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      Abstract.  Multivariate cryptography studies applications of  endomorphisms of 

K[x1, x2, …, xn]  where K is a finite commutative ring. The importance of this direc-

tion for the construction of  multivariate digital signature systems  is well known.  We 

suggest modification of the known digital signature systems for which some of crypt-

analytic instruments were found . This modification prevents possibility to use  re-

cently developed attacks on classical schemes such as  rainbow oil and vinegar sys-

tem, and  LUOV. Modification  does not change the size  of hashed messages and  

size of  signatures. Basic idea is the usage of multivariate messages of unbounded 

degree and polynomial density for the construction of public rules. Modified algo-

rithms are presented for standardization and certification studies. 
      

      Keywords: multivariate cryptography, multivariate digital signature systems, 

unbounded degree, standardisation.  

 

1. On post quantum and multivariate cryptography.  

       
    Post Quantum Cryptography (PQC) is an answer to a threat coming   from a full-

scale quantum computer able to execute Shor’s algorithm. With this algorithm im-

plemented  on a quantum computer, currently used public key schemes, such as RSA  

and elliptic curve cryptosystems, are no longer secure. The U.S. NIST made a step 

toward mitigating the risk of quantum attacks by announcing the PQC standardisation 

process [1] for new public key algorithms. In March 2019 NIST published a list of 

candidates qualified to the second round of the standardisation process. Few public 

key candidates are implemented, like candidate called Round 5 (see [2]) or classic Mc 

Eliece algorithm (see [3]). 

     Current candidates are developed within following directions of PQC: lattice based 

systems, code based cryptosystems, multivariate cryptography (see [4] and further 

references), hash based Cryptography, studies of isogenies for  superelliptic curves.   

         Recall that  Multivariate Cryptography (see [4]) uses polynomial  maps of affine 

space Kn defined over a finite commutative ring K into itself as encryption tools. It 

exploits the complexity of finding a solution of a system of nonlinear equations from 

many variables. Multivariate cryptography uses as encryption tools  nonlinear poly-

nomial transformations of kind x1→f1(x1, x2,…,xn), x2→f2(x1, x2,…,xn), … , xn→fn(x1, 

x2,…,xn) transforming affine space Kn, where  fi ϵ K[x1, x2,…,xn], i=1,2,…,n are multi-

variate polynomials usually given in a standard form, i. e. via a list of monomials in a 

chosen order (nonlinear endomorphisms of K[x1, x2,…,xn].  
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      2. On stable subsemigroups of formal Cremona group and their us-

age.  

          Let K[x1, x2,… , xn] be commutive ring of all polynomials in variables 

x1, x2, … , xn  defined over a commutive ring K. Each endomorphism F ϵ 

En(K) is uniquely determined by its values on formal generators x1, i=1,2,…, 

n.   Symbol  End(K[x1, x2,… , xn] )=En(K) stands for semigroup of all endo-

morphisms of  K[x1, x2,… , xn]. So we can identify F with the formal rule  

x1→f1(x1, x2,… , xn),   x2→f2(x1, x2,… , xn), …, xn→fn (x1, x2,… , xn)  where fiϵ 

K[x1, x2,… , xn].   Element F naturally induces the transformation ∆(F) of af-

fine space Kn given by the following rule ∆(F):(α1, α2,…, αn)→( f1 (α1,  α2,…, 

αn), f2(α1, α2,…, αn),…, fn(α1, α2,…, αn)) for each (α1, α2,…, αn)ϵ Kn. Luigi 

Cremona [5]   introduced  ∆(En(K))= CS(Kn) which is currently called affine 

Cremona semigroup. A group of all invertible transformations of  CS(Kn) with 

an inverse from CS(Kn) is known as  affine Cremona group  CG(Kn) (shortly 

Cremona group, see for instance [6], [7]).          

      We refer to infinite En(K) as formal affine Cremona semigroup.    Density 

of the map F is the total number of monomial terms in all fi. 

    

3. On multivariate digital signatures algorithms and their privatisa-

tion scheme. 

