Trouble at the CSIDH: Protecting CSIDH with
Dummy-Operations against Fault Injection Attacks

Fabio Campos™, Matthias J. Kannwischer!, Michael Meyer*i, Hiroshi Onuki$, and Marc Sto‘ttingerqI

* Department of Computer Science, University of Applied Sciences Wiesbaden, Germany
campos @sopmac.de , michael.meyer @hs-rm.de
 Radboud University, Nijmegen, The Netherlands
matthias @kannwischer.eu
! Department of Mathematics, University of Wiirzburg, Germany
§ Department of Mathematical Informatics, University of Tokyo, Japan
onuki@mist.i.u-tokyo.ac.jp
T Security & Privacy Competence Center, Continental AG, Germany
marc.stoettinger @continental-corporation.com

Abstract—The isogeny-based scheme CSIDH is a promising
candidate for quantum-resistant static-static key exchanges with
very small public keys, but is inherently difficult to implement
in constant time. In the current literature, there are two direc-
tions for constant-time implementations: algorithms containing
dummy computations and dummy-free algorithms. While the
dummy-free implementations come with a 2x slowdown, they
offer by design more resistance against fault attacks. In this
work, we evaluate how practical fault injection attacks are on the
constant-time implementations containing dummy calculations.
We present three different fault attacker models. We evaluate
our fault models both in simulations and in practical attacks.
We then present novel countermeasures to protect the dummy
isogeny computations against fault injections. The implemented
countermeasures result in an overhead of 7% on the Cortex-
M4 target, falling well short of the 2x slowdown for dummy-less
variants.

Index Terms—Isogeny-based Cryptography, CSIDH, Fault In-
jection Attack, Fault Resistant Implementation

I. INTRODUCTION

Isogeny-based cryptography is a promising candidate for
quantum-resistant schemes. The most popular schemes, SIDH
(Supersingular Isogeny Diffie-Hellman) and CSIDH (Com-
mutative Supersingular Isogeny Diffie-Hellman), offer key
exchange protocols with the smallest key sizes, but the worst
performance among all current post-quantum schemes. In
contrast to SIDH, CSIDH is non-interactive, and basically
could be used as a drop-in replacement for current applications
of Diffie-Hellman or ECDH. However, it seems that until now,
isogeny-based PQC schemes have not received much attention
in the implementation attack literature [1]. Only few fault-
injection attacks on SIDH and more general investigations
(2], [31, [4]) have been discussed and published in the
community so far. In [5], fault-injection attacks on a constant-
time implementation of CSIDH have been discussed. However,
all previous publications only consider attacks on a theoretical
level and omit discussing a particular fault model, fault-attack
method, and fault-injection technique. To the best of the
authors’ knowledge in none of the publications the practical

execution of fault-injection attacks has been investigated.
Therefore, this is the first work on practical evaluation on the
feasibility of fault attacks on an implementation of the CSIDH
key-exchange protocol.

In this work we focus on CSIDH, for which there are
currently two proposals to design constant-time implemen-
tations. One approach uses dummy computations to achieve
time constantness ([6], [7], [5]), while the other is dummy-free
([5D)- The former approach is believed to be less secure against
fault attacks, but is twice as fast as the latter. In this work,
we evaluate practical fault attacks on the former approach,
and present countermeasures, leading to a relatively small
slowdown by a factor of 1.07, which yields a significantly
better performance than the dummy-free alternative.

The contributions of this work are as follows: Firstly,
we discuss practical attacker models for fault attacks and
side-channel assisted fault attacks on constant time CSIDH
implementation with dummy isogenies. We then simulate all
discussed attack models and perform practical experiments
with low-budget attack equipment. Lastly, we practically eval-
uate the performance of the proposed countermeasures.

We place the code used for this work in the public domain;
it is available at https://github.com/csidhfi/csidhfi. It includes
the CSIDH implementation with and without countermeasures,
the attack-simulation scripts, and attack scripts.

Remark 1: The majority of this work was done prior to
the publication of asymptotically faster isogeny formulas by
Bernstein, De Feo, Leroux, and Smith [8]. Some of our coun-
termeasures rely on the structure of the isogeny computations
in the implementations [5], [6], [7]. Since this is significantly
altered in the formulas from [8], it is unclear whether they can
be protected by similar countermeasures. However, for small
degrees the formulas used in this work are still faster, and it
is yet unclear for which threshold the new formulas become
faster in a constant-time implementation. Even if there are
no similar countermeasures for [8], one could design a hybrid
implementation, where the small degrees use protected dummy

mailto:campos@sopmac.de
mailto:michael.meyer@hs-rm.de
mailto:matthias@kannwischer.eu
mailto:onuki@mist.i.u-tokyo.ac.jp
mailto:marc.stoettinger@continental-corporation.com
https://github.com/csidhfi/csidhfi

computations, while the larger degrees use the dummy-free
approach.

II. PRELIMINARIES
A. CSIDH

We focus on an algorithmic description of CSIDH here; for
more background, we refer to [9].

First, we define a prime of the form p = 4¢;---¢,, — 1,
where /1, ..., ¢, are small distinct odd primes, and work with
supersingular elliptic curves in Montgomery form Ey : 32 =
3 4+ Az? + z over IF,,. Therefore, each such curve contains
points of orders ¢; for all 1 < ¢ < n, which can be used
as input to compute an isogeny of degree /¢;, e.g. using the
formulas of [10]. A private key is given by a vector of integers
(e1,...,en), where the entry e; determines that |e;| isogenies
of degree ¢; have to be computed, and the sign of e; determines
if an order-¢; point on the current curve or its twist has to
be taken as the input. The entries are sampled from a small
interval [—m,m] to obtain an efficient computation. This so-
called class group action evaluation thus takes as input a curve
E, computes the required chain of isogenies, and outputs
a different curve E’. Note that the order of computing the
required isogenies is not fixed, due to the commutativity of
this action. In practice, efficient algorithms for this class group
action sample a point on the current curve, and compute as
many isogenies from this point as possible, thereby requiring
to push this point through each computed isogeny in this chain.
This can be seen in Algorithm 2 of [9].

