cars that were not manufactured with such
systems [16, 17]. Phantom attacks against an ADAS can
trigger reckless driving or traffic jams (by notifying drivers
about abnormal speed limits), incorrect steering (by notifying
drivers about lane deviations), and even sudden braking (by
sounding an alarm about an imminent collision). Mobileye
630 PRO is considered the most advanced external ADAS
for automation level 0-1 cars, so we decided to use Mobileye
630 PRO in this study. In the rest of this section we refer to
Mobileye 630 PRO as Mobileye.

First, we show how attackers can identify and analyze the
various factors that influence the success rate of phantom
attacks against a real ADAS/autopilot, and we use Mobileye
to demonstrate this process. Then, we show how attackers
can disguise phantom attacks so they won’t be recognized
by a human driver using black-box techniques. Finally, we
demonstrate how attackers can leverage their findings and
apply phantom attacks in just 125 ms via: 1) a projector
mounted to a drone, and 2) an advertisement presented on
a hacked digital billboard.

Given the lack of V2I, V2V, and V2P protocol implementa-
tion, Mobileye relies solely on computer vision algorithms and
consists of two main components (see Fig. 5a): a video camera
and a display which provides visual and audible alerts about
the surroundings, as needed. Mobileye is also connected to
the car’s CAN bus and obtains other information (e.g., speed,
the use of turn signals). Mobileye supports the following
features: lane deviation warning, pedestrian collision warning,
car collision warning, and road sign recognition. The accuracy
of Mobileye’s road sign recognition feature is stable, even in
extreme ambient light or weather conditions, and is considered
very reliable. Thus, we decided to focus our efforts on trying
to fool this feature, with the aim of challenging Mobileye’s
most robust functionality (the functionality of some of their
other features, like pedestrian collision warning, does not work
in the dark/night [30]).

A. Analysis

In this subsection, we show how attackers can identify the
various factors that influence the success rate of phantom

Fig. 6: Examples of road signs with different opacity levels.

attacks against a real ADAS/autopilot. We show how attackers
can determine: 1) the diameter of the phantom road sign re-
quired to cover a given attack range, 2) the projection intensity
required to cover a given attack range given the ambient light.
Throughout the subsection we refer to a projected road sign as
a phantom. Fig. 5b presents an illustration of the experimental
setup used in the experiments described in this subsection. We
used the Nebula Capsule projector, a portable projector with
an intensity of 100 lumens and 854 x 480 resolution, which we
bought on Amazon for $300 [31]. The portable projector was
placed on a tripod located about 2.5 meters from a white screen
(2.2 x 1.25 meters), and the phantom was projected onto the
center of the screen. Mobileye is programmed to work only
when the car is driving, so to test whether the phantom was
captured by Mobileye, we drove the car (a Renault Captur
2017 equipped with Mobileye) in a straight line at a speed of
approximately 25-50 km/h and observed its display.

Experimental Setup: We started by demonstrating how at-
tackers can calculate the diameter of the projected phantom
road sign required to attack a driving car located a desired
distance from the phantom. We tested six different sized
phantoms of a road sign (20 km/h speed limit) with diameters
smaller than our white screen (0.16, 0.25, 0.42, 0.68, 1.1, and
1.25 meters). We report the minimal and maximal distances for
which the phantom road sign was detected as real by Mobileye.

Results: Fig. 7 presents the results from this set of experi-
ments. The black points on the graph indicate the minimal and
maximal distances for each phantom size. The gray area on
the graph shows the detection range for the entire sample set.
The red points indicate the midpoint between the maximal
and minimal distance. First, we report that road signs with
a diameter of less than 0.16 meters were not detected by
Mobileye at all. Beyond the minimal and maximal distances,
Mobileye ignores the phantoms and does not consider them
at all. This is probably due to an internal mechanism that
calculates the distance from a detected road sign based on
the size of the road sign in pixels. Mobileye only presents a
road sign to the driver if the sign is located within the specific
distance range (1-5 meters) of the car [32]. If Mobileye detects
a road sign which is very small, it interprets this as being far
from the car; if the road sign is viewed by Mobileye as very
large, Mobileye considers it too late to notify the driver about
the sign. Mobileye only notifies the driver about a sign when
the size of the detected road sign is within the desired size
range (in terms of pixels). This is the reason why the red
points on the graph maintain a linear behavior between the
distance and the diameter. Our white screen is limited by its
size (a height of 1.25 meters), so the maximal distance we were
able to validate is 14.8 meters when using a phantom road sign
with a diameter of 1.2 meters. However, distances beyond 14.8
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Fig. 7: Required diameter of phantom as a
function of distance.

Fig. 8: Required intensity of projection (delta
from ambient light) as a function of distance.

a                              b                                c

d                              e                                f

Fig. 9: Real road signs (a-c) and
fake road signs with different out-
line color (d), different color of
the sign’s inner content and outline
(e), different background color (f).

meters can be assessed by calculating the equation of the red
linear curve by applying linear regression to the results. The
function calculated is presented in Equation 1:

Diameter (Range) = 0.206 ×Range− 0.891 (1)

Equation 1 results in the following: correlation coefficient
(r) = 0.995, residual sum of squares (rss) = 0.008, and
coefficient of determination (R2) = 0.991. This equation can be
used by attackers to calculate the phantom diameter required
as a function of the distance between the phantom and the car
they want to attack for a range ≥ 14.8 meters.

Experimental Setup: We continue by demonstrating how
attackers can calculate the intensity of projection required
to attack a driving car located at a desired distance from
the phantom. Since light deteriorates with distance, a weak
projection may not be captured by Mobileye’s video camera
beyond a given distance. In order to investigate this effect,
we tested ten phantoms (a 20 km/h speed limit sign) with
different opacity levels (10%, 20%,.., 100%). These phantoms
created various projection intensities, as can be seen in Figure
6. For every projected phantom, we measured the intensity of
projection (in LUX) on the white screen with a professional
optical sensor, and the maximal distance from which Mobileye
could detect this phantom. We also measured the ambient light
(in LUX) on the white screen when no projection was applied.
We calculated the difference between a measurement as it was
captured on the white screen (in LUX) and the ambient light
(in LUX) as it was captured on the white screen. We consider
this difference the intensity the attacker must use to project a
phantom on the surface with a given ambient light.

