
1

Certificate-Based Parallel Key-Insulated Aggregate
Signature Against Fully Chosen-Key Attacks for

Industrial Internet of Things
Hu Xiong, Yingzhe Hou, Xin Huang, and Saru Kumari

Abstract—With the emergence of the Industrial Internet of
Things (IIoT), numerous operations based on smart devices
contribute to producing the convenience and comfortable applica-
tions for individuals and organizations. Considering the untrusted
feature of the communication channels in IIoT, it is essential to
ensure the authentication and incontestableness of the messages
transmitted in the IIoT. In this paper, we firstly proposed a
certificate-based parallel key-insulated aggregate signature (CB-
PKIAS), which can resist the fully chosen-key attacks. Concretely,
the adversary who can obtain the private keys of all signers in
the system is able to forge a valid aggregate signature by using
the invalid single signature. Furthermore, our scheme inherits
the merits of certificate-based and key-insulated to avoid the
certificate management problem, key escrow problems as well
as the key exposures simultaneously. In addition, the rigorous
analysis and the concrete simulation experiment demonstrated
that our proposed scheme is secure under the random oracle
and more suitable for the IIoT environment.

Index Terms—IIoT, Certificate-based, Aggregate Signature,
Key-Insulated, Fully Chosen-Key Attacks.

I. INTRODUCTION

IN recent years, the increase of digitalization has greatly
facilitated the prosperity of the emerging field named

Industrial Internet of Things (IIoT)[1], which dedicates to
fabricate a more intelligent management system with less
human intervention. By the ubiquitous smart devices such as
machinery, actuators, and sensors, it is possible for indus-
trial companies to manage the valuable information and the
interaction with each other more intelligently and efficiently
[2]. As the Fig 1 shown, considering the dominance of the
connected sensors during the industrial platform, IIoT attracts
more attention since the traditional IoT from the engineering
and academic community.

Despite numerous benefits are brought by IIoT, the au-
thenticity of data is still the critical problem that needs an
appropriate solution. To address the former challenge, how
to preserve the authenticity of data transmitted between the
smart devices and the third party is a breakthrough. The digital
signature [3] seems to be a promising approach to protect data
from forging and tampering during the transmission process.
In this manner, data will be signed by the signer’s private
key before being delivered to other devices. Afterwards, this

H. Xiong, Y. Hou, X. Huang are with the School of Information and
Software Engineering, University of Electronic Science and Technology
of China, Chengdu 610054, China. S. Kumari is with the Department of
Mathematics, Chaudhary Charan Singh University, Meerut, India.
E-mail: xionghu.uestc@gmail.com. saryusiirohi@gmail.com.

primitive enables the receiver to verify the signature to guaran-
tee the authenticity of data reasonably. Subsequently, a series
of signature protocols based on identity-based cryptosystem
(IBC) or public key infrastructure (PKI) are gradually put
forward [4], [5], [6].

With respect to the PKI cryptosystem [7], [8], there exists
a trusted organization that can generate the certificate corre-
sponding to the user’s identity. Nevertheless, the certificate
management problem cannot be ignored, which greatly re-
duces the applicability of the PKI-based schemes. For address-
ing this obstacle, the signature scheme from the IBC system
is proposed (IBS)[3]. In this construction, the user’s private
key and public key are generated by the private key generator
(PKG)[9] and the user’s identity respectively. Although the
certificate management problem can be solved by replacing
the certificate with the user’s identity, this mechanism results
in an equally important key escrow problem since the private
key can be calculated by PKG easily.

For tackling the key escrow problem above-mentioned, the
certificate-based signature (CBS)[10] is proposed, which both
eliminates the inherent defects of schemes from PKI and
IBC mechanisms. When n signatures are corresponding to n
different messages of n users in the system, the aggregate
signature can aggregate them into a single short signature and
require to be verified only once, which allows bandwidth and
computing savings. Therefore, it is essential to introduce the
notion of aggregate signature and this primitive makes it suit-
able for environments with resource-constrained conditions.
Inspired by this perspective, various types of schemes based
on certificate-based aggregate signature (CBAS) are designed
at a rapid speed [11], [12].

In a traditional aggregate signature protocol, the involved
adversary always obtains (n − 1) private keys, where the
number of system users is n. Nonetheless, as one of the special
attack patterns, a fully chosen-key attacker can hold all the
private key and the purpose of it is to break the aggregate
signature scheme’s security. For example, a single signature
forged by this fully chosen-key attacker is invalid, but the
aggregate signature generated by the aforementioned single
signature is valid. Wu et al. [13] proposed a certificateless
aggregate signature scheme, which describes an approach to
resist the fully chosen-key attacks.

What makes things worse, the key disclosure problem is
also inevitable since the signature primitive often deployed
in the insecure channel. Dodis et al. [14] first presented the
concept of key-insulated, which offered a new solution to

2

Devices

Factory

Internet

Server

User

Fig. 1: The intuition of IIoT

ease this challenge. In their proposed scheme, the private key
is divided into the private key of user and the helper key.
To be specific, the user’s private key remains changing to
provide the signature functionality during the period, while
the helper key generated by the physical device is responsible
for updating the previous key. In addition, the user’s public
key is a constant value. Another problem encountered in [14]
is that only a helper is supported, which leads to an increase
in frequency of key updates, thereby increasing the probability
of key exposure. Thus, the concept of key-insulated with the
functionality of parallel is proposed by Hanaoka et al. [15].
In this way, the decryption key is updated by two independent
helper keys. This improvement not only allows us to update
the decryption keys frequently, but also avoids the helper key’s
exposure.

Recently, Verma et al. [12] presented an efficient certificate-
based signature scheme with compact aggregation (CB-CAS).
They alleged that their CB-CAS scheme is proved to be secure
under the random oracle model. Conversely, after carefully
observing their scheme, we show that the scheme in [12]
fails to achieve the claimed security features and still suffers
from the public key replacement attack, the malicious KGC
attack, the fully-chosen attack and even an outsider attack.
Besides, the fundamental reasons why their scheme is insecure
as well as the guideline for resisting these attacks during
the design of certificate-based signature are also presented. In
summary, in order to resist the previous attacks and achieve the
parallel key-insulated property, we proposed a certificate-based
parallel key-insulated aggregate signature against fully chosen-
key attacks for IIoT (CB-PKIAS). The concrete contributions
of the proposed scheme are demonstrated as follows.

1) Firstly, this paper introduces the different types of forgery
attacks involved in scheme [12]. Afterwards, we analyze
the basic reasons for the insecurity of the CB-CAS
scheme.

2) Secondly, this paper provides a new CB-PKIAS scheme,
which can resist the existential unforgeability against
adaptive chosen messages attack (EUF-CMA) and the
fully chosen-key attacks. Besides, the key exposure prob-

lem has also been addressed by offering the key-insulated
property.

3) Finally, the specific experiment simulation and perfor-
mance comparison are executed to reveal the practicality
of our proposed scheme.

The organization is described as follows. In section II,
the related works are given. In section III, we demonstrate
the corresponding preliminaries. In section IV, we review
the Verma et al.’s scheme. In section V, we provide the
concrete construction of CB-PKIAS. In section VI, we show
the security analysis of CB-PKIAS. In section VII, we describe
the performance comparison with the existing works. Finally,
several significant conclusions are shown in section VIII.

