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Abstract. Hybrid Authenticated Key Exchange (AKE) protocols com-
bine keying material from different sources (post-quantum, classical, and
quantum key distribution (QKD)) to build protocols that are resilient
to catastrophic failures of the different components. These failures may
be due to advances in quantum computing, implementation vulnerabili-
ties, or our evolving understanding of the quantum (and even classical)
security of supposedly quantum-secure primitives. This hybrid approach
is a prime candidate for initial deployment of post-quantum-secure cryp-
tographic primitives because it hedges against undiscovered weaknesses.
We propose a general framework HAKE for analysing the security of
such hybrid AKE protocols. HAKE extends the classical Bellare-Rogaway
model for AKE security to encompass forward security, post-compromise
security, fine-grained compromise of different cryptographic components,
and more. We use the framework to provide a security analysis of a new
hybrid AKE protocol named Muckle. This protocol operates in one round
trip and leverages the pre-established symmetric keys that are inherent
to current QKD designs to provide message authentication, avoiding the
need to use expensive post-quantum signature schemes. We provide an
implementation of our Muckle protocol, instantiating our generic con-
struction with classical and post-quantum Diffie-Hellman-based algorith-
mic choices. Finally, we report on benchmarking exercises against our im-
plementation, examining its performance in terms of clock cycles, elapsed
wall-time, and additional latency in both LAN and WAN settings.

Keywords: Authenticated key exchange, hybrid key exchange, provable secu-
rity, protocol analysis, quantum key distribution, post-compromise security

1 Introduction

NIST’s Post Quantum Cryptography (PQC) process has triggered significant
effort into the design of new post-quantum public key algorithms that can even-
tually be used to replace existing algorithms in protocols such as IPsec and TLS.
Indeed, NIST’s 2017 call received 69 complete submissions in various categories.



However, much less attention has been paid on how to securely integrate these
new algorithms into applications, and to assessing the impact they will have on
the performance of real-world network protocols. A key issue is that the new al-
gorithms are relatively immature, and our understanding of their security is still
evolving. NIST lacked confidence in 13 of the original submissions [23]; mean-
while Albrecht et al. [4] highlight how poor our current understanding is of how
to assess the cost of lattice attacks. During the cryptographic interregnum, sen-
sitive data is still at risk from attackers who are willing to record and store net-
work traffic for later cryptanalysis. One response to this uncertainty is to quickly
roll out post-quantum secure algorithms in protocols like TLS. For example, in
2016 Google carried out an experiment in which they deployed the NewHope
lattice-based scheme [5] in Chrome and in Google servers [14], and in 2019
Cloudflare and Google jointly carried out similar experiments deploying both
lattice and supersingular isogeny-based schemes[21]. These tests adopted hy-
brid approaches, combining post-quantum schemes with forward-secure key ex-
change mechanisms, namely Elliptic Curve Diffie Hellman Ephemeral (ECDHE).
Adopting a hybrid approach hedges against security vulnerabilities in the post-
quantum algorithm (fundamental as well as implementation-related) whilst pro-
viding security against quantum adversaries. While discussions have started [28],
at this point no formal standardisation has begun integrating post-quantum al-
gorithms into secure Internet protocols, a few unadopted IETF drafts notwith-
standing [26, 30]. Standardisation will inevitably be needed, and we anticipate
that a hybrid approach will be used. But first the community needs to research
a) how to build and analyse hybrid protocols, and b) how to assure the security
of their post-quantum components. The former is the main focus of this work,
while the latter falls under the aegis of the NIST PQC process.

Quantum Key Distribution (QKD) is often promoted as an alternate solution
to the threat posed by large-scale quantum computers, and has some attractive
features: when well-implemented, it can offer unconditional security, it is also in-
creasingly well-integrated with standard optical communications and electronics
systems, with small package sizes and high raw bit rates, cf. [27]. However, the
achievable bit rate does not yet practically allow the use of QKD keying material
in a one-time-pad encryption system, so while the keying material may be uncon-
ditionally secure, no practical overall secure communications system relying on
QKD is (to date). Moreover, QKD is fundamentally range limited (in the absence
of quantum repeaters) and so cannot offer true end-to-end security in wide-area
networks. Furthermore the technology is still quite immature, and vulnerable
to various implementation attacks (“quantum hacking”), cf. [29, 19]. Even the
physical basis of QKD has been questioned [31, 10]. Despite this, QKD may still
usefully augment existing technologies in point-to-point applications, such as in-
tra or inter data-centre communications or in metropolitan networks. Given this
context, we should consider the possibility of incorporating QKD-based keying
material into our hybrid protocol designs, resulting in three sources of keying
material to combine: classically-secure (e.g. ECDHE), post-quantum secure (e.g.



NewHope, SIDH, or another NIST candidate), and QKD-based. Having estab-
lished this context, we can now begin to describe our contributions.

1.1 Our Contributions

The HAKE security framework: We introduce a flexible framework for captur-
ing and analysing Hybrid Authenticated Key Exchange (AKE) protocols that
combine a wide variety of symmetric and asymmetric primitives. The HAKE
framework is the result of heavily modifying the classic Bellare-Rogaway [7]
model for AKE, incorporating security notions such as perfect forward secrecy
and post-compromise security (referring to the ability of a key exchange protocol
to recover security in the event of a catastrophic compromise of all its secrets)
and smoothly caters for different strengths of adversary (quantum or even classi-
cal). It features a particularly simple and novel abstraction of QKD protocols to
allow them to be modelled in a standard computational setting: pairs of parties
are given private access to a shared source of secret random bits.

The Muckle AKE protocol: To exercise the HAKE framework, we also
present the Muckle AKE protocol,3 its security analysis, details of a working
software implementation of Muckle, and benchmarking results. Muckle securely
combines keying material obtained from a quantum key distribution (QKD)
protocol with that from a post-quantum-secure key encapsulation mechanism
(KEM) and a classically-secure KEM. Muckle is a one-round (1-RTT) protocol
which exploits the presence of a QKD component to simplify the authentication
of protocol messages. Specifically, QKD protocols typically assume the presence
of an initial or pre-shared key (PSK) between the pair of communicating parties.
This is used to bootstrap an authenticated channel for exchanging basis measure-
ment information.4 Muckle’s design assumes the presence of a second PSK (since
the cost of establishing two such keys is not any greater in practice than the cost
of establishing just one), and uses it as the basis for authenticating its proto-
col messages via MACs. Muckle evolves this key and associated state, updating
them with material obtained from the post-quantum and classical primitives as
well as the QKD itself, see Figure 2. Our approach avoids costly post-quantum
secure signatures, but Muckle and its security analysis can be extended to rely
on them instead of PSKs.

Benchmarking Muckle: We instantiate and implemented Muckle in ‘C’
(which we denote C-Muckle) and benchmarked it in different network settings,
selecting specific schemes in order to fix a concrete design , in particular instan-
tiating the post-quantum component with SIDH and the classical component
with ECDH, but other algorithmic choices are of course possible. We profile
the cost of the underlying C-Muckle functions in terms of the median execu-
tion wall-time and clock cycle counts. We also contrast the wall-time profiling

3 The name Muckle derives from the traditional English phrase “Many a mickle makes
a muckle”: many small things can add up to make a big thing.

4 As a side-note, this is why QKD in this normal form does not solve the key distri-
bution problem, but only the key expansion problem.



of C-Muckle functions when it runs over a LAN with the same profiling when it
is run between London and Paris (approximately 500km, somewhat more than
the current maximum range of single-hop QKD systems). These experiments are
done without a real QKD system, which is simulated via access to a file of keying
material.

Security analysis of Muckle: Finally, we demonstrate that Muckle achieves
AKE security as defined by our HAKE framework. This allows us to make secu-
rity statements about Muckle in the presence of quantum adversaries (assuming
post-quantum variants of standard cryptographic assumptions), or under the
catastrophic failure of all but one of its distinct components. The latter includes
scenarios where, for example, all public key cryptography evaporates (and only
Muckle’s QKD component remains secure). It also includes the situation where
the QKD component turns out to be badly engineered and therefore insecure
and where the classical component becomes vulnerable to a quantum computer,
but where its post-quantum counterpart remains secure.

Organisation: For readability, we describe the Muckle protocol (Section 2)
and its performance (Section 3) before presenting the HAKE security framework
(Section 4) and then the formal security analysis of Muckle using the framework
(Section 5). The paper closes with conclusions and directions for future work
(Section 6).

1.2 Related Work

While the analysis of “fully classical” hybrid schemes have appeared in the past
(for instance, work on combining multiple public-key encryption schemes [32]),
little work has been done on combining post-quantum and classical cryptographic
primitives. Bindel et al. [12] examine a variety of hybrid digital signature schemes
in quantum and post-quantum settings. They also formalise the notion of sepa-
rability, which captures the ability of an attacker to separate the hybrid scheme
into its individual cryptographic components. Bindel et al. [11] is most closely
related to our work, considering hybrid key exchange in a similar setting to our
own, but is focussed on quantum-secure KEM combiners. Their setting and se-
curity model are less general than ours in some regards (our HAKE framework
can accommodate KEMs, theirs is limited to KEMs), but considers a heirarchy
of attackers depending on quantum-computing capability and quantum access
to the protocol participants. In addition, their compromise paradigm is less fine-
grained, considering only the compromise of long-term and session keys. Com-
plementing our approach, Mosca et al. [24] analyse the security of the QKD
protocol BB84 [8], using an AKE security model in the tradition of Bellare-
Rogaway to formalise the protocol in their notation. They prove the security
of BB84 in this security model, and their notions of keys output by the QKD
protocol match our assumptions. The concept of breakdown resilience was intro-
duced by Brendel et al. [15]; this concept considers the effect on overall protocol
security of failures of individual cryptographic components. They also extend
Bellare-Rogaway security models by providing an interface for an attacker to



break individual cryptographic components, similar to our approach of provid-
ing specific key exposure oracles. Earlier work by Bos et al. [13] considered the
integration of the NewHope lattice-based scheme in TLS, but not in the sense of
a hybrid scheme, and provided a security model and formal analysis specific to
that setting. There have been a couple of recent IETF drafts [26, 30] describing
hybrid approaches for TLS 1.3, but without any accompanying formal security
analysis as far as we are aware.

2 The Muckle Protocol

Initiator Responder

CLASS. KEX (cpkA, cskA)
$← KEM.KeyGen()

QRA KEX (qpkA, qskA)
$← QKEM.KeyGen()

m0 ← headerA, qpkA, cpkA
AUTH mkeyA ← PRF(PRF(PSK , SecState), labelA)

AUTH τ0 ← MAC(mkeyA,m0) τ0
?
= MAC(mkeyA,m0) VERIFY

m0, τ0

(cpkB, k)
$← KEM.Encaps(cpkA) CLASS. KEX

(qpkB, qsk)
$← QKEM.Encaps(qpkA) QRA KEX

m1 ← headerB, qpkB, cpkB
mkeyB ← PRF(PRF(PSK , SecState), labelB) AUTH

VERIFY τ1
?
= MAC(mkeyB,m1) τ1 ← MAC(mkeyB,m1) AUTH

m1, τ1

ck ← PRF(k, labelck) CLASS. KEX

qk ← PRF(qsk, labelqk) QRA KEX

CLASS. KEX k ← KEM.Decaps(cskA, cpkB), ck ← PRF(k, labelck)

QRA KEX qsk ← QKEM.Decaps(qskA, qpkB)

QRA KEX qk ← PRF(qsk, labelqk)

QRA KDF k0 ← PRF(qk,m0‖m1) QRA KDF

CLASS. KDF k1 ← PRF(ck, k0) CLASS. KDF

QKM KDF k2 ← PRF(qkm[index-qkm], k1) QKM KDF

PCS KDF k3 ← PRF(SecState, k2) PCS KDF

SecState′, skA, skB ← PRF(k3,m0‖m1‖ctr)
ctr ← ctr + 1

Fig. 1: A single stage of the Muckle protocol. The definitions of the KEM, PRF and
MAC algorithms described here can be found in Appendix A.

Here we introduce the Muckle hybrid key exchange protocol; see Figure 1 for
an overview. At a high-level, Muckle simultaneously executes post-quantum and
classical key encapsulation primitives, and draws key material from a QKD pro-
tocol, represented abstractly in the protocol as a shared array of bits into which
the two parties can index. The three distinct types of key material are used as
inputs to a sequence of key derivation steps that we refer to as the Muckle key
schedule, see Figure 2. The design of the Muckle key schedule allows us to prove



that the session keys produced by Muckle are resilient to vulnerabilities in the
underlying QKD or key exchange primitives. Muckle is a multi-stage protocol,
where the initiator and responder repeatedly run the single stage shown in Fig-
ure 1, updating the session keys skA, skB and the secret, shared state SecState
of the protocol at each stage. We highlight the key features of Muckle below:

– One round trip (1-RTT) to establish post-quantum-secure session keys.
– Multi-stage design and the inclusion of an updating secret state (SecState)

allows Muckle to achieve post-compromise security, i.e. recover security after
full compromise attacks.5

– Hybrid key exchange approach allows Muckle to be secure against classical
adversaries even if the QKD and post-quantum components fail.

– Use of symmetric cryptography (of an appropriate key-length) allows Muckle
to achieve post-quantum authentication without the use of computationally-
expensive and bandwidth-intensive post-quantum signatures.

– Modular design allows implementers to easily replace underlying key ex-
change primitives if vulnerabilities are discovered.

– Key confirmation and full message transcript agreement of previous stages
are provided in successive stages via the computation of authentication keys.

We expand on these below, and explain the different components of Muckle.
Message Structure: There are four elements to a Muckle message: a header

(referred to in Figure 1 as headerA and headerB), containing message identifiers,
cryptographic primitive identifiers and party identifiers; a classical ephemeral
key encapsulation, (which we instantiate with elliptic-curve-based Diffie-Hellman
(ECDH) in C-Muckle); a post-quantum ephemeral key encapsulation, (which we
instantiate with Supersingular Isogeny-based Diffie-Hellman (SIDH) in C-Muckle);
and a MAC tag computed over the message. Appendix E contains additional de-
tails.

QKD: Muckle assumes that a QKD scheme is running between pairs of com-
municating parties. QKD schemes make use of classically-authenticated com-
munication channels, and such channels are (in practice) built using symmet-
ric keys (though they could use other cryptographic techniques, such as digital
signatures). Thus, Muckle assumes the presence of pre-shared symmetric keys
(PSKs) between pairs of communicating parties. Likewise, this makes it possi-
ble to assume the existence of pre-established party identifiers in the protocol.
Theses two value allow us to achieve post-quantum-secure authentication of the
Muckle messages without incurring the significant computational or communica-
tion overhead that would be associated with a post-quantum signature scheme.

In our description of Muckle, we abstract the QKD protocol by modelling
its output as an array of independent, uniformly-random bits (denoted qsk[·] in
Figure 1) that is available to both parties in the protocol, otherwise treating
the QKD component as a black box. Thus, we assume that the QKD system
is implemented perfectly. This significantly simplifies our security analysis task,
since it avoids the need for us to integrate existing QKD security models with

5 Under certain restrictions, see Section 4.



our HAKE security framework. However, this is an idealisation that we plan to
relax in future work, see Section 6 for more discussion. The pre-shared key is
denoted PSK in Figure 1, and is 256 bits in size. The party identifiers are 32-
byte strings (they do not appear explicitly in Figure 1, but instead are implicit
in labelA and labelB).

Authentication: MAC tag computations use freshly-generated keys (mkeyA,
mkeyB) for each new stage. Specifically, mkeyA ← PRF(PRF(PSK , SecState),
labelA), and mkeyB ← PRF(PRF(PSK , SecState), labelB). Note that SecState
is updated with each new stage, and thus mkeyA and mkeyB are similarly fresh.

Key Schedule: The key schedule (see Figure 2) is run after the initiator and
responder have sent and received their respective messages. The straightforward
iterative design simplifies the analysis of the protocol. Each step takes as input
some key material and a chaining key, and outputs a new chaining key used in
the next iteration. We also include a counter ctr (a 256-bit integer) in the final
PRF computation; ctr is incremented after each stage.

m0‖m1

PRFQKEM

k0

PRFKEM

k1

PRFQKM

k2

PRFSecState

k3

PRF

m0‖m1‖ctr

SecState′‖keys

Fig. 2: A diagram of the Muckle key schedule. The PRF function (defined in Section
A) takes input a key k, and some arbitrary-length bitstring in, outputs a fixed-length
bitstring out. In our diagram, the left input is k, and the top input is in.