Results: Fig. 8 presents the results of this set of experiments.
This graph indicates that 1) it is easier to apply phantom
attacks at night (in the dark) with weak projectors, and
2) stronger projectors are needed to apply phantom attacks
during the day. The graph shows a polynomial behavior in
the distances evaluated. The required projection intensity for
ranges that are beyond 14.8 meters can be calculated using
Lagrange interpolation. The result is presented in Equation 2:

∆ Lux (Range=r) = 0.01 × r5 − 0.90 × r4+

21.78 × r3 − 258.86 × r2 + 1525.72 × r − 3566.76
(2)

This equation can be used by attackers to calculate the
projection intensity required as a function of the distance from
the car they want to attack for distances ≥ 14.8 meters.

B. Disguising the Phantoms to Avoid Detection by Drivers
In this subsection, we demonstrate how attackers can dis-

guise the phantoms so that they 1) aren’t detected by a driver
while he/she is driving the car, and 2) are misclassified by
Mobileye.

Experimental Setup: First, we assess whether Mobileye is
sensitive to the color of the sign. The motivation behind this set
of experiments is that ambient light conditions can change the
perception of the colors and hues of the captured road signs;
we assumed that Mobileye contains an internal mechanism that
compensates for this fact. We chose three road signs (presented
in Fig. 9a-c) and verified that Mobileye detects their phantoms
(projected in their real colors) as real road signs. Next, we
projected a phantom of the same traffic sign outlined in a
different color (presented in Fig. 9d), a phantom of a road sign
with a different color of both its inner content and outline (Fig.
9e), and a phantom sign with a different background color
(Fig. 9f).

Results: We found that Mobileye is not sensitive to color,
since all of the phantoms presented in Fig. 9d-f were classified
by Mobileye as real road signs. Based on this, we concluded
that Mobileye either obtains the pictures in grayscale (digital-
ly/physically) or its road sign recognition system ignores the
detected road sign’s color.

Experimental Setup: In this experiment, we aimed to de-
termine the minimal projection time required to ensure that
Mobileye detects the phantom. The projector we used works
at the rate of 25 FPS. We created 25 videos that present
a black background for 10 seconds. In each of the videos,
we embedded a road sign (30 km/h speed limit) in a few
consecutive frames (1,2,3...,25). Then, we projected the videos
with the embedded road signs.

Results: We discovered that Mobileye is capable of detect-
ing phantoms that are projected for 125 ms. We were unable
to fool Mobileye with shorter projection times, likely due to
an internal mechanism that validates a detected traffic sign
against a consecutive number of frames that exceeds 125 ms
or due to the low FPS rate of its video camera.
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Fig. 10: A phantom (boxed in red) is projected on a building
for 125 seconds from a drone; the phantom is captured by
the passing Renault Captur, and Mobileye 630 PRO (boxed in
yellow) identifies the phantom as real.

Embedded
Road Sign

a

b

c

Fig. 11: Embedded road sign in a Coca-Cola advertisement
(a): full, (b) outline, and (c) embedding.

C. Evaluation (Split Second Attacks)

We now show how attackers can leverage this knowledge
to apply a phantom attack in a split second attack (125 ms)
disguised as 1) a drone delivery, and 2) an advertisement
presented on a digital billboard; in this case, the attacker’s ob-
jective is to cause a driver that follows Mobileye notifications
and adjusts his/her driving accordingly to drive recklessly.

Applying a Phantom Attack Using a Drone: This experi-
ment was conducted on the premises of our university after
we received the proper approvals from the security department.
We mounted a portable projector on a drone (DJI Matrice 600)
carrying a delivery box, so it would look like a drone delivery.
In this experiment, our car (a Renault Captur equipped with
Mobileye) was driven in an urban environment as the attacker
operated the drone; the attacker positioned the drone in front
of a building so the phantom speed limit sign (90 km/h) could
be projected onto the wall so as to be in Mobileye’s field
of view. The attacker then waited for the car to arrive and
projected the incorrect 90 km/h speed limit sign for 125 ms.
A snapshot from the attack can be seen in Fig. 10, and the
recorded video of the attack was uploaded.1 Mobileye detected
the phantom and notified the driver that the speed limit on this
road is 90 km/h, although driving faster than 30 km/h on this
road is not permitted. Attackers can also mount lightweight
projectors onto much smaller drones; we were able to apply
the same attack using an AAXA P2-A LED projector (weighs
just 8.8 ounces) mounted on a DJI Mavic.

Applying a Phantom Attack via a Digital Billboard:
Attackers can present phantoms via a desired digital billboard

1 https://youtu.be/sMsaPMaHWfA

Fig. 12: Tesla’s autopilot identifies the phantom as a person
and does not start to drive. The red box contains a picture of
the car’s dashboard.

Fig. 13: The Tesla identifies the phantom as a car. The red
box contains a picture of the car’s dashboard.

that is located near roads by hacking a billboard that faces
the Internet (as was shown in [27, 28]) or by renting the
services of a hacked billboard on the darknet. Attackers can
disguise the phantom in an existing advertisement to make
the attack more difficult to detect by drivers, pedestrians, and
passengers. There are two methods of embedding phantoms
within the content of an existing advertisement, as presented
in Fig. 11: 1) a split second attack with full embedding in
which a phantom is added to a video of an advertisement
as is for 125 ms, and 2) a split second attack with outline
embedding in which a phantom’s outline is added to a video
of an advertisement for 125 ms. Embedding a phantom within
a video of an advertisement is a technique that attackers can
easily apply using simple video editors, in order to disguise
the attack as a regular advertisement presented on a digital
billboard. We demonstrate these techniques using a random
Coca-Cola ad. We added the content of a road sign (a speed
limit of 90 km/h) to three consecutive frames in a Coke ad
using the two methods mentioned above (snapshots from the
compromised frames of the ads are presented in Fig. 11), and
the ad was uploaded. 2 With the experimental setup seen in
Fig. 5b, we projected the two advertisements on the white
screen to simulate a scenario of a phantom attack applied
via a hacked digital billboard. The road sign was detected
by Mobileye in both cases, and the driver was notified that
the speed limit was 90 km/h although driving faster than 50
km/h is not permitted on the road.

