
Factoring and Pairings are not Necessary for iO:

Circular-Secure LWE Suffices
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Abstract

We construct indistinguishability obfuscation (iO) solely under circular-security properties of encryp-
tion schemes based on the Learning with Errors (LWE) problem, i.e. the same kind of assumption as
are currently known to imply (unlevelled) fully-homomorphic encryption (FHE). As an added bonus,
this assumption can be conjectured to be post-quantum secure; yielding the first provably secure iO
construction that is post-quantum secure.

Brakerski, Döttling, Garg, and Malavolta [EUROCRYPT 2020] showed a construction of iO ob-
tained by combining certain natural homomorphic encryption schemes. However, their construction was
heuristic in the sense that security argument could only be presented in the random oracle model. In
a beautiful recent work, Gay and Pass [ePrint 2020] showed a way to remove the heuristic step. They
obtain a construction proved secure under circular security of natural homomorphic encryption schemes
— specifically, they use homomorphic encryption schemes based on LWE and DCR, respectively. In this
work, we remove the need for DCR-based encryption and obtain a result solely from the circular security
of LWE-based encryption schemes.

1 Introduction

The goal of program obfuscation [Had00, BGI+01] is to transform an arbitrary circuit C into an unin-
telligible but functionally equivalent circuit C̃. The early works on the topic casted doubts that general
purpose obfuscation may not be cryptographically feasible. Thus, research on this topic focused on realiz-
ing obfuscation for special functions. However, somewhat surprisingly, it was shown that general purpose
obfuscation is indeed possible. In particular, Garg et al. [GGH13a, GGH+13b] showed a cryptographic
general purpose indistinguishability obfuscator (iO), which loosely speaking requires that the obfuscations
of two circuits C0 and C1 that have identical input output behavior are computationally indistinguishable.
The versatility of this seemingly weak notion iO has enabled numerous new applications in cryptography
(e.g. [SW14, GGHR14, BZ14] just to name a few). Furthermore, tremendous body of work has been devoted
to constructing secure realization and understanding the assumption behind them.

The first realizations of obfuscation relied an a new algebraic object called multilinear maps [GGH13a,
CLT13, GGH15], which had only recently been constructed. Furthermore, the security of these objects
relied on new (and poorly understood) computational intractability assumptions. In fact, several attacks on
multilinear map candidates [CHL+15, HJ16] and on obfuscation constructions based on [MSZ16, CGH17]
multilinear maps were demonstrated. To defend against this attacks, several safeguards were (e.g., [GMM+16,
CVW18, MZ18, BGMZ18]) proposed to defend against these attacks. Even with these heuristic safeguards,
all but the schemes based on the Gentry et al. [GGH15] multinear maps are known to broken against quantum
adversaries.
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Towards the goal of avoiding heuristics and obtaining provably secure constructions, substantial effort was
made towards obtaining obfuscation while minimizing (with later the hope of removing) the use of multilinear
maps [Lin16, LV16, AS17, Lin17, LT17]. These efforts paid of and constructions of obfuscation replacing the
used of multilinear maps with bilinear maps [Agr19, JLMS19, AJL+19] were recently obtained. However,
these bilinear map based constructions, some of which are still conjectured to be secure, additionally relied
on certain pseudorandom objects with novel security properties. In a beautiful recent work by Jain, Lin
and Sahai [JLS20], this limitation was removed — specifically, they obtained iO assuming (sub-exponential
security of) LWE and LPN, in addition to bilinear pairings. Here again, unfortunately, the use of the pairings
makes this construction insecure against quantum adversaries.

Towards the same goal but following a completely different approach, Brakerski et al. [BDGM20] showed
a construction of iO obtained by combining certain natural homomorphic encryption schemes. However,
their construction was heuristic in the sense that security argument could only be presented in the random
oracle model. In a beautiful recent work, Gay and Pass [GP20] showed a way to remove the heuristic
step. They obtain a construction proved secure under circular security of natural homomorphic encryption
schemes — specifically, they use homomorphic encryption schemes based on LWE and DCR, respectively.
More specifically, their construction assumes sub-exponential security of (i) the Learning with Error (LWE)
assumption, (ii) the Decisional Composite Residuosity (DCR) assumption, and (iii) the shielded leakage
resilience (SRL) security of the GSW encryption scheme [GSW13] in the presence of a key-cycle with the
Damg̊ard-Jurik encryption scheme [DJ01]. This construction is also insecure against quantum attackers
because of the use of the Damg̊ard-Jurik encryption scheme [DJ01].