The commutativity immediately allows us to set up a Diffie-
Hellman-style key exchange: Alice and Bob agree on an initial
curve Ej and choose private key vectors. Both compute the
respective class group action, and obtain a public key E4
resp. Ep. Then, Alice repeats the computation of her chain of
isogenies with the starting curve E'p, and Bob proceeds vice
versa with F/4. Because of the commutativity, both parties
then arrive at the same curve F 4 g, which can be used as the
shared secret. This key exchange is non-interactive, and due to
the efficient verification of public keys, allows for static-static
key exchange [9].

B. Isogenies

As shown by Costello and Hisil [10], for curves in Mont-
gomery form, an isogeny ¢ : F — E’ of odd degree ¢ = 2d+1
can be computed from the following formulas. Let K € E be
a point of order ¢, and denote by (X; : Z;) the projective
coordinates of the point [¢] K. Then

0 (X:2)—

i=1

d 2
X (H(XZ)(X,; + 7))+ (X + 2)(X; Zi)) :

J 2
Z (H(X —Z)(Xi+ Z;) — (X + 2)(X; — Zz)) - (D

i=1

The curve parameter o’ = (A’ : C') of E’ can be computed
by formulas by Meyer and Reith [11], exploiting the birational
equivalence to a twisted Edwards curve:

(A :C) = (2- ((A+2)'75 + (A—2)=%)
(A+2)'7t —(A=2)7%), (@

where
d d
e =[(Xi+2Z) and 7 =]](Xi-Z).
i=1 i=1

Dummy isogenies: As suggested by Meyer and Reith [11],
constant-time algorithms of CSIDH often use dummy isoge-
nies, since otherwise the running time is correlated to the
secret key, which specifies the number of isogenies to be
computed. These dummy computations perform the same in-
structions as real isogeny computations, but discard the results.
Thus, they allow for a fixed number of isogeny computations,
independent from the respective private key.

In order to speed up computations, dummy isogenies are
designed to compute [¢] P for the input point P. This has to be
done, since for a real isogeny of degree ¢, the order of P loses
the factor ¢ by being pushed through. Therefore, a dummy
isogeny would require a subsequent multiplication [¢] P, which
is prevented by performing this computation inside the dummy
algorithm. To this end, a dummy isogeny swaps the input
points K (kernel point) and P (point to be evaluated), to
compute [(¢ — 1)/2]P in the kernel computation part. Then
two further differential additions suffice to compute [¢]P.
However, this method requires to perform these two further
additions in a real isogeny as well, and discard their results,
in order to achieve a constant-time behavior.

Figure 1 and Figure 2 show the different computation blocks
that are contained in the degree-¢ isogeny algorithm. For
real and dummy isogenies, the green blocks are necessary
computations in order to produce a valid output, while the
red blocks entirely consist of dummy computations, whose
results are discarded. Note that these figures do not show
conditional swaps, which are necessary to avoid conditional
branches based on the private key. We refer to [6] and the
accompanying implementation for more details.

C. Constant-time algorithms

Meyer, Campos, and Reith (MCR) [6] pointed out that
in addition to the variable number of isogenies, also the
sign distribution of the key elements may leak information
through the running time. Thus, they proposed a constant-
time algorithm of CSIDH by using dummy isogenies, and by
changing the secret key intervals from [—m, m]™ to [0, 2m]™.
As a result, for any secret key the performance is the same as
for the action of the integer vector (2m, ..., 2m). This cost is
about twice as much as that of the action of (m, ..., m), which
is the worst case in the variable-time algorithm. Further, they
proposed several optimizations, such as the batching technique
SIMBA or the usage of the point sampling method Elligator

compute kernel: ~— compute ad —

K, P R -
[2]K, ..., []1K o(P)
—— compute p(P) ————
\—> compute [£]K
Fig. 1: Real isogeny

compute kernel: 7 compute a’

K, P

[21P, ..., [552]P
—— compute p(P)

[e)P
compute [{]P ———

Fig. 2: Dummy isogeny

[12], which was first used in the context of CSIDH in [13],
and obtain a speed-up factor of roughly 2.

Onuki, Aikawa, Yamazaki, and Takagi (OAYT) [7] proposed
an idea for mitigating the increase of the computational
cost due to the key interval [0,2m]. By keeping two points
Py € E[r — 1] and P € E[rm + 1] in each step in the
algorithm, where 7 denotes the Frobenius endomorphism, one
can compute isogenies for positive signs and negative signs
of a secret key in the same loop. By always choosing the
point Ps that suits the sign of e; for computing the kernel
generator of an /;-isogeny, the correlation between running
time and sign distribution is eliminated. Thus, this method
allows for the use of the secret key intervals [—m,m]|™, and
therefore halves the number of total isogenies at the cost of
an additional point evaluation per isogeny. We describe their
algorithm in Algorithm 1. Note that, for the sake of simplicity,
optimizations such as SIMBA are not described in Algorithm
1. We refer to [6], [7] for more details.

Cervantes-Vazquez, Chenu, Chi-Dominguez, De Feo,
Rodriguez-Henriquez, and Smith (CCCDRS) [5] obtained a
speedup for the MCR and OAYT implementations by using
twisted Edwards curves. Further, they proposed a dummy-less
implementation in order to improve the resistance against fault
attacks, at the cost of a slowdown by a factor of 2.