2 https://youtu.be/sMsaPMaHWfA?t=31

https://youtu.be/sMsaPMaHWfA
https://youtu.be/sMsaPMaHWfA?t=31
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Fig. 14: Fooling the obstacle detection system: (a) A Tesla operating in cruise control (at location 1) approaches a phantom (at
location 2). As a result, the car’s collision avoidance system automatically triggers the brakes which reduces the car’s speed
from 18 MPH to 14 MPH while traveling to location 3. Snapshots of the car’s dashboard (at locations 2 and 3) are presented
in the red boxes. (b) The projected phantom as it was captured from a camera placed inside the car.

V. PHANTOM ATTACKS ON SEMI-AUTONOMOUS CARS
(TESLA)

Autopilots have been deployed in semi-autonomous cars
since the last quarter of 2015, and many car manufacturers
have recently started to include them in level 2 automation
cars [18]. Phantom attacks against semi-autonomous cars can
trigger an unintended reaction from the autopilot that will
result in a collision. Tesla’s autopilot is considered statistically
safer than a human driver [33], so we decided to test its
robustness to phantom attacks in this study. All of the experi-
ments described in this section were conducted with the Tesla
Model X HW 2.5 which was manufactured in November 2017.
The most recent firmware (2019.31.1) was installed at the
time the experiments were conducted (September 2019). This
model supports cruise control and autopilot functionalities. It
also provides an anti-collision system to prevent the car from
accidents with pedestrians, cars, etc.

First, we show that no validation is performed when an
obstacle has been visually detected, likely due to a safety
policy. Then, we show how attackers can exploit this fact
and cause Tesla’s autopilot to automatically and suddenly put
on the brakes (by projecting a phantom of a person) and
deviate from its path and cross the lane of oncoming traffic
(by projecting a phantom of a lane). The set of experiments
presented in this section was not performed in the same coun-
try that the experiments against Mobileye were performed.
Flight regulations in the country that the experiments against
Tesla were conducted prohibit the use of drones near roads
and highways, so all of the attacks discussed in this section
were applied via a portable projector (LG - CineBeam PH550
720p DLP projector) mounted on a tripod, although they could
be implemented from a drone as was done in the experiments
described in the previous section.

A. Fooling the Obstacle Detection System

In the absence of V2V and V2P protocols, Tesla’s obstacle
detection system obtains information about its surroundings
from eight surround video cameras, twelve ultrasonic sensors,

and front-facing radar [34]. Any obstacle (e.g., person, car,
motorcycle, truck) detected by this system is presented to the
driver on the dashboard. In this subsection, we evaluate the
robustness of this system to phantom attacks.

Experimental Setup: We started by testing the system’s
robustness to a phantom of a picture of a person. Since the
projector was placed on the sidewalk on the side of the road,
we applied a morphing process to the picture, so it would
look straight at the Tesla’s front video camera (this process
is described in the Appendix) and projected the morphed
phantom on the road about one meter in front of the car. We
then engaged the Tesla’s autopilot.

Results: As can be seen from the results presented in Fig.
12, the Tesla’s autopilot did not start to drive, since the
phantom was detected as a real person (a picture of the car’s
dashboard appears in the red box, with the "person" detected
boxed in yellow). We were only a bit surprised by this result,
because the radar cross section of humans is dramatically
lower than that of a car due to differences in their size,
material, and orientation. This fact makes Tesla’s front-facing
radar measurements ambiguous and unreliable for the task
of sensing people. In addition, ultrasound measurements are
known to be effective for just short ranges (~ 5-8 meters) [12],
so the obstacle detection system cannot rely on ultrasound
measurements to sense people. These two facts can explain
why the Tesla did not validate the existence of the phantom
person detected by the front-facing camera with the front-
facing radar and the set of ultrasound sensors, and thus
considers it a real obstacle.

Experimental Setup: Next, we aimed at testing the obstacle
detection system’s response to a projected phantom of a car.
We took a picture of a car and morphed it so it would look
straight at the car’s front video camera and projected the
phantom car on the road about one meter in front of the Tesla.

Results: We were surprised to see that the depthless phan-
tom car projected on the road was detected as a real car, as can
be seen in Fig. 13. This is a very interesting result, because
the phantom car was projected about one meter in front of the
Tesla to the area in the driving environment which is covered
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Fig. 15: Fooling the lane detection system: (a) A Tesla with its autopilot engaged (at location 1) approaches a phantom lane
projected on the road (at location 2). As a result, Tesla’s lane detection system causes the car to turn to the left, following
the phantom white lane and crossing the real solid yellow lane, so that the car is driving across the lane of oncoming traffic
to location 3 (the result is marked with a red arrow). Pictures of the car’s dashboard at locations 1 and 2 are presented in the
red boxes. (b) The projected phantom lanes as captured from a camera placed inside the car.

by the car’s front-facing radar and ultrasound. Considering
the fact that a car’s radar cross section is very reliable, since
cars are made of metal, the existence of visually identified
cars can be validated with the front-facing radar. Based on
this experiment, we concluded that Tesla’s obstacle detection
system does not cross-validate the existence of a visually
detected obstacle with another sensor. When we contacted
Tesla’s engineers they did not share the reasons for our
findings with us, but we assume that a "better safe than sorry"
policy is implemented, i.e., if an obstacle is detected by one
of Tesla’s sensors with high confidence, Teslas are designed
to consider it as real and stop rather than risking an accident.

Experimental Setup: With the observation noted above in
mind, we show how attackers can exploit the "better safe than
sorry" policy and cause Tesla’s collision avoidance system to
trigger sudden braking, by applying a phantom attack of a
person. We drove the car to a deserted location to conduct
this experiment. Fig. 14a presents the attack stages. At the
beginning of the experiment we drove the car at a speed of 18
MPH (which is the slowest speed at which the cruise control
can be engaged) and engaged the cruise control at location 1
in Fig. 14a. The cruise control system drove the car at a fixed
speed of 18 MPH from location 1 to location 2. At location
2 a phantom of a person was projected in the middle of the
road (as can be seen in Fig. 14b).

Results: A few meters before location 2 where the phantom
was projected, the Tesla’s obstacle detection system identified
a person, as can be seen in Fig. 14a which presents a picture
of the dashboard, as it appeared when the car reached location
2. Again, there was no validation with another sensor to detect
fake objects, and the collision avoidance system caused the car
to brake suddenly (at location 2), decreasing the car’s speed
from 18 MPH to 14 MPH by the time the car reached location
3. The experiment was recorded and uploaded.3 While we
performed this experiment carefully, implementing the attack

3 https://youtu.be/sMsaPMaHWfA?t=43

when the car was driving at the lowest speed possible with
cruise control (18 MPH), attackers can target this attack at
semi/fully autonomous cars driving on highways at speeds of
45-70 MPH, endangering the passengers in the attacked car
as well as those in other nearby cars.