In this work, we ask:

Can we realize provably secure constructions of iO based solely on hard problems in lattices?

Our results. In this work, we obtain a general purpose iO construction based solely from the circular
security of LWE-based encryption schemes. In other words, we remove the need for DCR-based encryption
from the construction of Gay and Pass [GP20] and replace it with an LWE-based encryption satisfying
similar properties. This yields a construction of iO based on the same kind of assumption as are currently
known to imply (unlevelled) fully-homomorphic encryption (FHE). As an added bonus, this assumption
can be conjectured to be post-quantum secure; yielding the first provably secure iO construction that is
post-quantum secure.

More formally, assuming (sub-exponential) (i) quantum hardness of the LWE problem, and (ii) the SRL
security of GSW in the presence of a 2-key cycle with dual-Regev, we obtain the first provably secure con-
struction of post-quantum iO from the same kind of assumption as are currently known to imply (unlevelled)
fully-homomorphic encryption (FHE).

At a technical level, our construction is obtained by realizing a packed version of the dual-Regev en-
cryption which has succinct randomness and an alternative encryption mode where the ciphertexts are
“almost-everywhere” dense. These additional properties of our variant of dual-Regev allow us to replace the
use of the Damg̊ard-Jurik encryption scheme [DJ01] in Gay and Pass [GP20] with an LWE based encryption
scheme.

2 Preliminaries

We denote by λ ∈ N the security parameter. We say that a function negl is negligible if it vanishes faster
than any polynomial. Given a set S, we denote by s←$S the uniform sampling from S. We say that an
algorithm is PPT if it can be implemented by a probabilistic machine running in time poly(λ). Matrices are
denoted by M and vectors are denoted by v. We recall the smudging lemma [AIK11, AJL+12].

Lemma 1 (Smudging) Let B1 = B1(λ) and B2 = B2(λ) be positive integers and let e1 ∈ [−B1, B1] be a
fixed integer. Let e2←$ [−B2, B2] chosen uniformly at random. Then the distribution of e2 is statistically
indistinguishable from that of e2 + e1 as long as B1/B2 = negl(λ).
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2.1 Indistinguishability Obfuscation

We recall the notion of indistinguishability obfuscation (iO) from [GGH+13b].

Definition 2.1 (Indistinguishability Obfuscation) A PPT machine iO is an indistinguishability obfus-
cator for a circuit class {Cλ}λ∈N if the following conditions are satisfied:

(Functionality) For all λ ∈ N, all circuit C ∈ Cλ, all inputs x it holds that

Pr
[
C̃(x) = C(x)

∣∣∣C̃ ← iO(C)
]

= 1.

(Indistinguishability) For all polynomial-size distinguishers D there exists a negligible function negl(·) such
that for all λ ∈ N, all pairs of circuit (C0, C1) ∈ Cλ such that |C0| = |C1| and C0(x) = C1(x) on all inputs
x, it holds that

|Pr [1 = D(iO(C0))]− Pr [1 = D(iO(C1))]| = negl(λ) .

XiO. We recall a theorem from Lin et al. [LPST16], which is going to be useful for our work.

Theorem 2.2 ([LPST16]) Assuming sub-exponentially hard LWE, if there exists a sub-exponentially secure
indistinguishability obfuscator (with pre-processing) for Plog/poly with non-trivial efficiency, then there exists
an indistinguishability obfuscator for P/poly with sub-exponential security.

Here Plog/poly denotes the class of polynomial-size circuits with inputs of length η = O(log(λ)) and by
non-trivial efficiency we mean that the size of the obfuscated circuit is bounded by poly(λ, |C|) · 2η·(1−ε), for
some constant ε > 0. Note that the above theorem poses no restriction on the runtime of the obfuscator.
Furthermore, the theorem allows the obfuscator to access a large uniform random string (the pre-processing)
of size even larger than the truth table of the circuit.