II. RELATED WORK

After the concept of public key cryptography was introduced
by Diffie and Hellman [16] in 1976, many attempts have been
made to put forward a practical public key system. Among
them, many digital signature schemes based on PKI [17], [18],
[19] are served to ensure the integrity, authenticity and non-
replacement of digital documents. However, the public key
of the PKI-based signature system corresponds to a specific
certificate, resulting in a huge overhead caused by certificate
management. To eliminate the huge overhead of certificate
management, Shamir [20] proposed the identity (ID)-based
digital signature scheme for the first time. The ID-based
signature employs the public unique identifying information
of the user as the public key, thereby eliminating the certificate
management overhead. On the other hand, PKG is responsible
for generating the user’s private key. Afterward, a series of
identity-based signcryption schemes were proposed [21], [22],
[23], [24]. In order to reduce signature computation cost, a
scheme of short ID-based signature was proposed by Du and
Wen [25]. Liu [26] has proposed a novel IBS scheme. This
scheme can use offline storage multiple times in polynomial
time, so it is suitable for wireless sensor networks. Unfortu-
nately, the schemes based on IBS also have shortcomings. All
users’ private keys are produced by a PKG, so any entity’s
signature can be easily forged by PKG, leading to the key
escrow problem in IBS [27].

For solving above problems, Gentry [28] introduced the
notion of certificate-based cryptography (CBC) to combine
the advantages of PKI and IBC. In this primitive, the user
himself generates a key pair (private/public), and obtains the
certificate corresponding to the public key from the trusted
authority (TA). The certificate in CBC serves as a part of the
user’s private key, so it can only perform operations such as
signing or decryption by using the user’s certificate and private
key at the same time. Since CBC has an implicit certificate
function, the need for third-party queries of traditional PKI is
eliminated, thereby simplifying complex certificate manage-
ment. In addition, the private key in CBC is generated and
retained by the user, so there is no problem of key escrow.
Afterwards, Kang et al. [10] designed the first CBS which
constructs an ID-based signature for document signing and
a short signature for certification. Subsequently, a series of
CBS schemes were proposed [29], [30], [31]. Zhou and Cui

3

introduced a CBS [32] scheme which can resist the malicious-
but-passive certifier attack.

Unfortunately, the previous schemes’ security is based on
an assumption: the private key of user is completely secured.
In fact, the operations of signature are usually performed in
insecure devices or environments, so the issue of signing key
exposure seems inevitable. Therefore, Du et al. [33] intro-
duced the mechanism of key-insulated signature (KIS) into
the certificate-based signcryption scheme, and then proposed
the concept of certificate-based signature (CB-KIS) and the
first CB-KIS scheme. In the KIS mechanism, the life cycle of
the user’s private key is divided into different time slices, and
is updated in different time slices through the physical security
device. In this way, the impact of key exposure is mitigated.
Afterward, Xiong et al. [34] put forward a novel CB-KIS
scheme which is pairing-free. Li et al. [35] proposed a CB-KIS
scheme which simplifies the certificate management through
the function of key insulation. Xiong et al. [36] introduced
an efficient and provably secure certificateless parallel key-
insulated signature (CL-PKIS).

In addition to solving the above problems, for reducing
the overhead of data transmission, a digital signature aggre-
gation mechanism was introduced. This mechanism was first
proposed by Boneh et al. [37]. In this concept, n signatures
of n messages are compressed to form a short signature.
The corresponding messages of n signers can be confirmed
by verifying the short signature, thereby reducing the total
bandwidth required for transmission and the total calculation
cost of the verification process. Subsequently, Liu et al.
[11] provided the first certificate-based aggregate signature
(CBAS) scheme. It uses sequential aggregation, where the
signer creates an aggregated signature (AS) based on the
previous AS. Therefore, the aggregation is performed by each
signer. Ma et al. [38] proposed a novel CB-CAS scheme,
but their scheme aggregates different signatures on the same
document from different signers. Verma et al. [39] presented
a CB-CAS scheme for electronic medical monitoring. The
size of the aggregate signature determined by the number
of signers. Recently, the first pairing free certificate-based
compact aggregate signature was proposed by Verma et al.
[12] . In this scheme, compact aggregation is used to create
a fixed-length AS, so the final AS length will not be affected
by the increase in the number of signatures. In summary, the
CB-PKIAS scheme has not been presented.

III. PRELIMINARIES

In this section, we demonstrate some relevant preliminaries
for a better understanding as below.

A. Bilinear Map

Define two groups G1 and G2, which regarded q as its prime
order. Besides, set the bilinear map e : G×G→ GT with the
following properties.
• Bilinearity: For ∀a, b ∈ Z∗q , e(aP, bP) = e(P, P)ab.
• Non-degeneracy: e(P, P) 6= 1.
• Computability: ∃P,Q ∈ G that can calculate e(P,Q).

B. Complexity Assumption

Computational Diffie-Hellman Problem (CDHP): After re-
ceiving the input < P, aP, bP >∈ G, in which a, b ∈ Z∗q , P ∈
G, the object of CDHP is to compute abP .

Computational Diffie-Hellman Assumption (CDHI)[40]: If
there is no probabilistic polynomial-time (PPT) adversary A
with a non-negligible advantage that can calculate CDHP, it
represents that CDHI is established.

C. Outline of the CB-PKIAS

The proposed scheme consists of nine algorithms and the
details are shown as follows.
• Setup: When inputting a security parameter k, a trusted

authority (TA) generates the master secret key s and the
system public parameters par.

• CerExtract: When inputting par and IDi, the TA pro-
duces the certificate Certi and returns it to the corre-
sponding user.

• UserKeyExtract: When inputting par, IDi and the time
period t, a user generates USID,0 and UYID as its initial
secret key and public key respectively. Besides, it also
produces the private key (HS0, HS1) and public key
(HY0, HY1) of two helpers.

• Update*: When inputting par, t and the ith helper’s
private key HSi, where i ≡ t mod 2, the helper generates
UDID,t as the update key.

• Update: When inputting par, t, USID,0 and UDID,t, a
user produces the temporary signing key USID,t.

• Sign: When inputting par, Certi, USID,t and a message
mi ∈ {0, 1}∗, a signer generates the signature σi.

• Verify: When inputting par, IDi, mi and σi, any ver-
ifier can validate the signature by producing “true” or
“false”.

• Aggregate: When inputting par, IDi, mi, σi and the
public verification key Yver, the aggregator generates the
aggregate signature Σ.

• AggVer: When inputting par, IDi, UYID,t, mi, Σ and
the secret verification key τ , the intend verifier outputs
“true” or “false”.

D. Security Model of the CB-PKIAS

In this section, we demonstrate the CB-PKIAS’s security
model, which takes three kinds of adversaries with different
abilities into consideration.

Game 1. Assume that a Type-I adversary A1 and a chal-
lenger C execute the following interactions.

1) Setup: This operation runs the algorithm of Setup to
generate the master secret key s and the system public
key par.