B. Fooling the Lane Detection System

Tesla’s lane detection system is used by its autopilot to steer
the car safely. It is also used to notify the driver about lane
deviations in cases in which the car is manually driven. This
system shows the driver the detected lane on the dashboard. In
the absence of deployed V2I protocols, Tesla’s lane detection
system is based purely on a video camera. In this subsection,
we test the robustness of Tesla’s lane detection system to a
phantom attack.

Experimental Setup: We demonstrate how attackers can
cause Tesla’s autopilot to deviate from its path and cross the
lane of oncoming traffic by projecting phantom lanes. We
created a phantom consisting of two lane markings which
gradually turn to the left, using a picture that consists of two
white lanes on a black background. We drove the car on a
road with a single lane in each direction. The two lanes were
separated by a solid yellow line, as can be seen in Fig. 15a.
We engaged the autopilot functionality (at location 1), and the
car was steered by the autopilot on the road towards location
2, traveling toward the phantom that was projected at location
2 (the driving route is indicated by the blue arrow in Fig. 15a).
The two red boxes are pictures of the car’s dashboard taken at
each of the locations. A video demonstrating this experiment
was recorded and uploaded.4 A picture of the road taken from
the driver’s seat showing the white phantom lanes that cross
the real solid yellow is presented in Fig. 4b.

Results: As can be seen from the red box at location 2 in Fig.
15a, Tesla’s lane detection system detected the phantom lanes
turning toward the left as the real lanes. The autopilot turned

4 https://youtu.be/sMsaPMaHWfA?t=77

https://youtu.be/sMsaPMaHWfA?t=43
https://youtu.be/sMsaPMaHWfA?t=77
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the car toward the left, following the phantom white lanes and
crossing the real yellow solid lane (the path is marked with
the red arrow in the figure) and driving across the lane of
oncoming traffic until we put on the brakes and stopped the
car at location 3 in Fig. 15a. Tesla’s lane detection system was
unable to differentiate between the real yellow lane and the
white phantom lanes although they were different colors.

In the Appendix we demonstrate another application of
phantom attacks against Tesla’s stop sign recognition system.
We show how a Tesla considered a phantom stop sign that was
projected on a road that does not contain a stop sign. Since
Tesla’s stop sign recognition system is experimental and is not
considered a deployed functionality, we chose to exclude this
demonstration from the paper.

VI. DETECTING PHANTOMS

Phantom attacks work well because autonomous systems
consider the camera sensor alone in order to avoid making a
potentially fatal mistake (e.g., failing to detect a pedestrian in
the street). Since it makes sense to rely on just the camera
sensor in these situations, we propose that an add-on software
module be used to validate objects identified using the camera
sensor.

As discussed in section III-A, ADASs and autonomous sys-
tems often ignore a detected object’s context and authenticity
(i.e., how realistic it looks). This is because the computer
vision model is only concerned with matching geometry and
has no concept of what fake objects (phantoms) look like.
Therefore, the module should validate the legitimacy of the
object given its context and authenticity. In general there are
five aspects which can be analyzed to detect a phantom image:
Size. If the size of the detected object is larger or smaller than

it should be, the detected object should be disregarded,
e.g., a road sign which is not regulation size. The size and
distance of an object can be determined via the camera
sensors alone through stereoscopic imaging [35].

Angle. If the angle of the object does not match its placement
in the frame, it is indicative of a phantom. The skew
of a 2D object facing a camera changes depending on
which side of the frame it is situated. A phantom may
be projected at an angle onto a surface, or the surface
may not be directly facing the camera. As a result, the
captured object may be skewed in an anomalous way.

Context. If the placement of the object is impossible or
simply abnormal, it is indicative of a phantom, e.g., a road
sign that does not have a post or a pedestrian ‘floating’
over the ground.

Surface. If the surface of the object is distorted or lumpy, or
has features which do not match the typical features of
the detected object, then it is likely a phantom, e.g., when
a phantom is projected onto a brick wall or an uneven
surface.

Lighting. If the object is too bright given its location (e.g.,
in the shade) or time of day, then it can be assumed to
be a phantom. This can be determined passively through
image analysis or actively by shining a light source onto
the object (e.g., flash photography).

In the following subsections, we present one possible im-
plementation this countermeasure module which considers the
last three aspects. We focus on detecting projected phantom
road signs, because we can evaluate our approach in conjunc-
tion with eight state-of-the-art road sign detectors. We also
note that road sign location databases do not mitigate road
sign phantom attacks. This is because temporary road signs
are very common. For example, caution, speed, and stop signs
in construction zones, and stop signs on school buses. Finally,
although we focus on road signs, the same approach can be
applied to other types of phantom objects (pedestrians, cars,
etc.).

A. The Detection Module
Overall, our module works as follows. First, the module

receives a cropped image of a road sign from the on-board
object detector. The module uses a model to predict whether
or not the object’s setting makes sense and whether or not the
object is realistic and reports the decision back to the system.
The module can be used on every detected object or only
on those which the controller deems urgent (e.g., to avoid an
imminent collision with a person).

To predict whether or not an object is a phantom or real,
we could build a simple convolutional neural network (CNN)
classifier which receives a cropped image of a road sign and
then predicts whether it is real or fake, however this approach
would make the neural network reliant on specific features
and thus would not generalize to phantoms projected on
different surfaces or made using different types of projectors.
For example, the light intensity of a road sign is an obvious
way to visually distinguish between a real and projected
sign. As a result, a neural network trained on the entire sign
would primarily focus on this aspect alone and make errors
with phantoms projected on different surfaces or made using
different projectors (not used in the training set).

To avoid this bias, we utilize the committee of experts
approach used in machine learning [36] in which there is an
ensemble of models, each of which has a different perspective
or capability of interpreting the training data. Our committee
consists of three deep CNN models, each focusing on a
different aspect (see Fig. 16 for the model parameters). The
models receive a cropped image of a road sign. The models
then judge if the sign is authentic and contextually makes
sense:
Context Model. This CNN receives the context: the area

surrounding the road sign with the road sign itself erased.
Given a context, the model is trained to predict whether
a sign is appropriate or not. The goal of this model is to
determine whether the placement of a sign makes sense
in a given location.