It is commonly  admitted that Multivariate cryptography turned out to be 

more successful as an approach to build signature schemes primarily because 

multivariate schemes provide the shortest  signature among post-quantum 

algorithms.   Such signatures use system of nonlinear polynomial equations 

1p(x1,x2 , . . . , xn) = 1pi,j · xixj+
1pi · xi+

 1p0 

2p(x1, x2, . . . , xn) = 2p i,j · xixj +
2pi · xi +

2p0 

   … 

mp(x1,x2 , . . . , xn) = mpi,j · xixj+mpi · xi+
 mp0 

where kp i,j,  
kp i are elements of selected commutative ring K. 

   The quadratic multivariare cryptography map  consists of two bijective af-

fine  transformations,  S and T of dimensions n and m, and a quadratic element  

P’ of kind  xi →
ip of formal Cremona group, where ip are written above ele-

ments of  K[x1, x2,…,xn].We denote via Δ(P’) -1(y) some reimage of y=Δ(P(x)). 

The triple Δ(S) -1, Δ(P’) -1,  Δ(T) -1 is the private keyq also known as the 

trapdoor.  

     The public key is the composition S, P’ and T which is by assumption hard 

to invert without the knowledge of the trapdoor. Signatures are generated us-

https://en.wikipedia.org/wiki/Digital_signature
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ing the private key and are verified using the public key as follows. The mes-

sage is hashed to a vector y via a known hash  function. The signature is Δ(T) -

1 (Δ(P’) -1)( Δ(S) -1). The receiver of the signed document must have the public 

key P in posession. He computes the hash y  and checks that the signature  x 

fulfils Δ(P)(y)=x. 

  EXAMPLE. Assume that we have two groups of variables  z1, z2, …, zr and 

z’1 , z’2, …, zn-r    such  that  the substitution  x1=z1, x2=z2,…, xr =zr, xr+1=z’1, 

xr+2=z’2,…, xn =z’n-r  converts every single element ip  to expression in  the  

form  Σγijkzjz’k+ Σλijkz’jz’k+ Σςijzj+ Σς’ijz’j+ϭi.  In this situation we have to  

sign a given message y and the result is a valid signature x .The coeffi-

cients, γijk, λijk, ςij, ς’ijand ϭi must be chosen secretly. The vinegar variables z’i 

are chosen randomly (or pseudorandomly).The resulting linear equations sys-

tem gets solved for the oil variables zi. 

Described above  unbalanced oil and vinegar (UOV) scheme is a modified 

version of the oil and vinegar scheme designed by J. Patarin. Both are digital 

signature protocols. They are algorithms of multivariate cryptography. The 

security of this signature scheme is based on an NP-hard mathematical prob-

lem. To create and validate signatures a minimal quadratic equation system 

must be solved. Solving m equations with n variables is NP-hard. While the 

problem is easy if m is either essentially larger or essentially  smaller 

than n, importantly, the problem is thought to be difficult in the average case 

when m and n are nearly equal, even when using a quantum computer. Multi-

ple signature schemes have been devised based on multivariate equations with 

the goal of achieving quantum resistance.  

        4. Some semigroups of endomorphisms of K[x1, x2, … xk] defined via 

linguistic graphs. 
 

Let us consider   graph based constructions of  semigroups of formal 

Cremona semigroup  En(K).  
Element x1 → fi(x1, x2, …, fn), i=1,2,…,n of this semigroup will be 

identified with the tuple of elements (f1, f2,…, fn), fi ϵK[x1, x2,…,xn] when it is 

convenient. 

Let us consider a totality sBS(K) of sequences of  kind u=(H0, G1, G2, 

H3,H4,G5, G6,…, Ht-1, Ht), t=4i, where Hkϵ Es(K), Gj ϵEs((K).  We refer to 
sBS(K) as a totality of  free symbolic strings of rank s. We define a product of 
u with u’=(H’0, G’1, G’2, H’3, H’4, G’5, G’6,…, H’l-1, Hl) as w=(H0, G1, G2, H3, 

H4, G5, G6,…, Ht-1, H’0(Ht),G’1(Ht), G’2(Ht),  H’3(Ht), H’4(Ht),  G’5(Ht), 

G’6(Ht), …, H’l-1(Ht),  H’l(Ht)). Notice that the compositions of maps is com-

puted in Es(K). 