2.2 Learning with Errors

Definition 2.3 (Learning with Errors) The LWE problem is parametrized by a modulus q, positive in-
tegers n,m and an error distribution χ. The LWE problem is hard if for all polynomial-size distinguishers
D there exists a negligible function negl(·) such that for all λ ∈ N it holds that∣∣Pr

[
1 = D(A, s> ·A + e)

]
− Pr [1 = D(A,u)]

∣∣ = negl(λ) .

where A is chosen uniformly from Zn×mq , s is chosen uniformly from Znq , u is chosen uniformly from Zmq
and e is chosen from χm.

As shown in [Reg05, PRS17], for any sufficiently large modulus q the LWE problem where χ is a discrete
Gaussian distribution with parameter σ = αq ≥ 2

√
n (i.e. the distribution over Z where the probability

of x is proportional to e−π(|x|/σ)2), is at least as hard as approximating the shortest independent vector
problem (SIVP) to within a factor of γ = Õ(n/α) in worst case dimension n lattices. We refer to α = σ/q as
the modulus-to-noise ratio, and by the above this quantity controls the hardness of the LWE instantiation.
Hereby, LWE with polynomial α is (presumably) harder than LWE with super-polynomial or sub-exponential
α. We can truncate the discrete Gaussian distribution χ to σ ·ω(

√
log(λ)) while only introducing a negligible

error. Consequently, we omit the actual distribution χ but only use the fact that it can be bounded by a
(small) value B.

Micciancio and Peikert [MP12], provide an algorithm to sample uniformly random LWE matrices together
with an inversion trapdoor that allows for efficient LWE inversion. That is, there exist efficient algorithms
GenTrap and Invert, such that GenTrap(m,n, q) samples a matrix A ∈ Zm×nq and a trapdoor τ , such that

• The marginal distribution of A is statistically close to uniform.

• For any s ∈ Znq and any e ∈ Zq with ‖e‖ < q/T (for some T = poly(λ)) it holds that Invert(τ,A,As +
e) = s.
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2.3 Public-Key Encryption

We recall the definition of public key encryption in the following.

Definition 2.4 (Public-Key Encryption) A homomorphic encryption scheme consists of the following
efficient algorithms.

KeyGen(1λ): On input the security parameter 1λ, the key generation algorithm returns a key pair (sk, pk).

Enc(pk,m): On input a public key pk and a message m, the encryption algorithm returns a ciphertext c.

Dec(sk, c): On input the secret key sk and a ciphertext c, the decryption algorithm returns a message m.

Definition 2.5 (Correctness) A public-key encryption scheme (KeyGen,Enc,Dec) is correct if for all λ ∈
N, all messages m, all (sk, pk) in the support of KeyGen(1λ), and all c in the support of Enc(pk,m) it holds
that

Dec(sk, c) = m.

We define a weak notion of security (implied by the standard semantic security [GM82]) which is going to
be more convenient to work with.

Definition 2.6 (Semantic Security) A public key encryption scheme (KeyGen,Enc,Dec) is semantically
secure if for all PPT distinguishers D there exists a negligible function negl(·) such that for all λ ∈ N, all
pairs of message (m0,m1), it holds that

|Pr [1 = D(pk,Enc(pk,m0))]− Pr [1 = D(pk,Enc(pk,m1))]| = negl(λ)

where (sk, pk)← KeyGen(1λ).

Circular Security. We say that two encryption schemes (KeyGen0,Enc0,Dec0) and (KeyGen0,Enc0,Dec0)
form a key cycle if the distinguisher is given a cross-encryption of the secret keys Enc(pk1, sk0) and Enc(pk0, sk1).
We say that the scheme is 2-circular secure if semantic security is retained in the presence of such a cycle.

SRL Security. Shielded randomness leakage (SRL) security says that the scheme is semantically secure
even in the presence of an oracle that leaks some information about the randomness for evaluated ciphertext
for adversarially chosen function for which the adversary knows the output. We refer the reader to [GP20]
for a precise definition. In [GP20] it is shown that the GSW encryption scheme [GSW13] satisfies such a
notion if the (plain) LWE problem is hard.

3 Packed Encryption from LWE

Here we describe the packed version of dual Regev. We denote by n = n(λ) the lattice dimensions (which we
treat as the security parameter), by q = q(λ) the modulus (which we assume for simplicity to be even), and
by k = k(λ) the expansion factor. We set m ≥ n log(q). Let TrapGen and Invert be the Trapdoor generation
and inversion algorithms of [MP12].