Surface Model. This CNN receives the sign’s surface: the
cropped sign alone in full color. Given a surface, the
model is trained to predict whether or not the sign’s
surface is realistic. For example, a sign with tree leaves
or brick patterns inside is not realistic, but a smooth one
is.

Light Model. This CNN receives the light intensity of the
sign. The light level of a pixel is the maximum value
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Fig. 16: The proposed phantom image detection module. When a frame is captured, (1) the on-board object detector locates
a road sign, (2) the road sign is cropped and passed to the Context, Surface, and Light models, and (3) the Combiner model
interprets the models’ embeddings and makes a final decision on the road sign (real or fake).
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Fig. 17: A diagram showing how the training and testing
data was prepared from our data sources, and the number of
instances.

of the pixel’s RGB values (the ‘V’ in the HSV image
format). The goal of this model is to detect whether a
sign’s lighting is irregular. This can be used to differ-
entiate real signs from phantom signs, because the paint
on signs reflects light differently than the way light is
emitted from projected signs.

To make a prediction on whether or not a sign is real or
fake, we combine the knowledge of the three models into a
final prediction. As an image is passed through each of the
models, we capture the activation of the fifth layer’s neurons.
This vector provides a latent representation (embedding) of
the model’s reasoning as to why it thinks the given instance
should be predicted as a certain class. We then concatenate the
embeddings to form a summary of the given image. Finally, a
fourth neural network is trained to classify the image as real
or fake using the concatenated embeddings. The entire neural
network has 860, 216 trainable parameters.

B. Experimental Setup

To evaluate the proposed detector, we combined three
datasets containing driver seat perspective images (see Fig.
17 for a summary). The first is the GTSRB German traffic
sign dataset [37] denoted as (Rg). The second is a dataset we
recorded from a dash cam while driving at night for a three
hour period in a city, which is denoted as (Rd). The third is

another dash cam dataset we recorded while driving an area
where phantom road signs were projected, denoted as (Fd).
In the Fd dataset, we projected 40 different types of signs
in a loop onto nine different surfaces while driving by. We
then used eight state-of-the-art road sign detectors (described
in [26]) to detect and crop all of the road signs in Rg , Rd,
and Fd. The cropped road signs were then passed as input to
the models.

To train the context model, we needed examples which do
not contain signs (denoted as Rn) to teach the model the
improper placement of signs. For this dataset we cropped
random areas from Rg and Rd such that the center of the
cropped images does not contain a sign.

The Context, Surface, and Light models were trained sep-
arately, and then the Combiner model was trained on their
embeddings. Regarding the data, %80 was used to train the
models, and the remaining %20 was used to evaluate them. To
reduce bias, the evaluation samples taken from Fd contained
phantom projections on surfaces which were not in the training
set. Training was performed on an NVIDIA Titan X (Pascal)
GPU for 100 epochs.

C. Experimental Results

1) Model Performance: In Fig. 19 we present the receiver
operating characteristic (ROC) plot and the area under the
ROC for of the Context, Surface, Light, and Combiner models.
The ROC shows the true positive rate (TPR) and false positive
rate (FPR) for every possible prediction threshold, and the
AUC provides an overall performance measure of a classifier
(AUC=1 : perfect predictions, AUC=0.5 : random guessing).

There is a trade-off when setting a threshold. This is because
a lower threshold will decrease the FPR but often decrease the
TPR as well. In our case, it is critical that our module predicts
real signs as real every time. This is because the vast majority
of signs passed to our module will be real. Therefore, even a
very small FPR would make the solution impractical. For this
reason, in Table II we provide the TPR and FPR of the models
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Fig. 18: Examples of disagreements between the models for real and fake road signs which led to correct predictions.

Fig. 19: The receiver operating characteristic curve and AUC
measure for each model. A larger AUC is better.

when the threshold is set to 0.5 (the default for softmax) and
for the threshold value at which the FPR is zero.

2) The Committee at Work: In Table II, we note that the
Combiner model performs better than any of the individual
models alone. In Table II we also show that there is no com-
bination of models that performs as well as the combination
consisting of all three models. This means that each aspect
(context, surface, and light) contributes a unique and important
perspective on the difference between a real and phantom road
sign.

This is important since in order for the committee of experts
approach to be effective there must be some disagreements
between the models. In Fig. 18, we provide some visual
examples of the disagreements which resulted in a correct
prediction by the Combined model. In some cases, a model
simply misclassifies although the evidence is clear. For ex-
ample, sometimes the Context model does not realize that
the sign is on the back of a truck (bottom right corner of
Fig. 18). In other cases, a model misclassifies simply because
its perspective does not contain the required evidence. For
example, sometimes the Context model finds it abnormal for
a sign to be floating on a horizontal structure (top left corner

TABLE II: The TPR and FPR of the Countermeasure Models
at Different Thresholds. C: Context, S: Surface, L: Light

  Context Surface Light Combined 

Threshold @ 0.5 
TPR 0.9989 0.9979 0.9968 1.0 
FPR 0.2946 0.0085 0.0652 0.0085 

Threshold @ [FPR=0] 
TPR 0 0.215 0.959 0.992 
FPR 0 0 0 0 

 

C: Context, S: Surface, L: Light 

  C S L C+S C+L S+L C+S+L 

Threshold 

@ 0.5 

TPR 0.778 0.960 0.972 0.969 0.971 0.973 0.976 

FPR 0.151 0.072 0.039 0.071 0.035 0.021 0.022 

Threshold 

@ [FPR=0] 

TPR 0.006 0.724 0.870 0.726 0.884 0.896 0.902 

FPR 0 0 0 0 0 0 0 

TPR: % of phantoms detected, FPR: % of road signs misclassified as phantoms 

WE note the fpr=0 rates because it dangerous to make no mistakes on a regular daily basis. 

Although it the context model seems to generate a lot of false positives, the combined model benefits from its input. Concretely, without the context model, the combined 

model’s AUC drops from X to 0.9969, and when FPR is zero, the percent of phantoms misclassified as real jumps from 0.85% to 74% (1-TPR).  