It is easy to see that this operation transforms sBS(K) into the semi-

group with the unity element (H0), where E0 is an identity transformation from 

https://en.wikipedia.org/wiki/Hash_function
https://en.wikipedia.org/wiki/Digital_signature
https://en.wikipedia.org/wiki/Digital_signature
https://en.wikipedia.org/wiki/Multivariate_cryptography
https://en.wikipedia.org/wiki/NP-hard
https://en.wikipedia.org/wiki/Quantum_computer
https://en.wikipedia.org/wiki/Post-quantum_cryptography


4 

S(Ks). Elements of kind (H0, G1, G2, H3, H4) are  generators of the semigroup. 

This  subsemigroup  has some similarity with subsemigroup of special chains 

in the free product Es(K)▪Es(K).  We refer to sBS(K) as semigroup of free  

regular strings  of dimension s.  

Let us assume that Ht  of written above u ϵ sBS(K) is a bijective map 

and its inverse is a polynomial map (in the case of infinite ring K).  Then we 

can consider a reverse linguistic string Rev(u)= (Ht-1(Ht
-1), Gt-2(Ht

-1), Gt-3,(Ht
-

1), Ht-4(Ht
-1),Ht-5

1(Ht), …,G2(Ht
-1),  G1(Ht

-1), H0(Ht
-1), Ht

-1) and refer to u as 

reversible string.  Let sBR(K) stand for the semigroup of reversible strings. 

Let K be a finite commutative ring. We refer to an incidence structure 

with a point set P=Ps,m=Ks+m and a line set L=Lr,m=Kr+m as linguistic inci-

dence structure Im  if point   x=(x1, x2,…, xs, xs+1, xs+2, …,  xs+m) is incident to 

line y=[y1, y2, … , yr , ,yr+1, yr+2 , …, yr+m ] if and only if the following rela-

tions hold 

a1xs+1+b1yr+1=f1 ( x1, x2 ,… , xs, y1, y2, …  , yr) 

a2xs+2+b2yr+2=f2 ( x1, x2 ,… , xs, xs+1, y1, y2, …  , yr, yr+1) 

                                … 

amxs+m+bmyr+m=fm ( x1, x2 ,… , xs, xs+1,…, xs+m, y1, y2, …  , yr, yr+1, …,  yr+m) 

where  aj, and bj , j=1,2,,,,m are not zero divisors, and fj are multivariate poly-

nomials with coefficients from K. Brackets and parenthesis allow us to distin-

guish points from lines (see [8]). 

The colour ρ(x)=ρ((x)) (ρ(y)=ρ([y])) of point  x  (line [y])  is defined 

as projection of an element (x) (respectively [y]) from a free module on its 

initial s (relatively r) coordinates. As it follows from the definition of linguis-

tic incidence structure for each vertex of incidence graph there exists the 

unique neighbour of a chosen colour. 

We refer to ρ((x))=(x1, x2 ,… , xs) for  (x)=(x1, x2 ,… , xs+m) and  

ρ([y])=(y1, y2, …  , yr) for [y]=[y1, y2, …  , yr+m] as the colour of the point and 

the colour of the line respectively. For each bϵKr and p=(p1, p2 ,… , ps+m)  

there is the unique neighbour of the point [l]=Nb(p)=N((p),b) with the colour 

b. Similarly for each cϵKs and line l=[l1, l2 ,… , lr+m] there is the unique neigh-

bour of the line (p)= Nc([l])=N([l],b) with the colour c. We refer to operator 

of taking the neighbour of vertex accordingly  chosen colour as sliding opera-

tor.  On the sets P and L of points and lines of linguistic graph we define jump 

operators  1J=1Jb(p)=J((p),b)=(b1, b2,…,bs, p1, p2 ,… , ps+m), where (b1, 

b2,…,bs)ϵKs  and 2J=2Jb ([l])=J([l],b) =[b1, b2,…,br, l1, l2 ,… , lr+m], where (b1, 

b2,…,br)ϵKr. We refer to tuple (s, r, m) as type of the linguistic graph I=I(K).  