2) Query: In this section, A1 executes the following queries:
• Public Key Query: When receiving this query, C will

deliver the public key UYID to A1.
• Public Key Replace Query: When receiving this query,
C will replace UYID by UY ′ID and return UY ′ID to
A1.

4

• Certificate Query: When receiving this query, C will
return the certificate Certi to A1.

• Signing key Query: When receiving this query, C will
return the temporary secret key USID,t to A1.

• Sign Query: When receiving this query, C will produce
the valid signature σ.

3) Forgery: When accomplishing the above queries, A1

will generate the forged signature σ∗ and satisfy the
conditions as follows:
• A1 cannot execute the Certificate Query on the chal-

lenge identity ID∗;
• A1 cannot execute the Signing key Query on the

challenge identity ID∗;
• A1 cannot execute the Sign Query with (ID∗,m∗, t∗);
• A1 can generate the forged valid signature by inputting

(par, ID∗, UY ∗ID, HY
∗
i , HY

∗
i′ ,m

∗, σ∗i , t
∗);

Definition 1. If there does not exist A1 belonging to PPT
adversary that wins the above game, we say that the proposed
scheme is EUF-CMA against Type-I adversary.

Game 2. Assume that a Type-II adversaryA2 and C execute
the following interactions.

1) Setup: This operation runs the algorithm of Setup to
generate s and par.

2) Query: In this section, A2 executes the following queries:
• Public Key Query: When receiving this query, C will

return the public key UYID to A2.
• Helper key Query: When receiving this query,
C will return the helper’s private/public key
(HS0, HS1, HY0, HY1) to A2.

• Sign Query: When receiving this query, C will produce
the valid signature σ to A2.

3) Forgery: When accomplishing the above queries, A2

will generate the forged signature σ∗ and satisfy the
conditions as follows:
• A2 cannot execute the Signing key Query with the

challenge identity ID∗;
• A2 cannot execute the Sign Query with (ID∗,m∗, t∗);
• A2 can generate the forged valid signature by inputting

(par, ID∗, UY ∗ID, HY
∗
i , HY

∗
i′ ,m

∗, σ∗i , t
∗);

Definition 2. If there does not existA2 belonging to the PPT
adversary that wins the above game, we say that the proposed
scheme is EUF-CMA against Type-II adversary.

Game 3. Assume that a fully-chosen attacker A3 and C
execute the following interactions.

1) Setup: This operation runs the algorithm of Setup to
generate s and par.

2) Query: In this section, A3 executes the following queries:
• Signing key Query: When receiving this query, C will

return the temporary secret key USID,t to A3.
• Aggver Query: When receiving this query, C executes

the algorithm of AggVer and returns the verification
result to A3.

3) Forgery: When accomplishing the above queries, A3 will
generate the forged aggregate signature Σ and satisfy the
conditions as follows:

• All single signatures are aggregated into the aggregate
signatures Σ.

• The aforementioned Σ is valid.
• At least one signature σ′i cannot hold the verification

equation.
Definition 3. If there does not existA3 belonging to the PPT

adversary that wins the above game, we say that the proposed
scheme can resist the fully chosen-key attack.

IV. REVIEW OF VERMA et al.’S CB-CAS SCHEME

A. Overview of the Verma et al.’s CB-CAS scheme

We first give an overview of Verma et al.’s scheme as
follows.

1) Setup (k): Given a security parameter λ, a trusted au-
thority (TA) executes this algorithm to output the system
parameters par = (q,H0, H1, GT , P, Ppub,∆) and a
master secret key s. The details are shown as follows:
• TA first chooses a cyclic additive group GT of order q

with generator P . It also picks H0 : {0, 1}∗ × GT →
Z∗q and H1 : {0, 1}∗ × GT × {0, 1}∗ × {0, 1} → Z∗q
as two hash functions.

• Furthermore, TA randomly picks s ∈ Z∗q . Then calcu-
lates it’s public key Ppub = sP .

• Finally, TA picks ∆ ∈ {0, 1}∗ as the state information
and publishes: par = (q,H0, H1, GT , P, Ppub,∆).

2) UserKeyExtract (par): Given par, the user with identity
IDi performs this algorithm. Concretely, it picks xi ∈ Z∗q
as the private key and calculates Yi = xiP as the public
key.

3) CerExtract (par, Yi, IDi): Given par, Yi and IDi, this
algorithm is executed by TA to generate the certificate
Certi. Specifically, TA does the following operations:
• Pick wi ∈ Z∗q and compute Wi = wiP .
• Compute ci = wi + sH0(IDi||Yi).
• Return Certi = (Wi, ci) to the requesting signer.

4) Sign (par, Certi, xi,mi): Given par, Certi, xi and a
message mi ∈ {0, 1}∗, the signer with identity IDi runs
this algorithm to output the signature σ. To be specific,
the signer does the following operations:

• Check the certificate authenticity through ciP
?
= Ui +

H0(IDi||Yi)Ppub. If the equation holds, Certi is valid
for further operation.

• Pick ki ∈ Z∗q and calculate Ui = Wi + kiP .
• Calculate vi = ki + ci + xiH1(mi||Yi||IDi||∆) and

send σi = (Ui, vi) back to the aggregator.
5) Verify (par, IDi, σi): Given par, Certi, IDi and σi,

this algorithm is executed by a receiver. If viP =
Ui+H0(IDi||Yi)Ppub+H1(mi||Yi||IDi||∆)Yi holds, the
algorithm will generate “true”. If not, generate “false”.

6) Aggregate: This algorithm is ran by an aggregator to gen-
erate an aggregation signature on (m1,m2,m3 · · ·mn).
The aggregator first checks whether viP = Ui +
H0(IDi||Yi)Ppub +H1(mi||Yi||IDi||∆)Yi holds or not.
If this verification holds, the aggregator computes U =∑n
i=1 Ui and v =

∑n
i=1 vi. Finally, this algorithm gen-

erates (R, z) as the aggregation signature.

5

7) AggVer: The validity of aggregation signature is checked
by a receiver. If vP = U + (

∑n
i=1H0(IDi||Yi))Ppub +∑n

i=1H1(mi||Yi||IDi||∆)Yi holds, this algorithm out-
puts “true”; otherwise, it outputs “false”.

B. Weakness of Verma et al.’s scheme

In this section, four types of forgery attacks are given
to demonstrate the weaknesses of Verma et al.’s scheme.
Concretely, Attack I is launched by the Type I adversary
who executes the public key replacement attack. Attack II is
mounted by the Type II adversary which refers to a malicious
KGC. Attack III is launched by any outside attacker without
replacing the public key of user and accessing the master
secret key. Attack IV is executed by a fully-chosen attacker.
Furthermore, if an attacker has the ability to forge a single
signature, it can forge an aggregation signature simultaneously.

1) Attack I: Attack From Type I adversary: Assume that a
Type I adversary A1 intends to forge a valid signature σ∗ on
any message mi representing the user with identity IDi and
public key Yi, A1 is allowed to produce the forged signature
by replacing the current public key Yi as follows.

• Randomly choose x∗i ∈ Z∗q and set Y ∗i = x∗iP .
• Pick Ui ∈ Z∗q and set U∗i = UiP −H0(IDi||Y ∗i)Ppub.
• Set v∗i = Ui + x∗iH1(mi||Y ∗i ||IDi||∆).
• Generate σ∗ = (U∗i , v

∗
i) as the forged signature on mi.