 

Disagreement Between the Models 

 Disagreement on… C vs S C vs L S vs L C vs S vs L 

Threshold 

@ 0.5 

Phantoms 0.3% 0.4% 0.5% 0.6% 

Real Signs 29.7% 32.0% 6.2% 33.9% 

Threshold 

@ [FPR=0] 

Phantoms 21.0% 95.8% 74.8% 95.8% 

Real Signs 0% 0% 0% 0% 

 

Road Sign Detection Model Deployed Before After 

faster_rcnn_inception_resnet_v2_atrous 92.57% 0% 

faster_rcnn_resnet_101 87.62% 0.09% 

faster_rcnn_resnet50 97.53% 0% 

faster_rcnn_inception_v2 99.02% 0.28% 

rfcn_resnet101 93.00% 0% 

ssd_inception_v2 59.06% 0.54% 

ssd_mobilenet_v1 40.70% 0.68% 

yolo_v2 79.22% 0.67% 

 

TABLE III: The Disagreement Between the Models

  Context Surface Light Combined 

Threshold @ 0.5 
TPR 0.9989 0.9979 0.9968 1.0 
FPR 0.2946 0.0085 0.0652 0.0085 

Threshold @ [FPR=0] 
TPR 0 0.215 0.959 0.992 
FPR 0 0 0 0 

 

C: Context, S: Surface, L: Light 

  C S L C+S C+L S+L C+S+L 

Threshold 

@ 0.5 

TPR 0.9989 0.9979 0.9968 1.0 1.0 1.0 1.0 

FPR 0.2946 0.0085 0.0652 0.0170 0.0567 0.0142 0.0085 

Threshold 

@ [FPR=0] 

TPR 0 0.2153 0.9590 0.8613 0.3782 0.262 0.9915 

FPR 0 0 0 0 0 0 0 

TPR: % of phantoms detected, FPR: % of road-signs misclassified as phantoms 

WE note the fpr=0 rates because it dangerous to make no mistakes on a regular daily basis. 

Although it the context model seems to generate a lot of false positives, the combined model benefits from its input. Concretely, without the context model, the combined 

model’s AUC drops from X to 0.9969, and when FPR is zero, the percent of phantoms misclassified as real jumps from 0.85% to 74% (1-TPR).  

 

Disagreement Between the Models 

 

 Disagreement on… C vs S C vs L S vs L C vs S vs L 

Threshold 

@ 0.5 

Phantoms 0.3% 0.4% 0.5% 0.6% 

Real Signs 29.7% 32.0% 6.2% 33.9% 

Threshold 

@ [FPR=0] 

Phantoms 21.0% 95.8% 74.8% 95.8% 

Real Signs 0% 0% 0% 0% 

 

TABLE IV: The Detection Rates Using s.o.t.a Road Sign
Detectors
 

  Detection Rate 

  given real signs 

(baseline) 

given fake signs 

(attack) 

 Countermeasure? 

   No Yes 

R
o

a
d

 S
ig

n
 D

et
ec

to
r faster_rcnn_inception_resnet_v2 70.4% 92.57% 0.36% 

faster_rcnn_resnet_101 70.7% 87.62% 0.67% 
faster_rcnn_resnet50 70.2% 97.53% 0.56% 

faster_rcnn_inception_v2 70.4% 99.02% 1.19% 
rfcn_resnet101 71.2% 93.00% 0.49% 

ssd_inception_v2 62.8% 59.06% 0.96% 
ssd_mobilenet_v1 58.5% 40.70% 1.41% 

yolo_v2 69.4% 79.22% 5.70% 

 

of Fig. 18). Regardless, in all cases the other models (experts)
provided a strong vote of confidence contrary to the erroneous
opinion, and this ultimately led to the correct prediction.

However, the committee of experts approach is not perfect.
Fig. 20 provides an example of a case in which the Combiner
model failed. Here the sign is real, but only the Context model
identified it as such. However, due to motion blur, the other
models strongly disagreed.

3) Module Performance: Our module filters out untrusted
(phantom) road signs detected by the on-board object detector.
Since there are many different implementations of road sign
detectors, one detector may be fooled by a specific phantom
while another would not. Therefore, to determine how effective
our module is within a system, we evaluated phantom attacks
on eight state-of-the-art road sign detectors [26]. We measured
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Fig. 20: An example of a false positive, where the Combiner
model failed due to a disagreement.

the attack success rate on a detector as the percent of phantom
signs identified in Fd. In Table IV we present the attack
success rates on each detector before and after applying our
countermeasure.5 We also provide each of the detector’s accu-
racy with real road signs (Rg) as a baseline. The results show
that the detectors are highly susceptible to phantom attacks
and that our countermeasure provides effective mitigation.

In summary, with all models combined as a committee
and the FPR tuned to zero, the TPR is 0.9. This means that
our countermeasure is reliable enough for daily usage (is not
expected make false alarms) and will detect a phantom 90%
of the time. However, our training set only contained several
hours of video footage. For this solution to be deployed, it
is recommended that the models be trained on much larger
datasets with phantoms projected from other devices as well.
We also suggest that additional models which consider size
and angle be considered.

VII. RESPONSIBLE DISCLOSURE

This research shows that the absence of deployed vehic-
ular communication systems limits the ability of semi/fully
autonomous cars to validate virtual perception and that the car
industry doesn’t take phantom attacks into consideration. We
have nothing against Tesla or Mobileye, and the reason that
their products were used in our experiments is because their
products are the best and most popular products available on
the market.

We shared our findings with Mobileye’s bug bounty via
email and received the following response: "There was no
exploit, no vulnerability, no flaw, and nothing of interest: the
road sign recognition system saw an image of a street sign,
and this is good enough, so Mobileye 630 PRO should accept
it and move on." We agree with Mobileye regarding their
claim that there wasn’t an exploit or vulnerability. We do
not consider phantom attacks bugs, since they don’t exploit
poor code implementation. Instead, phantom attacks pose a
perceptual challenge to ADASs and autopilots which are
unable to validate their findings with a third party due to the
lack of deployed vehicular communication systems. However,
we disagree with Mobileye’s claims that there is "nothing of
interest and no flaw," because Mobileye 630 PRO considered
a phantom as a legitimate street sign. Considering the fact
that Mobileye’s technology is currently integrated in semi-
autonomous cars (e.g., the Tesla with HW 1) which will even-
tually be programmed to stop when a stop sign is recognized,
the inability of Mobileye’s technology to distinguish between a

5Here the Combiner model’s threshold is set to the value where the FPR=0.

phantom and a real stop sign may be exploited by attackers to
target semi-autonomous cars driving on highways at speeds of
45-70 MPH in order to trigger sudden braking using a phantom
stop sign.