III. ATTACKER MODELS

The attacker we are modeling in this work is deploying safe-
error analysis to detect the dummy isogenies within CSIDH,
i.e., he injects faults during the computation of the CSIDH
group action and observes if an occurring fault impacts the
shared secret. An adversary that can reliably skip or corrupt
an isogeny computation of a chosen degree at a chosen
index can easily recover the full secret key with a relatively
small number of fault injections. However, due to various
sources of randomness during the execution, it is impossible

Algorithm 1: Constant-time class group action

Input : AeF, s.t, £, is supersingular, m € N,
(e1,...,6en) st. —=m < e; < m for
1=1,...,n.

Output: BeF, st. Eg = (7" --- (") « Ea.

1 Sete;, =m—|el fori=1,...,n.
2 while some e; # 0 or €] # 0 do

3 Set S ={i| e #0ore]#0}.
4 Set k& = HieS 4.
5 Generate Py € E4[m — 1] and Py € Ex[r + 1] by
Elligator.
6 Let P0<—[(p+1)/k]P0 and P1<—[(p+1)/k]P1
7 for i € S do
8 Set s the sign bit of e;.
9 Set K = [k/¢;]Ps.
10 Let Pi_, < [Ei]Pl_S.
11 if K # oo then
12 if e; # 0 then
13 Compute ¢ : E4 — Ep with
kerp = (K).
14 Let A < B, Py < o(Py), Py < o(P1),
and e; «— ¢; — 1 + 2s.

15 else
16 Compute dummy isogeny:
17 Let A — A, Py < [¢;]Ps, and

| e —e—1.
18 Let k < k/¢;.
19 return A.

to always corrupt the intended operation and without side-
channel information an adversary cannot know which isogeny
was affected. Therefore, we propose three different attacker
models with increasing capabilities to evaluate the impact of
the resulting attacks.

In general, we assume that an adversary is able to repeatedly
trigger an evaluation of the group action using the same secret
key. The input curve may be the same for all evaluations, but
may also be different. As CSIDH allows a static-static key
exchange, this is likely how a key exchange is implemented.
The attacker is able to inject faults that will set variables to
random values or skip instructions. An attacker is limited to
observe whether both parties obtained the same shared secret,
e.g., by observing failure later in the protocol. Expressed in
a more formal way, this model is the same as the second
oracle from [4]. We propose the following three attackers with
increasing capabilities. Attacker 1 and Attacker 2 are limited
to fault injection, while Attacker 3 can also obtain additional
side-channel information.

o Attacker 1: Shotgun at the CSIDH. Our weakest
adversary model assumes that the attacker can reliably
cause a fault during the computation of the CSIDH group
action, but has no control over the location of the fault. He
can then observe how often this leads to a wrong shared
secret. This proportion of failures intuitively is depending

on the ratio of “real” vs. “dummy” isogenies. While this
is a rather weak adversary model, it nicely demonstrates
the inherent problem of dummy operations in the context
of fault injection attacks.

The main limitation of Attacker 1 is that he has no control
over the operation that is affected. Since the isogeny
computations make up about 42% of cycles during the
group action on the Cortex-M4, the attacker is likely
to hit an isogeny computation relatively often. However,
he has no knowledge of the order of the faulty isogeny
computation which limits the information he can learn
about the secret key.

« Attacker 2: Aiming at isogenies at index i. A slightly
more powerful adversary can target isogeny computations
at positions of his choice. This does not fully allow to
target isogenies of a chosen degree, as the isogenies
may be evaluated out of order due to point rejections.
However, since the first evaluated isogenies have rela-
tively large orders ¢;, and the point rejection probability
is 1/¢;, the sequence of the first isogenies is almost
deterministic and the individual isogenies can be targeted
easily. We evaluate how many isogenies the adversary can
realistically attack in Section IV.

For all entries of the secret key with e; = 0, the
injected fault will not change the result, and an adversary
immediately knows this part of the secret key. For the
remaining e; the adversary has reduced the search space.

o Attacker 3: Aiming at isogeny computations and
tracing the order. Our most powerful attacker model
complements attacker 2 by additionally allowing the
adversary to trace the faulty isogeny computation to
determine the degree of the isogeny that the fault was
injected into. Since the isogeny order determines the
run-time of the isogeny computation the order might be
recovered from a power trace, e.g., using Simple Power
Analysis [14].

One could imagine yet another adversary that is capable
of setting certain e; of the secret key to a chosen value. A
possible attack would be as follows: For each e; try all possible
values and observe for which value the derived shared secret
is correct. For the CSIDHS12 parameters proposed in [7],
this would require at most 882 successful fault injections for
fully recovering the secret key. This attack would also apply
to dummy-free implementations like [5]. Note, however, that
this adversary is overly powerful especially when assuming
the low-cost fault injection equipment we are targeting in
this work. Therefore, we focus on more realistic fault models
for the remainder of this paper which can be achieved using
relatively cheap clock-glitching equipment.

IV. SIMULATION

To gain a better understanding of how many fault injections
an adversary would require to obtain a certain key space
reduction or key recovery, we simulate the three previously
defined adversary models and mount practical experiments on
them.

0.325 A

0.300 A

0.275 A

0.250 +

0.225 A

0.200 A

% of ineffective faults

0.175 4

0-150 T T T T T
22k 26k 28k 30k 32k 34k
weighted sum of g;

24k

Fig. 3: Simulation results for attack 1 using 100 random
CSIDHS512 secret keys. 500,000 faults are injected into random
operations during the group action.

A. Attack 1

For the simulation attack 1, we implemented a Python
script which simulates all operations that are performed within
CSIDH in the OAYT implementation. Our approach works as
follows: We use our implemented cost-simulation to output a
transcript of each point multiplication, isogeny computation,
etc., in addition to their cost. We then select one of these
operations using the strategy corresponding to the attack
model (e.g., uniformly random for attack 1) and determine
the impact of a fault occurring at that position. This script is
parameterized by the relative cost of each operation which we
experimentally determine for our target implementation.