It’s easy to observe that the forged signature σ∗ is valid
under the condition of replacing Yi with Y ∗i . The correctness
of σ∗ is shown below.

U∗i +H0(IDi||Y ∗i)Ppub +H1(mi||Y ∗i ||IDi||∆)Y ∗i

=UiP −H0(IDi||Y ∗i)Ppub +H0(IDi||Y ∗i)Ppub

+H1(mi||Y ∗i ||IDi||∆)Y ∗i

=UiP +H1(mi||Y ∗i ||IDi||∆)Y ∗i

=UiP + x∗iH1(mi||Y ∗i ||IDi||∆)P

=v∗i P

The essential reason about this attack is due to the fact
that Ui and H0(IDi||Yi)Ppub involved in the verification
are independent of each other. In this scheme, Ui can be
deliberately calculated to cancel H0(IDi||Yi)Ppub and thus
the signature could be produced without accessing the master
secret key by the Type I adversary.

2) Attack II: Attack From Type II adversary: Suppose that a
Type II adversary A2 attempts to forge a valid signature σ∗ on
any message mi for the user with identity IDi and public key
Yi, A2 has the ability to produce a forged signature without
knowing the secret key of user as follows.

• Randomly select Ui ∈ Z∗q and set U∗i = UiP −
H1(mi||Yi||IDi||∆)Yi.

• Set v∗i = Ui + sH0(IDi||Yi).
• Generate σ∗ = (U∗i , v

∗
i) as the forged signature on mi.

Obviously, the forged signature σ∗ is a valid signature
on mi. We demonstrate the concrete steps of correctness as
follows.

U∗i +H0(IDi||Yi)Ppub +H1(mi||Yi||IDi||∆)Yi

=UiP −H1(mi||Yi||IDi||∆)Yi +H0(IDi||Yi)Ppub
+H1(mi||Yi||IDi||∆)Yi

=UiP +H0(IDi||Yi)Ppub
=UiP + sH0(IDi||Yi)P
=v∗i P

Similar to the previous attack, the reason why our
attack works depends on the fact that the Ui and
H1(mi||Yi||IDi||∆)Yi in the verification are independent of
each other. Thus, Ui is able to be calculated to cancel
H1(mi||Yi||IDi||∆)Yi and the signature can be forged suc-
cessfully by the Type II adversary without the knowledge of
the user’s secret key.

3) Attack III: Attack From Anyone: Different from the
above-mentioned two attacks, any outside attacker who neither
replaces the public key nor accesses the master secret key
could be considered as a legitimate user to forge a valid
signature σ∗. Specifically, this attacker is able to generate a
valid signature on any message mi under the identity IDi and
public key Yi as follows.
• Randomly select Ui ∈ Z∗q and set U∗i = UiP −
H0(IDi||Yi)Ppub −H1(mi||Yi||IDi||∆)Yi.

• Set v∗i = Ui.
• Generate σ∗ = (U∗i , v

∗
i) as the forged signature.

We can observe that the forged signature σ∗ is a valid
signature on mi. The consistency of the forged signature is
easy to check as we have:

U∗i +H0(IDi||Yi)Ppub +H1(mi||Yi||IDi||∆)Yi

=UiP −H0(IDi||Yi)Ppub −H1(mi||Yi||IDi||∆)Yi

+H0(IDi||Yi)Ppub +H1(mi||Yi||IDi||∆)Yi

=UiP = v∗i P

In this case, the inherent reason about this security flaw
is that Ui is independent of both H0(IDi||Yi)Ppub and
H1(mi||Yi||IDi||∆)Yi in the verification. This attacker can
set a mendacious value U∗i to offset H0(IDi||Yi)Ppub and
H1(mi||Yi||IDi||∆)Yi simultaneously. Therefore, anyone can
generate the signature without replacing the public key and
accessing the master secret key.

4) Attack IV: Fully Chosen-Key Attack: Assume that a
fully chosen-key attacker intends to forge a valid aggregate
signature Σ∗ on m1,m2. the following operations are executed
in the sign algorithm:
• Randomly pick k1, k2 ∈ Z∗q and calculate U1 = W1 +
k1P , U2 = W2 + k2P .

• Randomly pick e ∈ Z∗q , calculate

v1 = k1 + c1 + x1H1(m1||Y1||ID1||∆) + e

6

v2 = k2 + c2 + x2H1(m2||Y2||ID2||∆)− e

• Calculate v = v1 + v2.
• Generate σ1 = (U1, v1), σ2 = (U2, v2) as the forged

signature on m1 and m1. Generate Σ∗ = (U1, U1, v) as
the aggregate signature.

We can observe that the forged signature Σ∗ is valid, while
the single signature σ1 and σ1 is invalid. The correctness of
Σ∗ is shown below.

U1 +H0(ID1||Y1)Ppub +H1(m1||Y1||ID1||∆)Y1

+U2 +H0(ID2||Y2)Ppub +H1(m2||Y2||ID2||∆)Y2

=

2∑
i=1

Ui + (

2∑
i=1

H0(IDi||Yi))Ppub +

2∑
i=1

H1(mi||Yi||IDi||∆)Yi

=(v1 + v2) · P
=v · P

The essential reason about this attack is that there is no
intended verifier can verify the single signature in time. In
this scheme, vi can be deliberately calculated by the fully
chosen-key attacker.

V. THE PROPOSED CB-PKIAS SCHEME

A. Construction

The proposed CB-PKIAS includes nine different algorithms,
which are described below.

1) Setup (k): Randomly pick τ ∈ Z∗q as the secret
verification key of intended verifier, then compute the
corresponding public verification key as Yver = τP .
Given a security parameter λ, TA runs the following
operations for generating the system parameters par and
the master secret key s. The details are shown as follows:
• Choose two cyclic additive group G,GT of order q.

Pick H0 : {0, 1}∗ → G, H1 : {0, 1}∗ × G → G,
H2 : {0, 1}∗3 × G4 → Z∗q , H3 : GnT → {0, 1}∗ and
H4 : {0, 1}∗ × G × Z∗q → Z∗q as five hash functions.
Then, it randomly picks two bit strings d1, d2 of length
l and calculates P = H0(d1), Q = H0(d2).

• Pick s ∈ Z∗q and calculate it’s public key Tpub = sP .
• Pick ∆ ∈ {0, 1}∗ as the state information and publish-

es: par = (l, d1, d2, H0, H1, H2, H3, H4, G,GT , P,Q,
∆, Tpub).

2) CerExtract (par, IDi): Given par and IDi, this algorith-
m is executed by TA for generating the certificate Certi.
Specifically, TA does the following steps:
• Pick wi ∈ Z∗q and compute Wi = wiP .
• Compute Ψi = H1(IDi||Wi).
• Compute Λi = wiQ+ sΨi.
• Return Certi = (Wi,Λi) to the requesting signer.

3) UserKeyExtract (par, t): Given par and the time period
t, a user will perform this algorithm to calculate USID,0
and UYID as its initial secret key and public key. Besides,
the corresponding private key (HS0, HS1) and public
key (HY0, HY1) of two helpers also be calculated.