State Update: The secret state SecState is updated at the end of a Muckle
stage ,6 when the session keys are computed. Specifically, SecState, skA, skB ←
PRF(k3,m0‖m1‖ctr), taking as input the final chain key k3 from the key sched-
ule, and the concatenation of the message transcript and counter: m0‖m1‖ctr.
Thus, consecutive Muckle stages provide implicit key confirmation (since in or-
der to derive the same SecState, protocol participants must also derive the
same session keys skA, skB) of previous stages, as well as full message transcript
agreement of previous stages.

Post-Compromise Security (PCS): At a high-level, PCS is the ability of
a key exchange protocol to recover security when an attacker has compromised
all secrets of a session. Obviously, this is impossible against an attacker that
remains active, as it can continue to act as a Man-in-the-Middle (MITM) and
using the long-term secrets, inject its own protocol messages. However, if during
some stage of the protocol, the attacker becomes passive, it is possible to recover
security (in the form of key indistinguishability) if the protocol participants
honestly complete that stage. In addition, at that point, the adversary should
no longer be able to act as an MITM. Our Muckle design achieves PCS by virtue
of the inclusion of the secret state SecState in the MAC computations and in
the derivation of the session keys.

3 Implementation of Muckle

This section describes our reference implementation of Muckle in ‘C’, which
we denote C-Muckle [2]. C-Muckle follows the same governing design principles
as Muckle, favouring simplicity and verifiability. As a result, we optimise for
readability and reproducibility and sacrifice features such as fully performance-
optimised code.

3.1 Instantiation and Implementation

C-Muckle targets 128-bit post-quantum security. To instantiate C-Muckle and
achieve this goal, we have made the following choice of parameters and crypto-
graphic algorithms:

KEM: Ephemeral elliptic-curve Diffie-Hellman key exchange using the elliptic
curve curve25519 [9].

QKEM: Supersingular isogeny Diffie-Hellman key exchange using field arith-
metic over the prime p503, construction and parameters by Costello et. al.
[17].

PRF: Pseudo-random function instantiated by the key derivation scheme HDKF
[20] using 256-bit keys.

MAC: Message authentication code instantiated by HMAC [6] using 256-bit keys.

We describe how to generically instantiate key encapsulation mechanisms
with Diffie-Hellman key exchange in Appendix B.

6 In the first stage, SecState is set to a constant, public value



Dependencies: To provide support for the chosen cryptographic components
C-Muckle relies upon two libraries: mbedtls [1] version 2.13.0 and PQCrypto-SIDH
[3] version 3. The former is used to support the ECDHE, PRF, and MAC cryp-
tographic components as well as random number generation, while the latter is
used to support SIDH.

Message Format: The C-Muckle message structure7 is 476 bytes in length,
identical in both directions, and consists of four fields. The first is the header,
consisting of three sub-fields: type, version and partyIdentifier. The
sub-fields type and version are both a single byte in length and indicate
the direction of the message, and the underlying cryptographic primitives, re-
spectively. One could think of the version sub-field as a ciphersuite indica-
tor, similar to how a TLS handshake message indicates the underlying crypto-
graphic components used in the handshake protocol. Currently, this field is set
to a fixed value, and it is included for future extensibility. The last sub-field
partyIdentifier is a 32-byte Muckle party identifier, a public string indi-
cating the identity of the party sending the message. The next two fields of a
C-Muckle message contain the ECDHE and SIDH public keys for either the ini-
tiator or responder, depending on the direction of the message. The ECDHE
field has a size of 32 bytes while the SIDH field has a size of 378 bytes. The last
field in a message contains the 32-byte MAC tag, computed over the first three
fields of the message. These messages are transported over TCP/IP.

QKD Bits: Currently, our software implementation of C-Muckle does not en-
gage with real QKD devices. The process of obtaining the bits produced by a
QKD protocol is therefore emulated.

We provide two distinct methods for doing this. The first method is to store
a static array of bits in the source code. During an execution, bits are read from
the array depending on an index. The second method reads from a file, with
bits similarly read from the file depending on an index. In both cases the bits
should be uniformly random. The method of emulation can be changed during
compile-time. Currently, C-Muckle defaults to using the static array method.
These methods are solely implemented for experimental use and should not be
used in any production system. C-Muckle is designed to allow easy switching to
a method that provides true access to QKD key material.

3.2 Performance Study

Here we profile and discuss the performance of C-Muckle. Our experiments aim
at conveying the cryptographic costs associated with the different components
of Muckle, as well as the total cost of executing a complete run of the protocol.
To achieve this, we benchmark different parts of C-Muckle as well as the core
cryptographic API calls made to external libraries.

7 For full details of the C-Muckle message, see Appendix E.



Methodology: We measure the performance of C-Muckle using two metrics:
clock cycles and wall-time. For each metric, a single stage execution of C-Muckle
is measured and recorded. The cost of lower layer functions responsible for per-
forming cryptographic operations is also measured and separately recorded. Be-
low we list these functions and describe the cryptographic operation they each
perform:

muckle ecdh gen(): Generates an ECDHE public key pair.
muckle ecdh compute(): Computes the ECDHE secret.
muckle sidh gen(): Generates the SIDH public key pair.
muckle sidh compute(): Computes the SIDH shared secret.
muckle read qkd keys(): Reads the QKD keying material using a method de-

scribed above.
muckle derive keys(): Derives the secret state and session keys according to the

key schedule defined in Section 2.

Note that the functions above perform more than just cryptographic operations.
Additional operations include initialisation, copying between buffers, and gen-
eral glue-code. We further discuss the overhead relative to the cryptographic
operations for a subset of these functions.

Our experiments were performed between two Amazon Web Service (AWS)
dedicated m5.large EC2 instances in two different availability zones (AZs) in the
London Region. Each instance runs lLinux 4.14 with an Intel Xeon Platinum
8175M 2.5 Ghz CPU. We chose this relatively short distance between the initia-
tor and responder to remain faithful to the practical restrictions on the deploy-
ment of Muckle. The QKD is an inherent part of the protocol, and deployment
of a QKD network currently has a maximum distance of approximately 100km
between nodes. For both metrics, the median over 100 samples is reported and
each process is pinned to a single CPU.

To contrast running C-Muckle over this short distance with a more typical
real-world setting, we performed the same experiment between two m5.large
EC2 instances in two different regions, London and Paris, but only measuring
the wall-time. The profiling results of this experiment can be found in Figure 3.

Wall-time Complete Execution: The complete execution time for a Muckle
protocol run between two AZs is approximately 12.9ms. In comparison, the com-
plete execution time between two regions is 26ms. The measurement scope is the
execution of one entire stage of Muckle, including networking, initialising con-
texts, running clean up functions and executing general glue-code. By contrast,
the round-trip-times for simple pings between two AZs and two regions were
0.745 ms and 8.224 ms.

Wall-time Function Profiling: Figure 4 provides a more granular view of
the cost for specific functions in C-Muckle between two AZs. For the initiator,
approximately 7.22ms is spent on various cryptographic function calls, with more
than 68% of the 7.22ms spent performing SIDH-related operations. The same
behaviour can be observed for the responder. The relative cost of cryptographic



Fig. 3: Results of the wall-time measurement experiment between two AWS EC2 in-
stances in two different regions (London and Paris). The top 6 categories for each chart
are functions that correspond to C-Muckle functions described earlier. The network cat-
egory includes time taken to initialise of the socket, as well as sending and receiving
messages. The percentage for the Other category is computed by subtracting the me-
dian wall-time for the top 6 functions and the median time for networking from the
entire median wall-time of the participant. (Left) C-Muckle initiator. (Right) C-Muckle
responder.

operations in C-Muckle is therefore more than 65% when it is run over the short
distances between AZs.

Clock Cycle Function Profiling: Table 1 contains an overview of the mea-
sured number of clock cycles for various functions. Each cell contains two func-
tions: the first in each cell is the C-Muckle function described above, while the
second is the function from the library dependencies,8 used to implement the
cryptographic operations in the C-Muckle function, i.e. during the execution of
e.g. muckle ecdh gen() the function mbedtls ecdh gen public() from the mbedtls
library will be called. The table therefore highlights the absolute overhead of
the cryptographic operations as implemented in C-Muckle compared to the core
cryptographic operation supported via one of the two library dependencies. We
have excluded the two functions muckle read qkd keys() and muckle derive keys()
because their cost is negligible relative to the total cost of the execution flow in
C-Muckle.

The overhead in cryptographic C-Muckle functions relative to the correspond-
ing external library functions is less than 15,000 clock cycles with one spike at
77,000 clock cycles. The overhead is predominately from copying buffers, ini-
tialisation and retrieving parameters. The “compute” functions also involve key
derivation steps.

The number of clock cycles for the ECDHE mbedtls functions using the el-
liptic curve curve25519, are far from state-of-the-art. For example, Bernstein [9]
reports a total of 832,457 clock cycles for both key generation and secret key
computation. It should therefore be possible to significantly improve the ECDHE

8 Either mbedtls or PQCrypto-SIDH



Fig. 4: Results of the wall-time measurement experiment between two AWS EC2 in-
stances in two different availability zones located in the same region (London). Specifi-
cally, the chart captures the relative median wall-time spent executing various functions
in the C-Muckle execution flow. The top 6 categories for each chart are functions that
correspond to C-Muckle functions described in the text. The network category includes
time taken to intialise of the socket, as well as sending and receiving messages. The
percentage for the Other category is computed by subtracting the median wall-time
for the top 6 functions and the median time for networking from the entire median
wall-time of the participant. (Left) C-Muckle initiator. (Right) C-Muckle responder.

Function Clock cycles

muckle ecdh gen() 2,769,893
mbedtls ecdh gen public() 2,768,317

muckle ecdh compute() 2,875,367
mbedtls ecdh calc secret() 2,846,614

initiator muckle sidh gen() 6,852,319
EphemeralKeyGeneration A SIDHp503() 6,775,268

initiator muckle sidh compute() 5,630,939
EphemeralSecretAgreement A SIDHp503() 5,613,257

responder muckle sidh gen() 7,531,586
EphemeralKeyGeneration B SIDHp503() 7,526,757

responder muckle sidh compute() 6,399,884
EphemeralSecretAgreement B SIDHp503() 6,391,934

Table 1: (Left column) The first function in each cell is a C-Muckle function described
in the text. The second in each cell is the function from the library dependency, used
to implement the C-Muckle function. The functions prefixed with mbedtls are from the
mbedtls library, otherwise they are from the PQCrypto-SIDH library. (Right column)
The median number of clock cycles over 100 samples.

performance in C-Muckle using a different library to mbedtls. However, we have
found the mbedtls library to be easier to work with than other available libraries
(like OpenSSL).



4 Hybrid Security Framework

Here we introduce our multi-stage hybrid authenticated key exchange (AKE) se-
curity framework HAKE for the analysis of our new protocol. HAKE follows the
tradition of standard Bellare-Rogaway-based AKE models, and cleanly captures
adversaries of differing strength (quantum and classical) via a fine-grained key
compromise interface. Specifically, we model quantum adversaries by allowing
them to corrupt non-post-quantum key exchange mechanisms (for instance, dis-
crete logarithm-based key exchange algorithms). We highlight that our HAKE
framework is flexible, and extends beyond Muckle, as HAKE captures (for exam-
ple) the use of long-term asymmetric secrets, which are not used within Muckle.
This allows HAKE to capture a variety of hybrid schemes, and is not simply to
restricted to the use case of Muckle. We explain the HAKE framework in Section
4.2 (and give an algorithmic description of the security model in Figure 5 of
Appendix C), and describe the corruption abilities of the adversary in Section
4.3. We then describe cleanness and partnering definitions in Section 4.4 as well
as Section 4.5.

4.1 Secret Key Generation

HAKE addresses secret key generation (the output of a “KeyGen” algorithm) of
individual key exchange components explicitly, and categorises them into long-
term (i.e. generated once and used in every execution of the protocol), and
ephemeral (i.e. generated on a per-stage basis) secret generation. We further
divide these into the following sub-categories:

– Post-quantum asymmetric secret generation. The generation of a public-key
pair for post-quantum code-based signature schemes is an example of a
long-term variant. We denote the algorithm that generates these secrets as
LQKeyGen. An algorithm that generates SIDH public-key pairs is an example
of an ephemeral variant, which we denote as EQKeyGen.

– Classical asymmetric secrets. An algorithm that generates long-term RSA
public-key pairs for signatures (that do not offer post-quantum security)
would be denoted via LCKeyGen. Similarly, the generation of ECDHE public-
key pairs would be done via ECKeyGen.

– Symmetric secrets. Long-term preshared secret keys would be generated via
LSKeyGen, while (for instance), we consider that the ephemeral keying ma-
terial generated by a quantum key distribution protocol to be captured
as a ephemeral symmetric secret generation algorithm, which we denote
ESKeyGen.

With this context, we now formally define the HAKE execution environment,
capturing how an adversary can interact with a hybrid AKE protocol. HAKE
as currently defined specifies only a single protocol of each category, i.e. one
ephemeral classical key exchange primitive, one ephemeral post-quantum key ex-
change primitive, but we note that one can generalise the number of components
of each type, allowing more flexibility in how HAKE protocols are constructed.



4.2 Execution Environment

Consider an experiment ExpHAKE,clean,AΠ,nP ,nS ,nT
(λ) played between a challenger C and

an adversary A. C maintains a set of nP parties P1, . . . , PnP
(representing users

interacting with each other in protocol executions), each capable of running
up to (potentially parallel) nS sessions of a probabilistic key-exchange protocol
Π. Each session can consist of up to nT consecutive stages, each an execu-
tion of the key-exchange protocol Π, represented as a tuple of algorithms Π =
(f,EQKeyGen,ECKeyGen,ESKeyGen, LQKeyGen, LCKeyGen, LSKeyGen). We use
πsi to refer to both the identifier of the s-th instance of the Π being run by party
Pi and the collection of per-session variables maintained for the s-th instance of
Π run by Pi, and f is a algorithm capturing the honest execution of the proto-
col Π by protocol participants. Due to space restrictions, we give the full list of
algorithms in Appendix C, but describe generically the algorithms below:

Π.f(λ,pki, ski,pskidi,pski, π,m)
$→ (m′, π′) is a (potentially) probabilis-

tic algorithm that takes a security parameter λ, the set of long-term asymmetric
key pairs pki, ski of the party Pi, a collection of per-session variables π and an
arbitrary bit string m ∈ {0, 1}∗∪{∅}. f outputs a response m′ ∈ {0, 1}∗∪{∅} and
an updated per-session state π′, behaving as an honest protocol implementation.

We describe a set of algorithms Π.XYKeyGen(λ)
$→ (pk, sk), where X ∈

{E, L} and Y ∈ {C,Q}. Π.XYKeyGen is a probabilistic post-quantum ephemeral
(if XY = EQ), post-quantum long-term (if XY = LQ), classic ephemeral (if XY =
EC), or classic long-term (if XY = LC) asymmetric keygen algorithm, taking a
security parameter λ and outputting a public-key/secret-key pair (pk, sk).

We describe a set of algorithms Π.ZSKeyGen(λ)
$→ (psk, pskid), where Z ∈

{E, L}. Π.ZSKeyGen is a probabilistic ephemeral (if Z = E), or long-term (if
Z = L) symmetric key generation algorithm taking as input a security parameter
λ and outputting some symmetric keying material and (potentially) a keying
material identifier (psk, pskid), (or (qkm, qkmid), respectively).

C runs Π.LQKeyGen(λ), Π.LCKeyGen(λ) and Π.LSKeyGen(λ) nP times to
generate asymmetric post-quantum and classical key pairs (which we denote with
pki, ski) for each party Pi ∈ {P1, . . . , PnP

} as well as a symmetric keys and iden-
tifier (psk,pskid) and delivers all public-keys pki, pskid for i ∈ {1, . . . , nP }
to A. The challenger C then randomly samples a bit b

$← {0, 1} and interacts
with the adversary via the queries listed in Section 4.3, also maintaing a set
of corruption registers, described in Appendix C. Eventually, A terminates and
outputs a guess d of the challenger bit b. The adversary wins the HAKE key-
indistinguishability experiment if d = b, and additionally if the test session π
satisfies a cleanness predicate clean, which we discuss in more detail in Section
4.5. We give an algorithmic description of this experiment in Figure 5 below.
Each session maintains a set of per-session variables:

ρ ∈ {init, resp}: The role of the party in the current session. Note that parties
can be directed to act as init or resp in concurrent or subsequent sessions.



pid ∈ {1, . . . , nP , ?}: The intended communication partner, represented with ?
if unspecified. Note that the identity of the partner session may be set during
the protocol execution, in which case pid can be updated once.

stid ∈ [nT ]: The current (or most recently completed) stage of the session.
α ∈ {active, accept, reject,⊥}: The status of the session, initialised with ⊥.
mi[stid] ∈ {0, 1}∗ ∪ {⊥}, where i ∈ {s, r}: An array of the concatenation of

messages sent (if i = s) or received (if i = r) by the session in each stage.
Initialised by ⊥ and indexed by the stage identifier stid.

k[stid] ∈ {0, 1}∗ ∪ {⊥}: An array of the session keys from each stage, or ⊥ if no
session key has yet been computed. Indexed by the stage identifier stid

exk[stid] ∈ {0, 1}∗ ∪ {⊥}, where x ∈ {q, c, s}: An array of the post-quantum
ephemeral asymmetric (if x = q), classic ephemeral asymmetric (if x = c),
or ephemeral symmetric (if x = s) secret keys used by the session in each
stage. Initialised by ⊥ and indexed by the stage identifier stid.

pss[stid] ∈ {0, 1}∗ ∪ {⊥}: Any per-stage secret state that is established during
protocol execution for use in the following stage. Sessions use pss[stid − 1]
during the protocol execution of stage stid. Indexed by stid.

st[stid] ∈ {0, 1}∗: Any additional state used by the session in each stage.