Notice that we can consider the same set of above equations with co-

eficients from K for variables xi and yi  from the extension K’ of K and define 

graph K’I=K’I(K). Let  s=r and K’=K[x1, x2 ,…, xn], n=m+s . We consider in-

duced subgraph in  I’ of all vertices of K’I with colours from K[x1, x2,…, xs ] 

(tuples of K[x1, x2,…, xs ]
 s ) 
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 We form the sequence of vertices (walk with jumps) of graph I’with the us-

age of string u from free linguistic semigroupn sBS(K). 

We take initial point (x)=(x1, x2,…, xs, xs+1, xs+2,…, xs+m)  formed by 

the generic variables of K’ and consider 
a skating chain 

(x),J((x),H0)=(1x),N((1x),G1)=[2x],J([2x],G2)=[3x],N([3x],H3)=(4x),J((4x),H4)=(5x),

…, J([t-2x],Gt-2)=[t-1x],N([t-1x],Ht-1)=(tx),J((tx),Ht)=(tx). 

Let (tx) be the tuple (Ht, F2, F3,…,Fn) where Fi ϵK[x1, x2,…, xn]. We define IΨ(u), 

I=I(K) as the map (x1, x2,…, xn)→(Ht, F2, F3,…,Fn) and refer to it as chain transition 

of point variety. 

The statement written below follows from the definition of the map.    

Lemma 1. The map ψ=Iψ: sBS(K)→En(K) is a homomorphism of semi-

groups,  ψ( sBR(K)) is a group ( [9]),   
 

We refer to Iψ(sBS(K))=ICT(K) as a chain transitions semigroup of linguistic graph 

I(K) and to map ψ as linguistic compression map. Notice that in the case of the finite 

commutative ring homomorphism  composition Δψ of homomorphism Δ and 

ψ maps infinite semigroup into finite set of  elements of Δ( ICT(K)) . 

 We define subsemigroup sGS(K) of symbolic ground strings as a to-

tality of bipartite strings u=(H0, G1, G2, H3, H4, G5, G6,…, Ht-1, Ht) in
 sBS(K) 

with H0=E0, G1=G2, H3=H4,G5=G6,…, Ht-1=Ht  where E0  is a unit of En(K) 

and refer to Iψ(sGS(K))=IGCT(K) as semigroup of ground chain transitions on 

linguistic graph I.  

 

5. Special homomorphisms of linguistic graphs and  corresponding 

semigroups. 
 

Let I(K) be linguistic graph  over commutative ring K defined in section 

3.1. and M = {m1, m2,…, md} be a subset of {1, 2, …, m} (set of indexes for 

equations). Assume that equations indexed by elements from M of the follow-

ing kind 

am1xm1 -bm1ym1=fm1(x1, x2 ,  …, xs ,y1, y2, …  , yr) 

am2xm2 -bm2ym2 = fm2(x1, x2, … ,xs,xm1,y1, y2, …  , yr,, ym1) 

… 

amdxmd -bmdymd =fmd (x1, x2, … , xs,xm1,xm2,… , xm d-1, y1, y2, …  , yr,, ym1, ym2,,… , ym d-

1,)   define other linguistic incidence structure  IM. Then the natural projections 

δ1,: (x)→(x1, x2, … , xs,xm1, xm2,… , xmd) and δ2: [y]→[y1, y2, … , yr, ym1,ym2,… , 

ymd] of free modules define  the natural homomorphism δ of incidence struc-

ture I onto IM.. We will use the same symbol ρ for the colouring of linguistic 

graph IM.. 

It is clear, that δ is colour preserving homomorphism of incidence structures 

(bipartite graphs). We refer to δ as symplectic homomorphism and graph IM  as 

symplectic quotient of linguistic graph I. In the case of linguistic graphs de-
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fined by infinite number of equations we may consider symplectic quotients de-

fined by infinite subset M (see [9], where symplectic homomorphism was used for the 

cryptosystem construction). 

Lemma 2. A symplectic homomorphism  ἠ of linguistic graph I  of type (r, s, 

m) onto I’  defined over commutative ring K induces the semigroup homo-

morphism ἠ* of ICT(K) into I’CT(K)  and the following diagram is commuta-

tive 
sBSr(K)→ICT(K) 

↓             ∕ 
I’CT(K)   

where horizontal and vertical arrows corresponds to linguistic compression 

homomorphisms Iψ and I’ψ and symbol  ∕ corresponds to η*. 
      If S is a stable subsemigroup of ICT(K) (or BCTI(K))  of degree d then ἠ*(S) is 

also a stable subsemigroup (or subgroup).The degree of ἠ*(S) is bounded above by d. 

