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Abstract. This paper proposes new Polynomial IOPs for arithmetic cir-
cuits. They rely on the monomial coefficient basis to represent the matri-
ces and vectors arising from the arithmetic constraint satisfaction system,
and build on new protocols for establishing the correct computation of
linear algebra relations such as matrix-vector products and Hadamard
products. Our protocols give rise to concrete proof systems with succinct
verification when compiled down with a cryptographic compiler whose
role is abstracted away in this paper. Depending only on the compiler,
the resulting SNARKs are either transparent or rely on a trusted setup.
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1 Introduction

Succinct Non-Interactive Arguments of Knowledge (SNARKs) enable a resource-
constrained verifier to cryptographically verify the authentic computations of an
untrusted prover. The technology is particularly well-suited to the cryptocur-
rency setting, where participants are typically anonymous, untrusted, and where
the success of the network depends on the capability of lightweight nodes to ver-
ify the network’s consensus (however that is defined). In this setting, there is a
large monetary incentive for malicious behavior.

Despite the flurry of rapid related and unrelated developments by diverse
parties, two trends are emerging as good practice in this domain.

1. Functional separation in the compilation pipeline. The compilation process
for general purpose zero-knowledge proofs is separated into multiple steps
with clear boundaries. At the input of this pipeline is a computation, rep-
resented either as program source code or as a circuit. A technique called
arithmetization turns this computation into a constraint system involving
native operations over a finite field. The next step transforms this constraint
system into an abstract proof system between two parties, prover P and
verifier V, that are interactive Turing machines with access to unrealistic
or unrealizable resources such as PCP oracles. The abstract proof systems
in this step typically achieve statistical or even perfect security. In the last
step, the cryptographic compilation, the unrealistic resources are replaced
by cryptographic approximations that achieve the same functionality at the
expense of introducing computational hardness assumptions for security.



2. Polynomial IOP formalism. The abstract information-theoretical proof sys-
tem in the step before cryptographic compilation could in principle rely on
a variety of unrealistic resources, and build a sound proof system from their
mathematical properties. However, for the purpose establishing soundness,
the Schwartz-Zippel lemma is an indispensable tool. The strategy is to re-
duce the satisfaction of arithmetic constraints arising from the constraint
system to series of identities of low-degree polynomials. By evaluating these
polynomials in random points, their equality is tested probabilistically. If
the left and right hand sides of an equation represent identical polynomi-
als, they are identical everywhere, but if they are unequal they are different
almost everywhere. The Schwartz-Zippel lemma provides an exact concrete
quantification of the security lost due to this probabilistic approximation.
A Polynomial IOP is the abstract proof system tailored to this strategy. In
this formalism, the prover sends low degree polynomials to the verifier, and
rather than reading the entire list of coefficients, the verifier queries these
polynomials in a given point through an oracle interface. The cryptographic
compiler uses a polynomial commitment scheme to simulate this unrealistic
resource.

These trends are visible in the rise of universal SNARKs with universal and
updatable structured reference strings (SRS’s) such as Sonic [11], PLONK[8],
and Marlin [7]. The common idea here is to use the cryptographic pairing-based
mathematics only to realize polynomial commitment scheme, typically the KZG
scheme [10]. Since the SRS is used only for the KZG scheme, it is independent of
the preceding abstract proof system and the circuit it encodes; this independence
is precisely what enables updates to the SRS and its adaptation to any circuit.
PLONK and Marlin independently formalize this abstraction and introduce the
terms Polynomial Protocol and Algebraic Holographic Proof (AHP), respectively.
This paper adopts the terminology of Bünz et al. [6], who introduce a new
polynomial commitment scheme (and hence a cryptographic compiler) based on
groups of unknown order and in the process explore the landscape of protocols
it can apply to.

These trends are also visible in the rise of IOPs based on Reed-Solomon
codes [1,4,3]. The underlying abstract protocols here are not explicitly Poly-
nomial IOPs. However, their common feature is the reliance on Reed-Solomon
codewords as the proof oracles. Since Reed-Solomon codewords are obtained by
evaluating polynomials in a domain of points whose cardinality is larger than
the polynomials’ degree, these proof oracles uniquely identify the originating
low-degree polynomials. As a result, a Reed-Solomon IOP is a Polynomial IOP
in disguise.

Despite the spontaneous convergence onto Polynomial IOPs as a useful for-
malism, there seems to be little agreement about the optimal interface between
Polynomial IOPs and the arithmetic constraint systems that they realize. Arith-
metic constraint systems typically express constraints using matrix algebra: in
terms of vectors, and matrix multiplication, but also Hadamard products, which
is a fancy word for the element-wise products of pairs of equal-length vectors. The
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set of operations that Polynomial IOPs natively offer are somewhat different. As
a result, how the Polynomial IOP represents the objects in the arithmetic con-
straint system and how it simulates the equations that constrain them, are the
key questions in the design process of Polynomial IOPs. The various answers to
these questions are what set the various Polynomial IOPs for arithmetic circuits
apart.

– Marlin and Aurora represent the objects of the arithmetic constraint system as
the Reed-Solomon codewords of polynomials. Standard techniques establish
the correct computation of a Hadamard product of such codewords. The
computation of a linear transform applied to such a codeword is reduced to
checking the sum of a related codeword.

– PLONK represents the input and output wires to addition and multiplication
gates as the value of a polynomial in a domain of points. The consistency of
each gate, and of wires between gates, is verified by checking that a polyno-
mial derived from the description of that circuit evaluates to zero over the
same domain.

– Sonic represents the vectors of left, right, and output wires of a series of
multiplication gates as the coefficient vectors of three polynomials. The con-
sistency of these multiplication gates, and of a linear transform, is established
by checking several properties of bivariate polynomials. The paper further-
more explains under which conditions these bivariate polynomials can be
simulated with univariate ones.

Contributions. In this paper we propose a new Polynomial IOP for arithmetic
circuits called Claymore1. Succinct verification is achieved with an untrusted
preprocessing phase. When compiled down using any polynomial commitment
scheme, the result is a concrete zk-SNARK with universal updatable structured
reference string, or transparent setup, depending only on the nature of the poly-
nomial commitment scheme.

The arithmetic constraint system chosen to represent the arithmetic circuit
is the Hadamard Product Relation (HPR), in which the witness consists of three
vectors representing the left, right, and output wires of a list of multiplication
gates. Näıvely, one would expect each of these vectors to be represented by one
polynomial each. However, one of our optimizations represents two of the witness
vectors (the left and right wires) by a single polynomial, simply by concatenating
the vectors. Another optimization drops the polynomial representing the third
witness vector (of output wires) from the transcript altogether. The net result
is fewer polynomials in the transcript of the Polynomial IOP.

We note that Sonic realizes a similar constraint satisfaction relation by re-
ducing both the multplication and linear constraints into one large equation. In
Claymore, the multiplication gate consistency and linear consistency are achieved
in two separate steps, both of which rely on a collection of subprotocols for lin-
ear algebra relations that we develop along the way. The separate steps are later
merged as an explicit optimization.

1 A type of Scottish sword.
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While the concrete cryptographic compilation is abstracted away, it is possi-
ble to make arguments regarding the size of concrete proofs based on the com-
munication complexity of the Polynomial IOP. In this respect, Claymore stands
out as the number of polynomials transmitted in the online phase is only 5 –
down 16.7% from the runner-up PLONK, whose number stands at 6. As a result,
if the number of polynomials in the transcript is the dominant factor of proof
size, then Claymore will result in the smallest proofs.

The price to pay for this brevity is two-fold. First, we can only show that zero-
knowledge is achieved for a variant of the protocol that has one more polynomial,
putting it back on par with PLONK. In other words, the 5 polynomial variant
does not seem to be compatible with zero-knowledge. Second, the degree of the
largest-degree polynomial is much larger. For Claymore this degree scales with
roughly O(n2), where n is the size of the witness; whereas the alternatives achieve
O(n) scaling. Depending on the concrete cryptographic compiler, this behavior
is either a minor inconvenience, or a complete blockade, for SNARKifying large
enough circuits. We discuss some techniques (that do scale well) for dealing with
matrices that are sparse but exhibit a particular kind of structure.

Motivation. The motivation for this work is chiefly theoretical. By studying
the interface between arithmetic circuits and Polynomial IOPs in isolation of
other constraints and demands, we develop a protocol that achieves its target
functionality exactly. As a result of this focus, our protocol is arguably simpler
than other protocols that achieve nominally the same thing. Complexity is the
friend of mistakes, and our protocol may therefore be the preferred option for
this reason even in circumstances where it is inferior in terms of performance.

However, it is by no means clear that Claymore does perform worse in the
general case, because this comparison is highly dependent on the parameters of
the situation. We illustrate two use cases where Claymore is likely to perform
comparably well, if not outright outshine its competition.

Claymore performs extremely well for shallow arithmetic circuits with dense
linear transformations. An example of such circuits are the verification circuits
of lattice-based and MQ-based signature schemes, which typically involve op-
erations on large matrices and vectors over a small finite field. As a result, a
Claymore-SNARK is an outstanding candidate for achieving post-quantum sig-
nature aggregation — or indeed, post-quantum signatures with various fancy
properties that zero-knowledge proofs enable.