We also shared our findings with Tesla’s bug bounty via
email. Tesla decided to dismiss all of our findings due to
the fact that the experiments that are presented in the Ap-
pendix, were performed after enabling the experimental stop
sign recognition system, claiming: "We cannot provide any
comment on the sort of behavior you would experience after
doing manual modifications to the internal configuration - or
any other characteristic, or physical part for that matter -
of your vehicle". Tesla engineers removed the experimental
code from the firmware about two weeks after we contacted
them about this matter. While we did indeed enable the stop
sign recognition feature in the experiments presented in the
Appendix, we did not influence the behavior that led the car
to steer into the lane of oncoming traffic or suddenly put on
the brakes after detecting a phantom.

VIII. DISCUSSION

One might argue that the deployment of vehicular commu-
nication systems will prevent attackers from applying phantom
attacks in the wild, however this is unlikely to be the case. We
don’t believe that full deployment of vehicular communication
systems that support V2V, V2I, V2P, and V2X protocols will
cause the manufacturers of semi/full autonomous cars to aban-
doned the "better safe than sorry" policy, because they cannot
rely on the assumption that if no validation was obtained for
a detected visual object, then the object must be a phantom.
There are other reasons why there might not be validation. V2P
communication relies on the fact that pedestrians are carrying
devices (e.g., smartphones) and requires that they carry such
devices with them. If a pedestrian’s device is turned off (e.g.,
drained battery) or the pedestrian isn’t carrying a device (e.g.,
forgot it at home), validation based on V2P communication
isn’t possible. Since car manufacturers cannot rely on the
assumption that they will be able to validate the presence of
pedestrians with V2P protocols, they must implement a "better
safe than sorry approach" policy. This is also the reason why
car manufacturers cannot completely rely on V2V validation
in the case of a visually detected car - not all cars contain
a fully functioning V2V device. The complete deployment of
V2I systems around the world might limit the attackers’ ability
to project a phantom lane or road sign, but the full deployment
of such systems might not be practical, since doing so is very
expensive, and currently most places around the world don’t
utilize V2I systems at all.

An interesting observation made during this study is that the
perceptual challenge that phantoms create is, in some cases,
an intelligence discriminator between people and machines.
Distinguishing between a projected object and a real object is
something that in some cases can be solved by examining the
context. This fact can be used to perform a Turing test [38] for
machine vs. human perception with an interesting application
in areas such as CAPTCHA, i.e., detecting Internet sessions
launched by bots.
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IX. APPENDIX

A. Morphing a Picture for a Projection

Figure 21 presents three locations. Location 1 is the location
of the front facing camera of the targeted car. Location 2
shows where the attack will be implemented from (this can
be a sidewalk, a drone, etc.). Location 3 indicates where the
attacker wishes to project the phantom. When projecting a
picture from location 2 toward location 3 (at a non-90 degree
horizontal/vertical angle), the picture loses its form and looks
distorted when it is captured by the front facing camera of
the targeted car (positioned at location 1). In order to project
a picture that will look straight at the car’s forward facing
camera, we performed the following steps:

• Downloading a Picture - We downloaded a picture of an
object that the car’s obstacle detection system can iden-
tify. Currently, Tesla signals the driver about pedestrians,
cars, trucks, motorcyclists, etc. The original picture used
is presented in Figure 22a.

Fig. 21: Morphing Process Attacked Scene: Location 1 is
where the front facing camera of the targeted car is located.
Location 2 is where the attacker will perform the attack.
Location 3 shows where the attacker wants to project the
phantom.

• Brightening the Picture - We brightened the picture in
order to emphasize its projection on the road. This is
an optional step. The brightened picture is presented in
Figure 22b.

• Projecting the Picture from the Front Facing Camera -
We placed the portable projector at location 1, near the
car’s front facing camera, and projected it on the road.

• Taking a picture of the Projected Object from Location 2
- We took a picture of the projected object from location
2, which is the place that we would like the attacker
to apply the attack. Figure 22c shows how Figure 22b
was captured on the road from a smartphone’s camera
located at location 2.

• Morphing the Original Object Using GIMP - We mor-
phed Figure 22b using GIMP according to Figure 22c and
created a new picture. The result is presented in Figure
22d.

• Projecting the Morphed Picture from Location 2 - Fi-
nally, we projected the picture presented in Figure 22d
from location 2 to location 3. The result as it was captured
from a camera that was placed in the driver’s seat is
presented in Figure 22e.

B. Fooling Tesla’s Road Sign Recognition System

In this subsection, we evaluate the robustness of Tesla’s stop
sign recognition system to phantom attacks. In the absence of
V2I protocols, Tesla HW 2.5 uses a geolocation mechanism
to obtain the information needed as the car is driving; this
mechanism uses an internal database (without the use of the
video camera) which is queried with location and orientation
data in order to obtain the necessary information regarding
traffic laws on a given road. In order to obtain the location
and orientation data required to query the database, the car
calculates its location via a GPS sensor over time and infers the
driving orientation on a road. This new functionality is used
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Fig. 22: Morphing Process Outputs: (a) the original picture of
the obstacle, (b) the brightened picture, (c) the object projected
from the car’s front facing camera as it was captured from a
camera placed where we want to apply the attack, (d) the
morphed picture, and (e) the object as it was captured from
the driver’s seat.

by Tesla to obtain speed limits on roads. This mechanism,
which is only available in Tesla’s new models (HW 2, 2.5
and 3), replaced Tesla’s old autopilot (HW 1) which relied on
Mobileye technology and was based on visual detection [39].
The new mechanism was designed to decrease false detection
rates as a result of unintended edge cases (e.g., speed limits
were detected from the back of trucks, parallel streets, parking
lot entrances [40]) and attacks [5–10].

Tesla recently deployed firmware which supports stop sign
and traffic light recognition. This functionality was recently
integrated into Tesla’s HW 2.0,2.5 and 3.0, and it is considered
experimental and is disabled by default. It can be enabled by
changing a system variable in Tesla’s computer, and we did
just that. A stop sign/traffic light recognition system requires
a high level of physical recognition accuracy which cannot be
obtained via standard GPS devices due to their known average
error under open skies (up to 7.8 m, with 95% probability
[41]). Given this limitation, Tesla cannot rely purely on the
geolocation mechanism as in the case of speed limit sign
recognition. Another reason is because in cases in which there
is no line on the road indicating where to stop, the location
of the stop sign/traffic light itself is considered the point at
which to stop. In order to compensate for this fact, Tesla uses
an additional means and considers a stop sign/traffic light (and
presents a signal to the driver to this effect) only if the stop

sign/traffic light has also been recognized by the car’s object
detection mechanism via the front video camera. If one of the
following conditions does not hold, the car will not consider
a stop sign/traffic light: 1) the stop sign/traffic light was not
detected by the front video camera, 2) the car is not located
within a geolocated area with an intersection that known to
contain a stop sign/traffic light, or 3) the orientation of the car
is not facing the stop sign/traffic light.