Finally, the challenger manages sets of corruption registers, which maintain the
leakage status of various secrets (i.e. which secrets A has revealed). We describe
the full set of registers in Appendix C.

4.3 Adversarial Interaction

Our HAKE framework considers a traditional AKE adversary, in complete control
of the communication network, able to modify, inject, delete or delay messages.
They are able to compromise several layers of secrets: (a) long-term private keys,
modelling the misuse or corruption of long-term secrets in other sessions, and
additionally allowing our model to capture forward-secrecy notions and quan-
tum adversaries. (b) ephemeral private keys, modelling the leakage of secrets
due to the use of bad randomness generators, or potentially bad cryptographic
primitives or quantum adversaries. (c) preshared symmetric keys, modelling the
leakage of shared secrets, potentially due to the misuse of the preshared secret
by the partner, or the forced later revelation of these keys due to the compro-
mise of partner devices. (d) ephemeral keying material, modelling attacks on the
quantum key distribution. For instance, capturing things such as photon split-
ting attacks. (e) session keys, modelling the leakage of keys by their use in bad
cryptographic algorithms. The adversary interacts with the challenger C via the
queries below:

Create(i, j, role)→ {(s),⊥}: Allows the adversary A to initialise a new session
owned by party Pi, where the role of the new session is role, and intended
communication partner party Pj . Note that if A has already initialised the
intended partner session, A must give the session index r (indicating the
intended partner session πrj ) in order to synchronise ephemeral symmetric



keys. If a session πsi has already been created, C returns ⊥. Otherwise, C
returns (s) to A.

Send(i, s,m)→ {m′,⊥}: Allows A to send messages to sessions for protocol exe-
cution and receive the output. If the session πsi .α 6= active, then C returns ⊥
toA. Otherwise, C computesΠ.f(λ,pki, ski,pskidi,pski, π

s
i ,m)→ (m′, πsi

′),
sets πsi ← πsi

′, updates transcripts πsi .mr, π
s
i .ms and returns m′ to A.

Reveal(i, s, t): Allows A access to the session keys computed by a session. C
checks if πsi .α[t] = accept and if so, returns πsi .k[t] to A. In addition, the
challenger checks if there exists another session πrj that matches with πsi ,
and also sets SKr

j [t]← corrupt. Otherwise, C returns ⊥ to A.
Test(i, s, t)→ {kb,⊥}: Allows A access to a real-or-random session key kb used

in determining the success of A in the key-indistinguishability game. If a
session πsi exists such that πsi .α = accept, then the challenger C samples a

key k0
$← D where D is the distribution of the session key, and sets k1 ←

πsi .k[t]. C then returns kb (where b is the random bit sampled during set-up)
to A. Otherwise C returns ⊥ to A.

CorruptSK(i, j)→ {psk,⊥}: Allows A access to the secret preshared key pskji =
pskij jointly shared by parties Pi and Pj prior to protocol execution. If the
preshared key has already been corrupted previously, then C returns ⊥ to
A.

CorruptQK(i)→ {qpki,⊥}: Allows A access to the secret post-quantum long-
term key qski generated for the party Pi prior to protocol execution. If the
secret post-quantum long-term key has already been corrupted previously,
then C returns ⊥ to A.

CorruptCK(i)→ {cpki,⊥}: Allows A access to the secret classical long-term key
cski generated for the party Pi prior to protocol execution. If the secret
classical long-term key has already been corrupted previously, then C returns
⊥ to A.

CompromiseQK(i, s, t)→ {eqk[t],⊥}: Allows A access to the secret ephemeral
post-quantum key πsi .eqk[t] generated for the session πsi prior to protocol
execution in stage t. If πsi .eqk[t] has already been corrupted previously, then
C returns ⊥ to A.

CompromiseCK(i, s, t)→ {eck[t],⊥}: Allows A access to the secret ephemeral
classical key πsi .eck[t] generated for the session πsi prior to protocol execution
in stage t. If πsi .eck[t] has already been corrupted previously, then C returns
⊥ to A.

CompromiseSK(i, s, t)→ {esk[t],⊥}: Allows A access to the secret ephemeral
symmetric key πsi .esk[t] generated for the session πsi prior to protocol ex-
ecution in stage t. Note that if there exists another session πrj such that
πsi .esk[t] = πrj .esk[t], then that session’s ephemeral symmetric key is also
considered corrupted. If πsi .esk[t] has already been corrupted previously,
then C returns ⊥ to A.

CompromiseSS(i, s, t)→ {pss[t],⊥}: Allows the adversary access to the secret
per-session state πsi .pss[t] generated by a session πsi during protocol execu-
tion. for use in the next stage of the session’s protocol execution. Note that
if there exists another session πrj such that πsi .pss[t] = πrj .pss[t′], then that



session’s per-stage secret state is also considered corrupted. If πsi .pss[t] has
already been corrupted previously, then C returns ⊥ to A.

4.4 Partnering Definition

To evaluate the secrets that A can reveal without trivially breaking the security
of the protocol, key-exchange models must first define how sessions are partnered.
Otherwise, A would simply run a protocol between two sessions, faithfully deliv-
ering all messages, Test the first session to receive the real-or-random key, and
Reveal the other session’s key. If the keys are equal, then the Test key is real,
and otherwise the session key has been sampled randomly.

In our work, we use both the matching definition matching sessions defined
in the original eCK model [22], and origin sessions, introduced by Cremers and
Feltz [18]. On a high level, πsi is an origin session of πrj if πsi has received the
messages that πrj sent without modification, even if the reply that πsi sent back
has not been received by πrj . If all messages sent and received by πsi and πrj are
identical, then the sessions match. We give a precise pseudocode description of
these functions in Appendix C.

Definition 1 (Matching Sessions). We consider πsi .ms[t] and πsi .mr[t] to be
the concatentation of all messages sent and received (respectively) by a session
πsi in a stage t. We say that πsi matches a session πrj in stage t if πsi .pid = j,
πrj .pid = i, πsi .ρ 6= πrj .ρ, πsi .mr[t] = πrj .ms[t] and πsi .ms[t] = πrj .mr[t].

We now turn to defining origin sessions for use in the HAKE security experi-
ment.

Definition 2 (Origin Sessions). We consider πsi .ms[t] and πsi .mr[t] to be the
concatenation of all messages sent and received (respectively) by a session πsi in
stage t. We say that πsi matches a session πrj in stage t if πrj .ms[t] = πsi .mr[t].
We say that πsi prefix-matches a session πrj in stage t if πrj .ms[t] = πsi .mr[t]

′

where πsi .mr[t]
′ is πsi .ms[t] truncated to the length of |πrj .ms[t]|. Finally, we say

that a session πsi has an origin session with πrj if πsi prefix-matches πrj (and πsi
has sent the last message) or πsi matches πrj (and πrj has sent the last message).

4.5 Cleanness Predicates

We now define the exact combinations of secrets that an adversaryA is allowed to
compromise without trivially breaking a hybrid key exchange protocol. However,
we note that the cleanness predicate defined below is specific to Muckle, and
the threat model that Muckle intends to defend against. Other predicates, both
stronger and weaker, can be constructed.

We wish to capture security against a quantum-equipped adversary, so a suc-
cessful adversary is allowed to compromise the long-term and ephemeral classical
asymmetric secrets without penalty. Since Muckle itself does not use public-key
cryptography to authenticate its messages, we allow A to compromise the long-
term asymmetric secrets (however, the challenger C will respond to CorruptCK
and CorruptQK queries with ⊥).



Since we wish to capture perfect forward secrecy, we allow a successful ad-
versary to have issued a Test query to a session πsi owned by a party Pi (with no
origin session) that has had its long-term symmetric key compromised previously,
as long as the session was completed before the CorruptSK(i, j) query was issued
(and πsi .pid = j). In addition, our construction should be post-compromise se-
cure (as explored by Cohn-Gordon et al. [16]), so our cleanness predicate allows
an adversary to have compromised all ephemeral secrets associated with a par-
ticular stage as long as there exists some stage previous that has not had all its
ephemeral secrets compromised and the adversary has been passive in all stages
between the “Test” stage and the previous “clean” stage.

Coming full circle then, a “clean” stage intuitively is one where the adversary
has not compromised all of: (a) the ephemeral classic secrets of the Test session
and its matching partner in the tested stage (b) the ephemeral post-quantum
secrets of the Test session and its matching partner in the tested stage (c) the
previous per-stage secrets shared by the Test session and its matching session in
the tested stage, and (d) the quantum keying material / ephemeral symmetric
secrets shared by the Test session and its matching session in the tested stage.

We formalise this intuition below in Definition 3.

Definition 3 (cleanqHAKE). A session πsi in stage t such that πsi .α[t] = accept

and πsi .pid = j in the security experiment defined in Figure 5 is cleanqHAKE if all
of the following conditions hold:

1. The query Reveal(i, s, t) has not been issued.
2. For all (j, r, t) ∈ nP ×nS×nT such that πsi matches πrj in stage t, the query

Reveal(j, r, t) has not been issued.
3. If there exists a session πrj such that πrj matches πsi in stage t, then at least

one of the following sets of queries has not been issued:
– CompromiseQK(i, s, t), CompromiseQK(j, r, t) have not been issued, where
πrj matches πsi in stage t.

– CompromiseSK(i, s, t), CompromiseSK(j, r, t) have not been issued, where
πrj matches πsi in stage t.

– CompromiseQK(i, s, t′), CompromiseQK(j, r, t′) have not been issued, where
πrj matches πsi in stages u such that t′ ≤ u < t and no CompromiseSS(i, s, u),

CompromiseSS(j, r, u) queries have been issued.9

– CompromiseSK(i, s, t′), CompromiseSK(j, r, t′) have not been issued, where
πrj matches πsi in stages u such that t′ ≤ u < t and no CompromiseSS(i, s, u),

CompromiseSS(j, r, u) queries have been issued. 10

9 This condition was added to capture post-compromise security (PCS). Typically, in
key-exchange frameworks that capture PCS the cleanness predicate is recursive, i.e.
there is a condition that says that this stage is clean if there exists a previous stage
that is also clean, and the adversary is restricted from issuing queries that would
prevent this “cleanness” from propagating into future stages. We make explicit in
our model which queries that the adversary cannot have issued in the previous and
intermediate stages for the purpose of clarity.

10 Refer to footnote 9.



4. If there exists no (j, r, t) ∈ nP ×nS×nT such that πrj is an origin session of
πsi in stage t, then CorruptSK(i, j) and CorruptSK(j, i) have not been issued
before πsi .α[t]← accept. If there exists a (j, r, t) ∈ nP×nS×nT such that πrj
is an origin session of πsi in stage t, then CorruptSK(i, j) and CorruptSK(j, i)
have not been issued before πrj .α[t]← accept.

It may also be desirable to determine the security guarantees that Muckle
provides in the event of a new vulnerability discovered in the underlying post-
quantum asymmetric key-exchange primitive, or a side-channel attack being dis-
covered in the hardware of the QKD system. In order to capture this scenario, we
provide a second cleanness predicate that captures non-quantum-equipped ad-
versaries, which we denote cleancHAKE. It is more-or-less identical to cleanqHAKE,
with the following additional restricted sets of queries in condition three:

– CompromiseCK(i, s, t), CompromiseCK(j, r, t) have not been issued, where πrj
matches πsi in stage t.

– CompromiseCK(i, s, t′), CompromiseCK(j, r, t′) have not been issued, where
πrj matches πsi in stages u such that t′ ≤ u < t and no CompromiseSS(i, s, u),
CompromiseSS(j, r, u) queries have been issued.

We give the definition for this predicate in Appendix D. Next, we formalise
the advantage of a QPT algorithm A in winning the HAKE key indistinguisha-
bility experiment in the following way:

Definition 4 (HAKE Key Indistinguishability). Let Π be a key-exchange
protocol, and nP , nS, nT ∈ N. For a particular given predicate clean, and a QPT
algorithm A, we define the advantage of A in the HAKE key-indistinguishability
game to be :

AdvHAKE,clean,AΠ,nP ,nS ,nT
(λ) = 2 ·

∣∣∣∣Pr
[
ExpHAKE,clean,AΠ,nP ,nSnT

(λ) = 1
]
− 1

2

∣∣∣∣ .
We say that Π is post-quantum HAKE-secure if, for all A, AdvHAKE,clean,AΠ,nP ,nS ,nT

(λ) is
negligible in the security parameter λ.

5 Security Analysis

This section is dedicated to proving our main result Theorem 1. As discussed in
Section 4.5, it is also desirable to assess security of Muckle with respect to classic
probabilistic polynomial-time adversaries. We prove that Muckle is HAKE-secure
with cleanness predicate cleancHAKE, see Theorem 2 in Section 5.1. Recall that
cleancHAKE used here is a generalisation of cleanqHAKE, allowing us to establish
key indistinguishability security in the scenario where the classical cryptographic
component of Muckle remains secure and uncompromised, even if the security of
the post-quantum and QKD components both fail.



Theorem 1. The Muckle key exchange protocol is HAKE-secure with cleanness
predicate cleanqHAKE (capturing perfect forward secrecy and post-compromise se-
curity) under the prf, eufqcma, dual-prf, and ind-cpa assumptions of PRF, MAC,
PRF and KEM, respectively. That is, for any QPT algorithm A against the HAKE

key-indistinguishability game (defined in Figure 5) Adv
HAKE,cleanqHAKE,A
Muckle,nP ,nS ,nT

(λ) is neg-
ligible , with:

Adv
HAKE,cleanqHAKE,A
Muckle,nP ,nS ,nT

(λ) ≤

2 · n2PnSnT ·
(
AdvprfPRF,A(λ) + Adveufcma

MAC,A(λ)
)

+ n2Pn
2
SnT ·

(
Advind-cpaKEM,A(λ) + (10 + 2 · nT ) · AdvprfPRF,A(λ)

+ (11 + 2 · nT ) · Advdual-prfPRF,A (λ)
)
.

Proof. We begin by dividing the proof into three separate cases (and denote

with AdvHAKE,cleanHAKE,A,Cl

Muckle,nP ,nS ,nT
(λ) the advantage of the adversary in winning the key-

indistinguishability game in Case l) where the query Test(i, s, t) has been issued:

1. The session πsi (where πsi .ρ = init) has no origin session in stage t.
2. The session πsi (where πsi .ρ = resp) has no origin session in stage t.
3. The session πsi in stage t has a matching session.

It follows then that

Adv
HAKE,cleanqHAKE,A
Muckle,nP ,nS ,nT

(λ) ≤ Adv
HAKE,cleanqHAKE,A,C1

Muckle,nP ,nS ,nT
(λ),

+ Adv
HAKE,cleanqHAKE,A,C2

Muckle,nP ,nS ,nT
(λ),

+ Adv
HAKE,cleanqHAKE,A,C3

Muckle,nP ,nS ,nT
(λ).

We then bound the probability of each case, and show that under certain as-
sumptions, the probability of the adversary winning in the key-indistinguishability
game is negligible.

Case 1: Test init session without origin session

We begin by showing that A has negligible change in causing πsi to reach an
accept state without an origin session.

We do so via the sequence of game hops:

Game 0 This is the standard HAKE security game. Thus:

Adv
HAKE,cleanqHAKE,A,C1

Muckle,nP ,nS ,nT
(λ) = Pr(break0).