In general there can be two outcomes of a simulated fault
injection:

o A fault was injected into an operation that was not a
dummy operation which will lead to a wrong shared
secret in most cases, which can be observed by the
adversary.

o A fault was injected into a dummy operation, i.e., there
is no change in the shared secret. This can be considered
an ineffective fault.

Note that there are some special cases, where a fault was
injected into a non-dummy operation, but the resulting shared
secret is not influenced by this. Although these cases are rather
rare, our simulation still considers them, in order to give more
realistic results.

In attack 1, the adversary simply observes the percentage
of fault injections that yield a wrong shared secret. This
proportion depends on the secret key as it determines the
proportion of real versus dummy operations.

a) Results: We simulated the attack for 100 randomly
selected CSIDH512 keys and performed 500,000 fault injec-
tions at random locations during the entire group action. Fig. 3
shows the plot of the probability of an ineffective fault in
relation to the weighted sum of the secret key. As the the
run-time of an individual isogeny is linear in its degree, the

time spent in ¢;-isogenies is proportional to |e;|-¢;. Therefore,
we compute the weighted sum as Y’ |e;|¢; which corresponds
to the approximate time spent in real isogenies. From the
simulation, it is easy to see that the probability of seeing a
faulty shared secret is correlated with secret key. An adversary
learning this probability, can also infer information about the
secret key. The more faults are injected, the more evident this
relationship becomes.

b) Impact: After obtaining the percentage of ineffective
faults for a large enough number of rounds, the attacker now
wants to gain information on the used secret key. However,
we provide an example to show that this does not lead to
a large reduction of the possible key space. Suppose the
attacker obtains a percentage that allows him to assume that
the weighted sum of the secret key is less than 24k. Then, by
a Monte Carlo method, we can estimate that roughly 1% of
all the possible CSIDHS512 keys satisfy this condition. This
means that the search space got reduced from 22°6 to roughly
2249 Since the correlation between the obtained percentage
and weighted sum of the key is not even strong enough to
allow for an assumption as in this example, we conclude that
this attack is not able to significantly reduce the respective
search space.

B. Attack 2

In the proposed constant-time implementations based on
dummy isogenies (MCR and OAYT), the calculation for a
certain e; from the secret key vector (ej,...,e,) acts de-
terministically. This means that first real and then dummy
isogenies are calculated (see lines 12 - 17 in Algorithm
1). Thus, it is sufficient to determine within this calculation
sequence where the first dummy isogeny occurs in order to
know the absolute value of each e;.

We assume in attack 2 and attack 3 that the attacker
knows spots in the isogeny computation for the respective
degree which reveal whether it is a real or dummy isogeny
calculation with a single fault injection. Such critical spots
(according to Figure 1 and Figure 2) in the code can be
empirically determined in advance with manageable effort. In
our experiments, we achieved an accuracy of over 95% with
a single fault injection.

a) Results: For the second attack, it suffices to simply
determine up to which isogeny computation the algorithm
is likely to be deterministic, i.e., no points are going to
be re-sampled. Since the probability of point rejection for
a given degree ¢; is 1/¢;, the sequence of the first isogeny
computations is deterministic with high probability, due to the
relatively large degrees. For example, the attacker knows with
a probability of 71% that the first 23 isogeny computations
run without point rejection in the OAYT implementation. This
makes it easy to target these first 23 isogenies and find out
whether they are real or dummy computations with relatively
few fault attempts. Extending this number of 23 isogenies
leads to a quickly increasing probability for point rejections,
thus preventing unambiguous results for later isogenies.

b) Impact: The space reduction achieved in this attack
model is from 2256 to 2177 in the best case, where all the
respective key elements are 0, and roughly to 2244 in the
average case. For the average case, we assume that 1/11 of the
respective key elements, which lie in the range [—5,5] resp.
[0,10], are 0. In the worst case, i.e. none of the respective key
elements being 0, the key space is reduced to 2253

C. Attack 3

Since in this attack model the attacker is also able to trace
the order of the isogeny calculation, a divide-and-conquer
approach provides the most effective strategy.

a) Results: Both constant-time implementations (MCR
and OAYT) use a bound vector m = (my,ma,...,Mmy,)
defining the intervals from which each secret exponent e; must
be sampled. The number of fault injections required to obtain
the absolute value of a certain e; depends on the corresponding
m; from the bound vector and on the number of attempts
needed to distinguish a real from a dummy isogeny. For each
individual degree, the attacker simply performs a binary search
until the calculation of the first dummy isogeny is identified.

b) Impact: In the case of the MCR implementation,
where only positive values were used for the secret key vector
(e; € [0,2m],where m = b5), at least 178 injections are
required in the worst case for a full key recovery. Whereas in
the case of the OAYT implementation our strategy requiring
at least 178 injections leads to a space reduction to 274 in the
worst case and to 26796 in the average case. The remaining
search complexity can be further reduced to roughly 23% in
the worst case resp. 234° in the average case by a meet-in-
the-middle approach as described in [9].

V. PRACTICAL EXPERIMENTS

All our fault-injection experiments were performed on a
ChipWhisperer-Lite (CW1173) 32-bit basic board, which in-
cludes a 32-bit STM32F303 ARM Cortex-M4 processor as
the target core. The attacks were implemented in Python (ver-
sion 3.6.9) using the ChipWhisperer open source toolchain'
(version 5.1.3). An ARM plain C implementation of CSIDH,
based on the implementation by Onuki, Aikawa, Yamazaki,
and Takagi (OAYT) [7], was implemented for our project.

To reduce the time required for all experiments on the target
board, we reduced the key space from 117* to 32, i.e., our
secret consists of two elements in {—1,0, 1}. Furthermore, in
attack 1 we compute isogenies with the smallest degrees (3
and 5).