The total number of polynomials in both the proof transcript and the struc-
tured or uniform reference string is smallest for Claymore, even when consider-
ing the zero-knowledge variant. An example where this number is important is
recursive proof composition because the verifier performs operations on all poly-
nomials. By reducing this number, Claymore potentially shrinks the verification
circuit, and potentially lowers the threshold for incremental verification.

If it is true that Claymore results in the smallest proofs, then it stands to
reason that Claymore will be the SNARK of choice in settings where the band-
width is the most critical optimization target. Blockchains naturally satisfy this
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description when they have a fixed block rate and size; as a result, Claymore will
allow the network to prove more.

2 Preliminaries

2.1 Indexed Relations

Owing to their convenience, we use indexed relations [7]. An indexed relation
is a set R of tuples (i,x,w), whose three components are called the index, in-
stance, and witness, respectively. The separation between index and instance
captures the intuition that some properties of concrete proofs for R should be
computable from i even before x is known. For instance, i can be the descrip-
tion of an arithmetic circuit, x the values of the output wires, and w an assign-
ment of values to all wires that makes the all gates consistent. The projection
{(i,x) | (i,x,w) ∈ R} of triples inR onto the first two components is the indexed
language corresponding to R and is denoted by L(R).

2.2 Constraint Systems

A constraint system is a representation of a computation in terms of equations
with unknown variables. When there is an assignment to the unknown variables
that satisfies all equations, we say the constraint system is satisfiable, and this
assignment is the witness. The index determines all fixed constants in the equa-
tions, and the instance determines known variables that can vary independently
of the index but are ultimately known by all parties involved.

The following constraint system is adapted from Bootle et al. [5].

Definition 1 (Hadamard Product Relation (HPR)). Let F be a finite
field. A triple (i, x, w) where i = (m,n,M) with m,n ∈ N, and M ∈ Fm×(1+3n),
where x = x ∈ Fm, and where w = (wl,wr,wo) ∈ Fn × Fn × Fn; satisfies the
Hadamard Product Relation iff both

x = M


1
wl

wr

wo

 (1)

and

wl ◦wr = wo , (2)

where ◦ denotes the Hadamard (i.e., entry-wise) product; and in this case we
write (i,x,w) ∈ RHPR.
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2.3 Interactive Proof Systems

Definition 2 (Interactive Proof System). Let R be an indexed relation
with corresponding relation language L(R). An interactive proof system is a
pair (P,V) of stateful interactive Turing machines such that: the input to P is
(i,x,w), the input to V is (i,x); P and V exchange r = r(|i|) messages in total;
and in the last step of the protocol V outputs a single bit b ∈ {>,⊥}. The system
satisfies two more properties:

– Completeness — V accepts members of L(R): (i,x) ∈ L(R)⇒ b = >.
– Soundness (with soundness error σ) — V rejects non-members of L(R) ex-

cept with probability at most σ taken over the all random coins involved:
Pr[(i,x) 6∈ L(R)⇒ b = ⊥] ≥ 1− σ.

Soundness becomes a moot point when for the given index i every instance x
has a matching witness w such that (i,x,w) ∈ R. In this case a stronger notion
called knowledge soundness [2] is preferred, which informally requires that any
adversary that successfully convinces the verifier can be made to leak a witness
by an extractor machine that has the same interface as the verifier but can
additionally reset the adversary to an earlier point in time without forgetting
the observed transcripts. In our context, all witnesses are encoded into oracles,
and the prover displays knowledge of them simply by providing the oracles to
the verifier. As a result, at our level of abstraction, knowledge soundness follows
automatically from soundness. When the oracles are simulated by a concrete
cryptographic tool, knowledge soundness becomes an important consideration
that is not automatically satisfied. However, this cryptographic instantiation is
beyond the scope of this paper.

A proof system is zero-knowledge [9] if, informally, an authentic transcript
could have been produced by an adversary who is ignorant of the witness. More
formally, the distribution of authentic transcripts must be sampleable with public
information only.

Definition 3 (Honest-Verifier Zero-Knowledge). Let R be an indexed re-
lation and let (P,V) be a proof system for R. Let tr ← 〈P(i,x,w),V(i,x)〉 denote
the assignment to the variable tr of the transcript arising from the interaction
between P with input (i,x,w) and V with input (i,x). The proof system (P,V) is
honest-verifier zero-knowledge if there exists a polynomial-time Turing machine
S such that the distribution D0 of authentic transcripts tr ← 〈P(i,x,w),V(i,x)〉,
is identical to the distribution D1 of simulated transcripts tr ← S(i,x). When
D0 and D1 are distinct, we consider the statistical distance and use the term
Statistical Honest-Verifier Zero-Knowledge.

2.4 Polynomial IOP

Informally, a Polynomial IOP is an abstract proof system, where the prover
sends polynomials and the verifier, instead of reading the polynomials in their
entirety, is allowed to query the polynomial as oracles in select points.
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Definition 4 (Polynomial IOP). Let R be an indexed relation with corre-
sponding indexed language L(R), F some finite field, and d ∈ N a degree bound.
A Polynomial IOP for R with degree bound d is a pair of interactive machines
(P,V), satisfying the following description.

– (P,V) is an interactive proof for L(R) with r rounds, and with soundness
error σ.

– P sends polynomials fi(X) ∈ F[X] of degree at most d to V.
– V is an oracle machine with access to a list of oracles, which contains one

oracle for each polynomial it has received from the prover.
– When an oracle associated with a polynomial fi(X) is queried on a point
zj ∈ F, the oracle responds with the value fi(zj).

– V sends challenges αk ∈ F to P.
– V is public coin.

While we decided in favor of the shorter variant here, it is possible to modify
the definition so as to allow a unique degree bound di for every polynomial
fi(X), which is determined as a function of i. The present simplification does
not degrade generality as long as d ≥ maxi di. To see this, observe that P can
always send Xd−di · fi(X) instead of fi(X), in which case V should divide the
obtained oracle response by zd−di . It is easy to see that this transformation
retains completeness. Soundness is retained because f∗i (X) 6= Xd−di · fi(X)
agrees with Xd−di ·fi(X) in at most d points. As a result, if an identity involving
fi(X) is tested, it will hold for f∗i (X) with probability at most d/|F|.

With a minor extension, Polynomial IOPs can appropriately capture pre-
processing. This extension introduces third machine, the indexer I. As its name
suggest, I reads only i, and it outputs a list of polynomials to which V has oracle
access.

Definition 5 (Polynomial IOP with Preprocessing). Let R be an indexed
relation with corresponding language L(R). A Polynomial IOP with Preprocess-
ing is a tuple of interactive machines (I,P,V) such that (P,V) is a Polynomial
IOP for L(R) and such that

– I takes i for input and outputs a list of polynomials of degree at most d;
– V has oracle access to these polynomials in addition to the polynomials it

receives from P.

Some of the Polynomial IOPs in this paper are designed for modular com-
position. As a result, V does not begin with an empty list of polynomial oracles.
In order to define the relations that these Polynomial IOPs realize, we denote
by [fi(X)] a polynomial fi(X) that was sent to V by I or P at some earlier stage
and to which V has oracle access.

3 Polynomial IOPs for Linear Algebra Relations

The protocols introduced in this paper rely on protocols propoed with varying
degrees of formality by Bünz et al. [6]. For the sake of completeness, we provide
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a formal treatment of these building blocks in the appendix. Here we summarize
the main qualities needed for the subsequent constructions.

– Flip establishes that the coefficient vector of one polynomial is the reverse of
the coefficient vector of another polynomial.

– CheckCoefficient establishes that the coefficient at a given index of a given
polynomial is equal to a given scalar.

– InnerProduct establishes that the inner product of the coefficient vectors of
two polynomials is equal to a given scalar.

3.1 Modular Reduction

We start with a protocol that will be used as a subprotocol in the sequel. This
protocol establishes that one polynomial, r(X), is the remainder after division of
a second polynomial f(X), by a third, d(X). This third polynomial is assumed
to be known, but the protocol can be naturally amended to allow V only oracle
access to [d(X)]. Formally, the relation is given by

Rreduce =


(i,x,w)

∣∣∣∣∣∣∣∣∣∣∣∣

i = (df , dr)
x = ([f(X)], [r(X)], d(X))
w = (f(X), r(X))
∃q(X) ∈ F[X] . f(X) = q(X) · d(X) + r(X)
deg(f) ≤ df
deg(r) ≤ dr


. (3)

description: decides L(Rreduce)
inputs: i : (df , dr)
inputs: x : ([f(X)], [r(X)], d(X))
inputs: w : (f(X), r(X))
begin

P computes q such that f(X) = q(X) · d(X) + r(X)
P sends q(X) of degree at most df − deg(d) to V

V samples z
$←− F\{0} and queries [f(X)], [q(X)], and [r(X)] in z

V receives yf = f(z), yq = q(z), and yr = r(z)

V tests yf
?
= yq · d(z) + yr

Protocol 1: ModReduce

Theorem 1 (Security of ModReduce). Protocol ModReduce of Protocol 1 is a
Polynomial IOP for L(Rreduce) with completeness and soundness with soundness
error σ = df/|F|.