Game 1 In this game, we guess the index (i, s, t) and the intended partner j
and abort if, during the execution of the experiment, a query Test(i′, s′, t′) is
received to a session πs

′

i′ such that πs
′

i′ .pid = j′ and (i, s, t, j) 6= (i′, s′, t′,′ j).
Thus:

Pr(break0) ≤ n2PnSnT · Pr(break1).



Game 2 In this game we abort if the test session πsi sets the status πsi .α[t]←
reject. Note that by the previous game we abort if the Test query is issued
to a session that is not πsi in stage t. If the session πsi ever reaches the status
πsi .α[t]← reject, then the challenger will respond to the Test(i, s, t) query
with ⊥, and thus the difference in A’s advantage between Game 2 and
Game 3 is 0. Thus:

Pr(break1) ≤ Pr(break2).

Game 3 In this game we define an abort event abortα that triggers if the test
session πsi sets the status πsi .α[t] ← accept. We note that the response to
the Test query issued by A is always ⊥, and thus Pr(break3) = 0. In what
follows we bound the probability of A in causing abortα to trigger. Thus:

Pr(break2) ≤ Pr(abortα).

Game 4 In this game we replace the computation ofmkeyB = PRF(PSK,SecState)

a with uniformly random and independent value m̃keyB
$← {0, 1}PRF (where

{0, 1}PRF is the output space of the PRF) used in the protocol execution
of the test session πsi in stage t. We do so by initialising a post-quantum

prf challenger and query SecState, and use the output m̃keyB from the prf
challenger to replace the computation of mkeyB . Since PSK = pskji is itself
uniformly random and independent, and A cannot issue CorruptSK(i, j) or
CorruptSK(j, i), this is a sound replacement. If the test bit sampled by the prf

challenger is 0, then m̃keyB = PRF(PSK,SecState) and we are in Game 3.

If the test bit sampled by the prf challenger is 1, then m̃keyB
$← {0, 1}PRF

and we are in Game 4. Thus any adversary A capable of distinguishing this
change can be turned into a successful adversary against the post-quantum
prf security of PRF, and we find:

Pr(abortα) ≤ AdvprfPRF,A(λ) + Pr(break4).

Game 5 In this game, we abort when the session πsi accepts without an ori-
gin session, i.e. πsi receives a MAC tag in stage t that verifies correctly,
but there exists no honest session πrj that output m1, τ1. We do this by
interacting with the post-quantum eufcma MAC challenger, but computes

τ1 = MAC(m̃keyB ,m1) for πsi by querying m1 received by πsi to the MAC

challenger. Since the key m̃keyB was already uniformly random and inde-
pendent of the experiment by Game 4, and by the definition of this case, A
has not issued either CorruptSK(i, j) or CorruptSK(j, i) queries, this change
is indistinguishable. By the definition of Case 1, if πsi has no origin ses-
sion then adversary must have produced a valid MAC tag τ1 such that

MAC(m̃keyB ,m1) = τ1. We submit τ1, m1 as a forgery to the MAC chal-
lenger and aborts. Since πsi now aborts when verifying the MAC tag in stage
t, it cannot trigger abortα and thus we have:

Adv
HAKE,cleanqHAKE,A,C1

Muckle,nP ,nS ,nT
(λ) ≤ n2PnSnT ·

(
AdvprfPRF,A(λ)

+ Adveufcma
MAC,A(λ)

)
.



The proof of Case 2 follows analogously to Case 1, and with the same bounds.
Thus:

Adv
HAKE,cleanqHAKE,A,C2

Muckle,nP ,nS ,nT
(λ) ≤ n2PnSnT ·

(
AdvprfPRF,A(λ)

+ Adveufcma
MAC,A(λ)

)
.

Case 3: Test session with matching session

In Case 3, we show that if A that has issued a Test(i, s, t) query to a clean
session πsi in stage t, then A has negligible advantage in guessing the test bit
b. In what follows, we split our analysis of Case 3 into the following sub-cases,
each corresponding to a condition necessary for the cleanness predicate clean to
be upheld by πsi in stage t. These are the subcases:

3.1 CompromiseQK(i, s, t), CompromiseQK(j, r, t) have not been issued, where πrj
matches πsi in stage t.

3.2 CompromiseSK(i, s, t), CompromiseSK(j, r, t) have not been issued, where πrj
matches πsi in stage t.

3.3 CompromiseQK(i, s, t′), CompromiseQK(j, r, t′) have not been issued, where
πrj matches πsi in stages u such that t′ ≤ u < t and no CompromiseSS(i, s, u),
CompromiseSS(j, r, u) queries have been issued.

3.4 CompromiseSK(i, s, t′), CompromiseSK(j, r, t′) have not been issued, where πrj
matches πsi in stages u such that t′ ≤ u < t and no CompromiseSS(i, s, u),
CompromiseSS(j, r, u) queries have been issued.

It is straightforward to see that the advantage of A in Case 3 is bound by
the sum of the advantage of A in all subcases. Due to space restrictions, we only
detail the proof sketches of subcases 3.1 and 3.3. The other two subcases follow
analogously with similar proof strategies. The full proof details can be found in
Section 5. We begin by treating the first subcase.

3.1: CompromiseQK(i, s, t), CompromiseQK(j, r, t) have not been issued,
where πr

j matches πs
i in stage t.

Game 0 This is the standard HAKE security game. Thus:

Adv
HAKE,cleanqHAKE,A,C3.1

Muckle,nP ,nS ,nT
(λ) = Pr(break0).

Game 1 In this game, we guess the index (i, s, t) and the matching session
(j, r, t) and abort if, during the execution of the experiment, a query Test(i′, s′, t′)
is received to a session πs

′

i′ such that πr
′

j′ matches πs
′

i′ in stage t′ and (i, s, t), (j, r) 6=
(i′, s′, t′), (j′, r′). Thus:

Pr(break0) ≤ n2Pn2SnT · Pr(break1).



Game 2 In this game, we replace the key qsk derived in the test session πsi with

the uniformly random and independent value q̃sk. We do so by interacting
with a ind-cpa KEM challenger (as described in Definition 5) and replace the
qpkA value sent in m0, and the ciphertext qpkB sent in m1 with the public-
key pk and the ciphertext c received from the ind-cpa KEM challenger. Since
πsi matches πrj in stage t, we know that the public-key and ciphertext sent in
m0 and m1 respectively were received by the sessions without modification.

Detecting the replacement of qsk with a uniformly random value q̃sk im-
plies an efficient distinguishing algorithm against the post-quantum ind-cpa
security of KEM. Thus:

Pr(break1) ≤ Advind-cpaKEM,A(λ) + Pr(break2).

Game 3 In this game we replace the computation of the quantum key qk =

PRF(q̃sk, labelqk) with a uniformly random and independent value q̃k
$←

{0, 1}PRF (where {0, 1}PRF is the output space of the PRF) used in the proto-
col execution of the test session πsi in stage t, and its matching session πrj . We
do so by initialising a post-quantum prf challenger and query labelqk, and use

the output q̃k from the prf challenger to replace the computation of qk. Since

q̃sk is uniformly random and independent by Game 2, and A cannot issue
CompromiseQK(i, s, t) or CompromiseQK(j, r, t), this is a sound replacement.

If the test bit sampled by the prf challenger is 0, then q̃k = PRF(q̃sk, labelqk)
and we are in Game 2. If the test bit sampled by the prf challenger is 1, then

q̃k
$← {0, 1}PRF and we are in Game 3. Thus any adversary A capable of

distinguishing this change can be turned into a successful adversary against
the post-quantum prf security of PRF, and we find:

Pr(break2) ≤ AdvprfPRF,A(λ) + Pr(break3).

Game 4 In this game we replace the computation of the first chaining key

k0 ← PRF(q̃k,m0‖m1) with a uniformly random and independent value

k̃0
$← {0, 1}PRF (where {0, 1}PRF is the output space of the PRF) used in the

protocol execution of the test session πsi in stage t, and its matching session
πrj . We do so by initialising a post-quantum prf challenger and query m0‖m1,

and use the output k̃0 from the prf challenger to replace the computation

of k0. Since q̃k is uniformly random and independent by Game 3, this is a
sound replacement. If the test bit sampled by the prf challenger is 0, then

k̃0 = PRF(q̃k,m0‖m1) and we are in Game 3. If the test bit sampled by

the prf challenger is 1, then k̃0
$← {0, 1}PRF and we are in Game 4. Thus

any adversary A capable of distinguishing this change can be turned into a
successful adversary against the prf security of post-quantum PRF, and we
find:

Pr(break3) ≤ AdvprfPRF,A(λ) + Pr(break4).

Game 5 In this game we replace the computation of the second chaining
key k1 ← PRF(ck, k̃0) with a uniformly random and independent value



k̃0
$← {0, 1}PRF (where {0, 1}PRF is the output space of the PRF) used in the

protocol execution of the test session πsi in stage t, and its matching session
πrj . We do so by initialising a post-quantum dual-prf challenger and query ck,

and use the output k̃1 from the dual-prf challenger to replace the computa-
tion of k1. Since k̃0 is uniformly random and independent by Game 4, this
is a sound replacement. If the test bit sampled by the dual-prf challenger is 0,
then k̃1 = PRF(ck, k̃0) and we are in Game 4. If the test bit sampled by the

dual-prf challenger is 1, then k̃1
$← {0, 1}PRF and we are in Game 5. Thus

any adversary A capable of distinguishing this change can be turned into a
successful adversary against the post-quantum dual-prf security of PRF, and
we find:

Pr(break4) ≤ Advdual-prfPRF,A (λ) + Pr(break5).

Game 6 In this game we replace the computation of the third chaining key

k2 ← PRF(qkm, k̃1) with a uniformly random and independent value k̃2
$←

{0, 1}PRF (where {0, 1}PRF is the output space of the PRF) used in the proto-
col execution of the test session πsi in stage t, and its matching session πrj . We
do so by initialising a post-quantum dual-prf challenger and query qkm, and
use the output k̃2 from the dual-prf challenger to replace the computation
of k2. Since k̃1 is uniformly random and independent by Game 5, this is a
sound replacement. If the test bit sampled by the dual-prf challenger is 0,
then k̃2 = PRF(qkm, k̃1) and we are in Game 5. If the test bit sampled by

the dual-prf challenger is 1, then k̃2
$← {0, 1}PRF and we are in Game 6. Thus

any adversary A capable of distinguishing this change can be turned into a
successful adversary against the post-quantum dual-prf security of PRF, and
we find:

Pr(break5) ≤ Advdual-prfPRF,A (λ) + Pr(break6).

Game 7 In this game we replace the computation of the final chaining key
k3 ← PRF(SecState, k̃2) with a uniformly random and independent value

k̃3
$← {0, 1}PRF (where {0, 1}PRF is the output space of the PRF) used in the

protocol execution of the test session πsi in stage t, and its matching session
πrj . We do so by initialising a post-quantum dual-prf challenger and query

SecState, and use the output k̃3 from the dual-prf challenger to replace
the computation of k3. Since k̃2 is uniformly random and independent by
Game 6, this is a sound replacement. If the test bit sampled by the dual-prf
challenger is 0, then k̃3 = PRF(SecState, k̃2) and we are in Game 6. If the

test bit sampled by the dual-prf challenger is 1, then k̃3
$← {0, 1}PRF and we

are in Game 7. Thus any adversary A capable of distinguishing this change
can be turned into a successful adversary against the post-quantum dual-prf
security of PRF, and we find:

Pr(break6) ≤ Advdual-prfPRF,A (λ) + Pr(break7).

Game 8 In this game we replace the computation of the updated secret state
and session keys SecState′, skA, skB ← PRF(k̃3,m0‖m1‖ctr) with uniformly



random and independent values ˜SecState′, s̃kA, s̃kB
$← {0, 1}PRF (where

{0, 1}PRF is the output space of the PRF) used in the protocol execution
of the test session πsi in stage t, and its matching session πrj . We do so by
initialising a post-quantum prf challenger and query m0‖m1‖ctr, and use the

output ˜SecState′, s̃kA, s̃kB from the prf challenger to replace the computa-
tion of SecState′, skA, skB . Since k̃3 is uniformly random and independent
by Game 7, this is a sound replacement. If the test bit sampled by the

prf challenger is 0, then ˜SecState′, s̃kA, s̃kB = PRF(k̃3,m0‖m1‖ctr) and we
are in Game 7. If the test bit sampled by the prf challenger is 1, then

˜SecState′, s̃kA, s̃kB
$← {0, 1}PRF and we are in Game 8. Thus any adver-

sary A capable of distinguishing this change can be turned into a successful
adversary against the post-quantum prf security of PRF, and we find:

Pr(break7) ≤ AdvprfPRF,A(λ) + Pr(break8).

Since s̃kA, s̃kB are now uniformly random and independent values indepen-
dent of the protocol flow regardless of the value of the test bit b, A has no
advantage in guessing the bit and thus

Adv
HAKE,cleanqHAKE,A,C3.1

Muckle,nP ,nS ,nT
(λ) ≤ n2Pn2SnT ·

(
Advind-cpaKEM,A(λ)

+ 3 · AdvprfPRF,A(λ)

+ 3 · Advdual-prfPRF,A (λ)
)
.

3.2: CompromiseSK(i, s, t), CompromiseSK(j, r, t) have not been issued,
where πr

j matches πs
i in stage t.

Game 0 This is the standard HAKE security game. Thus:

Adv
HAKE,cleanqHAKE,A,C3.2

Muckle,nP ,nS ,nT
(λ) = Pr(break0).

Game 1 In this game, we guess the index (i, s, t) and the matching session
(j, r, t) and abort if, during the execution of the experiment, a query Test(i′, s′, t′)
is received to a session πs

′

i′ such that πr
′

j′ matches πs
′

i′ in stage t′ and (i, s, t), (j, r) 6=
(i′, s′, t′), (j′, r′). Thus:

Pr(break0) ≤ n2Pn2SnT · Pr(break1).

Game 2 In this game we replace the computation of the third chaining key

k2 ← PRF(qkm, k1) with a uniformly random and independent value k̃2
$←

{0, 1}PRF (where {0, 1}PRF is the output space of the PRF) used in the pro-
tocol execution of the test session πsi in stage t, and its matching session πrj .
We do so by initialising a post-quantum prf challenger and query k1, and
use the output k̃2 from the prf challenger to replace the computation of k2.
Since qkm is uniformly random and independently generated by ESKeyGen



at the start of the experiment, and by the definition of this subcase A can-
not have issued either CompromiseSK(i, s, t) or CompromiseSK(j, r, t) this is
a sound replacement. If the test bit sampled by the prf challenger is 0, then
k̃2 = PRF(qkm, k1) and we are in Game 1. If the test bit sampled by the prf

challenger is 1, then k̃2
$← {0, 1}PRF and we are in Game 2. Thus any adver-

sary A capable of distinguishing this change can be turned into a successful
adversary against the post-quantum prf security of PRF, and we find:

Pr(break1) ≤ AdvprfPRF,A(λ) + Pr(break2).

Game 3 In this game we replace the computation of the final chaining key
k3 ← PRF(SecState, k̃2) with a uniformly random and independent value

k̃3
$← {0, 1}PRF (where {0, 1}PRF is the output space of the PRF) used in the

protocol execution of the test session πsi in stage t, and its matching session
πrj . We do so by initialising a post-quantum dual-prf challenger and query

SecState, and use the output k̃3 from the dual-prf challenger to replace
the computation of k3. Since k̃2 is uniformly random and independent by
Game 2, this is a sound replacement. If the test bit sampled by the dual-prf
challenger is 0, then k̃3 = PRF(SecState, k̃2) and we are in Game 2. If the

test bit sampled by the dual-prf challenger is 1, then k̃3
$← {0, 1}PRF and we

are in Game 3. Thus any adversary A capable of distinguishing this change
can be turned into a successful adversary against the post-quantum dual-prf
security of PRF, and we find:

Pr(break2) ≤ Advdual-prfPRF,A (λ) + Pr(break3).

Game 4 In this game we replace the computation of the updated secret state
and session keys SecState′, skA, skB ← PRF(k̃3,m0‖m1‖ctr) with uniformly

random and independent values ˜SecState′, s̃kA, s̃kB
$← {0, 1}PRF (where

{0, 1}PRF is the output space of the PRF) used in the protocol execution
of the test session πsi in stage t, and its matching session πrj . We do so by
initialising a post-quantum prf challenger and query m0‖m1‖ctr, and use the

output ˜SecState′, s̃kA, s̃kB from the prf challenger to replace the computa-
tion of SecState′, skA, skB . Since k̃3 is uniformly random and independent
by Game 3, this is a sound replacement. If the test bit sampled by the

prf challenger is 0, then ˜SecState′, s̃kA, s̃kB = PRF(k̃3,m0‖m1‖ctr) and we
are in Game 3. If the test bit sampled by the prf challenger is 1, then

˜SecState′, s̃kA, s̃kB
$← {0, 1}PRF and we are in Game 4. Thus any adver-

sary A capable of distinguishing this change can be turned into a successful
adversary against the post-quantum prf security of PRF, and we find:

Pr(break3) ≤ AdvprfPRF,A(λ) + Pr(break4).