We will search for subsemigroup X of  sBSr(K) and linguistic graphs I(K) such that 

Ψ(X) is a  stable subsemigroups of  ICT(K).   

 

6. Example of stable subsemigroups of prescribed degree and density. 
     

         We define Double Schubert Graph  DS(k,K) over commutative ring K as inci-

dence structure defined as disjoint union of  partition sets PS=Kk(k+ 1)  consisting of 

points which are tuples of kind x =(x1 , x2, … , xk, x11 , x12, … , xkk ) and LS=Kk(k+1) 

consisting of lines which are tuples of kind y =[y1 ,y2, … ,yk, y11 ,y12, … ,ykk], where x 

is incident to y, if and only if xij - yij=xi yj for i=1, 2,..., k and j=1, 2,..., k. It is conven-

ient to assume that the indices of kind i,j are placed for tuples  of Kk(k+1) in the lexico-

graphical order. 

   The term Double Schubert Graph is chosen, because points and lines of DS(k, Fq)  

can be treated as subspaces of Fq
(2k+1) of dimensions k+1 and k, which form two larg-

est Schubert cells. Recall that the largest Schubert cell is the largest orbit of group of 

unitriangular  matrices acting on the variety of subsets of given dimensions. We will 

consider these connection in details in the next section. 

    We define the colour of point x =(x1 , x2, … , xk, x11 , x12, … , xkk )  from  PS as 

tuple(x1 , x2, … , xk,) and the colour of a line y =[y1 ,y2, … ,yk,y11 ,y12, … ,ykk] as the 

tuple (y1 , y2, … ,yk). For each vertex v  of DS(k, K), there is the unique neighbour  

y=Na(v) of a given colour a=(a1,a2, … ,ak). It means the graphs  DS(k, K) form a fami-

ly of linguistic graphs.  

 

Proposition 1. Each subset J of M2 defines symplectic homomorphism δJ of DS(k, K) 

onto linguistic graph DSJ (k,K). 

      
It is easy to see that in the case of empty set J the image of the map is a complete 

bipartite graph with the vertex set KkUKk. 
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For a string u=(H0, G1, G2, H3, H4, G5, G6,…, Ht-1, Ht) we introduce function 

dim(u) which is the maximum of parameters deg(H0)+deg(G1), deg(G2)+deg(H3), 

deg(H4)+deg(G5), deg(G6)+deg(H7), deg(Gt-2)+deg(Ht-1),  deg(Ht). 

 

Proposition 2. Let I(K) be an incidence relation of Double Schubert graph 

DS(k, K) or symplectic quotient of this graph and u=(H0, G1, G2, H3, H4, G5, 

G6,…, Ht-1, Ht) , t >0 be an element of  kBS(K). Then transformation  
 Iψ(u) has de-

gree  bounded by dim(u). 

   Let us define a density den(F) of F of kind xi→fi(x1, x2,…xn) ϵK[x1,x2,…., 

xn], i=1,2,…n  as maximum of densities den(fi). 
For a string u=(H0, G1, G2, H3, H4, G5, G6,…, Ht-1, Ht) we introduce function 

Den(u) which is the maximum of den(H0)den(G1)+den(G2)den(H3)+deg(H4)deg(G5), 

deg(G6)deg(H7)+…+ den(Gt-2)den(Ht-1) and  den(Ht). 

       

  Proposition 3. Let I(K) be an incidence relation of Double Schubert graph 

DS(k, K) or its linguistic quotient and u=(H0, G1, G2, H3, H4, G5, G6,…, Ht-1, Ht) 

,t>0 be an element of  kBS(K) Then transformation 
 Iψ(u) has density bounded from 

above by Den(u). 
 

Remark. One can choose maps from Ek(K) with equal densities of each coordinate. 

Then den( 
Iψ(u)) =D(k). If all densities equals to parameter r. Then densty of 

Iψ(u)=Den(u)=4r2t. 