In all implemented attacks, the isogenies are calculated
without randomness, i.e., points and private keys used were
precomputed. To require only one CSIDH action call per
experiment, Bob’s public key and the resulting shared secret
for Alice’s given public key were calculated in advance.
Specifically, in all the implemented scenarios Alice’s com-
putation of the shared secret is attacked.

Uhttps://github.com/newaetech/chipwhisperer, commit 887e6c7

https://github.com/newaetech/chipwhisperer

TABLE I: Results for attack 1 and attack 2

type key # of trials faulty shared secret
{0,0} 5000 19.8%

attack 1 {0,1} 5000 27.3%
{-1,1} 5000 32.8%

{0,1} 5000 2.1%

attack 2|1y 5000 16.4%

In our setup, the fault is injected by suddenly increasing
the clock frequency, hence, forcing the target core to skip an
instruction.

Table I shows the results for the practical attacks. While
the rate for attack 1 increases slightly for keys containing
more real isogenies, the increase for random-based (without
knowledge of critical points) attack 2 is much higher. The
results from attack 2 also apply to attack 3.

VI. COUNTERMEASURES

We describe countermeasures for the OAYT implementa-
tion, but note that this also applies to MCR, and, with slight
modifications, to the CCCDRS implementation containing
dummy computations.

It is evident that attack 3 is the main threat that should be
considered for countermeasures. Thus, we analyze the required
countermeasures for the involved dummy computations during
isogenies. However, the simulation of attack 1 shows that there
are other parts of the CSIDH algorithm that could leak some
information on the private key, if specifically attacked as in the
attacker 3 model. Therefore, we describe the further required
countermeasures, such that the resulting implementation is
secure against leakage in all three attack models.

A rather simple countermeasure would be to randomize the
order in which real and dummy isogenies for a specific degree
are computed, instead of always computing the real ones first.
However, attacker 3 can still attack this with a slightly larger
number of faults, using a probabilistic method to obtain the
key elements. In contrast to this, our idea for countermeasures
against the described fault injection attacks is to redesign the
algorithm such that any fault injection will lead to the output
of an error instead of the output curve. This means that an
attacker does no longer see if the injected fault affected a real
or a dummy operation, and is thus effective against all three
attack models we described.

A key function that is frequently used is a check for equality.
This is performed in constant time and therefore does not leak
any information. The presented countermeasures are designed
for our described specific attack model, i.e. the adversary is
limited to injecting exactly one fault, which can either be a
random fault or an instruction skip.

A. Isogenies

In order to reach security against attack 3, we have to
be able to detect faults during the dummy computations of
isogenies. However, we stress that we require a unified isogeny
algorithm, which computes a real isogeny or dummy isogeny
of given degree in constant time, based on a decision bit
b € {0,1}. This means that countermeasures for one of the
two cases must be executed in both cases to maintain the

Algorithm 2: Protecting the codomain curve

Input : Curve parameters A, C € [, degree ¢,

kernel points (X; : Z;) for 1 <i< (¢ —1)/2,

bitmask b € {0, 1}.

Output: Curve parameters A’, C’ € IF,, error variable
error.

Setmy «— 1, 71— «1
forie{1,...,(¢—1)/2} do
to <« Cadd(Xi,Zi,b).
tl <« CSub(Xi,Zi,b).

T4 < T4 - To.

A U AW N =

T_ «— m_ 1.

7 top < cadd2(C, C,b).

8 1] «— (A - to)e : 7TS,.

9 1o «— (A +t0)e : Wi.

10 A — Cadd(tl,to,b).

1n A"« cadd(A’, A',b).

12 O« CSub(to,tl,b).

13 error «— cverify(A’,C’, —b).
14 return A’ C’' error.

constant-time property. However, it must be ensured that the
verifications only lead to the output of an error in the relevant
case. This is implemented via the function cverify(z,y,b),
which always checks whether x = y via the constant-time
check for equality, but only outputs the result if b = 1.

In this section, we assume that the decision bit is set as
b = 0 if a dummy isogeny is to be computed, and b = 1 for
the real isogeny case.

1) Real isogenies: As depicted in Section II-B, the two
additional differential additions (DADDs) are the only dummy
computations in a real isogeny. Since their output is discarded,
we have to validate that no fault has been injected during their
execution. However, in this case the validation is straightfor-
ward. The DADDs are designed to compute K’ = [¢]K for an
l-isogeny (see Section II-B). Thus, in real isogenies, the result
must be the point oo, since K has order ¢. This means that
we can simply call cverify(K’, 00,b), in order to perform
this validation only in the case of real isogenies.

2) Dummy isogenies: In dummy isogenies, the dummy
computations are the codomain curve computation and the
point evaluation, as described in Section II-B. However, the
involved dummy computations here don’t allow for an elegant
verification of point orders or supersingularity, as in all the
other cases in this section. Instead, we will make use of a
conditional addition cadd(zx,y,b), which outputs = if b = 0
and z + y if b = 1. This function is implemented by first
calling a conditional set function, which takes as input y and
b, is initialized by the output value 0, and overwrites this output
by y if b = 1. Note that this function is implemented to run
in constant time, in order to prevent leakage. Then, we call
the usual addition function for F,-elements, and obtain the
desired output in constant time.

While we have to maintain the structure of computations in
the case of real isogenies (i.e. for b = 1), we have to make

changes to them in order to obtain verifiable results in the
dummy case (i.e. for b = 0). To manage this in constant-time,
we make use of the conditional add function. Analogously,
we define a conditional subtraction csub(z,y,b), and can
compute cadd2(z,y,b) with result bz + by through two calls
to the conditional set function.

a) Codomain curve computation: Instead of using multi-
ples of the kernel generator K, dummy isogenies use multiples
of the input point P;. Thus, the output does not refer to a
special type of curve or follow any other special property that
can be validated.