Since s̃kA, s̃kB are now uniformly random and independent values indepen-
dent of the protocol flow regardless of the value of the test bit b, A has no



advantage in guessing the bit and thus:

Adv
HAKE,cleanqHAKE,A,C3.2

Muckle,nP ,nS ,nT
(λ) ≤ n2Pn2SnT ·

(
2 · AdvprfPRF,A(λ)

+ Advdual-prfPRF,A (λ)
)
.

3.3: CompromiseQK(i, s, t∗), CompromiseQK(j, r, t∗) have not been is-
sued, where πr

j matches πs
i in stages u such that t∗ ≤ u < t and no

CompromiseSS(i, s, u), CompromiseSS(j, r, u) queries have been issued.

Game 0 This is the standard HAKE security game. Thus:

Adv
HAKE,cleanqHAKE,A,C3.3

Muckle,nP ,nS ,nT
(λ) = Pr(break0).

Game 1 In this game, we guess the index (i, s, t) and the matching session
(j, r, t) and abort if, during the execution of the experiment, a query Test(i′, s′, t′)
is received to a session πs

′

i′ such that πr
′

j′ matches πs
′

i′ in stage t′ and (i, s, t), (j, r) 6=
(i′, s′, t′), (j′, r′). In addition, we also guess the stage t∗ such that A does not
issue either a CompromiseQK(i, s, t∗),CompromiseQK(j, r, t∗) and πsi matches
in stages u such that t∗ ≤ u < t and no CompromiseSS(i, s, u) or CompromiseSS(j, r, u)
were made. By the definition of this subcase, such a stage must exist. Thus:

Pr(break0) ≤ n2Pn2Sn2T · Pr(break1).

Game 2 In this game, we replace the key qsk derived in the test session πsi with

the uniformly random and independent value q̃sk. We do so by interacting
with a ind-cpa KEM challenger (as described in Definition 5) and replace the
qpkA value sent in m0, and the ciphertext qpkB sent in m1 with the public-
key pk and the ciphertext c received from the ind-cpa KEM challenger. Since
πsi matches πrj in stage t, we know that the public-key and ciphertext sent in
m0 and m1 respectively were received by the sessions without modification.

Detecting the replacement of qsk with a uniformly random value q̃sk im-
plies an efficient distinguishing algorithm against the post-quantum ind-cpa
security of KEM. Thus:

Pr(break1) ≤ Advind-cpaKEM,A(λ) + Pr(break2).

Game 3 In this game we replace the computation of the quantum key qk =

PRF(q̃sk, labelqk) with a uniformly random and independent value q̃k
$←

{0, 1}PRF (where {0, 1}PRF is the output space of the PRF) used in the pro-
tocol execution of the test session πsi in stage t∗, and its matching session
πrj . We do so by initialising a post-quantum prf challenger and query labelqk,

and use the output q̃k from the prf challenger to replace the computation

of qk. Since q̃sk is uniformly random and independent by Game 2, and
A cannot issue CompromiseQK(i, s, t∗) or CompromiseQK(j, r, t∗), this is a
sound replacement. If the test bit sampled by the prf challenger is 0, then

q̃k = PRF(q̃sk, labelqk) and we are in Game 2. If the test bit sampled by



the prf challenger is 1, then q̃k
$← {0, 1}PRF and we are in Game 3. Thus

any adversary A capable of distinguishing this change can be turned into a
successful adversary against the post-quantum prf security of PRF, and we
find:

Pr(break2) ≤ AdvprfPRF,A(λ) + Pr(break3).

Game 4 In this game we replace the computation of the first chaining key

k0 ← PRF(q̃k,m0‖m1) with a uniformly random and independent value

k̃0
$← {0, 1}PRF (where {0, 1}PRF is the output space of the PRF) used in the

protocol execution of the test session πsi in stage t∗, and its matching session
πrj . We do so by initialising a post-quantum prf challenger and query m0‖m1,

and use the output k̃0 from the prf challenger to replace the computation

of k0. Since q̃k is uniformly random and independent by Game 3, this is a
sound replacement. If the test bit sampled by the prf challenger is 0, then

k̃0 = PRF(q̃k,m0‖m1) and we are in Game 3. If the test bit sampled by

the prf challenger is 1, then k̃0
$← {0, 1}PRF and we are in Game 4. Thus

any adversary A capable of distinguishing this change can be turned into a
successful adversary against the post-quantum prf security of PRF, and we
find:

Pr(break3) ≤ AdvprfPRF,A(λ) + Pr(break4).

Game 5 In this game we replace the computation of the second chaining
key k1 ← PRF(ck, k̃0) with a uniformly random and independent value

k̃0
$← {0, 1}PRF (where {0, 1}PRF is the output space of the PRF) used in

the protocol execution of the test session πsi in stage t∗, and its match-
ing session πrj . We do so by initialising a post-quantum dual-prf challenger

and query ck, and use the output k̃1 from the dual-prf challenger to replace
the computation of k1. Since k̃0 is uniformly random and independent by
Game 4, this is a sound replacement. If the test bit sampled by the dual-prf
challenger is 0, then k̃1 = PRF(ck, k̃0) and we are in Game 4. If the test

bit sampled by the dual-prf challenger is 1, then k̃1
$← {0, 1}PRF and we are

in Game 5. Thus any adversary A capable of distinguishing this change
can be turned into a successful adversary against the dual-prf security of
post-quantum PRF, and we find:

Pr(break4) ≤ Advdual-prfPRF,A (λ) + Pr(break5).

Game 6 In this game we replace the computation of the third chaining key

k2 ← PRF(qkm, k̃1) with a uniformly random and independent value k̃2
$←

{0, 1}PRF (where {0, 1}PRF is the output space of the PRF) used in the proto-
col execution of the test session πsi in stage t∗, and its matching session πrj .
We do so by initialising a post-quantum dual-prf challenger and query qkm,
and use the output k̃2 from the dual-prf challenger to replace the computa-
tion of k2. Since k̃1 is uniformly random and independent by Game 5, this
is a sound replacement. If the test bit sampled by the dual-prf challenger is



0, then k̃2 = PRF(qkm, k̃1) and we are in Game 5. If the test bit sampled by

the dual-prf challenger is 1, then k̃2
$← {0, 1}PRF and we are in Game 6. Thus

any adversary A capable of distinguishing this change can be turned into a
successful adversary against the dual-prf security of post-quantum PRF, and
we find:

Pr(break5) ≤ Advdual-prfPRF,A (λ) + Pr(break6).

Game 7 In this game we replace the computation of the final chaining key
k3 ← PRF(SecState, k̃2) with a uniformly random and independent value

k̃3
$← {0, 1}PRF (where {0, 1}PRF is the output space of the PRF) used in the

protocol execution of the test session πsi in stage t∗, and its matching session
πrj . We do so by initialising a post-quantum dual-prf challenger and query

SecState, and use the output k̃3 from the dual-prf challenger to replace
the computation of k3. Since k̃2 is uniformly random and independent by
Game 6, this is a sound replacement. If the test bit sampled by the dual-prf
challenger is 0, then k̃3 = PRF(SecState, k̃2) and we are in Game 6. If the

test bit sampled by the dual-prf challenger is 1, then k̃3
$← {0, 1}PRF and we

are in Game 7. Thus any adversary A capable of distinguishing this change
can be turned into a successful adversary against the post-quantum dual-prf
security of PRF, and we find:

Pr(break6) ≤ Advdual-prfPRF,A (λ) + Pr(break7).

Game 8 In this game we replace the computation of the updated secret state
and session keys SecState′, skA, skB ← PRF(k̃3,m0‖m1‖ctr) with uniformly

random and independent values ˜SecState′, s̃kA, s̃kB
$← {0, 1}PRF (where

{0, 1}PRF is the output space of the PRF) used in the protocol execution
of the test session πsi in stage t∗, and its matching session πrj . We do so by
initialising a post-quantum prf challenger and query m0‖m1‖ctr, and use the

output ˜SecState′, s̃kA, s̃kB from the prf challenger to replace the computa-
tion of SecState′, skA, skB . Since k̃3 is uniformly random and independent
by Game 7, this is a sound replacement. If the test bit sampled by the

prf challenger is 0, then ˜SecState′, s̃kA, s̃kB = PRF(k̃3,m0‖m1‖ctr) and we
are in Game 7. If the test bit sampled by the prf challenger is 1, then

˜SecState′, s̃kA, s̃kB
$← {0, 1}PRF and we are in Game 8. Thus any adver-

sary A capable of distinguishing this change can be turned into a successful
adversary against the post-quantum prf security of PRF, and we find:

Pr(break7) ≤ AdvprfPRF,A(λ) + Pr(break8).

At this point we now iteratively do the following two game hops (t−t∗) times
in each consecutive stage u where t∗ < u ≤ t. Note that, by the definition of this
sub-case, each of the stages following stage t∗ must match (i.e. there must exist
a matching session πrj with πsi that agree upon the message transcript):



Game 9’ In this game we replace the computation of the final chaining key

k3 ← PRF( ˜SecState, k2) with a uniformly random and independent value

k̃3
$← {0, 1}PRF (where {0, 1}PRF is the output space of the PRF) used in

the protocol execution of the test session πsi in stage u, and its matching
session πrj . We do so by initialising a post-quantum prf challenger and query

k2, and use the output k̃3 from the prf challenger to replace the compu-

tation of k3 in stage u. Since ˜SecState is uniformly random and indepen-
dent by the previous game, and A cannot issue a CompromiseSS(i, s, u) or
CompromiseSS(j, r, u) ∀t∗ ≤ u < t, this is a sound replacement. If the test bit

sampled by the prf challenger is 0, then k̃3 = PRF( ˜SecState, k2) and we are
in the previous game. If the test bit sampled by the prf challenger is 1, then

k̃3
$← {0, 1}PRF and we are in Game 9′. Thus any adversary A capable of

distinguishing this change can be turned into a successful adversary against
the post-quantum prf security of PRF, and we find:

Pr(break8) ≤ Advdual-prfPRF,A (λ) + Pr(break9′),

Pr(break10′) ≤ Advdual-prfPRF,A (λ) + Pr(break9′)

Game 10’ In this game we replace the computation of the updated secret state
and session keys SecState′, skA, skB ← PRF(k̃3,m0‖m1‖ctr) with uniformly

random and independent values ˜SecState′, s̃kA, s̃kB
$← {0, 1}PRF (where

{0, 1}PRF is the output space of the PRF) used in the protocol execution
of the test session πsi in stage u, and its matching session πrj . We do so by
initialising a post-quantum prf challenger and query m0‖m1‖ctr, and use the

output ˜SecState′, s̃kA, s̃kB from the prf challenger to replace the computa-
tion of SecState′, skA, skB . Since k̃3 is uniformly random and independent
by the previous game, this is a sound replacement. If the test bit sampled by

the prf challenger is 0, then ˜SecState′, s̃kA, s̃kB = PRF(k̃3,m0‖m1‖ctr) and
we are in the previous game. If the test bit sampled by the prf challenger

is 1, then ˜SecState′, s̃kA, s̃kB
$← {0, 1}PRF and we are in Game 10′. Thus

any adversary A capable of distinguishing this change can be turned into a
successful adversary against the post-quantum prf security of PRF, and we
find:

Pr(break9′) ≤ AdvprfPRF,A(λ) + Pr(break10′).

Since s̃kA, s̃kB are now uniformly random and independent values in stage t
independent of the protocol flow regardless of the value of the test bit b, A
has no advantage in guessing the bit and taking the maximum over all pairs
of values t, t∗ we find:

Adv
HAKE,cleanqHAKE,A,C3.3

Muckle,nP ,nS ,nT
(λ) ≤

n2Pn
2
Sn

2
T ·
(
Advind-cpaKEM,A(λ) + (3 + nT ) · AdvprfPRF,A(λ)

+ (3 + nT ) · Advdual-prfPRF,A (λ)
)
.



3.4: CompromiseSK(i, s, t∗), CompromiseSK(j, r, t∗) have not been is-
sued, where πr

j matches πs
i in stages u such that t′ ≤ u < t and no

CompromiseSS(i, s, u), CompromiseSS(j, r, u) queries have been issued.

Game 0 This is the standard HAKE security game. Thus:

Adv
HAKE,cleanqHAKE,A,C3.4

Muckle,nP ,nS ,nT
(λ) = Pr(break0).

Game 1 In this game, we guess the index (i, s, t) and the matching session
(j, r, t) and abort if, during the execution of the experiment, a query Test(i′, s′, t′)
is received to a session πs

′

i′ such that πr
′

j′ matches πs
′

i′ in stage t′ and (i, s, t), (j, r) 6=
(i′, s′, t′), (j′, r′). In addition, we also guess the stage t∗ such that A does not
issue either a CompromiseSK(i, s, t∗),CompromiseSK(j, r, t∗) and πsi matches
in stages u such that t∗ ≤ u < t and no CompromiseSS(i, s, u) or CompromiseSS(j, r, u)
were made. By the definition of this subcase, such a stage must exist. Thus:

Pr(break0) ≤ n2Pn2Sn2T · Pr(break1).

Game 2 In this game we replace the computation of the third chaining key

k2 ← PRF(qkm, k1) with a uniformly random and independent value k̃2
$←

{0, 1}PRF (where {0, 1}PRF is the output space of the PRF) used in the pro-
tocol execution of the test session πsi in stage t∗, and its matching session
πrj . We do so by initialising a post-quantum prf challenger and query k1, and

use the output k̃2 from the prf challenger to replace the computation of k2.
Since qkm is uniformly random and independently generated by ESKeyGen
at the start of the experiment, and by the definition of this subcase A can-
not have issued either CompromiseSK(i, s, t∗) or CompromiseSK(j, r, t∗) this
is a sound replacement. If the test bit sampled by the prf challenger is 0,
then k̃2 = PRF(qkm, k1) and we are in Game 1. If the test bit sampled by

the prf challenger is 1, then k̃2
$← {0, 1}PRF and we are in Game 2. Thus

any adversary A capable of distinguishing this change can be turned into a
successful adversary against the post-quantum prf security of PRF, and we
find:

Pr(break1) ≤ AdvprfPRF,A(λ) + Pr(break2).

Game 3 In this game we replace the computation of the final chaining key
k3 ← PRF(SecState, k̃2) with a uniformly random and independent value

k̃3
$← {0, 1}PRF (where {0, 1}PRF is the output space of the PRF) used in the

protocol execution of the test session πsi in stage t∗, and its matching session
πrj . We do so by initialising a post-quantum dual-prf challenger and query

SecState, and use the output k̃3 from the dual-prf challenger to replace
the computation of k3. Since k̃2 is uniformly random and independent by
Game 2, this is a sound replacement. If the test bit sampled by the dual-prf
challenger is 0, then k̃3 = PRF(SecState, k̃2) and we are in Game 2. If the

test bit sampled by the dual-prf challenger is 1, then k̃3
$← {0, 1}PRF and we

are in Game 3. Thus any adversary A capable of distinguishing this change



can be turned into a successful adversary against the post-quantum dual-prf
security of PRF, and we find:

Pr(break2) ≤ Advdual-prfPRF,A (λ) + Pr(break3).

Game 4 In this game we replace the computation of the updated secret state
and session keys SecState′, skA, skB ← PRF(k̃3,m0‖m1‖ctr) with uniformly

random and independent values ˜SecState′, s̃kA, s̃kB
$← {0, 1}PRF (where

{0, 1}PRF is the output space of the PRF) used in the protocol execution
of the test session πsi in stage t∗, and its matching session πrj . We do so by
initialising a post-quantum prf challenger and query m0‖m1‖ctr, and use the

output ˜SecState′, s̃kA, s̃kB from the prf challenger to replace the computa-
tion of SecState′, skA, skB . Since k̃3 is uniformly random and independent
by Game 3, this is a sound replacement. If the test bit sampled by the

prf challenger is 0, then ˜SecState′, s̃kA, s̃kB = PRF(k̃3,m0‖m1‖ctr) and we
are in Game 3. If the test bit sampled by the prf challenger is 1, then

˜SecState′, s̃kA, s̃kB
$← {0, 1}PRF and we are in Game 4. Thus any adver-

sary A capable of distinguishing this change can be turned into a successful
adversary against the post-quantum prf security of PRF, and we find:

Pr(break3) ≤ AdvprfPRF,A(λ) + Pr(break4).