Proof. completeness follows from construction: dividing f(X) by d(X) gives quo-
tient q(X) and remainder r(X). Therefore, f(X) = q(X) · d(X) + r(X) is an
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identity of polynomials and guaranteed to hold everywhere including in the point
z.

For soundness, observe that when r(X) 6≡ f(X) mod d(X) then d(X) does
not divide f(X)− r(X). As a result, f(X) 6= q(X) ·d(X) + r(X) is an inequality
of polynomials with degree deg(d) + deg(q) = df . Due to the Schwartz-Zippel
lemma, the left and right hand sides can evaluate to the same value in at most
df choices for z. The probability of V accepting when r(X) 6≡ f(X) mod d(X) is
therefore σ = df/|F|.

What is left to argue is that P fails to convince V when the congruence
r(X) ≡ f(X) mod d(X) holds, but r(X) is not equal to the remainder after
division of f(X) by d(X). The representatives of the congruence class of r(X) are
apart by polynomials of degree at least deg(d), there is only one representative
of degree at most dr < deg(d). The index value dr therefore already constrains
r(X) to a unique polynomial. ut

3.2 Matrix-Vector Product

The next protocol involves two polynomials that represent vectors in the mono-
mial coefficient basis and one that represents a matrix. Specifically Let a ∈ Fn
and b ∈ Fm and M ∈ Fm×n with the element in row i and column j (both indices
starting at zero) indexed as M[i,j]. These objects are represented as polynomials
with a[i] being ith element of a and simultaneously the coefficient of the mono-
mial Xi in fa(X), and similarly for b, b[i], and fb(X). The matrix is encoded

in row-first order, specifically fM (X) =
∑m−1
i=0

∑n−1
j=0 M[i,j]X

in+j . The protocol
establishes that b = Ma. Formally, the relation is given by

Rmvp =


(i,x,w)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

i = (m,n)
x = ([fa(X)], [fb(X)], [fM (X)])
w = (fa(X), fb(X), fM (X))

fa(X) =
∑n−1
i=0 a[i]X

i for somea ∈ Fn

fb(X) =
∑m−1
i=0 b[i]X

i for some b ∈ Fm

fM (X) =
∑m−1
i=0

∑n−1
j=0 M[i,j]X

in+j for someM ∈ Fm×n
b = Ma


.

(4)

Theorem 2 (Security of MVP). Protocol MVP of Protocol 2 is a Polynomial
IOP for L(Rmvp) with completeness and soundness with soundness error σ =
mn+m+2n−3
|F|−1 .

9



description: decides L(Rmvp)
inputs: i : (m,n)
inputs: x : ([fa(X)], [fb(X)], [fM (X)])
inputs: w : (fa(X), fb(X), fM (X))
begin

V samples α
$←− F and sends α to P

P computes r ← fM (X) modXn − α
P sends r(X) of degree at most n− 1 to V

5 P and V run ModReduce with i
(1) = (mn− 1, n− 1),

x
(1) = ([fM (X)], [r(X)], Xn − α), and w

(1) = (fM (X), r(X))
V queries [fb(X)] in α and receives yαTb = fb(α)

7 P and V run InnerProduct with i
(2) = n− 1, x(2) = ([r(X)], [fa(X)], yαTb),

and w
(2) = (r(X), fa(X))

Protocol 2: MVP

Proof. Let αT = (α0, α1, · · · ) and rT = αTM , and consider the equations

b = Ma (5)

αTb = αTMa (6)

m−1∑
i=0

αib[i] = rTa (7)

fb(α) =

n−1∑
i=0

r[i]a[i] (8)

yαTb = coeffs(r(X)) · coeffs(fa(X)) (9)

(i(2),x(2)) = (n− 1, ([r(X)], [fa(X)], yαTb)) ∈ L(RInnerProduct) . (10)

Furthermore, observe that the coefficient vector of r(X) matches r, by substi-
tuting Xn by α in the expression for fM (X):

m−1∑
i=0

n−1∑
j=0

M[i,j]X
in+j Xn 7→α−−−−→ r(X) =

m−1∑
i=0

n−1∑
j=0

M[i,j]α
iXj (11)

=
n−1∑
j=0

(
m−1∑
i=0

M[i,j]α
i

)
Xj (12)

=

n−1∑
j=0

r[j]X
j . (13)

Completeness follows from the implications (5) ⇒ (6) ⇔ (7) ⇔ (8) ⇒ (9) ⇒
(10).

For soundness, there are 3 events that can cause V to accept despite b 6= Ma:

1. (5) 6⇐ (6). The probability of this event is at most m−1
|F|−1 due to the Schwartz-

Zippel lemma.
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2. (8) 6⇐ (9) because r(X) is not the remainder of fM (X) after division by
Xn − α. The probability of this event is at most mn−1

|F| , the soundness error

of ModReduce.
3. (9) 6⇐ (10), because yαTb is not the inner product of the coefficient vectors of
r(X) and fa(X). The probability of this event is at most 2n−1

|F| , the soundness

error of InnerProduct.

It follows that the soundness error of MVP is bounded by σ = mn+m+2n−3
|F|−1 . ut

3.3 Matrix-Matrix Product

The following protocol for verifying a matrix-matrix product relies on the fact
that a matrix identity AB = C satisfies αTABβ = αTCβ for all compatible vec-
tors α and β. In the protocol, V supplies scalars α, β ∈ F\{0}, which determine
the vectors α = (αi)i and β = (βi)i of the appropriate dimensions. Formally,
the relation is given by

Rmmp =


(i,x,w)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

i = (m,n, o)
x = ([fA(X)], [fB(X)], [fC(X)])
w = (fA(X), fB(X), fC(X))

fA(X) =
∑m−1
i=0

∑n−1
j=0 A[i,j]X

in+j for someA ∈ Fm×n

fB(X) =
∑n−1
i=0

∑o−1
j=0 B[i,j]X

io+j for someB ∈ Fn×o

fC(X) =
∑m−1
i=0

∑o−1
j=0 C[i,j]X

io+j for someC ∈ Fm×o
AB = C


.

(14)

Theorem 3 (Security of MMP). Protocol MMP of Protocol 3 is a Polynomial
IOP for L(Rmmp) with completeness and soundness with soundness error σ =
mn+mo+no+2m+3n+5o−11

|F|−1 .

Proof. Consider the sequence of equations

AB = C (15)

αTAB = αTC (16)

αTABβ = αTCβ (17)

coeffs(fαTA(X))TBβ = αTCβ (18)

coeffs(fαTA(X))Tcoeffs(fBβ(X)) = αTCβ (19)

γ = αTCβ (20)

γ = αTcoeffs(fCβ(X)) (21)

γ = fCβ(α) . (22)

Completeness follows from the implication (15) ⇒ (16) ⇒ (17) ⇒ (18) ⇒
(19) ⇒ (20) ⇒ (21) ⇔ (22).

For soundness, consider when the reverse implications fail.

11



12 Alan Szepieniec alan@nervos.org

description: decides L(Rmmp)
inputs: i: m,n, o
inputs: x: [fA(X)], [fB(X)], [fC(X)]
inputs: w: fA(X), fB(X), fC(X)
begin

V samples α, β
$←− F\{0} and sends α, β to P

P computes fαTA ← fA(X) mod (Xn − α)
P sends fαTA(X) of degree at most n+ 1 to V
P and V run ModReduce with i

(1) = (mn− 1, n− 1),
x

(1) = ([fA(X)], [fαTA(X)], Xn − α) and w
(1) = (fA(X), fαTA(X))

P computes fBβ ←
∑n−1
i=0

(∑o−1
j=0 B[i,j]β

j
)
Xi and fβ ←

∑o−1
i=0 β

iXi, and

sends fBβ(X) of degree at most o− 1 to V
P and V run MVP with i

(2) = (n, o), x(2) = ([fβ(X)], [fBβ(X)], [fB(X)])
and w

(2) = (fβ(X), fBβ(X), fB(X)) and with V computing queries to
[fβ(X)] locally using fβ(X) =

∑o−1
i=0 β

iXi = (1− (βX)o)/(1− βX)
P computes γ ← αTABβ and sends γ (of degree 0) to V
P and V run InnerProduct with i

(3) = n, x(3) = ([fαTA(X)], [fBβ(X)], γ),
and w

(3) = (fαTA(X), fBβ(X))
P computes fCβ(X), whose vector of coefficients is Cβ
P sends fCβ(X), of degree at most m− 1, to V
P and V run MVP with i

(4) = (m, o), x(4) = ([fβ(X)], [fCβ(X)], [fC(X)]),
and w

(4) = (fβ(X), fCβ(X), fC(X)), and where V simulates [fβ(X)]
locally using fβ(X) = (1− (βX)o)/(1− βX)

V queries [fCβ(X)] in α and receives yαTCβ = fCβ(α)

V tests γ
?
= yαTCβ

Protocol 3: MMP



– (15) 6⇐ (16). This event occurs with probability at most m−1
|F|−1 due to the

Schwarz-Zippel lemma.
– (16) 6⇐ (17) This event occurs with probability at most o−1

|F|−1 due to the

Schwarz-Zippel lemma.
– (17) 6⇐ (18), because fαTA(X) is not the remainder of fA(X) after division

by Xn−α. This event occurs with probability at most mn−1
|F|−1 , the soundness

error of ModReduce.
– (18) 6⇐ (19), because the coefficient vector of fBβ(X) is not Bβ. The prob-

ability of this event is at most no+n+2o−3
|F|−1 , the soundness error of MVP.