KeyGen(1n, 1k): Sample a uniform n×m matrix A←$Zn×mq together with a short trapdoor τ via the trap-
door sampling algorithm (A, τ)←$TrapGen(n,m, q), sample uniformly random vectors b1, . . . ,bk←$Zmq .
The public key is set to

(A,b1, . . . ,bk)

and the secret key is the trapdoor τ .
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Enc(pk, (m1, . . . ,mk)): To encrypt a k-bit message, sample a uniform randomness r←$Zmq and a (k + 1)-

dimensional noise vector e←$χk+1 and return

c = (Ar + e0,b1r + e1 +m1, . . . ,bkr + ek +mk).

Dec(sk = τ, c = (c0, c1 . . . , ck)): Use τ to recover r from c0 via r = Invert(τ,A, c0). Compute the mi via
mi = MSB(ci − bi · r). Output (m1, . . . ,mk).

For convenience we also define an alternative encryption algorithm in the following.

DenseEnc(pk): Sample a uniform randomness r←$Zmq and a noise term e0←$χ and return

c = (Ar + e0,b1r + u1, . . . ,bkr + uk)

where (u1, . . . , uk)←$Zq.
We highlight two facts about this algorithm that are going to be important for our later construction: (i)
The decryption algorithm works for both Enc and DenseEnc algorithm, in fact the scheme satisfies perfect
correctness in both cases. (ii) The domain of the elements (c1, . . . , ck) is dense, i.e. the support of the scheme
spans the whole vector space Zkq . Since the element c0 is small (by setting k large enough), we refer to such
a property as “almost-everywhere” density.

3.1 Analysis

Here we argue that the scheme as described above satisfies a few properties of interest.

Semantic Security. First we argue that the scheme satisfies a strong form of semantic security, i.e. the
honestly computed ciphertexts are computationally indistinguishable from uniform vectors in Zkq .

Theorem 3.1 (Semantic Security) If the LWE assumption holds, then the ciphertexts then for all λ ∈ N
and all (sk, pk) in the support of KeyGen the following distributions are computationally indistinguishable

Enc(pk,m) ≈ u.

where u←$Zk+1
q .

Proof: The security of the scheme follows routinely by an application of the Leftover-Hash Lemma [HILL99]
and by k invocations of the LWE assumptions. �

Randomness Succinctness. Here we show that our scheme satisfies the notion of randomness succinct-
ness which, intuitively, asks that the randomness of a ciphertext is asymptotically smaller than the message
space.

Theorem 3.2 (Randomness Succinctness) There exists a polynomial poly(·) such that for all λ ∈ N,
all (sk, pk) in the support of KeyGen, and all elements r in the corresponding randomness space, it holds that
|r| ≤ poly(λ).

Proof: The randomness is a uniform vector in Zmq and it is in particular independent of k. �

Linear Homomorphism. The scheme is additively homomorphic over Zkq for a bounded amount of ad-
dition. In the following we show that it can be converted to linear homomorphism (i.e. inner product with
large coefficients) by encrypting all powers of 2.

Theorem 3.3 (Linear Homomorphism) There exists a polynomial-time algorithm InnProd such that
for all λ ∈ N, all (sk, pk) in the support of KeyGen, all k-dimensional message vectors (m1, . . . ,m`), all
(c1, . . . , c`) in the support of (Enc(pk,m1), . . . ,Enc(pk,m`)) and all vectors y ∈ Z`q it holds that

Dec(sk, InnProd(pk, (c1, . . . , c`),y)) = yT (m1, . . . ,m`).
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Proof: It is well-known that dual Regev is (bounded) additively homomorphic and so is the packed version
(over Zkq ). To compute inner-products with large coefficient, one can encrypt (m1, . . . ,mk)⊗G, where G is
the gadget matrix [MP12] of appropriate dimensions. Inner products are then computed via multiplication
with the binary decomposition of the coefficients. �

Randomness Recovery. It is well-known that dual Regev is randomness recoverable.

Theorem 3.4 (Randomness Recoverability) There exists a polynomial-time algorithm Ext such that for
all λ ∈ N, all (sk, pk) in the support of KeyGen, all k-dimensional messages m, all randomnesses r ∈ Zmq , it
holds that

Ext(sk,Enc(pk,m; r)) = r,

except with negligible probability over the additional random choices made by Enc.