• Select the secret value xID ∈ Z∗q and calculate
UYID = xID · P

• Choose c0, c1 ∈ Z∗q , set HS0 = c0, HS1 = c1 and
calculate HY0 = c0 · P,HY1 = c1 · P . Afterwards,
the user delivers the (HS0, HS1) to the helper and
removes them from user.

• Calculate fID,−2 = H4(IDi, UYID,−2), fID,−1 =
H4(IDi, UYID,−1). Finally, calculate the initial se-
cret key USID,0 = fID,−2 · c0 + fID,−1 · (c1 + xID).

4) Update*(par, t, ci): Given par, t and the private key ci
of the ith helper, where i′ ≡ (t− 1) mod 2. Finally, the
helper computes the update key UDID,t = c′i ·(fID,t−1−
fID,t−3),

5) Update(par, t, USID,0, UDID,t): Given par, t, USID,0
and UDID,t, the user with identity IDi can calculate the
temporary signing key USID,t = USID,t−1 +UDID,t+
xID · (fID,t−1 − fID,t−2), where i ≡ t mod 2 and i′ ≡
(t − 1) mod 2. Therefore, we can calculate USID,t =
fID,t−2 · ci + fID,t−1 · (ci′ + xID).

6) Sign (par, Certi, USID,t,mi): Given par, Certi,
USID,t and a message mi ∈ {0, 1}∗, the signer with
identity IDi runs this algorithm to output the signature
σi. To be specific, the signer does the following steps:
• Pick ki ∈ Z∗q and calculate Ki = kiP .
• Calculate ξi = H2(IDi||mi||∆||UYID||Tpub||Wi||Ki).
• Calculate Ri = Λi + ξi · ki ·Tpub + ξi ·USID,t ·Q and

send σi = (Wi,Ki, Ri) back to the aggregator.
7) Verify(par, IDi, UYID, HYi, HYi′ ,mi, σi): Given par,

IDi, UYID, HYi, HYi′ , mi and σi, this algorithm can
be executed by any user via the following steps:
• Compute Ψi = H1(IDi||Wi), ξi = H2(IDi||mi||∆
||UYID||Tpub||Wi||Ki).

• Check whether the equation holds or not:

e(Ri, P) = e(Ψi + ξi ·Ki, Tpub) · e(Wi + ξi · [fID,t−2HYi

+ fID,t−1(HYi′ + UYID)], Q)

8) Aggregate(par, (IDi, UYID,mi, σi)|i = 1, · · · , n, Yver):
Given par, IDi, UYID, mi, σi and the public verification
key Yver = τP , an aggregator can execute the following
operations:
• Compute R =

∑n
i=1Ri.

• Compute γ = H3(e(R1, Yver)|| · · · ||e(Rn, Yver)).
• Generate the aggregate signature Σ = (W1, · · · ,Wn,
K1, · · · ,Kn, R, γ).

9) AggVer(par, (IDi, UYID, HYi, HYi′ ,mi)|i = 1, · · · , n,Σ, τ):
Given par, IDi, UYID, HYi, HYi′ , mi, Σ and the
secret verification key τ , the intend verifier executes the
following algorithms:
• Compute Ψi = H1(IDi||Wi), ξi = H2(IDi||mi||∆||
UYID||Tpub||Wi||Ki) for i = 1, · · · , n.

• Compute Θi = fID,t−2HYi+fID,t−1(HYi′ +UYID).
• Check whether the equations hold or not:

e(R,P) = e(

n∑
i=1

(Ψi+ξi·Ki), Tpub)·e(
n∑
i=1

(Wi+ξi·Θi), Q)

7

γ = H3

(
e(Ψ1 + ξ1 ·K1, τ · Tpub) · e(W1 + ξ1 ·Θ1, τ ·Q)|| · · ·
||e(Ψn + ξn ·Kn, τ · Tpub) · e(Wn + ξn ·Θn, τ ·Q)

)
If the equations mentioned-above hold, this algorithm
generates “true”; otherwise, it generates “false”.

B. Design philosophy

Considering the above reasons why the CB-CAS scheme
in [12] is insecure, we provide the guideline to resist these
attacks in the construction of certificate-based signature. The
effective solution is to change the input of hash functions and
the following steps are given to demonstrate the feasibility.

The fatal reason about Attack I is that the master pri-
vate key s is not embedded in the suitable position so that
the adversary A1 can forge a valid signature by canceling
H0(IDi||Yi)Ppub directly. According to this reason, the simple
way to resist this attack is adding Ui into H0(IDi||Yi), where
Ui = UiP,Ui ∈ Z∗q . Because Ui is randomly selected, the
value of Ui and H0(IDi||Yi||Ui) also changed accordingly.
Therefore, A1 cannot forge a signature without knowing the
accurate value of H0(IDi||Yi||Ui). Similar to the previous
analysis, Ui is added into H1(mi||Yi||IDi||∆) to resist the
adversary from Attack II. Besides, in order to resist the Attack
III, we add Ui into H0(IDi||Yi) and H1(mi||Yi||IDi||∆)
simultaneously. Finally, the intender verifier also be given
to resist the Attack IV. Through the methods of analysis,
it is desirable to construct a secure scheme to resist the
aforementioned four kinds of attacks.

VI. SECURITY PROOF

Theorem 1: The introduced CB-PKIAS is EUF-CMA un-
der the attack, which launched by the Type I adversary.

Proof: Given (P, aP, bP) as the input of CDHP, the target
of C is to compute abP . This process is completed by the
interaction between A1 and C as follows.

1) Setup: C first picks two random bit strings d1, d2
of length l, then it selects t ∈ Z∗q and calculates
Q = tP . Besides, C sets Tpub = aP . Finally,
this algorithm generates the master public key par =
(l, d1, d2, H0, H1, H2, H3, H4, G,GT , P,Q,∆, Tpub). C
maintains the lists L0, L1, L2, L3, L4, Lpk, Lt.

2) Query: In this section, A1 does the following steps.
• H0 Query: When receiving this query on d ∈ (d1, d2),
C first checks if L0 includes d. If it exists, C returns
the stored outcome to A1. Otherwise, C picks Dd ∈ G,
then it adds (d,Dd) into L0 and returns Dd to A1.

• H1 Query: When receiving this query on (IDi,Wi),
C first checks if L1 includes (IDi,Wi). If it exists, C
returns the stored outcome to A1. Otherwise, C does
the following steps:

– If IDi 6= ID∗, C picks v ∈ Z∗q and calculates
Ψi = vP , then it adds (IDi,Wi,Ψi) into L1 and
returns Ψi to A1.

– If IDi = ID∗, C sets Ψi = bP , then it adds
(IDi,Wi, v,Ψi) into L1 and returns Ψi to A1.

• H2 Query: When receiving this query on (IDi,mi,∆,
UYID, Tpub,Wi,Ki), C first checks if L2 includes

them. If yes, C returns the stored outcome to
A1. Otherwise, C picks ξi ∈ Z∗q , then it adds
(IDi,mi,∆, UYID, Tpub,Wi,Ki, ξi) into L2 and re-
turns ξi to A1.