        The proof is based on the fact that the chain transition 
Iψ u from  moves xi,j into 

expression xi,j+T(u), where T(u) is a linear combination of products fϵK[x1, x2,…, xk],  

gϵK[y1, y2,…, yk]. 

      Proposition 4. Let S1 and S2 are bijective linear monomial transformation 

from Em(K). The map G=S1F’S2 has degree and density bounded by D(k) and 

d(k). 

      7.  On families of multivariate digital signature schemes of unbounded 

degree. 
        Recall that the quadratic multivariare cryptography map  consists of two bijec-

tive affine  transformations  S and T of dimensions n and m, and a quadratic element  

P’ of kind  xi →ip of formal Cremona group, where ip are written above elements of  

K[x1, x2,…,xn]. 

       We suggest more general scheme where instead of S the combination S’ =DS of 

nonlinear automorphism G of K[x1,x2,…,xn], GϵAn(K) of density O(1) and unbounded 

degree of size O(n) with S is taken instead of S. 

      Construction of Multivariate Digital Signature scheme is given below. The pub-

lic rule will be based on the family Gn(K) constructed  by the following scheme. 

Let [  ]’ be the ceiling operator, i. e. [g(n)]’ be minimal integer ≥g(n). 

We select some constant t , t>0 and  consider function  [ n1/2]’ +t =k . Consider the 

linguistic graph I=I(J,K)= DSJ (k, K)  with the subset J of cardinality n-k in a set of 

cardinality k2 and semigroup kB(K). We select element u with dim (u)= αn, α=|K*| . 

According to the proposition 2 degree  Iψ(u) =G’ is bounded by αn. Notice that  pa-
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rameter  α is selected because xk=e for xϵK*. As it follows from the construction of 

graph I we can easily select u such that deg(G)=αn and  density c of G’ is  of size 

O(1) (see proposition 3).  

 We considers Gn =S1  I(J,K)ψ(u)S2 with pseudorandom monomial transformations of 

free module  Kn. Now we create public rule F=GmSP’T. 

The density of F is O(n2) and linear degree is bounded by 2αn. It is clear  that F can 

be used in obvious way as multivariate digital signature system with the same size of 

hashed message and format of signatures. 

  

8. Conclusion. 
 

     Selected classical multivariate  digital section based on quadratic public rules such 

as Rainbow like Unbalanced Oil and Vinegar algorithm and LUOV   are presented for 

current NIST competition [1]. Cryptanalytics investigate efficiency of developed 

various attacks. So currently the search for modifications of algorithm to eliminate 

known attacks is already possible. Paper [14] suggests to transfer multivariate public 

rules onto secure El Gamal mode created via the usage of protocols of Noncommuta-

tive Cryptography. 

     This position paper suggests alternative approach based on the work with more 

sophisticated public rules.  Suggested multivariate digital signature scheme is based 

on the composition of the map in n variables of linear degree αn, α>0  and density 

O(1) with the known nonbijective quadratic multivariate map.   Recall that the density 

of endomorphism F of K[x1, x2, …, xn] given by rule  xi→fi(x1, x2,…,xn) is defined as 

maximum  of numbers of monomial terms in fi, i=1,2,…,n. 

Noteworthy that cryptosystems based on multivariate maps were proposed in [15] (the 

map is bijective) and [16], [17] (nonbijective transformations of Kn with injective 

restrictions on (K*)n) 

     The researchers of Institute of telecommunication and Global Information Space of 

National Academy  of Sciences  implemented the new digital signature algorithms on 

the level of prototype model. The combinations of described above 

multivariate map of unbounded linear degree and density O(1) is also taken with maps 

of Original Oil and Vinegar signature system, because the cryptanalytic instruments  

of [18] work only in the case of maps of bounded degree. Computer simulation is 

used  for computation of densities and degrees on modernised public rules and for the 

comparison of time execution tables. 

    Noteworthy  that in all cases K coincides with the ground finite fields selected for 

Rainbow like UOV, Lifted UOV and Original UOV. Selected multivariate digital 

signature schemes based on public rules of unbounded degree will be presented for 

the standardisation and certification processes conducted by the State Service  of Spe-

cial Communication and Information Protection of Ukraine (Kyiv).  
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