Proof: The algorithm Ext recovers r from a ciphertext (c0, c1, . . . , ck) in the same way as Dec, by computing
r = Invert(τ,A, c0). The claim follows from the correctness of the inversion procedure Invert given that
‖e0‖ < δ, which holds with overwhelming probability.

�

Decryption with Randomness. Given the randomness r, one can easily decrypt a ciphertext.

Theorem 3.5 (Decryption with Randomness) There exists a polynomial-time algorithm Rec such that
for all λ ∈ N, all (sk, pk) in the support of KeyGen, all k-dimensional messages m, all randomnesses r ∈ Zmq ,
it holds that

Rec(pk, r,Enc(pk,m; r)) = m.

Proof: For all i = 1 . . . k compute bir and round to the nearest multiple of q/2 to recover mi. �

4 Constructing XiO

In the following we outline the construction of XiO using and FHE scheme and the LHE scheme presented in
this work. Since the scheme and the analysis is largely unchanged from [GP20], we only provide a high-level
overview highlighting the differences. The notation is taken from [GP20] in favor of clarity of exposition.

4.1 Construction

The scheme assumes a long uniform string that is, for convenience, split in two chunks:

1. A sequence of randomization vectors for the GSW FHE scheme FHE.PubCoin.

2. A sequence of simulated LHE encryptions LHE.PubCoin.

On input the security parameter 1λ and the circuit Π, the obfuscator proceeds as follows.

Setting the Public Keys: Sample an FHE key pair (sk, pk) and an LHE (s̄k, p̄k) ← KeyGen(1n, 1k) with
matching modulus q. Compute an FHE encryption c1 ← GSWEnc(pk, CΠ) where CΠ is the circuit that
on input some index i computes the i-th block of the truth table of Π.

Compute a Key Cycle: Compute an FHE encryption of the LHE secret key c2 ← GSWEnc(pk, s̄k) and
an LHE encryption of the FHE secret key c̄← Enc(p̄k, sk).

Decryption Hints: For all indices i ∈ {0, 1}log(n1−ε), for some constant ε, do the following.

Evaluate the Circuit: Homomorphically evaluate CΠ on i and let c1,i be the resulting ciphertext.
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Compute the Encryption Header: Sample a uniform r←$Zmq and a noise term e←$χ and return
h = Ar + e.

Compute the Low-Order Bits: Let the i-th block of LHE.PubCoin be

(h1, . . . , hk) = (b1r + u1, . . . ,bkr + uk)

for some (u1, . . . , uk) ∈ Zkq . Compute homomorphically over c2 the function f , which takes as
input a dual Regev ciphertext (h, h1, . . . , hk), computes the decryption algorithm and returns

(−MSB(u1), . . . ,−MSB(uk)).

Note that (h, h1, . . . , hk) is a ciphertext in the support of the alternative encryption algorithm
DenseEnc. Denote the resulting ciphertext by cMSB.

Rerandomize the Ciphertext: Use the i-th block r∗ of the FHE.PubCoin to compute an FHE en-
cryption of 0 and compute

c′MSB = cMSB + GSWEnc(pk, 0; r∗).

Proxy Re-Encrypt: Combine c1,i and c′MSB into a single FHE encryption d (by staggering the plain-
texts in different bits) and compute

c̄i ← InnerProd(p̄k, c̄, d) + (h, h1, . . . , hk).

Release Hint: Release the randomness of the resulting LHE ciphertext by computing Ext(s̄k, c̄i).

Output: The obfuscated circuit consists of the public keys, the decryption hints, and the headers.

The obfuscated circuit is evaluated block-wise by the evaluator, who recomputes c̄i as specified above and
uses the corresponding decryption hint to recover the plaintext via the Rec algorithm of dual Regev. Note
that the decryption returns the correct output since

c̄i = InnerProd(p̄k, c̄, d) + (h, h1, . . . , hk)

= Enc(p̄k, (m1 −MSB(u1), . . . ,mk −MSB(uk))) + (h, h1, . . . , hk)

= Enc(p̄k, (m1 −MSB(u1), . . . ,mk −MSB(uk))) + (Ar + e,b1r + u1, . . . ,bkr + uk)

= (Ar′ + e,b1r
′ +m1 −MSB(u1) + u1, . . . ,bkr

′ +mk −MSB(uk) + uk)

= (Ar′ + e,b1r
′ +m1 + ν1, . . . ,bkr

′ +mk + νk)

where (ν1, . . . , νk) are small, which is a well-formed ciphertext.
Compression is obtained by setting k to be large enough polynomial overhead dictated by the FHE

encryption. Note that the size of the LHE encryption of sk potentially grows with k, so its size has to be
amortized by setting ε appropriately. We refer the reader to [GP20] for a concrete choice of parameters.