Recall that the codomain curve parameters are computed by
Eq. 2. It is evident that different steps during the computations
of A’ and C’ contain similar terms, and mostly differ in sign
changes. Therefore, our strategy to evaluate these computa-
tions in the dummy case is to manipulate some of them with
conditional additions, in order to obtain A’ = C’. To reach
this, our algorithm is designed in a way such that a fault
injection in any line of code leads to A’ # C’ in the dummy
case. On the other hand, it obviously computes the correct
output parameters in the case of real isogenies. Algorithm 2
details this method. Again we make use of the conditional
verify function, to only possibly raise an error if b = 0.

b) Point evaluation: Analogously to the codomain curve
computation, there is no possibility to check for the correct
executions of this part through point order checks in the
dummy case. Thus, we resort to the same strategy as for the
codomain curve computation.

The output points are computed by Eq. 1. We can again use
the same strategy to manipulate the computations to output
values satisfying X’ = Z’ in the dummy case. As above,
a fault to any line of code will result in output values with
X' # 7', and in the real isogeny case, the algorithm stays
unchanged. This method is detailed in Algorithm 3. Note that
we are required to run this algorithm twice per isogeny, since
both points Py and P, must be pushed through an isogeny at
each step.

In addition to the faults aiming at dummy computations, we
need to be able to detect faults in non-dummy computations
as well, in order to output an error instead of the output at
the end of the algorithm. Otherwise, the attacker could still
observe the difference between these cases.

To this end, we note that the output of an isogeny consists of
the codomain curve parameters, and the evaluated points. If a
fault is injected during the computation of the codomain curve,
then (with very high probability) the resulting parameters
will not refer to a supersingular curve anymore. This can
be deduced from the fact that the probability of a random
parameter a = A/C to define a supersingular curve is roughly
1/ /P> and therefore negligible [9]. Thus, the resulting curve at
the end of the algorithm will most likely not be supersingular.
It therefore suffices to perform a single supersingularity check,
e.g. as done in the public key validation in [9], at the end of the
algorithm, and output an error in case of a non-supersingular
curve. Instead of using the validation from [9], we use a differ-

Algorithm 3: Protecting the point evaluation

Input : Input point (X : Z), degree ¢, kernel points
(X;: Z;) for 1 < i< (£—1)/2, bitmask
be{0,1}.

Output: Output point (X’ : Z’), error variable error.

1ty <« cadd(X, Z,b).

2 t_ « csub(X, Z,b).
3Setnmxy «— 1, my « 1.
4forie{l,...,(¢—1)/2} do
5 to «— cadd(Xi,Zi,b).
6 t1 «— CSub(Xi,Zi,b).
7 to —t_ 'to.

8 t1 «— t+ -1,

9 to «— Cadd(tl,to,b).
10 ty «— CSU.b(t(),tl,b).
11 T < TX 'tg.

12 Ty < TX t3.

1B X' < cadd(—b, X, b).

14 Z' <« cadd(—b, Z,b).

15 X'« X' -7%.

16 2 — 7' 7%.

17 error «— cverify(X’, Z', —b).
18 return X', Z' error.

ent, slightly relaxed, approach. We simply sample a random
point @ on the curve, and check that [p + 1]Q = oo. This
method is much faster, but has a small chance to output false
positives, so is not usable as public key validation. However,
we heuristically tested the probability for false positives, and
found that in 108 experiments with random curve parameters,
our method and the rigorous verifications always had the same
result. Thus, it seems to be infeasible for the attacker to exploit
this relaxed supersingularity check.

The case of output points will be handled in detail in the
following section.

B. Point orders and scalar multiplications

Scalar multiplications take place in line 6 and 9-10 in
Algorithm 1, and are intended to produce points of the desired
orders. If during such a multiplication a fault is injected
randomly, i.e. not aiming to produce a specific faulty output,
then the probability for still generating a point of desired order
is negligible.” The same is true for faults injected during the
point evaluation of a real isogeny. For detecting such a fault,
it therefore suffices to check if the output point P has the
required order ¢ by verifying that [¢]P = oo.

However, it is not required to perform such a check after
each scalar multiplication resp. isogeny. Indeed, it suffices to
check point orders in the two following situations:

« At the end of each run through a batch of isogenies, if all

computations are running correctly, then both points Py
and P; must be the point at infinity co at the end of the

2This follows since the required orders are always small, and for each prime
factor £;|#E[m — 1] = #E[n + 1] = p+ 1, the probability for the order of
a random point with z-coordinate in [, to contain the factor ¢; is 1 — 1/¢;.

for-loop in line 7 of Algorithm 1. Thus, if we verify this at
the end of each run through a batch, we are able to detect
faults even if the respective faulty point Ps is not used to
generate a kernel input point for an isogeny anymore after
the fault is injected. This ensures the correctness of the
scalar multiplications in lines 6 and 10 of Algorithm 1,
and of the involved isogeny point evaluations.
o In order to validate the scalar multiplication in line 9
of Algorithm 1, we need to verify that K indeed has
the correct order ¢ for each isogeny. This is done by
calculating [¢]K and verifying that the result equals oo
for each isogeny. Note that in the case of real isogenies, a
faulty point K leads to wrong results, that can be detected
anyway; however, in the dummy case, the input point K
is discarded, so this order check is indeed required. In
order to keep our algorithm constant-time, this therefore
has to be done in both cases.
All other scalar multiplications do not require separate order
checks, since faults would be detected by the mentioned
verifications.

Remark 2: Theoretically, the attacker could try to inject
a fault such that a specific output point is produced, although
this is not possible in our attacker model. In particular, the
above verification does not detect a fault, if the order of the
output point divides the desired order. If the attacker produces
a point that lies on the same curve as the correct output point
would (i.e., not on its twist), then this does not lead to a wrong
computation, and therefore does not lead to possible leakage.
Note that in CSIDH any point P of order ¢ on the same curve
produces the same ¢-isogeny codomain curve. It only makes
a difference if P € E[r — 1] or P € E[n + 1].