At this point we now iteratively do the following two game hops (t−t∗) times
in each consecutive stage u where t∗ < u ≤ t. Note that, by the definition of this
sub-case, each of the stages following stage t∗ must match (i.e. there must exist
a matching session πrj with πsi that agree upon the message transcript):

Game 5’ In this game we replace the computation of the final chaining key

k3 ← PRF( ˜SecState, k2) with a uniformly random and independent value

k̃3
$← {0, 1}PRF (where {0, 1}PRF is the output space of the PRF) used in

the protocol execution of the test session πsi in stage u, and its matching
session πrj . We do so by initialising a post-quantum prf challenger and query

k2, and use the output k̃3 from the prf challenger to replace the compu-

tation of k3 in stage u. Since ˜SecState is uniformly random and indepen-
dent by the previous game, and A cannot issue a CompromiseSS(i, s, u) or
CompromiseSS(j, r, u) ∀t∗ ≤ u < t, this is a sound replacement. If the test bit

sampled by the prf challenger is 0, then k̃3 = PRF( ˜SecState, k2) and we are
in the previous game. If the test bit sampled by the prf challenger is 1, then

k̃3
$← {0, 1}PRF and we are in Game 5′. Thus any adversary A capable of

distinguishing this change can be turned into a successful adversary against
the post-quantum prf security of PRF, and we find:

Pr(break4) ≤ Advdual-prfPRF,A (λ) + Pr(break5′),

Pr(break6′) ≤ Advdual-prfPRF,A (λ) + Pr(break5′).



Game 6’ In this game we replace the computation of the updated secret state
and session keys SecState′, skA, skB ← PRF(k̃3,m0‖m1‖ctr) with uniformly

random and independent values ˜SecState′, s̃kA, s̃kB
$← {0, 1}PRF (where

{0, 1}PRF is the output space of the PRF) used in the protocol execution
of the test session πsi in stage u, and its matching session πrj . We do so by
initialising a post-quantum prf challenger and query m0‖m1‖ctr, and use the

output ˜SecState′, s̃kA, s̃kB from the prf challenger to replace the computa-
tion of SecState′, skA, skB . Since k̃3 is uniformly random and independent
by the previous game, this is a sound replacement. If the test bit sampled by

the prf challenger is 0, then ˜SecState′, s̃kA, s̃kB = PRF(k̃3,m0‖m1‖ctr) and
we are in the previous game. If the test bit sampled by the prf challenger

is 1, then ˜SecState′, s̃kA, s̃kB
$← {0, 1}PRF and we are in Game 6′. Thus

any adversary A capable of distinguishing this change can be turned into a
successful adversary against the post-quantum prf security of PRF, and we
find:

Pr(break5′) ≤ AdvprfPRF,A(λ) + Pr(break6′).

Since s̃kA, s̃kB are now uniformly random and independent values in stage t
independent of the protocol flow regardless of the value of the test bit b, A
has no advantage in guessing the bit and thus:

Adv
HAKE,cleanqHAKE,A,C3.4

Muckle,nP ,nS ,nT
(λ) ≤

n2Pn
2
SnT ·

(
(1 + t− t∗) · Advdual-prfPRF,A (λ)

+ (4 + t− t∗) · AdvprfPRF,A(λ)
)
.

Taking the maximum of all pairs of t, t∗ we find:

Adv
HAKE,cleanqHAKE,A,C3.4

Muckle,nP ,nS ,nT
(λ) ≤

n2Pn
2
SnT ·

(
(1 + nT ) · Advdual-prfPRF,A (λ)

+ (4 + nT ) · AdvprfPRF,A(λ)
)
.

5.1 Classical Security of Muckle

Here we prove our second result: the security of Muckle against classical adver-
saries.

Theorem 2. The Muckle key exchange protocol is HAKE-secure with cleanness
predicate cleanHAKE (capturing perfect forward secrecy and post-compromise se-
curity) under the prf, eufqcma, dual-prf, ddh and ssddh assumptions. That is, for
any PPT algorithm A against the HAKE key-indistinguishability game (defined



in Figure 5) AdvHAKE,cleancHAKE,A
Muckle,nP ,nS ,nT

(λ) is negligible, with:

AdvHAKE,cleancHAKE,A
Muckle,nP ,nS ,nT

(λ) ≤

2 · n2PnSnT ·
(
AdvprfPRF,A(λ) + Adveufcma

MAC,A(λ)
)

+ n2Pn
2
SnT ·

(
Advind-cpaKEM,A(λ) + (13 + 2 · nT ) · AdvprfPRF,A(λ)

+ Advind-cpaKEM,A(λ) + (13 + 2 · nT ) · Advdual-prfPRF,A (λ)
)

We give the full proof of our secondary result, Theorem 2, against a classical
adversary (i.e. an adversary that is a classical PPT algorithm):

Proof. Similar to the proof of Theorem 1 we begin by dividing the proof into
three separate cases (and denote with AdvHAKE,cleancHAKE,A,Cl

Muckle,nP ,nS ,nT
(λ) the advantage of

the adversary in winning the key-indistinguishability game in Case l) where the
query Test(i, s, t) has been issued:

1. The session πsi (where πsi .ρ = init) has no origin session in stage t.
2. The session πsi (where πsi .ρ = resp) has no origin session in stage t.
3. The session πsi in stage t has a matching session.

It follows then that

AdvHAKE,cleancHAKE,AMuckle,nP ,nS ,nT
(λ) ≤ AdvHAKE,cleancHAKE,A,C1

Muckle,nP ,nS ,nT
(λ)

+ AdvHAKE,cleancHAKE,A,C2

Muckle,nP ,nS ,nT
(λ)

+ AdvHAKE,cleancHAKE,A,C3

Muckle,nP ,nS ,nT
(λ)

We then bound the probability of each case, and show that under certain as-
sumptions, the probability of the adversary winning in the key-indistinguishability
game is negligible.

The proofs of Case 1 and Case 2 are identical to the proof of Case 1 and
Case 2 in Theorem 1, and so we simply state the bounds below:

AdvHAKE,cleancHAKE,A,C1

Muckle,nP ,nS ,nT
(λ) ≤ n2PnSnT

(
AdvprfPRF,A(λ)

+ Adveufcma
MAC,A(λ)

)
,

AdvHAKE,cleancHAKE,A,C2

Muckle,nP ,nS ,nT
(λ) ≤ n2PnSnT ·

(
AdvprfPRF,A(λ)

+ Adveufcma
MAC,A(λ)

)
.

Case 3: Test session with matching session

In Case 3, we show that if A that has issued a Test(i, s, t) query to a clean
session πsi in stage t, then A has negligible advantage in guessing the test bit
b. In what follows, we split our analysis of Case 3 into the following sub-cases,
each corresponding to a condition necessary for the cleanness predicate clean to
be upheld by πsi in stage t. These are the subcases:



3.1 CompromiseQK(i, s, t), CompromiseQK(j, r, t) have not been issued, where πrj
matches πsi in stage t.

3.2 CompromiseSK(i, s, t), CompromiseSK(j, r, t) have not been issued, where πrj
matches πsi in stage t.

3.3 CompromiseCK(i, s, t), CompromiseCK(j, r, t) have not been issued, where πrj
matches πsi in stage t.

3.4 CompromiseQK(i, s, t′), CompromiseQK(j, r, t′) have not been issued, where
πrj matches πsi in stages u such that t′ ≤ u < t and no CompromiseSS(i, s, u),
CompromiseSS(j, r, u) queries have been issued.

3.5 CompromiseSK(i, s, t′), CompromiseSK(j, r, t′) have not been issued, where πrj
matches πsi in stages u such that t′ ≤ u < t and no CompromiseSS(i, s, u),
CompromiseSS(j, r, u) queries have been issued.

3.6 CompromiseCK(i, s, t′), CompromiseCK(j, r, t′) have not been issued, where
πrj matches πsi in stages u such that t′ ≤ u < t and no CompromiseSS(i, s, u),
CompromiseSS(j, r, u) queries have been issued.

Note that subcases 3.1, 3.2, 3.4 and 3.5 are exactly identical to the subcases
of Case 3 in the proof of Theorem 1, and the proofs follow similarly. To save
space we do not reiterate the proofs, but merely give the advantage statements
below.

AdvHAKE,cleancHAKE,A,C3.1

Muckle,nP ,nS ,nT
(λ) ≤ n2Pn2SnT ·

(
Advind-cpaKEM,A(λ)

+ 3 · AdvprfPRF,A(λ)

+ 3 · Advdual-prfPRF,A (λ)
)
,

AdvHAKE,cleancHAKE,A,C3.2

Muckle,nP ,nS ,nT
(λ) ≤ n2Pn2SnT ·

(
2 · AdvprfPRF,A(λ)

+ Advdual-prfPRF,A (λ)
)
,

AdvHAKE,cleancHAKE,A,C3.4

Muckle,nP ,nS ,nT
(λ) ≤ n2Pn2Sn2T ·

(
Advind-cpaKEM,A(λ)

+ (3 + nT ) · AdvprfPRF,A(λ)

+ (3 + nT ) · Advdual-prfPRF,A (λ)
)
,

AdvHAKE,cleancHAKE,A,C3.5

Muckle,nP ,nS ,nT
(λ) ≤

n2Pn
2
SnT ·

(
(1 + nT ) · Advdual-prfPRF,A (λ)

+ (4 + nT ) · AdvprfPRF,A(λ)
)
.

We now turn to showing that the adversary’s advantage in winning in subcase
3.3 is negligible under the ind-cpa security of KEM, and the prf and dual-prf
assumptions.

3.3: CompromiseCK(i, s, t), CompromiseCK(j, r, t) have not been issued,
where πr

j matches πs
i in stage t.



Game 0 This is the standard HAKE security game with cleanness predicate
cleancHAKE. Thus:

AdvHAKE,cleancHAKE,A,C3.3

Muckle,nP ,nS ,nT
(λ) = Pr(break0).

Game 1 In this game, we guess the index (i, s, t) and the matching session
(j, r, t) and abort if, during the execution of the experiment, a query Test(i′, s′, t′)
is received to a session πs

′

i′ such that πr
′

j′ matches πs
′

i′ in stage t′ and (i, s, t), (j, r) 6=
(i′, s′, t′), (j′, r′). Thus:

Pr(break0) ≤ n2Pn2SnT · Pr(break1).

Game 2 In this game we replace the computation of the classical Diffie-Hellman
key dhk = gxy with the value gz, where z is a uniformly-randomly sampled
from Zq used in the protocol execution of the test session πsi in stage t, and
its matching session πrj . We do so by initialising a ddh challenger, and replace
the gx, gy values sent in m0 and m1 (by the test session and its matching
partner in stage t, which by the previous game, we know at the start of
the experiment). By the definition of this subcase, A cannot have issued
either a CompromiseCK(i, s, t) or CompromiseCK(j, r, t) query, nor inject its
own Diffie-Hellman keyshares, this replacement is sound. If the distribution
sampled by the ddh challenger is (gx, gy, gxy), we are in Game 1. If the
distribution sampled by the ddh challenger is (gx, gy, gz), then we are in
Game 2. Thus any adversary capable of distinguishing this change can be
turned into a distinguishing algorithm against the ddh assumption, and we
find:

Pr(break1) ≤ Advddhq,p,g,A(λ) + Pr(break2).

Game 3 In this game we replace the computation of the classical key output
ck ← PRF(dhk, labelck) with a uniformly random and independent value

c̃k
$← {0, 1}PRF (where {0, 1}PRF is the output space of the PRF) used in

the protocol execution of the test session πsi in stage t, and its matching
session πrj . We do so by initialising a prf challenger and query labelck, and

use the output c̃k from the prf challenger to replace the computation of ck.
Since Zq is uniformly random and independently sampled from Zq, this is a
sound replacement. If the test bit sampled by the prf challenger is 0, then
c̃k = PRF(dhk, labelck) and we are in Game 2. If the test bit sampled by

the prf challenger is 1, then c̃k
$← {0, 1}PRF and we are in Game 3. Thus

any adversary A capable of distinguishing this change can be turned into a
successful adversary against the prf security of PRF, and we find:

Pr(break2) ≤ AdvprfPRF,A(λ) + Pr(break3).

Game 4 In this game we replace the computation of the second chaining
key k1 ← PRF(c̃k, k0) with a uniformly random and independent value

k̃1
$← {0, 1}PRF (where {0, 1}PRF is the output space of the PRF) used in



the protocol execution of the test session πsi in stage t, and its matching ses-
sion πrj . We do so by initialising a prf challenger and query k0, and use the

output k̃1 from the prf challenger to replace the computation of k1. Since c̃k
is uniformly random and independent by Game 3, this is a sound replace-
ment. If the test bit sampled by the prf challenger is 0, then k̃1 = PRF(c̃k, k0)
and we are in Game 3. If the test bit sampled by the prf challenger is 1, then

k̃1
$← {0, 1}PRF and we are in Game 4. Thus any adversary A capable of

distinguishing this change can be turned into a successful adversary against
the prf security of PRF, and we find:

Pr(break3) ≤ AdvprfPRF,A(λ) + Pr(break4).

Game 5 In this game we replace the computation of the third chaining key

k2 ← PRF(qkm, k̃1) with a uniformly random and independent value k̃2
$←

{0, 1}PRF (where {0, 1}PRF is the output space of the PRF) used in the pro-
tocol execution of the test session πsi in stage t, and its matching session
πrj . We do so by initialising a dual-prf challenger and query qkm, and use

the output k̃2 from the dual-prf challenger to replace the computation of
k2. Since k̃1 is uniformly random and independent by Game 4, this is a
sound replacement. If the test bit sampled by the prf challenger is 0, then
k̃2 = PRF(qkm, k̃1) and we are in Game 4. If the test bit sampled by the

dual-prf challenger is 1, then k̃2
$← {0, 1}PRF and we are in Game 5. Thus

any adversary A capable of distinguishing this change can be turned into a
successful adversary against the prf security of PRF, and we find:

Pr(break4) ≤ Advdual-prfPRF,A (λ) + Pr(break5).

Game 6 In this game we replace the computation of the final chaining key
k3 ← PRF(SecState, k̃2) with a uniformly random and independent value

k̃3
$← {0, 1}PRF (where {0, 1}PRF is the output space of the PRF) used in the

protocol execution of the test session πsi in stage t, and its matching session
πrj . We do so by initialising a dual-prf challenger and query SecState, and

use the output k̃3 from the dual-prf challenger to replace the computation
of k3. Since k̃2 is uniformly random and independent by Game 5, this is a
sound replacement. If the test bit sampled by the dual-prf challenger is 0,
then k̃3 = PRF(SecState, k̃2) and we are in Game 2. If the test bit sampled

by the dual-prf challenger is 1, then k̃3
$← {0, 1}PRF and we are in Game 3.

Thus any adversary A capable of distinguishing this change can be turned
into a successful adversary against the dual-prf security of PRF, and we find:

Pr(break5) ≤ Advdual-prfPRF,A (λ) + Pr(break6).

Game 7 In this game we replace the computation of the updated secret state
and session keys SecState′, skA, skB ← PRF(k̃3,m0‖m1‖ctr) with uniformly

random and independent values ˜SecState′, s̃kA, s̃kB
$← {0, 1}PRF (where



{0, 1}PRF is the output space of the PRF) used in the protocol execution
of the test session πsi in stage t, and its matching session πrj . We do so
by initialising a prf challenger and query m0‖m1‖ctr, and use the out-

put ˜SecState′, s̃kA, s̃kB from the prf challenger to replace the computation
of SecState′, skA, skB . Since k̃3 is uniformly random and independent by
Game 6, this is a sound replacement. If the test bit sampled by the prf

challenger is 0, then ˜SecState′, s̃kA, s̃kB = PRF(k̃3,m0‖m1‖ctr) and we
are in Game 6. If the test bit sampled by the prf challenger is 1, then

˜SecState′, s̃kA, s̃kB
$← {0, 1}PRF and we are in Game 7. Thus any adver-

sary A capable of distinguishing this change can be turned into a successful
adversary against the prf security of PRF, and we find:

Pr(break6) ≤ AdvprfPRF,A(λ) + Pr(break7).

Since s̃kA, s̃kB are now uniformly random and independent values indepen-
dent of the protocol flow regardless of the value of the test bit b, A has no
advantage in guessing the bit and thus:

AdvHAKE,cleancHAKE,A,C3.3

Muckle,nP ,nS ,nT
(λ) ≤ n2Pn2SnT ·

(
Advddhq,p,g,A(λ)

+ 3 · AdvprfPRF,A(λ)

+ 2 · Advdual-prfPRF,A (λ)
)
.