– (19) 6⇐ (20), because γ is not the inner product of the coefficient vectors of
fαT(X) and fBβ(X). This event occurs with probability at most 2n−2

|F|−1 , the

soundness error of InnerProduct.
– (20) 6⇐ (21), because the vector of coefficients of fCβ(X) is not Cβ. This

event occurs with probability at most mo+m+2o−3
|F|−1 , the soundness error of

MVP.

It follows that the soundness error of MMP is at most

σ =
m− 1 + o− 1 +mn− 1 + no+ n+ 2o− 3 + 2n− 2 +mo+m+ 2o− 3

|F| − 1
(23)

=
mn+mo+ no+ 2m+ 3n+ 5o− 11

|F| − 1
. (24)

ut

3.4 Hadamard Product

The next protocol establishes that the Hadamard (or component-wise) product
of two vectors is equal to a third. These vectors are represented as the coefficient
vectors of polynomials fa(X), fb(X), and fc(X) such that c = a◦b and a, b, c ∈
Fd+1. The protocol relies on the fact that when the elements of the vectors
a, b, and c are arranged on the diagonal of matrices Ma, Mb, and Mc, then
MaMb = Mc and also αTMaMbβ = αTMcβ for all vectors β,α. In other

words, one can simply sample a random pair of scalars α, β
$←− F, and check the

inner product of αTMa with Mbβ against the matrix product of αTMcβ. Note
that the right hand side of this check amounts to fc(αβ) and and the operands
in the left hand side amount to the coefficient vectors of fa(αX) and fb(βX),
respectively. Formally, the relation is given by

Rhadamard =

(i,x,w)

∣∣∣∣∣∣∣∣
i = d
x = ([fa(X)], [fb(X)], [fc(X)])
w = (fa(X), fb(X), fc(X))
∀i ∈ {0, . . . , d} . aibi = ci

 . (25)
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description: decides L(Rhadamard)
inputs: i: d
inputs: x: [fa(X)], [fb(X)], [fc(X)]
inputs: w: fa(X), fb(X), fc(X)
begin

V samples α, β
$←− F\{0} and sends α, β to P

P evaluates y ← fc(αβ)
V queries [fc(X)] in αβ and receives y = fc(αβ)
P and V run InnerProduct with i

(1) = d, x(1) = ([fa(αX)], [fb(βX)], y),
w

(1) = (fa(αX), fb(βX)), where V simulates [fa(αX)] and [fb(βX)]
using [fa(X)] and [fb(X)] and the scalars α and β

Protocol 4: Hadamard

Theorem 4 (Security of Hadamard). Protocol Hadamard of Protocol 4 is a
Polynomial IOP for L(Rhadamard) with completeness and soundness with sound-
ness error σ = 4d/(|F| − 1).

Proof. Consider the following sequence of equations.

a ◦ b = c (26)

MaMb = Mc (27)

αTMaMb = αTMc (28)

αTMaMbβ = αTMcβ (29)

d∑
i=0

(αia[i])(b[i]β
i) =

d∑
i=0

αic[i]β
i (30)

coeffs(fa(αX)) · coeffs(fb(βX)) = fc(αβ) (31)

coeffs(fa(αX)) · coeffs(fb(βX)) = y (32)

(i,x) = (d, ([fa(X)], [fb(X)], y)) ∈ L(RInnerProduct) (33)

Completeness follows from the sequence of implications (26) ⇔ (27) ⇒ (28) ⇒
(29) ⇔ (30) ⇔ (31) ⇔ (32) ⇒ (33).

For soundness, consider when the reverse implications fail.

– (27) 6⇐ (28). This event happens with probability at most d/(|F|− 1) due to
the Schwartz-Zippel lemma.

– (28) 6⇐ (29). This event happens with probability at most d/(|F|− 1) due to
the Schwartz-Zippel lemma.

– (32) 6⇐ (33). This event happens with probability at most 2d/(|F| − 1), the
soundness error of InnerProduct.

Therefore, the probability that V accepts even though a ◦ b 6= c is bounded by
σ = 4d/(|F| − 1). ut
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4 A Polynomial IOP for Arithmetic Circuits

4.1 The Protocol

The next protocol, Protocol 5 puts many of the previously developed tools to-
gether into a Polynomial IOP (with preprocessing) for arithmetic circuits as
captured by the HPR. To differentiate our protocol from other similar ones, we
name it Claymore.

description: realizes RHPR

inputs: i: (m,n,M) with M ∈ Fm×n
inputs: x: x ∈ Fn
inputs: w: (wl,wr,wo) ∈ Fn × Fn × Fn
// preprocessing
begin

I computes fM (X) whose coefficients correspond to M
I sends fM (X) of degree at most m(3n+ 1)− 1 to V and P

// online
begin

P computes fwl ←
∑n−1
j=0 wl[j]X

j , fwr ←
∑n−1
j=0 wr[j]X

j , and

fwo ←
∑n−1
j=0 wo[j]X

j

P sends fwl(X), fwr(X), and fwo(X), all of degrees at most n− 1, to V
P computes f1w(X)← 1 +Xfwl(X) +Xn+1fwr(X) +X2n+1fwo(X)
P computes fx(X), whose coefficient vectors correspond to
x = M (1‖wl

T‖wr
T‖wo

T)T

P and V run MVP with i
(1) = (m,n), x(1) = ([f1w(X)], [fx(X)], [fM (X)]),

w
(1) = (f1w(X), fx(X), fM (X)) where V simulates [f1w(X)] using

f1w(X) = 1 +Xfwl(X) +Xn+1fwr(X) +X2n+1fwo(X), [fwl(X)],
[fwr(X)], and [fwo(X)]; and where V computes [fx(X)] locally using
x = x

P and V run Hadamard with i
(2) = n− 1,

x
(2) = ([fwl(X)], [fwr(X)], [fwo(X)]), w(2) = (fwl(X), fwr(X), fwo(X))

Protocol 5: Claymore

Theorem 5 (Security of Claymore). Protocol Claymore of Protocol 5 is a Poly-
nomial IOP for RHPR with completeness and soundness error σ = mn+m+6n−7

|F|−1 .

Proof. Completeness follows from construction. Since the arguments are com-
puted honestly, the subprotocols succeed and guarantee equalities (1) and (2),
respectively.

Soundness. If the HPR instance is a false instance, then x 6= M(1|wi
T|wo

T)T

or wl ◦ wr 6= wo. As a result either the Hadamard protocol succeeds despite
being run on a false instance, or the MVP protocol succeeds despite being run
on a false instance. The probabilities of these events are respectively σHadamard =
(4n−4)/(|F|−1) and σMVP = (mn+m+ 2n−3)/(|F|−1). The probability that
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one or both of these events happens is smaller than or equal to the sum of their
probabilities: σ = mn+m+6n−7

|F|−1 . ut

4.2 Without Preprocessing

The preprocessing phase can be omitted. In this case, V must compute fM (X)
locally. This task requires O(mn) work, or only O(k) if the matrix M has only
k nonzero elements and is represented as such. When this phase is omitted,
Claymore should be compared to the Polynomial IOP underlying Aurora [4].

4.3 Optimizations

Let’s make a few changes to optimize the protocol. Specifically, the target is to
minimize the number of polynomials in the transcript, their degree, the number
of polynomial evaluations, and the number of distinct points for evaluation. This
list of optimizations is not necessarily exhaustive.

1. Concatenate wl and wr. Specifically, let P send only one polynomial fwi(X)
whose vector of coefficients matches with (wl

T|wr
T). To make the Hadamard

test work, adapt the subprotocol to test the Hadamard product of the (co-
efficient vectors of the) degree 3n − 1 polynomials fwi(X) and Xnfwi(X)
is equal to (the coefficient vector of) Xnfwo(X). This optimization saves 1
polynomial.

2. Unroll the protocol. Specifically, replace every subprotocol invocation with
its proper code. While this already happens implicitly, making this step
explicit highlights the next steps for optimization.

3. Eliminate the first Flip subprotocol. Specifically, omit f (rv)(X) simply by
querying f(X) in X−1 instead, and multiplying the result by Xd. In this
context, f(X) = r(X) and d = n − 1, but in fact it pays to flip f(X) =
f1w(X) instead.