This also explains a possible attack strategy: The adversary
forces the output of a point on the twist with order dividing the
expected order. Thus, the respective isogenies are computed
with the wrong direction in the isogeny graph, which leads to
leakage.

However, this is only a theoretical attack. Indeed, the chance
for this to happen by accident is negligible, and to specifically
map a point to a point on the twist of the same order,
with an unknown curve, seems infeasible. Even computing
such a point with known curve would require to compute an
irrational endomorphism, which, if possible in general, would
completely break CSIDH on its own [15]. Computing small
prime order points, thus possibly having an order dividing
the expected order, could otherwise be done through division
polynomials. However, as explained above, the attacker does
not know the current curve (except for the starting curve) when
injecting a fault, which means that division polynomials cannot
be computed.

However, there is a simple, but rather costly, countermeasure
to prevent attacks of this fashion. It suffices to check if the
input kernel generator K lies on the correct curve via a
Legendre symbol computation for each isogeny, and output an
error otherwise. Although this seems not to be necessary for
the reasons above, we report on the performance implications
for this in Section VII.

C. Other functions

The CSIDH constant-time algorithms from [6], [7] feature
some more functions outside of the scope of the sections
above. Compared to isogeny computations and scalar multipli-
cations, their share of the total running time is small. Never-
theless, we review if countermeasures against fault injections
for these functions are required.

The mentioned functions include the Elligator map [12], a
method for efficient point sampling. For our discussion and
in our implementation, we use the projective Elligator im-
plementation from [5]. Further, the constant-time conditional
point swap function cswap plays an important role in all
current constant-time CSIDH implementations, and we review
a method to prevent obvious loop-abort faults.

Apart from these functions, there are more functions, like
integer multiplications. However, we disregard them here,
since any fault to these functions is detectable through our
described methods, e.g. through point order checks.

1) Conditional point swaps: The cswap function takes two
IF,-values and a decision bit b € {0, 1} as input, and swaps the
input values if b = 1. However, this is performed in constant-
time, independent from the value of b. The swapping of two
elliptic curve points therefore requires two separate executions
of cswap for their two coordinates.

If one of these swaps is skipped or subject to a fault
injection, this means that the respective X - and Z-coordinates
of the two points no longer fit together as before. Thus,
the coordinates refer to different points then, also leading to
different point orders. This also means that our point order
checks from the previous sections can detect such a fault.

2) Elligator: The Elligator map as used in [5] efficiently
samples projective points Py € E4[r — 1] and Py € E4[7 +
1] on the current curve, where the cost is dominated by one
Legendre symbol calculation. However, if a fault is injected
there, we can no longer guarantee that indeed Py € E4[m —1]
and P, € E4[m + 1]. Deviating from this would mean that we
compute isogenies with a wrong sign, and therefore obtain a
wrong output curve, which can cause leakage.

We mitigate this by computing the Legendre symbol for
both of these points, and thereby making sure that Py €
Ea[m—1] and Py € Ea[m + 1] is satisfied.

3) Loop-abort faults: As mentioned in [5], and also applied
to SIDH in [2], loop-abort faults can lead to a stopping of
the algorithm, although not all required isogenies have been
computed. In the CSIDH implementation featuring dummy
isogenies, this can lead to leakage, since a correctly estab-
lished shared secret in this case means that all the skipped
isogenies have been dummies. As usual, this can be prevented
by using multiple counters, in order to make it far harder
for the attacker to achieve an undetected loop-abort. In the
CSIDH implementations from MCR and OAYT, there already
are several counters, so it suffices to compare them before
outputting the resulting curve, and thereby checking if one of
them has been manipulated to abort the loop.

4) Decision bits: In many cases, decision bits must be set,
such as b, which decides whether a real or dummy isogeny

TABLE II: Performance results for one group action for the
CSIDHS512 implementation on the ARM Cortex-M4 without
and with countermeasures. Averaged over 10 evaluations.
Countermeasures for the theoretical twist attack are evaluated
separately.

STM32F407 (24 MHz) STM32F303 (7.4 MHz)
[clock cycles] [clock cycles]
w/o CM 15523M 15721M
w/ CM (w/o twist) 16 322M 16751M
overhead 804M +5% 1030M +7%
w/ CM (w/ twist) 20907M 21486M
overhead 5384M +35% 5765M +37%

must be computed, or a decision bit that decides if P, or
P, is used to compute the kernel generator for an isogeny.
For our attack models, we could disregard these parts because
of the low computational cost, but anyway we provide a
simple countermeasure for leakage through an injected fault
here. Since in our model the attacker only performs one fault
injection, we can simply compute the respective bit twice,
check if both computations obtained the same result, and
output an error otherwise.

Remark 3: We note that also the dummy-free imple-
mentation of [5] offers attack surface; e.g. it is vulnerable to
attacks aiming at the cswap function, Elligator, or some of the
decision bit choices, which means that our discussion on these
functions also applies to the dummy-free implementation.