3.6: CompromiseCK(i, s, t∗), CompromiseCK(j, r, t∗) have not been is-
sued, where πr

j matches πs
i in stages u such that t′ ≤ u < t and no

CompromiseSS(i, s, u), CompromiseSS(j, r, u) queries have been issued.

Game 0 This is the standard HAKE security game with cleanness predicate
cleancHAKE. Thus:

AdvHAKE,cleancHAKE,A,C3.6

Muckle,nP ,nS ,nT
(λ) = Pr(break0).

Game 1 In this game, we guess the index (i, s, t) and the matching session
(j, r, t) and abort if, during the execution of the experiment, a query Test(i′, s′, t′)
is received to a session πs

′

i′ such that πr
′

j′ matches πs
′

i′ in stage t′ and (i, s, t), (j, r) 6=
(i′, s′, t′), (j′, r′). In addition, we also guess the stage t∗ such that A does not
issue either a CompromiseSK(i, s, t∗),CompromiseSK(j, r, t∗) and πsi matches
in stages u such that t∗ ≤ u < t and no CompromiseSS(i, s, u) or CompromiseSS(j, r, u)
were made. By the definition of this subcase, such a stage must exist. Thus:

Pr(break0) ≤ n2Pn2Sn2T · Pr(break1).

Game 2 In this game, we replace the classical decapsulated key k derived in the
test session πsi with the uniformly random and independent value k̃. We do
so by interacting with a ind-cpa KEM challenger (as described in Definition
5) and replace the pkA value sent in m0, and the ciphertext pkB sent in m1



with the public-key pk and the ciphertext c received from the ind-cpa KEM
challenger. Since πsi matches πrj in stage t∗, we know that the public-key
and ciphertext sent in m0 and m1 respectively were received by the sessions
without modification. By the definition of this subcase, A cannot have is-
sued either a CompromiseCK(i, s, t∗) or CompromiseCK(j, r, t∗) queries, not
inject its own public-key and ciphertext, and thus this replacement is sound.
Detecting the replacement of k with a uniformly random value k̃ implies
an efficient distinguishing algorithm against the classical ind-cpa security of
KEM. Thus:

Pr(break1) ≤ Advind-cpaKEM,A(λ) + Pr(break2).

Game 3 In this game we replace the computation of the classical key out-
put ck ← PRF(k̃, labelck) with a uniformly random and independent value

c̃k
$← {0, 1}PRF (where {0, 1}PRF is the output space of the PRF) used in

the protocol execution of the test session πsi in stage t∗, and its matching
session πrj . We do so by initialising a prf challenger and query labelck, and

use the output c̃k from the prf challenger to replace the computation of ck.
Since k̃ is uniformly random and independent by the previous game, this
is a sound replacement. If the test bit sampled by the prf challenger is 0,
then c̃k = PRF(k̃, labelck) and we are in Game 2. If the test bit sampled by

the prf challenger is 1, then c̃k
$← {0, 1}PRF and we are in Game 3. Thus

any adversary A capable of distinguishing this change can be turned into a
successful adversary against the prf security of PRF, and we find:

Pr(break2) ≤ AdvprfPRF,A(λ) + Pr(break3).

Game 4 In this game we replace the computation of the second chaining
key k1 ← PRF(c̃k, k0) with a uniformly random and independent value

k̃1
$← {0, 1}PRF (where {0, 1}PRF is the output space of the PRF) used in

the protocol execution of the test session πsi in stage t∗, and its matching
session πrj . We do so by initialising a prf challenger and query k0, and use the

output k̃1 from the prf challenger to replace the computation of k1. Since c̃k
is uniformly random and independent by Game 3, this is a sound replace-
ment. If the test bit sampled by the prf challenger is 0, then k̃1 = PRF(c̃k, k0)
and we are in Game 3. If the test bit sampled by the prf challenger is 1, then

k̃1
$← {0, 1}PRF and we are in Game 4. Thus any adversary A capable of

distinguishing this change can be turned into a successful adversary against
the prf security of PRF, and we find:

Pr(break3) ≤ AdvprfPRF,A(λ) + Pr(break4).

Game 5 In this game we replace the computation of the third chaining key

k2 ← PRF(qkm, k̃1) with a uniformly random and independent value k̃2
$←

{0, 1}PRF (where {0, 1}PRF is the output space of the PRF) used in the pro-
tocol execution of the test session πsi in stage t∗, and its matching session



πrj . We do so by initialising a dual-prf challenger and query qkm, and use

the output k̃2 from the dual-prf challenger to replace the computation of
k2. Since k̃1 is uniformly random and independent by Game 4, this is a
sound replacement. If the test bit sampled by the prf challenger is 0, then
k̃2 = PRF(qkm, k̃1) and we are in Game 4. If the test bit sampled by the

dual-prf challenger is 1, then k̃2
$← {0, 1}PRF and we are in Game 5. Thus

any adversary A capable of distinguishing this change can be turned into a
successful adversary against the prf security of PRF, and we find:

Pr(break4) ≤ Advdual-prfPRF,A (λ) + Pr(break5).

Game 6 In this game we replace the computation of the final chaining key
k3 ← PRF(SecState, k̃2) with a uniformly random and independent value

k̃3
$← {0, 1}PRF (where {0, 1}PRF is the output space of the PRF) used in the

protocol execution of the test session πsi in stage t∗, and its matching session
πrj . We do so by initialising a dual-prf challenger and query SecState, and

use the output k̃3 from the dual-prf challenger to replace the computation
of k3. Since k̃2 is uniformly random and independent by Game 5, this is a
sound replacement. If the test bit sampled by the dual-prf challenger is 0,
then k̃3 = PRF(SecState, k̃2) and we are in Game 2. If the test bit sampled

by the dual-prf challenger is 1, then k̃3
$← {0, 1}PRF and we are in Game 3.

Thus any adversary A capable of distinguishing this change can be turned
into a successful adversary against the dual-prf security of PRF, and we find:

Pr(break5) ≤ Advdual-prfPRF,A (λ) + Pr(break6).

Game 7 In this game we replace the computation of the updated secret state
and session keys SecState′, skA, skB ← PRF(k̃3,m0‖m1‖ctr) with uniformly

random and independent values ˜SecState′, s̃kA, s̃kB
$← {0, 1}PRF (where

{0, 1}PRF is the output space of the PRF) used in the protocol execution
of the test session πsi in stage t∗, and its matching session πrj . We do so
by initialising a prf challenger and query m0‖m1‖ctr, and use the out-

put ˜SecState′, s̃kA, s̃kB from the prf challenger to replace the computation
of SecState′, skA, skB . Since k̃3 is uniformly random and independent by
Game 6, this is a sound replacement. If the test bit sampled by the prf

challenger is 0, then ˜SecState′, s̃kA, s̃kB = PRF(k̃3,m0‖m1‖ctr) and we
are in Game 6. If the test bit sampled by the prf challenger is 1, then

˜SecState′, s̃kA, s̃kB
$← {0, 1}PRF and we are in Game 7. Thus any adver-

sary A capable of distinguishing this change can be turned into a successful
adversary against the prf security of PRF, and we find:

Pr(break6) ≤ AdvprfPRF,A(λ) + Pr(break7).

At this point we now iteratively do the following two game hops (t−t∗) times
in each consecutive stage u where t∗ < u ≤ t. Note that, by the definition of this



sub-case, each of the stages following stage t∗ must match (i.e. there must exist
a matching session πrj with πsi that agrees upon the message transcript):

Game 8’ In this game we replace the computation of the final chaining key

k3 ← PRF( ˜SecState, k2) with a uniformly random and independent value

k̃3
$← {0, 1}PRF (where {0, 1}PRF is the output space of the PRF) used in the

protocol execution of the test session πsi in stage u, and its matching session
πrj . We do so by initialising a prf challenger and query k2, and use the output

k̃3 from the prf challenger to replace the computation of k3 in stage u. Since
˜SecState is uniformly random and independent by the previous game, and
A cannot issue a CompromiseSS(i, s, u) or CompromiseSS(j, r, u) ∀t∗ ≤ u < t,
this is a sound replacement. If the test bit sampled by the prf challenger is

0, then k̃3 = PRF( ˜SecState, k2) and we are in the previous game. If the test

bit sampled by the prf challenger is 1, then k̃3
$← {0, 1}PRF and we are in

Game 8′. Thus any adversary A capable of distinguishing this change can
be turned into a successful adversary against the prf security of PRF, and
we find:

Pr(break7) ≤ Advdual-prfPRF,A (λ) + Pr(break8′),

Pr(break9′) ≤ Advdual-prfPRF,A (λ) + Pr(break8′).

Game 9’ In this game we replace the computation of the updated secret state
and session keys SecState′, skA, skB ← PRF(k̃3,m0‖m1‖ctr) with uniformly

random and independent values ˜SecState′, s̃kA, s̃kB
$← {0, 1}PRF (where

{0, 1}PRF is the output space of the PRF) used in the protocol execution
of the test session πsi in stage u, and its matching session πrj . We do so
by initialising a prf challenger and query m0‖m1‖ctr, and use the output

˜SecState′, s̃kA, s̃kB from the prf challenger to replace the computation of
SecState′, skA, skB . Since k̃3 is uniformly random and independent by the
previous game, this is a sound replacement. If the test bit sampled by the prf

challenger is 0, then ˜SecState′, s̃kA, s̃kB = PRF(k̃3,m0‖m1‖ctr) and we are
in the previous game. If the test bit sampled by the prf challenger is 1, then

˜SecState′, s̃kA, s̃kB
$← {0, 1}PRF and we are in Game 9′. Thus any adver-

sary A capable of distinguishing this change can be turned into a successful
adversary against the prf security of PRF, and we find:

Pr(break8′) ≤ AdvprfPRF,A(λ) + Pr(break9′).

After (t−t∗) iterations of the previous two games, s̃kA, s̃kB are now uniformly
random and independent values in stage t independent of the protocol flow
regardless of the value of the test bit b, A has no advantage in guessing the
bit and thus:



AdvHAKE,cleancHAKE,A,C3.6

Muckle,nP ,nS ,nT
(λ) ≤

n2Pn
2
Sn

2
T ·
(
Advind-cpaKEM,A(λ) + (2 + t− t∗) · Advdual-prfPRF,A (λ)

+ (3 + t− t∗) · AdvprfPRF,A(λ)
)
.

Taking the maximum of all pairs of t, t∗, we find:

AdvHAKE,cleancHAKE,A,C3.6

Muckle,nP ,nS ,nT
(λ) ≤

n2Pn
2
Sn

2
T ·
(
Advind-cpaKEM,A(λ) + (2 + nT ) · Advdual-prfPRF,A (λ)

+ (3 + nT ) · AdvprfPRF,A(λ)
)
.

6 Conclusion and Future Work

In this paper, we have given a framework for the analysis of hybrid key exchange
protocols. We have illustrated its usage with our analysis of the Muckle protocol,
which combines QKD, classical and and post-quantum components to produce a
protocol that is secure against a broad class of adversaries and robust in the face
of unanticipated developments in cryptanalysis, advances in quantum comput-
ing, and vulnerabilities in immature QKD systems. We benchmarked Muckle in
realistic network environments, showing that its computational cost compared
to a fully classical approach is quite moderate. Muckle is a basic protocol design
that can serve to guide the design of hybrid variants of more complex protocols
like TLS (which must address cryptographic agility for key exchange and peer
authentication methods, fast key establishment methods such as 0RTT, etc).
Our paper opens up many avenues for future work. First, we have strongly ab-
stracted the QKD component in our framework, treating is as an inexhaustible
supply of shared, random bits. Yet there is a fine tradition of developing security
proofs for QKD systems based purely on physical models. It is a significant chal-
lenge to integrate such approaches in our framework. The work of [25] provides
one route forward using Universal Composability. In future QKD systems, the
bit-rate of key agreement will exceed that which can be achieved by classical
communication, at least over short ranges. This suggests adapting Muckle to
allow rapid key refreshing from QKD keying material and slower refreshing from
other sources. Our analysis framework could be extended to support such “dif-
ferential refreshing”. But this approach also raises implementation challenges,
particularly around key synchronisation, which would need to be carefully ad-
dressed in order to avoid DoS and other attacks.
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A Security Assumptions

In this section we introduce many security assumptions that we rely upon in
proving our construction secure. In particular, for the derivation of the keys
we rely on post-quantum variants of pseudo-random functions and dual pseudo-
random functions security. For our key-exchange, we rely on the classical security
of a key encapsulation mechanism (KEMs), and additionally the post-quantum
security of a key encapsulation mechanism (QKEM). Finally, for authentication,
we rely upon the post-quantum variant of the existential unforgeable security
under chosen message attack (eufcma) assumption for a Message Authentication
Code (MAC). We begin by introducing “post-quantum” variant, explicitly re-
quiring that the symmetric key algorithm is secure against an algorithm that
has access to a quantum computer.

Definition 5 (Key Encapsulation Mechanism). A key encapsulation mech-
anism (KEM) is a triple of algorithms KEM = {KeyGen,Encaps,Decaps} with
an associated keyspace K. We describe the algorithms below:

– KeyGen(λ)
$→ (pk, sk) : KeyGen is a probabilistic algorithm that takes as

input the security parameter λ and returns a public/secret key pair (pk, sk).

– Encaps(pk)
$→ (c, k) : Encaps is a probabilistic algorithm that takes as input

a public key pk and outputs a ciphertext c as well as a key k ∈ K.
– Decaps(sk, c)→ (k) : Decaps is a deterministic algorithm that takes as input

a secret key sk and a ciphertext c and outputs a key k ∈ K, or a failure
symbol ⊥.

KEM is correct if ∀(pk, sk) such that KeyGen(λ)
$→ (pk, sk), and (c, k) such

that Encaps(pk)
$→ (c, k), it holds that Decaps(sk, c) = k. We define the ind-cpa

security of a key encapsulation mechanism in the following game played between
a challenger C and an adversary A.

1. C generates a public-key pair KeyGen(λ)
$→ (pk, sk)



2. C generates a ciphertext and key Encaps(pk)
$→ (c, k0)

3. C samples a key k1
$← K and a bit b uniformly at random.

4. A is given (pk, c, kb) and outputs a guess bit b′

We say that A wins the ind-cpa security game if b′ = b and define the advantage
of a QPT algorithm A in breaking the ind-cpa security of a key encapsulation
mechanism KEM as Advind-cpaKEM,A(λ) = |2 · Pr(b′ = b) − 1|. We say that KEM is

post-quantum secure if for all QPT algorithms A, Advind-cpaKEM,A(λ) is negligible in
the security parameter λ.

Definition 6 (Post-Quantum PRF). A pseudo-random function family is a
collection of deterministic functions PRF = {PRFλ : K × I → O : λ ∈ N}, one
function for each value of λ. Here, K, I, O all depend on λ, but we suppress this
for ease of notation. Given a key k in the keyspace K and a bit string m ∈ M,
PRFλ outputs a value y in the output space O = {0, 1}λ. We define the security
of a pseudo-random function family in the following game between a challenger
C and a quantum polynomial-time (QPT) algorithm A11, with λ as an implicit
input to both algorithms:

1. C samples a key k
$← K and a bit b uniformly at random.

2. A can now query C with polynomially-many distinct mi values, and receives

either the output yi ← PRFλ(k,mi) (when b = 0) or yi
$← {0, 1}λ (when

b = 1).
3. A terminates and outputs a bit b′.

We say that A wins the PRF security game if b′ = b and define the advantage
of a QPT algorithm A in breaking the pseudo-random function security of a
PRF family PRF as AdvprfPRF,A(λ) = |2 · Pr(b′ = b) − 1|. We say that PRF is

post-quantum secure if for all QPT algorithms A, AdvprfPRF,A(λ) is negligible in
the security parameter λ.

We similarly upgrade the Dual-PRF assumption and the eufcma assumption
for MACs to post-quantum variants.

Definition 7 (Post-Quantum Dual-PRF). Let PRFλ be a PRF family. Given
a key k in the keyspace K and a bit string m ∈M, PRFλ outputs a value y in the
output space O = {0, 1}λ. We define a second PRF family PRFdual = {PRFdual

λ :
I × K → O : λ ∈ N} by setting PRFdual

λ (m, k) = PRFλ(k,m). We define the
security of a pseudo-random function family in the following game between a
challenger C and a QPT adversary A, with λ as an implicit input to both algo-
rithms:

1. C samples a key k
$← K and a bit b uniformly at random.

11 Note that a quantum polynomial-time algorithm is a uniform family of quantum
circuits of size polynomial in the security parameter.