4. In the MVP protocol, postpone the reduction mudulo X3n+1 − α until after
fM (X) is multiplied by f1w(X). This reversal of operations does not change
the value of the coefficient c of X3n, which is what needs to be checked. To
see this, observe that

r(X) · f1w(X−1) ·X3n = fL(X) + c ·X3n +X3n+1 · fR(X) (34)

≡fM (X) · f1w(X−1) ·X3n (mod X3n+1 − α) (35)

≡fL(X) + yα ·X3n + α · fR(X) (mod X3n+1 − α) (36)

and that the degrees of fL(X) and fR(X) are at most 3n− 1.

5. In the first invocation of CheckCoefficient, eliminate fR(X) as it is identi-
cally zero (only the top coefficient is being checked now). Moreover, merge
the CheckCoefficient identity with the earlier identity of MVP; this merger
eliminates the need to transmit one polynomial, namely r(X).
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6. Drop the Flip subprotocol from the the second invocation of InnerProduct.
Merge the relations f (rv)(X) = Xdf(X−1) and f (rv)(X) · g(X) = h(X) and
h(X) = fL(X)+Xd ·c+Xd+1 ·fR(X) by substituting the first expression into
the second, the second into the third, and drop the transmission of f (rv)(X)
and h(X) altogether.

7. At this point there are two polynomial identity tests left. They can be merged
as well — perhaps in more than one way, but we describe only one. To avoid
naming conflicts, rename the α variable of the MVP subprotocol to γ. Move
the MVP test to after the Hadamard test, but without changing the order of
messages in the transcript. Observe that both tests require the evaluation of
[fwo(X)] in a random point, namely fwo(αβ) for Hadamard and fwo(z) for
MVP. By Setting z = αβ, this point is recycled. Moreover, both tests can be
rewritten into one where fwo(αβ) is the left hand side. Equating the right
hand sides allows to eliminate fwo(X) altogether.

The reason why merging polynomial identities as described does not affect
soundness is because inequalities propagate across substitution. For example, if
f (rv)(X) 6= Xdf(X−1) or f (rv)(X)·g(X) 6= h(X), then eitherXdf(X−1)·g(X) 6=
h(X) or else Xdf(X−1) · g(X) = h(X) even though f (rv)(X) 6= Xdf(X−1) and
f (rv)(X) · g(X) 6= h(X). The point is that we do not care about the second
possibility because f (rv)(X) is eliminated and might as well have been defined
correctly instead.

For convenience, a fully unrolled protocol with these optimizations is pre-
sented in Protocol 7. In the offline phase of this optimized protocol, P sends 1
polynomial of degree at most m(3n+1)−1 and no polynomials are evaluated. In
the online phase, P sends 5 polynomials and V queries 8 evaluations in 4 distinct
points.

4.4 Graph Theoretical Perspective

The previous section provides the high-level steps to go from the rolled-up pseu-
docode of Protocol 5 to the unrolled and optimized pseudocode of Protocol 7.
The result is a difficult to comprehend dump of instructions and a monster for-
mula. Rather than proving that individual every step was performed correctly,
we prefer to provide the reader with tools to reinvent the entire sequence of
optimizations — and to discover any errors we may have made in the process.
This graph theory perspective may have applications to other Polynomial IOPs,
so it is described in generic terms.

The idea is to identify a Polynomial IOP with an undirected graph, in which
edges represent polynomials and nodes represent identities of polynomials. The
identity of a node involves only those polynomials of the edges that enter it.
Some polynomials are already known by the verifier (typically, those defined by
the index or instance). The other polynomials must either be provided by the
prover (or indexer), or the verifier must be capable of simulating their evaluation
using polynomial oracles that he already has access to. The verifier accepts if
and only if all nodes represent valid identities. For each node, he approximates
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description: realizes RHPR

inputs: i: (m,n,M) with M ∈ Fm×n
inputs: x: x ∈ Fn
inputs: w: (wl,wr,wo) ∈ Fn × Fn × Fn
inputs: additional parameters: q
offline preprocessing:

I computes fM (X) whose coefficients correspond to M
I sends fM (X) of degree at most m(3n+ 1)− 1 to V and P

online phase:
// compute witness polynomial
P computes fwi(X) whose vector of coefficients corresponds to (wl

T‖wr)
P computes fwo(X) whose vector of coefficients corresponds to wo

P sends fwi(X), of degree at most 2n− 1 to V
// prepare polynomials for matrix-vector product
P computes f1w(X)← 1 +Xfwi(X) +X2n+1fwo(X)
P and V compute fx(X), whose coefficient vector corresponds to x
// Matrix-Vector Product Relation:

V samples γ
$←− F\{0} and sends γ to P

P computes fMa ← fM (X) · f1w(X) and r and Q such that
fMa(X) = Q(X) · (X3n+1 − γ) + r(X) and deg(r) ≤ 3n

P computes f∗L ← r(X) modX3n+3q

P sends f∗L(X) of degree at most 3n− 1, and Q(X) of degree at most
m(3n+ 1) to V

V computes yγ = fx(γ) =
∑m−1
i=0 xiγ

i

// Hadamard relation:

V samples α, β
$←− F\{0} and sends α, β to P

P evaluates yαβ ← fwo(αβ)
P computes fL and fR such that deg(fL) ≤ 3n− 1 and such that
fL(X) +X3n · yαβ +X3n+3q+1 · fR(X) =
fwi(αX) · (βX)3n+3q−1fwi(β

−1X−1)
P sends fL(X) of degree at most 3n− 1, to V
P sends fR(X) of degree at most 2n− 2, to V

V samples z1
$←− F\{0}

V queries [fL(X)], [fR(X)], [fwi(X)], [fwi(X)], in z1, z1, αz1, β
−1z−1

1 ,
respectively

V receives yL = fL(z1), yR = fR(z1), yα = fwi(αz1), yβ = fwi(β
−1z−1

1 )

// Merged Test:
V queries [Q(X)], [f∗L(X)], [fM (X)], [fwi(X)] in αβ
V receives yQ = Q(αβ), y∗L = f∗L(αβ), yM = fM (αβ), and
ywi = fwi(αβ)

27 V checks
yQ·((αβ)2n−γ)+y∗L+yγ ·(αβ)2n−1−yM−αβ·ywi·yM

(αβ)2n+1·yM
?
=

−yL−z
3n+1
1 ·yR+((αz1)nyα)·((βz1)3n−1yβ)

z3n1 ·(αβ)n

Protocol 6: OptClaymore



this truth value by sampling left and right hand sides in the same random point,
and testing the equality of the returned scalars.

While the structure of the graph is determined in advance, the concrete
polynomials that given edges represent may depend on how the protocol unfolds.
For example, there may be an edge representing the polynomial f(αX), that is
only determined after the verifier supplies α ∈ F. Conversely, some challenges
must only be provided after the prover produces a commitment, which in this
setting is also a polynomial; in this case, it is the prover and not the verifier
who determines the polynomial of a previously unlabeled edge. Only when all
the edges are determined, can the verifier compute the truth value of all nodes.
Since the values of edges cannot change after being determined, the verifier can
always postpone computing these truth values until the last step of its execution.

It is possible to eliminate polynomials that connect two nodes, provided that
the nodes’ identities can be rewritten to put the same polynomial in the left
hand side. At this point, the two nodes can be replaced by a single one whose
defining identity equates the right hand sides of the two original nodes. As a
result, the polynomial on the original left hand sides can be eliminated from the
equations, from the graph, and from the tests.

As an instructive example, consider the verification graph arising from testing
that a polynomial f(X) is simultaneously equal to the product of g(X) and
h(X), and also splits as fL(X) + XdfR(X). The two identities are therefore
f(X) = g(X) · h(X) and f(X) = fL(X) + XdfR(X). Their merger is g(X) ·
h(X) = fL(X) + XTfR(X). Note that f(X) has been eliminated from the last
equation.

f = g · h

g(X)

h(X)

f = fL +XdfR

fL(X)

fR(X)

f(X)
g · h = fL +XdfR

g(X)

h(X)

fL(X)

fR(X)

Fig. 1. A Polynomial IOP Graph before (left) and after (right) merging two nodes.

The end result of applying this merge procedure until there are no edges left
to eliminate, is a graph in the shape of the a star: it has one node and many
outgoing edges with dangling opposite ends.

5 Zero-Knowledge

It turns out that adapting the protocol for zero-knowledge is rather tricky. The
näıve approach consists of appending q randomizers to the initial wire vectors
wl, wr, and wo. The randomizers will make the witness polynomials q-wise
independent, meaning that no distinguisher restricted to at most q queries will
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obtain any infomation about the witness. Furthermore, the randomizers will
propagate to the other polynomials, masking witness information there as well.

Unfortunately, this argument fails in combination with optimization (1) of
Section 4.3 and in particular with respect to the polynomial fL(X). This polyno-
mial does inherit randomizers, but these randomizers stand in nonlinear relation
to the ones we started from. As a result, showing that these derived randomizers
are uniform or close enough, is a challenging task to say the least.