VII. PERFORMANCE RESULTS

We implemented the countermeasures described in Sec-
tion VI into the implementation that was used in Section V
to investigate the performance overhead of the proposed
countermeasures. The concrete security of CSIDH512 is cur-
rently under heavy debate [16], [17]; like most previous work
on CSIDH implementations, we focus on the CSIDHS512
parameter set. The proposed attacks and countermeasures,
however, apply to other parameter sets as well. The code
was compiled with arm-none—eabi-gcc?® Version 10.1.0.
Table II contains the performance results without and with
the countermeasures implemented. We report cycle counts
for both the STM32F303, which is the core on the 32-bit
ChipWhisperer Lite, and the STM32F407 which is used in
various post-quantum cryptography implementations in the
literature and the benchmarking project PQM4 [18]. Our
benchmarking code is primarily based on PQM4 and we fol-
low the common practice of down-clocking the STM32F407 to
24 MHz to avoid flash wait states impacting the performance
results. We report the average over 10 evaluations of the group
action. The overhead of the presented countermeasures is 5%
to 7% and, therefore, relatively small compared to generic
countermeasures like duplicating isogeny computations. The
cost for the described twist attack countermeasures is slightly
larger, namely 35% to 37% in total, including all other
countermeasures. However, as described above, this attack is
only of theoretical nature, which means that the former im-
plementation suffices in practice. Note that the implementation

3https://developer.arm.com/

of the arithmetic is a portable C implementation that was not
heavily optimized for performance for this platform yet. It
is, therefore, expected that all implementations can be further
improved in terms of speed.

Acknowledgements

This work has been supported by the European Commission
through the ERC Starting Grant 805031 (EPOQUE), by the
German Federal Ministry of Education and Research (BMBF)
under the project “QuantumRISC” (16KIS1034), by JST
CREST Grant Number JPMJCR14D6, by Elektrobit Automo-
tive GmbH, and by Continental AG.

REFERENCES

[11 S. Chowdhury, A. Covié, R. Y. Acharya, S. Dupee, F. Ganji, and
D. Forte, “Physical security in the post-quantum era: A survey on side-
channel analysis, random number generators, and physically unclonable
functions,” ArXiv, 2020. 1

[2] A. Gélin and B. Wesolowski, “Loop-abort faults on supersingular
isogeny cryptosystems,” in PQCrypto 2017. Springer, 2017, pp. 93—
106. 1, 8

[3] Y. B. Ti, “Fault Attack on Supersingular Isogeny Cryptosystems,” in
PQCrypto 2017. Springer, 2017, pp. 107-122. 1

[4] S. D. Galbraith, C. Petit, B. Shani, and Y. B. Ti, “On the security of
supersingular isogeny cryptosystems,” in ASIACRYPT 2016. Springer,
2016, pp. 63-91. 1, 3

[5] D. Cervantes-Vazquez, M. Chenu, J. Chi-Dominguez, L. D. Feo,
F. Rodriguez-Henriquez, and B. Smith, “Stronger and Faster Side-
Channel Protections for CSIDH,” in LATINCRYPT 2019. Springer,
2019, pp. 173-193. 1, 3,4, 8,9

[6] M. Meyer, F. Campos, and S. Reith, “On Lions and Elligators: An

efficient constant-time implementation of CSIDH,” in PQCrypto 2019.

Springer, 2019, pp. 307-325. 1, 2, 3, 8

H. Onuki, Y. Aikawa, T. Yamazaki, and T. Takagi, “(Short Paper) A

Faster Constant-Time Algorithm of CSIDH Keeping Two Points,” in

Advances in Information and Computer Security. Springer, 2019, pp.

23-33.1,3,4,5,8

[8] D.J. Bernstein, L. D. Feo, A. Leroux, and B. Smith, “Faster computation

of isogenies of large prime degree,” Cryptology ePrint Archive, Report

2020/341, 2020, https://eprint.iacr.org/2020/341. 1

W. Castryck, T. Lange, C. Martindale, L. Panny, and J. Renes, “CSIDH:

An Efficient Post-Quantum Commutative Group Action,” in ASIACRYPT

2018. Springer, 2018, pp. 395-427. 2, 5,7

C. Costello and H. Hisil, “A simple and compact algorithm for SIDH

with arbitrary degree isogenies,” in ASIACRYPT 2017. Springer, 2017,

pp. 303-329. 2

M. Meyer and S. Reith, “A faster way to the CSIDH,” in INDOCRYPT

2018. Springer, 2018, pp. 137-152. 2

D. J. Bernstein, M. Hamburg, A. Krasnova, and T. Lange, “Elligator:

Elliptic-curve points indistinguishable from uniform random strings,” in

ACM SIGSAC 2013. ACM, 2013, pp. 967-980. 3, 8

D. J. Bernstein, T. Lange, C. Martindale, and L. Panny, “Quantum

circuits for the CSIDH: optimizing quantum evaluation of isogenies,”

in EUROCRYPT 2019. Springer, 2019, pp. 409-441. 3

P. C. Kocher, J. Jaffe, and B. Jun, “Differential Power Analysis,” in

CRYPTO ’99. Springer, 1999, pp. 388-397. 4

W. Castryck, L. Panny, and F. Vercauteren, ‘“Rational isogenies from

irrational endomorphisms,” in EUROCRYPT 2020. Springer, 2020, pp.

523-548. 8

C. Peikert, “He gives c-sieves on the CSIDH,” in EUROCRYPT 2020.

Springer, 2020, pp. 463—492. 9

X. Bonnetain and A. Schrottenloher, “Quantum security analysis of

CSIDH,” in EUROCRYPT 2020. Springer, 2020, pp. 493-522. 9

M. J. Kannwischer, J. Rijneveld, P. Schwabe, and K. Stoffelen, “PQM4:

Post-quantum crypto library for the ARM Cortex-M4,” https://github.

com/mupg/pqm4. 9

[7

—

[9

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]
[17]

[18]

https://developer.arm.com/
https://eprint.iacr.org/2020/341
https://github.com/mupq/pqm4
https://github.com/mupq/pqm4

	Introduction
	Preliminaries
	CSIDH
	Isogenies
	Constant-time algorithms

	Attacker Models
	Simulation
	Attack 1
	Attack 2
	Attack 3

	Practical Experiments
	Countermeasures
	Isogenies
	Real isogenies
	Dummy isogenies

	Point orders and scalar multiplications
	Other functions
	Conditional point swaps
	Elligator
	Loop-abort faults
	Decision bits

	Performance results
	References