2. A can now query C with polynomially-many distinct mi values, and receives

either the output yi ← PRFλ(k,mi) (when b = 0) or yi
$← {0, 1}λ (when

b = 1).
3. A terminates and outputs a bit b′.

We say that A wins the PRF security game if b′ = b and define the advantage of
a QPT algorithm A in breaking the pseudo-random function security of a PRF
family PRF as:

AdvprfPRF,A(λ) = |2 · Pr (b′ = b)− 1| .

We define the advantage of A in breaking the dual-prf security of PRF as:

Advdual-prfPRF,A (λ) = max
{
AdvprfPRF,A(λ),Advprf

PRFdual,A(λ)
}
,

and say that PRF is a post-quantum secure dual PRF family if, for all QPT
algorithms A, Advdual-prfPRF,A (λ) is negligible in the security parameter λ.

Definition 8 (Post-Quantum eufcma MAC assumption). A message au-
thentication code (MAC) scheme is a pair of algorithms MAC = {KeyGen,Tag}
where:

– KeyGen is a probabilistic key generation algorithm taking input a security
parameter λ and returning a random key k in the keyspace K of MAC.

– Tag is a deterministic algorithm that takes as input a secret key k and an
arbitrary message m from the message space M and returns a MAC tag τ .

Security is formulated via the following game that is played between a challenger
C and a QPT adversary A:

1. The challenger samples k
$← K

2. The adversary may adaptively query the challenger; for each query value mi

the challenger responds with τi = Tag(k,mi)
3. The adversary outputs a pair of values (m∗, τ∗) such that m∗ /∈ {m0, . . .mi}

The adversary A wins the game if Tag(k,m∗) = τ∗, producing a MAC forgery.
We define the advantage of A in breaking the existential unforgeability property
of a MAC scheme MAC under chosen-message attack to be:

Adveufcma
MAC,A(λ) = Pr (Tag (k,m∗) = τ∗)

Finally, we say that MAC is a post-quantum eufcma secure if, for all QPT
algorithms A, Adveufcma

MAC,A(λ) is negligible in the security parameter λ.

Next we turn to defining the Decisional Diffie-Hellman problem.

Definition 9 (Decisional Diffie-Hellman (DDH) Problem). Consider a
cyclic group G of order q and with generator g. Given a tuple sampled with
probability 1/2 from one of the following two distributions:



–
(
ga, gb, gab

)
–
(
ga, gb, gc

)
where a, b, c are uniformly randomly and independently sampled from Zq, deter-
mine which distribution the tuple is sampled from. We say that the DDH problem
is hard if an adversary has an advantage in solving the DDH problem that is
negligibly greater than 1/2. We define the advantage of a PPT algorithm A in
breaking the ddh problem as:

Advddhq,p,g,A(λ) =
∣∣Pr
(
A
((
ga, gb, gab

))
→ 1

)
− Pr

(
A
((
ga, gb, gc

))
→ 1

)∣∣.
B Instantiating KEMs with Diffie-Hellman key exchange:

Consider a cyclic group G of order q and with generator g. We build a key en-
capsulation mechanism KEM = {KeyGen,Encaps,Decaps} from a generic Diffie-
Hellman key exchange in the following way:

– KeyGen(λ)
$→ (pk, sk) : KeyGen is a probabilistic algorithm that takes as

input the security parameters λ := (G, q, g), generates a private key sk :=

x
$← Zq, computes a public key pk := gx and returns a public/secret key

pair (pk, sk).

– Encaps(pk)
$→ (c, k) : Encaps is a probabilistic algorithm that takes as input

a public key pk := gx, and generates a Diffie-Hellman secret key y
$← Zq,

computes a ciphertext c := gy, a key k := (gx)y and outputs the ciphertext
c as well as the key k.

– Decaps(sk, c)→ (k) : Decaps is a deterministic algorithm that takes as input
a secret key sk := x and a ciphertext c := gy and outputs a key k := (gy)x,
or a failure symbol ⊥.

It is clear that if the Decisional Diffie-Hellman (DDH) problem is hard, then
this KEM construction is ind-cpa secure. 12 Since we use MAC tags to authenti-
cate our KEM encapsulations, ind-cpa security suffices for our construction.

C Security Experiment

We begin by showing the full tuple of key exchange algorithms comprising a
key-exchange protocol Π, described in Section 4.2.

Π.EQKeyGen(λ)
$→ (pk, sk) is a probabilistic post-quantum ephemeral asym-

metric key generation algorithm taking as input a security parameter λ and
outputting a public-key/secret-key pair (pk, sk).

12 For the full details of ddh and ind-cpa security, refer to Appendix A
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(λ):

1: b
$← {0, 1}

2: Π.LQKeyGen(λ)
$→ qpki, qski ∀i ∈ [nP ]

3: Π.LCKeyGen(λ)
$→ cpki, cski ∀i ∈ [nP ]

4: Π.LSKeyGen(λ)
$→ pskidji , psk

j
i ∀i ∈ [nP ], j ∈

[nP ]
5: (pskidji , psk

j
i )← (pskidji , psk

j
i ) ∀j > i

6: pki ← (qpki, cpki), pskidi ←
{pskid1i , . . . , pskidnP

i }
7: LSKji , LQKi, LCKi ← clean ∀i ∈ [nP ], j ∈ [nP ]
8: ESKs

i ,EQKs
i ,ECK

s
i ← clean ∀i ∈ [nP ], s ∈ [nS ]

9: PSSs
i ,SK

s
i ← clean ∀i ∈ [nP ], s ∈ [nS ]

10: ctr ← 0
11: d

$← A(pk,pskid)Send,Create?,Corrupt?,Compromise?,Reveal

12: if clean(πb) then
13: return (d = b)
14: else
15: return d

$← {0, 1}
16: end if

Send(i, s,m):

1: let t = max{t : πsi .α[t] 6= ⊥}
2: if πsi .α[t] 6= active then
3: return ⊥
4: end if
5: Π.f(λ,pki, ski,pskidi,pski, π

s
i ,m) →

(πsi ,m
′)

6: if πsi .α[t] = reject then
7: return ⊥
8: end if
9: πsi .mr ← πsi .mr‖m

10: πsi .ms ← πsi .ms‖m′

11: return m′

Reveal(i, s, t):

1: if πsi .α[t] 6= accept

then
2: return ⊥
3: end if
4: SKs

i [t]← corrupt

5: if ∃(j, r, t) s.t.
(stid = t) and
match(πsi .stid, π

r
j .stid)

then
6: SKr

j [t]← corrupt

7: end if
8: return πsi .k[t]

Test(i, s, t):

1: if πsi .α[t] 6= accept

then
2: return ⊥
3: end if
4: k0

$← D, k1 ←
πsi .k[t]

5: SKs
i [t]← tested

6: return kb

Create(i, j, r, role):

1: let s = min{s : πsi .ρ = ⊥}
2: πsi .ρ = role
3: πsi .pid = j
4: πsi .stid = 1
5: Π.EQKeyGen(λ) → qpk[t], qsk[t] ∀t ∈
{1, . . . , nT}

6: Π.ECKeyGen(λ) → cpk[t], csk[t] ∀t ∈
{1, . . . , nT}

7: πsi .eqk← qsk, πsi .eck← qsk
8: if r 6= ⊥ then
9: πsi .esk[t]← πrj .esk[t] ∀t ∈ {1, . . . , nT}

10: else
11: Π.ESKeyGen(λ) → qkmid[t], qkm[t] ∀t ∈

{1, . . . , nT}
12: πsi .esk[t]← qkm
13: end if
14: return s

CorruptCK(i):

1: if LCKi =
corrupt

then
2: return

⊥
3: end if
4: LCKi ←

corrupt

5: return
cski

CorruptSK(i, j):

1: if LSKji =
corrupt

then
2: return ⊥
3: end if
4:

LSKji , LSK
i
j ←

corrupt

5: return pskji

CorruptQK(i):

1: if LQKi =
corrupt

then
2: return

⊥
3: end if
4: LQKi ←

corrupt

5: return
qski

CompromiseQK(i, s, t):

1: if EQKs
i [t] =

corrupt then
2: return ⊥
3: end if
4: EQKs

i [t] ←
corrupt

5: return πsi .eqk[t]

CompromiseCK(i, s, t):

1: if ECKs
i [t] =

corrupt then
2: return ⊥
3: end if
4: ECKs

i t← corrupt

5: return πsi .eck[t]

CompromiseSK(i, s, t):

1: if ESKs
i [t] =

corrupt then
2: return ⊥
3: end if
4: ESKs

i [t] ←
corrupt

5: if ∃πrj s.t.
πsi .esk[t] =
πrj .esk[t′] then

6: ESKr
j [t′] ←

corrupt

7: end if
8: return πsi .esk[t]

CompromiseSS(i, s, t):

1: if PSSs
i [t] =

corrupt then
2: return ⊥
3: end if
4: PSSs

i [t] ←
corrupt

5: if ∃πrj s.t.
πsi .pss[t] =
πrj .pss[t

′] then
6: PSSr

j [t′] ←
corrupt

7: end if
8: return πsi .pss[t]

Fig. 5: HAKE experiment for adversary A against the key-indistinguishability security
of protocol Π. Note that the values pk,pskid given as input to A represent the vectors
pki, pskidi for all nP parties. The function match takes as input two sessions πsi and
πrj and determines if they are matching according to some matching definition. For the
definition of matching sessions used in our HAKE experiment, see Section 4.4.

Π.ECKeyGen(λ)
$→ (pk, sk) is a probabilistic classical (i.e. not quantum-resistant)

ephemeral asymmetric key generation algorithm taking as input a security
parameter λ and outputting a public-key/secret-key pair (pk, sk).



Π.ESKeyGen(λ)
$→ (qkm, qkmid) is a probabilistic ephemeral symmetric key gen-

eration algorithm taking as input a security parameter λ and outputting
some symmetric keying material and (potentially) a keying material identi-
fier (qkm, qkmid).

Π.LQKeyGen(λ)
$→ (pk, sk) is a probabilistic post-quantum long-term asymmet-

ric key generation algorithm taking as input a security parameter λ and
outputting a public-key/secret-key pair (pk, sk).

Π.LCKeyGen(λ)
$→ (pk, sk) is a probabilistic classical (i.e. not quantum-resistant)

long-term asymmetric key generation algorithm taking as input a security
parameter λ and outputting a public-key/secret-key pair (pk, sk).

Π.LSKeyGen(λ)
$→ (psk, pskid) is a probabilistic long-term symmetric key gen-

eration algorithm taking as input a security parameter λ and outputting
some preshared key and (potentially) a preshared key identifier (psk, pskid).

C.1 Corruption Registers

Here we detail the full set of corruption registers, which the challenger uses to
determine which secrets the adversary has compromised.

Ephemeral quantum keys: {EQK1
1, . . . ,EQKnP

nS
}, where EQKi

s[stid] ∈
{corrupt, clean,⊥}, ∀ i ∈ [nP ], s ∈ [nS ] and stid ∈ [nT ].

Ephemeral classical keys: {ECK1
1, . . . ,ECK

nP

nS
}, where ECKi

s[stid] ∈
{corrupt, clean,⊥}, ∀ i ∈ [nP ], s ∈ [nS ] and stid ∈ [nT ].

Ephemeral symmetric keys: {ESK1
1, . . . ,ESK

nP

nS
}, where ESKi

s[stid] ∈
{corrupt, clean,⊥}, ∀ i ∈ [nP ], s ∈ [nS ] and stid ∈ [nT ].

Long-term quantum keys: {LQK1, . . . , LQKnP
}, where LQKi ∈

{corrupt, clean,⊥}, ∀ i ∈ [nP ]
Long-term classical keys: {LCK1, . . . , LCKnP

}, where LCKi ∈
{corrupt, clean,⊥}, ∀ i ∈ [nP ]

Long-term preshared keys: {LSK1
1, . . . , LSK

nP
nP
}, where LSKji

∈ {corrupt, clean,⊥}, ∀ i, j ∈ [nP ].
Per-stage secret state: {PSS1

1, . . . ,PSS
nP

nS
}, where PSSi

s[stid] ∈
{corrupt, clean,⊥}, ∀ i ∈ [nP ], s ∈ [nS ] and stid ∈ [nT ].

Next, we give a complete pseudocode description of our HAKE security model,
in Figure 5, as well as a pseudocode description of the matching sessions and
origin sessions defined in Definitions 1 and 2.

D Cleanness Predicate cleancHAKE

Definition 10 (cleancHAKE). A session πsi in stage t such that πsi .α[t] = accept

and πsi .pid = j in the security experiment defined in Figure 5 is cleancHAKE if all
of the following conditions hold:

1. The query Reveal(i, s, t) has not been issued.



match(πsi .stid, π
r
j .stid)→ {0, 1}:

1: if (πsi .ms[stid] 6= πrj .mr[t])
∨(πsi .mr[stid] 6= πrj .ms[t])
∨(πsi .ρ = πrj .ρ) ∨(πsi .pid 6=

j)
∨(πrj .pid 6= i) then

2: return 0
3: end if
4: return 1

origin(πsi .stid, π
r
j .stid)→ {0, 1}:

1: if (πsi .mr[stid] 6=
πrj .ms[stid])∨
(πsi .mr[stid]′ 6= πrj .ms[stid] :
πsi .mr[stid]′

=
trunc(πsi .mr[stid], |πrj .ms[stid]|)
then

2: return 0
3: end if
4: return 1

Fig. 6: A pseudocode description of the matching session and origin session functions
defined in Definitions 1 and 2.

2. For all (j, r, t) ∈ nP ×nS×nT such that πsi matches πrj in stage t, the query
Reveal(j, r, t) has not been issued.

3. If there exists a session πrj such that πrj matches πsi in stage t, then at least
one of the following sets of queries has not been issued:

– CompromiseQK(i, s, t), CompromiseQK(j, r, t) have not been issued, where
πrj matches πsi in stage t.

– CompromiseSK(i, s, t), CompromiseSK(j, r, t) have not been issued, where
πrj matches πsi in stage t.

– CompromiseCK(i, s, t), CompromiseCK(j, r, t) have not been issued, where
πrj matches πsi in stage t.

– CompromiseQK(i, s, t′), CompromiseQK(j, r, t′) have not been issued, where
πrj matches πsi in stages u such that t′ ≤ u < t and no CompromiseSS(i, s, u),

CompromiseSS(j, r, u) queries have been issued.13

– CompromiseSK(i, s, t′), CompromiseSK(j, r, t′) have not been issued, where
πrj matches πsi in stages u such that t′ ≤ u < t and no CompromiseSS(i, s, u),

CompromiseSS(j, r, u) queries have been issued. 14

– CompromiseCK(i, s, t′), CompromiseCK(j, r, t′) have not been issued, where
πrj matches πsi in stages u such that t′ ≤ u < t and no CompromiseSS(i, s, u),

CompromiseSS(j, r, u) queries have been issued. 15

4. If there exists no (j, r, t) ∈ nP ×nS×nT such that πrj is an origin session of
πsi in stage t, then CorruptSK(i, j) and CorruptSK(j, i) have not been issued

13 Refer to footnote 9.
14 Refer to footnote 9.
15 Refer to footnote 9.



before πsi .α[t]← accept. If there exists a (j, r, t) ∈ nP×nS×nT such that πrj
is an origin session of πsi in stage t, then CorruptSK(i, j) and CorruptSK(j, i)
have not been issued before πrj .α[t]← accept.

E Muckle Message Structure

Here we give the structure of a Muckle key exchange message. Note that the
structure of an initiator message is identical to the structure of a message from
a responder.

typedef struct muckle_msg_header {
u_int8_t type;
u_int8_t version;
unsigned char partyIdentifier[32];
} MUCKLE_MSG_HEADER;

typedef struct muckle_msg {
MUCKLE_MSG_HEADER header;
unsigned char qraSidhPub[378];
unsigned char tag[32];
} MUCKLE_MSG;

We briefly describe each field in the message.

header: Consists of 3 sub-fields:
type: is a flag indicating whether the message came from initiator or re-

sponder.
version: is a flag indicating what key exchange primitives are used in

Muckle. These can be seen as analogous to ciphersuite indicators in a
TLS handshake.

partyIdentifier: is a public string indicating the identity of the party
sending the message. This could be seen equally as a preshared key identi-
fier, and assume that some unique mapping exists in the implementation
between party identities and preshared keys.

classEcdhPub: is the public keyshare of the elliptic-curve-based key exchange
primitive used in Muckle.

qraSidhPub: is the public keyshare of the supersingular isogeny-based key
exchange primitive used in Muckle.

tag: is the output message authentication code, computed over the rest of the
Muckle message.
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