A solution to this problem is to sacrifice optimization (1) and splitting the
witness polynomials fwi(X) back into two polynomials, fwl(X) and fwr(X).
Protocol 7 shows the result of dropping this optimization and adding q random-
izers to all the witness vectors, starting from the optimized protocol (6). This
protocol requires 1 offline polynomial and 6 online ones with maximum degree
m(3n+ 3q + 1)− 1; and 9 evaluations in 4 distinct points.

Theorem 6. Assume M has rank at least 2. The Polynomial IOP ZKClaymore
of protocol 7 has statistical zero-knowledge with respect to all distinguishers lim-
ited to q− 1 queries. The success probability of such distinguishers is bounded by
2m+2q−2
|F−1 .

Proof. We start by showing how S produces a transcript for (i,x) without knowl-

edge of w. S chooses a random witness w′ = (wl
′,wr

′,wo
′)

$←− Fn × Fn × Fn

subject to x = M(1 |wl
′T |wr

′T |wo
′T)T and simulates a protocol execution be-

tween P(i,x,w′) and V(i,x) with one important difference: S does not choose
α, β uniformly at random but such that the equation of line 28 holds. Specifically,
S chooses α at random, solves for β, and retries with a new witness if necessary.
The polynomial has uniformly random coefficients, so the probability that it has
a linear factor over F approaches a constant greater than 1

2 as |F| → ∞. As a
result, S runs in expected polynomial time.

This transcript is accepting by construction. What remains to be shown is
that no Turing machine or circuit D can distinguish transcripts produced in this
manner from authentic transcripts when restricted q − 1 queries. We proceed
to argue that up to a negligible statistical distance, every polynomial in the
transcript that depends on the witness has q − 1 uniformly random coefficients.
As a result, the witness remains perfectly hidden from D.

Decompose the polynomials appearing in the transcript into the sum of data
that depend on the instance or index (f̄), that depend on the witness (f̂), and
that depend on the randomizers (f̃). This decomposition gives:

– fM = f̄M is independent of the witness.

– fwl = f̂wl + f̃wl, where f̃wl contains the randomizer sequence r(l).

– fwr = f̂wr + f̃wr, where f̃wr contains the randomizer sequence r(r).

– f∗L = f̂∗L+ f̃∗L, where f̃∗L contains the convolution of fM (X) with Xf̃wl(X) +

Xn+q+1f̃wr(X) +X2n+2q+1f̃wo(X), first reduced by X3n+3q+1− γ and then
reduced by X3n+3q. To show that f̃∗L depends linearly on all of r(l), we
consider the following intermediary steps.
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description: realizes RHPR

inputs: i: (m,n,M) with M ∈ Fm×n
inputs: x: x ∈ Fn
inputs: w: (wl,wr,wo) ∈ Fn × Fn × Fn
inputs: additional parameters: q
offline preprocessing:

I computes fM (X) whose coefficients correspond to
M ′ =

(
M[:,0:(n+1)] 0m×q M[:,(n+1):(2n+1)] 0m×q M[:,(2n+1):(3n+1)] 0m×q

)
I sends fM (X) of degree at most m(3n+ 3q + 1)− 1 to V and P

online phase:
// compute witness polynomial with randomizers

P samples r(l) $←− Fq and r(r) $←− Fq
P computes fwl(X) whose vector of coefficients corresponds to
(wi

T
[0:n]|r(l) T) and fwr(X) whose vector of coefficients corresponds to

(wi
T
[n:2n]|r(r) T)

P computes fwo(X) whose vector of coefficients corresponds to
(wo

T
[0:n]|r(l) T ◦ r(r) T)

P sends fwl(X) and fwr(X), both of degree at most n+ q − 1, to V
// prepare polynomials for matrix-vector product
P computes f1w(X)← 1 +Xfwl(X) +Xn+q+1frw(X) +X2n+2q+1fwo(X)
P and V compute fx(X), whose coefficient vector corresponds to x
// Matrix-Vector Product Relation:

V samples γ
$←− F\{0} and sends γ to P

P computes fMa ← fM (X) · f1w(X) and r and Q such that
fMa(X) = Q(X) · (X3n+3q+1 − γ) + r(X) and deg(r) ≤ 3n+ 3q

P computes f∗L ← r(X) modX3n+3q

P sends f∗L(X) of degree at most 3n+ 3q − 1, and Q(X) of degree at
most m(3n+ 3q + 1)− 1 to V

V computes yγ = fx(γ) =
∑m−1
i=0 xiγ

i

// Hadamard relation:

V samples α, β
$←− F\{0} and sends α, β to P

P evaluates yαβ ← fwo(αβ)
P computes fL and fR such that deg(fL) ≤ n+ q − 1 and such that
fL(X) +Xn+q · yαβ +Xn+q+1 · fR(X) =
fwl(αX) · (βX)n+q−1fwr(β

−1X−1)
P sends fL(X) of degree at most n+ q − 1, to V
P sends fR(X) of degree at most n+ q − 1, to V

V samples z1
$←− F\{0}

V queries [fL(X)], [fR(X)], [fwl(X)], [fwr(X)], in z1, z1, αz1, β
−1z−1

1 ,
respectively

V receives yL = fL(z1), yR = fR(z1), yα = fwl(αz1), yβ = fwr(β
−1z−1

1 )

// Merged Test:
V queries [Q(X)], [f∗L(X)], [fM (X)], [fwl(X)], [fwr(X)] in αβ
V receives yQ = Q(αβ), y∗L = f∗L(αβ), yM = fM (αβ), ywl = fwl(αβ),
and ywr = fwr(αβ)

28 V checks
yQ·((αβ)2n+2q−γ)+y∗L+yγ ·(αβ)2n+2q−1−yM−ywlyrw(βz1)n+q−1)·yM

(αβ)2n+2q+1·yM
?
=

−yL−z
n+q+1
1 ·yR+(βz1)n+q−1yαyβ

z
n+q
1

Protocol 7: ZKClaymore



• The polynomial

Xf̃wl(X) +Xn+q+1f̃wr(X) +X2n+2q+1f̃wo(X) =

q−1∑
i=0

r
(l)
[i]X

1+n+i +

q−1∑
i=0

r
(r)
[i] X

1+2n+q+i +

q−1∑
i=0

r
(l)
[i] r

(r)
[i] X

1+3n+2q+i

depends linearly on all of r(l) by construction.
• The polynomial

fM (X) · (Xf̃wl(X) +Xn+q+1f̃wr(X) +X2n+2q+1f̃wo(X))

might have fewer nonzero coefficients than either factor. However, the
point is that when the randomizers r(l) are interpreted as variables, all of
them appear linearly in this product. So this polynomial depends linearly
on all of r(l) as well.
• The polynomial

r̃(X) = fM (X) · (Xf̃wl(X) +Xn+q+1f̃wr(X) +X2n+2q+1f̃wo(X))

modX3n+3q+1 − γ

depends linearly on all of r(l) unless the reduction modulo X3n+3q+1−γ
induces a cancellation. The probability of this event is at most m/(|F|−1)
due to the Schwartz-Zippel lemma.
• The polynomial f̃∗L(X) is the same as the polynomial from the previous

bullet point, except without the term in X3n+3q. If there is a randomizer

r
(l)
[i] that appears only in this term, then either (a) fM (X) consists of

one single term, or (b) the reduction modulo X3n+3q+1 − γ induced
a cancellation. Case (a) is incompatible with M having rank at least
2. Case (b) occures with probability at most m/(|F| − 1) due to the
Schwartz-Zippel lemma.

In summary, except with probability at most 2m
|F|−1 , the polynomial f̃∗L(X)

depends linearly on all randomizers of r(l).
– Q = Q̂ + Q̃ contains the quotient of dividing the convolution of fM (X)

with X3n+3q+1 · (X−1f̃wi(X
−1) + X−2n−2q−1f̃wo(X

−1)) by X3n+3q+1 − γ.
Specifically, Q̃(X) satisfies the relation

Q̃(X) · (X3n+3q+1 − γ) + r̃(X) = fM (X)·

X3n+3q+1 ·
(
X−1f̃wl(X

−1) +X−n−q−1f̃wr(X
−1) +X−2n−2q−1f̃wo(X

−1)
)

where deg(r̃(X)) < 3n + 3q + 1. Let cXe be the top term of fM (X). Then

Q̃(X) has c r
(l)
[0]X

e+2n+3q−1 as top term. So Q(X) has at least 1 randomizer.

When considering this randomizer fixed, it moves from Q̃(X) to Q̂(X) and

from f̃wl(X) to f̂wl(X). At this point, the same argument can be repeated to

show that the top coefficient of Q̃(X) depends on r
(l)
[1]. Repeating the same

argument q times establishes that Q(X) has q randomizers.
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– fL = f̂L + f̃L and fR = f̂R + f̃R are the left and right halves respectively of
the polynomial

f(X) = fwl(X)×Xn+q−1fwr(X
−1) (37)

= Xn+q−1(f̂wl(X) + f̃wl(X))(f̂wr(X
−1) + f̃wr(X

−1)) (38)

= Xn+q−1
(
f̂wl(X)f̂wr(X

−1) + (f̂wl(X)f̃wr(X
−1) (39)

+ f̃wl(X)f̂wr(X
−1) + f̃wl(X)f̃wr(X

−1)
)
.