• H3 Query: When receiving this query on (Ri, Yver),
C first checks if L3 includes them. If yes, C returns
the stored outcome to A1. Otherwise, C picks ji ∈ Z∗q ,
then it adds (Ri, Yver, ji) into L3 and returns ji to A1.

• H4 Query: When receiving this query on
(IDi, UYID,−2) or (IDi, UYID,−1), C first
checks if L4 includes them. If yes, C returns the
stored outcome to A1. Otherwise, C picks f ∈ Z∗q and
adds it into L4. Finally, C returns f to A1.

• Public Key Query: Define Lpk stores the tuple structure
(IDi, xID, UYID, x

′
ID, UY

′
ID). When receiving this

query on IDi, C does the following steps:
– If this tuple does not exist, C executes the algorithm

of UserKeyExtract to output UYID = xIDP .
Finally, C inserts (IDi, xID, UYID,−,−) into Lpk
and sends UYID to A1.

– If this tuple does exist, C sends UYID to A1.
– If this tuple does exist and the public key UYID

has been replaced with UY ′ID. C sends UY ′ID to
A1.

• Public Key Replace Query: When receiving this query
on IDi, C does the following steps:
– If this tuple does not exist in Lpk, C ex-

ecutes the algorithm of UserKeyExtract to
output UYID = xIDP . Finally, C inserts
(IDi, xID, UYID, x

′
ID, UY

′
ID) into Lpk.

– If this tuple does exist, C replaces UYID with
UY ′ID and sets xID =⊥. Finally, C updates the
tuple with (⊥, UY ′ID).

• Certificate Query: When receiving this query on IDi,
C does the following steps:
– If IDi 6= ID∗, C picks wi, v ∈ Z∗q and calculates
Wi = wiP , Λi = wiQ+ vTpub. Finally, C returns
Certi = (Wi,Λi) to A1.

– If IDi = ID∗, C aborts.
• Signing key Query: When receiving this query on

(IDi, t), C maintains the list Lt = {IDi, HS0, HS1,
HY0, HY1}. Afterwards, C checks if IDi exists in Lt.
If it does not exist, C randomly picks tc0, tc1 ∈ Z∗q ,
then calculates HS0 = tc0, HS1 = tc1, HY0 =
tc0 · P,HY1 = tc1 · P . Besides, C executes the
mentioned-above hash function queries. Moreover, C
calculates USID,t = f−2 · tc0 + f−1 · (tc1 + xID)
mod p, where t ≡ 1 mod 2. Else, C calculates
USID,t = f−2 · tc1 + f−1 · (tc0 + xID) mod p, where
t ≡ 0 mod 2. Finally, C returns USID,t to A1.

• Sign Query: When receiving this query on IDi, C first
searches the tuple (IDi, xID, UYID, x

′
ID, UY

′
ID) from

Lpk and does the following steps:
– If IDi 6= ID∗, C makes the works as follows:

a) If this tuple does not exist, C executes the al-
gorithm of UserKeyExtract to generate UYID

8

and then inserts (IDi, xID, UYID,−,−) into
Lpk.

b) If this tuple does exist, C delivers xID to A1.
c) If this tuple does exist and the public key UYID

has been replaced with UY ′ID, C sets x′ID as the
private key.

Finally, C executes the Sign algorithm with
(Certi, USID,t) as the input to produce σi as well
as sends it to A1.

– If IDi = ID∗, C first searches (IDi,Wi,Ψi) from
L1 and (IDi,mi,∆, UYID, Tpub,Wi,Ki, ξi) from
L2. Then C randomly picks wi, ki ∈ Z∗q and sets
Ki = kiP − ξ−1i Ψi, Wi = wiP − ξ−1i Ψi, Ri =
ξi · ki · Tpub + ξi · USID,t · Q + wiQ − ξ−1i tbP .
Finally, C returns (Wi,Ki, Ri) to A1.

3) Forgery: If IDi 6= ID∗, this algorithm aborts; otherwise,
according to the forgery theorem, A1 can forgery two
signatures σ1 = (Wi,Ki, Ri) and σ2 = (Wi,Ki, R

′
i)

and returns them to C. Finally, C can obtain the following
equations:

e(Ri, P) = e(Ψi + ξi ·Ki, Tpub) · e(Wi + ξi ·Θi, Q)(1)

e(R′i, P) = e(Ψi + ξ′i ·Ki, Tpub) · e(Wi + ξ′i ·Θi, Q)(2)

Then C can obtain the solution of CDHP by calculating
ξi·R′

i−ξ
′
i·Ri−(ξi−ξ′i)t·Wi

ξi−ξ′i
.

Theorem 2: The introduced CB-PKIAS is EUF-CMA un-
der the attack, which launched by a Type II adversary.

Proof: Given (P, aP, bP) as the input of CDHP, the target
of C is to compute abP . This process is completed by the
interaction between A2 and C as follows.

1) Setup: C first picks two random bit strings d1, d2
of length l, then it sets Q = aP . Finally, this
algorithm generates the master public key par =
(l, d1, d2, H0, H1, H2, H3, H4, G,GT , P,Q,∆, Tpub). C
maintains the lists L0, L1, L2, L3, L4, Lpk, Lt.

2) Query: In this section, A2 does the following steps.
• H0 Query: When receiving this query on d ∈ (d1, d2),
C first checks if L0 includes d. If it exists, C returns
the stored outcome to A1. Otherwise, C picks Dd ∈ G,
then it adds (d,Dd) into L0 and returns Dd to A2.

• H1 Query: When receiving this query on (IDi,Wi),
C first checks if L1 includes (IDi,Wi). If it exists,
C returns the stored outcome to A2. Otherwise, C
picks v ∈ Z∗q and calculates Ψi = vP , then it adds
(IDi,Wi,Ψi) into L1 and returns Ψi to A2.

• H2 Query: When receiving this query on (IDi,mi,∆,
UYID, Tpub,Wi,Ki), C first checks if L2 includes
them. If it exists, C returns the stored outcome to
A2. Otherwise, C picks ξi ∈ Z∗q , then it adds
(IDi,mi,∆, UYID, Tpub,Wi,Ki, ξi) into L2 and re-
turns ξi to A2.

• H3 Query: When receiving this query on (Ri, Yver), C
first checks if L3 includes them. If it exists, C returns
the stored outcome to A2. Otherwise, C picks ji ∈ Z∗q ,
then it adds (Ri, Yver, ji) into L3 and returns ji to A2.

• H4 Query: When receiving this query on
(IDi, UYID,−2) or (IDi, UYID,−1), C first
checks if L4 includes them. If it exists, C returns the
stored outcome to A2. Otherwise, C picks f ∈ Z∗q and
adds it into L4. Finally, C returns f to A2.

• Public Key Query: Suppose that Lpk stores the tu-
ple structure (IDi, xID, UYID, x

′
ID, UY

′
ID). When re-

ceiving this query on IDi, C does the following steps:
– If this tuple does not exist and IDi =
ID∗, C sets UYID = bP . Finally, C inserts
(IDi,−, UYID,−,−) into Lpk and sends UYID
to A2. Else, C picks xID ∈ Z∗q and returns
UYID = xIDP to A2.