With that in mind, we show how an attacker can fool Tesla’s
stop sign recognition system, so that it considers a phantom
stop sign projected on a road that does not contain a stop
sign when the car is in fact located 50 meters from a nearby
intersection that contains a traffic light. Fig. 23a shows a road
(marked with a yellow arrow) that ends at a intersection that
contains a traffic light with stop line. When the car approached
the intersection, the traffic light recognition system informed
us about the traffic light visually detected. We then looked for
a nearby road with the same orientation that didn’t contain
a stop sign. We decided to conduct our experiments on the
road marked with a blue arrow in Fig. 23a; we first validated
that a stop sign is not detected by the Tesla on this road by
driving down the road. The Tesla did not recognize a stop
sign, and as a result, no indication appeared on the dashboard.
The selection of this road allowed us to orient the car such
that it was traveling in the direction of a nearby intersection
that contains traffic light but on a different road.

Experimental Setup: We started by trying to determine the
radius of the geolocation mechanism by finding maximal
distance from the intersection that Tesla’s stop sign recognition
system considers a phantom as a real stop sign. We drove the
car on the road marked with the blue arrow and projected a
phantom of a stop sign on a white board at various distances
(50, 60, and 70 meters) from the original stop sign.

Results: The Tesla identified the projected stop signs as real
on places located at a distance of 50 meters or less from the
intersection. Phantoms projected at distances of 60 and 70
meters from the intersection were not considered by Tesla’s
stop sign recognition system as real. Interestingly, although
the global average user range error of GPS measurements is
≤ 7.8 meters, with 95% probability [41], the radius of the
geolocation mechanism is greater than that by six times.

Experimental Setup: Next, we decided to test whether
Tesla’s stop sign recognition system considers colorless pro-
jection of phantom stop signs as real. The motivation behind
this set of experiments is the same as in the Mobileye
experiments described earlier: ambient light conditions can
change the way colors and hues are perceived by the system
of a captured stop sign, so we assumed that Tesla cars contain
an internal mechanism that compensates for this fact. In order
to conduct this experiment, we projected two phantoms of
colorless stop signs (presented in Figs. 23c and d) on a wall
located 50 meters from the real stop sign (marked with a
phantom in Fig. 23a). We drove the car on the road marked
with the blue arrow in Fig. 23a.

Results: As in the Mobileye case, we found that Tesla’s
stop sign recognition system does not take the color of the
stop sign into account. It detected all of the projected stop
signs as real stop signs, regardless of the presence of color
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and issued notifications about them.
Experimental Setup: Next, we aimed to test which features

are more important to Tesla’s stop sign recognition system.
Our analysis of the two phantoms in Figs. 23c and d, shows
that they consist of two components: the hexagon shape and
the word "STOP." Using the same experimental setup as the
previous experiment, we projected two more phantoms, one
consisting of only the word "STOP" (see Fig. 23e) and another
consisting of an empty hexagon on the wall.

Results: While we expected that Tesla’s stop sign recogni-
tion system would consider the hexagon shape and ignore the
word "STOP," the results of this experiment were surprising.
The word "STOP" was recognized as a stop sign, while the
empty hexagon was ignored. This experiment confirms that
the most dominant feature recognized by Tesla’s stop sign
recognition system is the word "STOP."

Experimental Setup: Next, we decided to evaluate whether
a stop sign projection can be disguised so it won’t be seen
by a human driver (in the case of a semi-autonomous car).
We created phantom videos that present regular stop signs for
250ms, 125ms, 82ms, and 41ms. With the same experimental
setup described above, we projected each video while we were
driving the car on the road marked with the blue arrow.

Results: We found that the minimal time period required for
Tesla’s stop sign recognition system to identify a phantom is
125 ms. We were unable to fool Tesla’s stop detection system
with projection periods shorter than 125 ms.

As mentioned earlier, the Tesla stop sign recognition system
is currently experimental and we are confident that when it
is officially deployed it won’t misclassify phantom the word
"STOP" as real stop sign. However, attackers might still be
able to fool a robust stop sign recognition system by applying
a phantom projection attack using the original stop sign (a red
hexagon with the word "STOP") because: 1) The Tesla must
be able to detect stop signs visually in cases in which a stop
line does not exist or in cases of temporal stop signs (e.g.,
stop sign extended from a school bus driver’s window), so
Tesla cars will need to rely on a video camera for detecting a
stop sign, leaving the option for attackers to project phantom
stop signs. In addition, while Tesla’s engineers did not reveal
the reason why they decided to use a radius of 50 meters for
their geolocation mechanism, we believe that the reason for
this decision is the following: While the GPS measurement’s
average error is is ≤ 7.8 meters with 95% probability [41],
there are various cases (e.g., tunnels) in which the error of the
obtained GPS measurements can be greater than the average
error (≥ 7.8). Limiting the geolocation area to 7.8 meters will
probably result in many false negatives, i.e., a detected stop
sign/traffic light will not be considered by the system as a
real due to incorrect GPS measurements. Again, the absence
of V2I protocols can be exploited by attackers to cause greater
harm. While Tesla’s current stop sign recognition mechanism
does not cause the car to stop, full autonomous cars must have
the functionality that stops the car at a detected stop sign.
Given that the geolocation radius will probably be beyond
7.8 meters, attackers can target autonomous cars driving at
speeds of 45-70 MPH on a highway by projecting phantom
stop signs in specific locations (e.g., near intersections that

Fig. 23: Fooling the stop sign recognition system: Each of the
four phantoms (b-e), projected for just 125 ms, were recog-
nized by Tesla’s stop sign recognition system. The phantoms
were projected on a white wall located 50 meters from a
nearby intersection that contained a real stop sign.

contain stop signs and located at a distance which is less than
the geolocation’s radius), causing autonomous cars to stop in
the middle of a highway.
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