Specifically, this polynomial is split in order to check the coefficient of Xn+q,
meaning that fL has the coefficients to the left of that monomial and fR the
coefficients to the right of it.

The top coefficient of f̃R(X) is r
(l)
[q−1]r

(r)
[q−1], whose distance from uniform is

1/F. Consider r
(l)
[q−1] and r

(r)
[q−1] fixed, so they moves from f̃R(X) to f̂R(X)

and from f̃wl(X) to f̂wl(X) and from f̃wr(X) to f̂wr(X). Then the top

coefficient of f̃R(X) becomes r
(l)
[q−2]r

(r)
[q−2]. Repeating the same argument q−1

times establishes that fR(X) has q − 1 randomizers whose distance from
uniform is 1/|F|. For the whole sequence, the distance from uniform is (q −
1)/|F|. The same argument holds for fL(X) due to symmetry.

In summary, except with probability at most 2m+2q−2
|F|−1 , every polynomial in

the transcript has q−1 uniformly random coefficients. In this case, the witness is
perfectly hidden from any collection of q − 1 queries. Therefore, D’s probability
of successfully telling authentic and simulated transcripts apart with only q − 1
queries is bounded by 2m+2q−2

|F−1 . ut

Corollary 1. Protocol ZKClaymore of protocol 7 and parameter q = 9 has sta-
tistical honest-verifier zero-knowledge with distinguisher probability bounded by
2m+2q−2
|F−1 .

6 Dealing with Sparsity

The matrix-vector product protocol MVP requires a representation of an m× n
matrix as a polynomial of degree mn−1. The matrices arising from typical con-
straint systems are not witness data, but rather represent fixed linear transforms
on witness data. In this context, an explicit encoding as a list of mn coefficients
becomes prohibitively expensive as the size of the witness grows. Furthermore,
the matrices arising from constraint systems encoding natural computations are
typically sparse, with a number of nonzero elements roughly on the same order
as the size of the witness, n. The question therefore arises, is there an analogue
of the matrix-vector product protocol that works for sparse matrices?

For arbitrary sparse matrices, such a solution seems to necessarily induce a
complexity penalty. However, for sparse matrices exhibiting a particular struc-
ture, such a protocol can enjoy a simple description and relatively low perfor-
mance overhead. The question is whether this restriction limits the expressivity
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of the underlying constraint system. We argue that rewriting the constraint sys-
tem to admit a structured linear transform does not pose too big of a problem.

What is needed of a protocol for sparse matrix-vector products? The main
fact that is established in the dense protocol, MVP, is that the polynomial r(X)
is the remainder after division of the matrix polynomial fM (X) by Xn − α,
where α ∈ F\{0} was supplied by V. The next step is to take the inner prod-
uct between r(X) and the vector polynomial fa(X). A more general version of
this protocol represents the matrix M as the bivariate polynomial fM (X,Y ) =∑m−1
i=0

∑n−1
j=0 M[i,j]X

iY j . In this variant, V supplies a random α; P sends r(Y ) =
fM (α, Y ); and then P and V engage in a protocol to establish that r(Y ) is con-
sistent with M and α, for instance by showing that r(z) = fM (α, z) in a random

point z
$←− F\{0}. The substitution Y = Xn shows that the univariate polyno-

mial fM (X) is in fact the natural (dense) univariate simulation of the bivariate
polynomial fM (X,Y ). Any protocol that can establish the correct evaluation of
a sparse bivariate polynomial can be used to establish the correct computation of
sparse matrix vector products.

This observation is implicit in Sonic [11]. The bivariate polynomial there

decomposes as the sum whose jth term is Ψj(X,Y ) =
∑n−1
i=1 ψj,σj,iX

iY σj,i ,
where ψi,j ∈ F are coefficients and σj is a permutation on [n]. The correct
evaluation is proved using a permutation argument, which in the end can be
realized using univariate polynomials only. The authors furthermore show how
the constraint system can be coerced into one such that the linear transformation
matches with this format.

We propose a few more solutions for the proof of correct evaluation of a
sparse bivariate polynomial below. Each solution presents different requirements
for the constraint system. The solutions can be combined, thereby increasing the
allowed flexibility.

Diagonal Band The polynomial fa(X), whose vector of coefficients is a ∈
Fn, can be used to simulate fA(X) = fa(Xn+1), which is the polynomial that
represents the n× n diagonal matrix with the elements of a on its diagonal. By
taking the sum of b such polynomials, each shifted by one position, one simulates
the polynomial fM (X) =

∑b−1
i=0 X

ifai(X
n+1), whose matrix has a diagonal band

of width b. The evaluation of the bivariate polynomial fM (X,Y ) is given by

fM (α, z) =

b−1∑
i=0

zifai(αz) , (40)

and can be computed by querying each of the various fai(X) once.

Copy Constraints and Repetitive Constraints Let fc(X) be the polyno-
mial representative of a wire copy constraint, or indeed, any repetitive linear
constraint. Let o be the offset between to consecutive repetitions of the con-
straint. Then the polynomial fM (X) =

∑k−1
i=0 X

in+iofc(X) represents k repeti-
tions of that constraint spaced o elements apart. The bivariate polynomial can
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be evaluated with

fM (α, z) =

k−1∑
i=0

αiziofc(z) , (41)

which only requires the value of fc(z) in one point. This technique can be ex-
tended to matrices in addition to rows.

Explicit Columns Let fc(X) be the polynomial representative of (part of) a
column vector appearing in a matrix M , for instance because it has been put
into reduced row echelon form. When evaluating, the contribution of this term
to fM (X,Y ) can be computed as fc(α).

Isolated Values If the number of isolated nonzero elements without structure
is not too great, then it is possible to compute them explicitly. Suppose there is
a nonzero value c in column i and row j, then the contribution of this term is
simply cXiY j . In fact, the offset by (i, j) works for any of the previous techniques
as well.

7 Comparison

We compare both variants of Claymore to some other Polynomial IOPs from
the literature, namely Sonic, PLONK, Marlin, and Aurora. Of these Polynomial
IOPs, the first three give rise to SNARKs after cryptographic compilation. In
contrast, Aurora gives rise to a proof system generating short proofs but whose
verifier complexity is linear in the size of the witness. Importantly, Claymore is
comparable to both types of proof system: with preprocessing, it gives rise to
a SNARK; whereas when preprocessing is omitted the proofs remain short but
verifier complexity explodes.

Table 1 contains an overview of the comparison. It considers the following
key performance indicators for Polynomial IOPs.

– The number of polynomials sent by I during the offline preprocessing phase.
This number determines the size of the universal or structured reference
strings. While this number contributes to the complexity of I, this complexity
is generally speaking not a make or break factor.

– The number of polynomials sent by P during the online proving phase. This
number contributes to the size of the proof and to the complexity of both P
and V.

– The number of evaluations. This number contributes to the size of the proof,
as well as indirectly to the complexity of P and V.

– The number of distinct points for evaluation. Some cryptographic compilers
(e.g., [6]) enable the merger of two polynomial evaluations provided that
they are being evaluated in the same point. This number limits the number
of times this optimization can be applied.
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– The maximum degree of all polynomials. This number contributes to indexer
and prover complexity in two ways. First, before cryptographic compilation, I
and P operate on polynomials of this degree and their complexity is affected
accordingly. The exception is if the polynomials are sparse, or otherwise
exhibit a structure that enable fast computation. Second, some cryptographic
compilers induce overheads that are superlinear in this degree.

Table 1. Comparison between Claymore and other Polynomial IOPs from the literature,
with respect to key performance indicators.

# polynomials
# evaluations # distinct points max. degree

offline / online

Sonic [11] 12M/3M + 7 11M + 3 9M + 2 O(n)
PLONK [8] 8 / 6 7 2 12(n+ a)
Marlin [7] 9 / 12 18 3 6k + 6
Aurora [4] - / 7 8 2 max(m,n)

OptClaymore 1 / 5 8 4 m(3n+ 1)− 1
ZkClaymore 1 / 6 9 4 m(3n+ 3q + 1)− 1

For Sonic, n refers to the number of multiplication gates. However, due to
their technique for simulating bivariate polynomials, the addition gates have
fan-in bounded by a parameter M . As a result of converting the original circuit
into one with this fan-in bound, a number of multiplication gates may have to
be added, thus explaining the Landau notation.

For PLONK, n refers to the number of multiplication gates and a refers to
the number of addition gates, all of which have fan-in 2. We note that there is
a variant of PLONK with larger proofs and smaller prover time, which is not
shown in the table.

Aurora does not have a preprocessing phase and as a result the verifier’s com-
plexity is linear in the number of nonzero elements in the matrices A,B,C from
the R1CS tuple. Marlin uses the same mechanics but uses preprocessing to shrink
the verifier’s workload for the matrix multiplication; this technique requires 9
polynomials in the uniform or structured reference string (3 per matrix) and a
few more in the online protocol. The parameter k denotes the largest number of
nonzero elements {A,B,C}.