– If this tuple does exist, C returns UYID to A2.
• Helper key Query: When receiving this query on

(IDi, t), C maintains the list Lt = {IDi, HS0, HS1,
HY0, HY1}. Afterwards, C checks if IDi exists in Lt.
If it does not exist, C randomly picks tc0, tc1 ∈ Z∗q ,
then calculates HS0 = tc0, HS1 = tc1, HY0 =
tc0 · P,HY1 = tc1 · P . Besides, C executes the
mentioned-above hash function queries. Finally, C re-
turns HS0, HS1, HY0, HY1 to A2.

• Sign Query: When receiving this query on IDi, C first
searches the tuple (IDi, xID, UYID,−,−) for xID
from Lpk and does the following steps:

– If xID 6=⊥, that is to say, C can run the Sign
algorithm with USID,t and Certi.

– If xID =⊥, C first searches (IDi,Wi,Ψi) from
L1 and (IDi,mi,∆, UYID, Tpub,Wi,Ki, ξi) from
L2. Then C randomly picks ki, t ∈ Z∗q . Then C
calculates Ki = kiP ,Wi = tTpub − ξiΘi, Ri =
sΨi + ξi · s ·Ki + t · s ·Q and returns (Wi,Ki, Ri)
to A2.

3) Forgery: If IDi 6= ID∗, this algorithm aborts; otherwise,
according to the forgery theorem, A2 can forgery two
signatures σ1 = (Wi,Ki, Ri) and σ2 = (Wi,Ki, R

′
i)

and returns them to C. Finally, C can obtain the following
equations:

e(Ri, P) = e(Ψi + ξi ·Ki, Tpub) · e(Wi + ξi ·Θi, Q)(3)

e(R′i, P) = e(Ψi + ξ′i ·Ki, Tpub) · e(Wi + ξ′i ·Θi, Q)(4)

Then C can obtain the solution of CDHP by calculating
ξi·R′

i−ξ
′
i·Ri−(ξi−ξ′i)t·Wi

ξi−ξ′i
.

Theorem 3: The proposed CB-PKIAS scheme can resist the
fully chosen-key attacks, which launched by a fully chosen-
key attacker A3.

Proof: If a fully chosen-key attacker A3 with the advantage
of ε can break the validation, that is to say, there is a chal-
lenger C that has the ability to break the collision resistance
property of hash function H3. The concrete interactions are
demonstrated as follows.

1) Setup: C first executes the algorithm of Setup to generate
s and par = (l, d1, d2, H0, H1, H2, H3, H4, G,GT , P,Q,
∆, Tpub). Besides, it randomly picks τ and calculates

9

TABLE I: Notations

Tp The pairing operation
Ta The point additive operation in G
Te The exponentiation operation in GT

Th The operation of hash function

Yver = τP as the corresponding private verification key
and public verification key respectively.

2) Query: A3 mainly makes the following steps:
• Signing key Query: When receiving this query on IDi,
C executes the algorithm UserKeyExtract, Update*,
Update. Finally, C transfers the USID,t to A3.

• AggVer Query: When receiving this query, C executes
the algorithm AggVer and returns the verification result
to A3.

3) Forgery: In this section, A3 can forge the aggregate sig-
nature {(IDi, UYID,mi, σi)|i = 1, · · · , n}. Moreover, it
can resist the fully chosen-key attacks by satisfying the
conditions as follows.
• All single signatures are aggregated into the ag-

gregate signatures Σ. In this condition, γ =
H3(e(R1, Yver)|| · · · ||e(Rn, Yver)).

• The aforementioned Σ is valid. In this condition, γ =

H3

(
e(Ψ1 + ξ1 ·K1, τ · Tpub) · e(W1 + ξ1 ·Θ1, τ ·Q)|| · · ·
||e(Ψn + ξn ·Kn, τ · Tpub) · e(Wn + ξn ·Θn, τ ·Q)

)
• At least one signature σ′i cannot hold the

verification. In particular, e(R′i, P) 6= e(Ψ′i +
ξ′i ·K ′i, Tpub) · e(W ′i + ξ′i ·Θ′i, Q) Thus, we can obtain
e(R′i, τP) 6= e(Ψ′i+ξ

′
i ·K ′i, τTpub)·e(W ′i+ξ′i ·Θ′i, τQ).

It is evident that the γ value from γ =
H3(e(R1, Yver)|| · · · ||e(Rn, Yver)) is the same as γ =

H3

(
e(Ψ1 + ξ1 ·K1, τ · Tpub) · e(W1 + ξ1 ·Θ1, τ ·Q)|| · · ·
||e(Ψn + ξn ·Kn, τ · Tpub) · e(Wn + ξn ·Θn, τ ·Q)

)
,which is a contradictory to the fact that a single
signature cannot pass the verification.

VII. COMPARISON

In this section, we demonstrated the performance of
our proposed scheme with the competitive works in
[12],[13],[35],[36]. As the Table III shown, we give the
concrete comparison in terms of the key-insulated, the aggre-
gation, the security level, the security assumption and whether
resist the fully chosen-key attacks. Besides, it is important
to note that the symbol “×” refers to that the corresponding
scheme cannot achieve this property and the symbol “X”
represents that the corresponding scheme has this ability.
Obviously, our scheme can achieve all the properties.

TABLE II: The execution times of cryptographic operations

Operation Tp Ta Te

Time(ms) 0.6617 1.1382 0.0878

For describing the computation efficiency accurately, we
employ a computer equipped with the Intel Core i5-8400
CPU @ 2.80 GHz and 16.00 GB to execute the simulation
experiment. Then, we integrated the PBC library into the

0 2 3 4 7 8 10 11 12 0

the number of message

0

10

20

30

40

50

60

[12]
[13]
[35]
[36]
Our

Fig. 3: Aggregation consumption

0 2 3 4 7 8 10 11 12 0

the number of message

0

10

20

30

40

50

60

70

80

90

[12]
[13]
[35]
[36]
Our

Fig. 4: Verification consumption

VMware Workstation Pro 14. Besides, in order to achieve the
1024-bit RSA, we set a supersingular curve y2 = x3+x, where
2 is defined as the embedding degree, q = 2159 + 217 + 1 is
considered as a 160-bit Solinas prime and p = 12qr−1 refers
to the 512-bit prime. Therefore, after the repeated simulation
experiments, the concrete running time is demonstrated in
Table II. In addition, we can acquire |Z∗q | = 20 bytes and
|G| = |GT | =128 bytes. Furthermore, Table I is shown to
explain the meanings corresponding to the specific symbol.

Furthermore, we use the OMNeT++ event simulator to
simulate the signature transmission of our scheme [41]. The
simulation is based on the aloha protocol. Then, the link
communication rate, transmission delay and the network scale

Fig. 5: The concrete network topology

10

(a) Signature overhead of [12] in transmission process.

(b) Signature overhead of [13] in transmission process. (c) Signature overhead of [35] in transmission process.

(d) Signature overhead of [36] in transmission process. (e) Signature overhead of our scheme in transmission process.