4.2 Analysis

In the following we analyze the security of our scheme.

Theorem 4.1 (XiO Security) If the FHE and LHE schemes are 2-circular SRL secure, then the XiO
scheme as described above is secure.

Proof: We provide a high-level overview of the security analysis. This is mostly unchanged from [GP20],
except for a few steps that we highlight.

Hybrid 0: This is the original obfuscation of the circuit Π0.
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Hybrid 1: Here we sample c′MSB as a fresh encryption of (−MSB(u1), . . . ,−MSB(uk)) using randomness r∗

and setting the corresponding block of FHE.PubCoin to r∗ − rc, where rc is the randomness of cMSB.

This hybrid is statistically close by the weak circuit privacy of the FHE scheme (same as in [GP20]).

Hybrid 2: Here the i-th block of LHE.PubCoin is computed by

h̄ = DenseEnc(p̄k) = (h0, h1, . . . , hk),

that is, it holds that hi = bi · r + ui is uniform in Zq. Thus the distribution is identical to that of the
previous hybrid.

Hybrid 3: Here we generate c̄i as a fresh encryption of (m1 + u′1 −MSB(u′1), . . . ,mk + u′k −MSB(u′k)) for
uniformly random u′j using fresh randomness and compute the encryption header together with the
corresponding block of LHE.PubCoin as

c̄i − InnProd(p̄k, c̄, d).

Since the uj −MSB(uj) are uniformly random in [−q/4, q/4) and the modulus-to-noise ratio for the
ei is super-polynomial, it holds that uj −MSB(uj) and u′j −MSB(u′j) + ej are statistically close. It
follows that hybrid 3 and hybrid 4 are statistically close.

Hybrid 4: Here we compute c̄i using fresh noise. Statistical indistinguishability follows from Lemma 1
(same as in [GP20]).

Hybrid 5: Here we switch to encrypting Π1 instead. The computational indistinguishability follows from
a reduction to the circular SRL security of the FHE and the LHE scheme (same as in [GP20]).

Hybrid 6-10: Undo all the changes except that now we encrypt Π1 instead of Π0.

�

4.3 On the Assumption

When instantiating LHE with the packed version of dual Regev and the FHE with GSW, our assumption
states that SRL security of GSW (which can be shown to hold in the stand alone settings) is retained in the
presence of a 2-key cycle with (packed) dual Regev.

We observe that we can further modify the XiO scheme described in Section 4.1 to reduce against a weaker
assumption, although somewhat more cumbersome to state. More specifically, instead of an encryption a
trapdoor τ under the GSW key, we can simply provide the evaluator with an encryption of each randomness
vector r (as defined in the computation of the header). Note that this modification does not affect correctness,
since the trapdoor was only used to recompute r, nor succinctness, since the vectors r ∈ Zmq are small. This
modification removes the 2-key cycle although we still have a randomness-key circularity in the dependency
of the two schemes.
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Coron, editors, Advances in Cryptology – EUROCRYPT 2016, Part I, volume 9665 of Lec-
ture Notes in Computer Science, pages 537–565, Vienna, Austria, May 8–12, 2016. Springer,
Heidelberg, Germany.

[JLMS19] Aayush Jain, Huijia Lin, Christian Matt, and Amit Sahai. How to leverage hardness of constant-
degree expanding polynomials overa R to build iO. In Yuval Ishai and Vincent Rijmen, editors,
Advances in Cryptology – EUROCRYPT 2019, Part I, volume 11476 of Lecture Notes in Com-
puter Science, pages 251–281, Darmstadt, Germany, May 19–23, 2019. Springer, Heidelberg,
Germany.

[JLS20] Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation from well-founded
assumptions. Cryptology ePrint Archive, Report 2020/1003, 2020.

[Lin16] Huijia Lin. Indistinguishability obfuscation from constant-degree graded encoding schemes. In
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