Marlin, PLONK, and Aurora work in the Reed-Solomon codeword basis and
crucially rely on the structure of the field or of its multiplicative group. In con-
trast, Sonic and Claymore work for any field.

The table does not reflect Claymore’s limited support for sparse linear trans-
forms. In particular, when the matrix of the linear transform has a structure
that can be simulated by one or more of the techniques from Section 6, then the
maximal degree may be asymptotically on par with the other rows. The price
to pay is a greater verifier complexity and the transmission of more than just 1
polynomial in the offline preprocessing phase.
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Note that the performance penalty associated with large degree of polynomi-
als that represent sparse matrices is a result of the cryptographic compiler. At
the level of the Polynomial IOP, the prover is allowed to represent these poly-
nomials sparsely and operate on them accordingly. One mitigation strategy is
to engineer the Polynomial IOP so as to simulate the sparse matrices and their
polynomials using low-degree dense ones. Another strategy is to engineer the
cryptographic compiler itself so as to reduce this penalty. This latter question is
left entirely open as it is out of the scope of this paper.

8 Conclusion

The protocols proposed in this paper challenge the notion that the Reed-Solomon
codeword basis is the appropriate basis for representing objects from the arith-
metic constraint system in a Polynomial IOP. Instead, the monomial coefficient
basis provides a natural and intuitive representation under which the native
operations on polynomials are identifiable with matrix operations in the arith-
metic constraint system. Moreover, working in this basis does not impose any
restrictions on the structure of the field or its multiplicative group.

However, shifting to the monomial coefficient basis does introduce compli-
cations in some contexts. For instance, Claymore performs particularly well for
arithmetic circuits giving rise to dense linear transforms. However, the arith-
metization of long natural computations generally gives rise to sparse linear
transforms, and in this respect Claymore’s performance is less outstanding. An
open question to determine to which degree natural arithmetic constraint sys-
tems can be coerced into constraint systems whose linear transforms possess
the structural features that allow for efficient simulation. An alternative open
question addressing the same problem is to find a method to simulate arbitrary
sparse matrices with univariate polynomials whose degree grows linearly in the
number of nonzero coefficients of the matrix.

We note that Marlin presents such a solution, based on a clever technique to
simulate the matrix’s low-degree extension. The question remains whether this
technique can be lifted to the monomial coefficient basis. If not, the capacity to
deal with sparse matrices constitutes a strong argument in favor of the Reed-
Solomon codeword basis and against the monomial coefficient basis.

Two optimizations proposed in this paper are domain-independent. The first
eliminates one polynomial by concatenating two witness vectors. The second
eliminates another polynomial by implicitizing the third witness vector. While
we did not verify that these optimizations carry over to the Reed-Solomon code-
word domain, we see no reason why this translation would fail. Furthermore,
we noticed that the first optimization seems to break the zero-knowledge prop-
erty (or at least the proof thereof); in the Reed-Solomon codeword domain, this
obstacle may well disappear.
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A Other Polynomial IOPs

A.1 Flip

This protocol establishes that the coefficient vector of one polynomial f (rv)(X),
is the reverse of another polynomial f(X). Formally, the relation is given by

Rflip =

(i,x,w)

∣∣∣∣∣∣∣∣∣∣

i = d
x = ([f(X)], [f (r)(X)])
w = (f(X), f (rv)(X))

f(X) =
∑d
i=0 fiX

i

f (rv)(X) =
∑d
i=0 fd−iX

i

 . (42)

description: decides L(Rflip)
inputs: i : d
inputs: x : ([f(X)], [f (rv)(X)])
inputs: w : (f(X), f (rv)(X))
begin

V samples z
$←− F\{0}

V queries [f(X)] and [f (rv)(X)] in z and z−1 respectively

V receives y = f(z) and y(rv) = f (rv)(z−1)

V tests y
?
= zd · y(rv)

Protocol 8: Flip

Theorem 7 (Security of Flip). Protocol Flip of Protocol 8 is a Polynomial
IOP for L(Rflip) with completeness and soundness with soundness error σ =
d/(|F| − 1).

Proof. Completeness follows from construction, starting from the right-hand side
of the test of the last line: zd · y(rv) = zd ·

∑d
i=0 fd−i(z

−1)i =
∑d
i=0 fd−iz

d−i = y.

For soundness, let the coefficients fi be defined in terms of f(X) =
∑d
i=0 fiX

i.

Observe that when f (rv)(X) 6=
∑d
i=0 fd−iX

i, then the functions f(X) and Xd ·
f (rv)(X−1) are distinct. Furthermore, f(X) is a polynomial of degree at most d
and on F\{0} so is Xd ·f (rv)(X−1), so by Schwartz-Zippel the two functions can
agree on at most d points. V accepts only when one of these d points is sampled
for z; the probability of this event is σ = d/(|F| − 1). ut
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A.2 Check Coefficient

The following protocol demonstrates that the kth monomial coefficient of a poly-
nomial is equal to a given scalar. Formally, the relation is given by

Rcoeff =

(i,x,w)

∣∣∣∣∣∣∣∣
i = (d, k)
x = ([f(X)], a)
w = f(X)

f(X) =
∑d
i=0 fiX

i with fk = a

 . (43)

description: decides L(Rcoeff)
inputs: i : (d, k)
inputs: x : [f(X)]
inputs: w : f(X)
begin

P computes fL ←
∑k−1
i=0 fiX

i and fR ←
∑d
i=k+1 fiX

i−k−1

P sends to V: fL and fR of degrees at most k− 1 and d−k− 1, respectively

V samples z
$←− F\{0} and queries [f(X)], [fL(X)], and [fR(X)] in z

V receives y = f(z), yL = fL(z), and yR = fR(z)

V tests y
?
= yL + a · zk + zk+1 · yR

Protocol 9: CheckCoefficient

Theorem 8 (Security of CheckCoefficient). Protocol CheckCoefficient of Pro-
tocol 9 is a Polynomial IOP for L(Rcoeff) with completeness and soundness with
soundness error σ = d/(|F| − 1).

Proof. Completeness follows from construction: f(X) =
∑k−1
i=0 fiX

i + aXk +∑d
i=k+1 fiX

i is an identity of polynomials and the check of the last line samples
it in a point. For soundness, observe that when fk 6= a then no polynomials fL
and fR of degrees at most k−1 and d−k−1 can satisfy the polynomial identity.
Sampling it in a random point will result in equality with probability at most
σ = d/(|F| − 1) due to Schwartz-Zippel. ut

A.3 Inner Product

The next protocol establishes that a given scalar is the inner product of the
vectors of monomial coefficients of two polynomials. Formally, the relation is
given by

Rip =


(i,x,w)

∣∣∣∣∣∣∣∣∣∣∣∣

i = d
x = ([f(X)], [g(X)], a)
w = (f(X), g(X))

f(X) =
∑d
i=0 fiX

i

g(X) =
∑d
i=0 giX

i

a =
∑d
i=0 figi


. (44)
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description: decides L(Rip)
inputs: i : d
inputs: x : ([f(X)], [g(X)], a)
inputs: w : (f(X), g(X))
begin

P computes f (rv) ←
∑d
i=0 fd−iX

i

P sends to V: f (rv) of degree at most d
P and V run Flip with i = d, x = ([f(X)], [f (rv)(X)]), and
w = (f(X), f (rv)(X))

P computes h← f(X)(rv)(X) · g(X)
P sends to V: h(X) of degree at most 2d

V samples z
$←− F\{0} and queries [f (rv)(X)], [g(X)], and [h(X)] in z

V recieves yf = f (rv)(z), yg = g(z) and yh = h(z)

V tests yh
?
= yf · yg

P and V run CheckCoefficient with i = (2d, d), x = ([h(X)], a), and
w = h(X)

Protocol 10: InnerProduct

Theorem 9 (Security of InnerProduct). Protocol InnerProduct of Protocol 10
is a Polynomial IOP for L(Rip) with completeness and soundness with soundness
error σ = 5d/(|F| − 1).

Proof. Completeness follows from construction. Since the vector of coefficients
of f (rv)(X) is that of f(X) but reversed, the Flip subprotocol succeeds. The
equation h(X) = f (rv)(X)·g(X) is a polynomial identity so sampling it in a point

results in an equality. Lastly, since the dth coefficient of h(X) is
∑d
i=0 gifi = a,

the CheckCoefficient subprotocol succeeds.
For soundness, suppose a 6=

∑d
i=0 gifi. Then either f (rv)(X) does not have

the reverse coefficient vector from f(X), h(X) 6= f(X) · g(X), or the dth coeffi-
cient of h(X) is not a. The probabilities of passing the corresponding checks are
at most σFlip = d/(|F| − 1), σz = 2d/(|F| − 1), and σCheckCoefficient = 2d/(|F| − 1),
respectively. Therefore, the probability that any one of these checks pass is at
most σ = 5d/(|F| − 1). ut
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