Fig. 2: Signature transmission overhead simulation compared with related schemes

TABLE III: Comparison the performances of different schemes

Scheme Security against A1 Security against A2 Resist FCA Key-insulated Aggregation Security assumption

[12] × × × × X ECDLP
[13] X X X × X CDHP
[35] X X × X × Many-DHP & NGBDHP
[36] X X × X × DLP
Our X X X X X CDHP

* Legends: FCA: fully chosen-key attacks, ECDLP: elliptic curve discrete log problem, Many-DHP: many diffie-hellman problem,
NGBDHP: non pairing-based generalized bilinear DH problem, DLP: discrete logarithm problem, CDHP: computational Diffie-
Hellman problem.

TABLE IV: Comparison the overheads of communication and computation

Scheme [12] [13] [35] [36] Our

Compution Aggregate 3nTa nTp 4nTa nTa nTp

Verify (2n+1)Ta (n+3)Tp+(2n+2)Ta 5nTp 6nTa (n+3)Tp+(2n+4)Ta

Communication SK
∣∣Z∗

q

∣∣ |G|+
∣∣Z∗

q

∣∣ 3|G|
∣∣Z∗

q

∣∣ ∣∣Z∗
q

∣∣
PK |G| |G| 2|G| |G| |G|
AS |G|+

∣∣Z∗
q

∣∣ (n+1)|G|+
∣∣Z∗

q

∣∣ 4n|G| 4n|G|+n
∣∣Z∗

q

∣∣ (2n+1)|G|
* Legends: |G|: a point’s size in G,

∣∣Z∗
q

∣∣: a bit length in Z∗
q , SK: the secret key’s bit length, PK: the public key’s bit

length, AS: the aggregate signature’s bit length, where the number of signature is n.

were set to 250kbps, 10ms, 3,000-15,000, respectively. It is
worth mentioning that 250kbps is the default data rate of
ZigBee, which is a common setting for IIoT devices. In
addition, Fig 5 shows our simulation experiment’s network
topology. Among them, the network is composed of three
parts: nodes, gateways and servers. The node is the sensor
node, which is responsible for collecting data in IIoT and
sending the data to the gateway through the wireless network;
After the gateway receives the data, the gateway converts the
data to a standard transmission protocol and then forwards it to
the server. Subsequently, the data will be stored and processed
on the server.

The communication overheads of different schemes are
presented in Table IV and Fig 2. Obviously, the proposed
CB-PKIAS has a shorter private/public key than [13],[35].
The size of aggregate signature in competitive schemes [12]
[36] is smaller than our scheme, which is normal since the
CB-PKIAS adds the functionality of the fully-chosen attacks

on this basis. Furthermore, we also simulate the overhead
of signature transmission, which is consistent with the above
analysis results. Therefore, our proposed scheme is secure and
more suitable for the IIoT environment.

To evaluate the efficiency of our scheme and existing works,
Table IV, Fig 3 and Fig 4 are demonstrated, which calculate
the concrete value of the computational overhead. It is clear
that the aggregation consumption in our scheme is much lower
than the schemes in [12],[35],[36] and the same as the scheme
in [13]. Besides, the overhead of verification assumption in
CB-PKIAS is slightly expensive than [12],[13],[35], which is
tolerant since the proposed scheme extends the functions of
key-insulated and secure against the fully-chosen attacks that
the comparative scheme does not have.

VIII. CONCLUSION

This paper analyzes the security of Verma et al.’s protocol
in the IIoT environment and illustrates that the attacker from a

11

malicious KGC, the public key replacement, the fully-chosen
as well as the outsider all can generate a forged signature
without being detected. Therefore, we demonstrate that the
scheme in [12] fails to achieve the claimed security features.
Afterward, the corresponding guideline is given to guarantee
the certificate-based signature’s security. Finally, we suggest
a certificate-based parallel key-insulated aggregate signature
against fully chosen-key attacks for IIoT, which not only
preserves the unforgeability of transmitted messages, but also
resists the fully-chosen attack and avoids the key exposure.
The rigorous simulation and careful analysis demonstrate
that the introduced scheme is more suitable for the IIoT
environment.

REFERENCES

[1] Maede Zolanvari, Marcio A Teixeira, Lav Gupta, Khaled M Khan,
and Raj Jain. Machine learning-based network vulnerability analysis
of industrial Internet of Things. IEEE Internet of Things Journal,
6(4):6822–6834, 2019.

[2] Fadi Al-Turjman and Sinem Alturjman. Context-Sensitive Access in
Industrial Internet of Things (IIoT) Healthcare Applications. IEEE
Transactions on Industrial Informatics, 14(6):2736–2744, 2018.

[3] Adi Shamir. Identity-based cryptosystems and signature schemes. In
Workshop on the theory and application of cryptographic techniques,
pages 47–53. Springer, 1984.

[4] Florian Hess. Efficient identity based signature schemes based on
pairings. In International Workshop on Selected Areas in Cryptography,
pages 310–324. Springer, 2002.

[5] Jae Cha Choon and Jung Hee Cheon. An identity-based signature from
gap Diffie-Hellman groups. In International workshop on public key
cryptography, pages 18–30. Springer, 2003.

[6] Xun Yi. An identity-based signature scheme from the weil pairing. IEEE
communications letters, 7(2):76–78, 2003.

[7] Addison M Fischer. Public key/signature cryptosystem with enhanced
digital signature certification, April 2 1991. US Patent 5,005,200.

[8] Ikram Ali, Mwitende Gervais, Emmanuel Ahene, and Fagen Li. A
blockchain-based certificateless public key signature scheme for vehicle-
to-infrastructure communication in VANETs. Journal of Systems Archi-
tecture, 99:101636, 2019.

[9] Congge Xie, Jian Weng, Jiasi Weng, and Lin Hou. Scalable revocable
identity-based signature over lattices in the standard model. Information
Sciences, 518:29–38, 2020.

[10] Bo Gyeong Kang, Je Hong Park, and Sang Geun Hahn. A certificate-
based signature scheme. volume 2964, pages 99–111. Springer, 2004.

[11] Joseph K. Liu, Joonsang Baek, and Jianying Zhou. Certificate-based
sequential aggregate signature. pages 21–28. ACM, 2009.

[12] Girraj Kumar Verma, BB Singh, Neeraj Kumar, and Vinay Chamola.
CB-CAS: Certificate-based efficient signature scheme with compact
aggregation for industrial Internet of Things environment. IEEE Internet
of Things Journal, 7(4):2563–2572, 2019.

[13] Ge Wu, Futai Zhang, Limin Shen, Fuchun Guo, and Willy Susilo.
Certificateless aggregate signature scheme secure against fully chosen-
key attacks. Information Sciences, 514:288–301, 2020.

[14] Yevgeniy Dodis, Jonathan Katz, Shouhuai Xu, and Moti Yung. Key-
insulated public key cryptosystems. In International Conference on the
Theory and Applications of Cryptographic Techniques, pages 65–82.
Springer, 2002.

[15] Goichiro Hanaoka, Yumiko Hanaoka, and Hideki Imai. Parallel key-
insulated public key encryption. In International Workshop on Public
Key Cryptography, pages 105–122. Springer, 2006.

[16] Whitfield Diffie and Martin E. Hellman. New directions in cryptography.
IEEE Trans. Inf. Theory, 22(6):644–654, 1976.

[17] Ronald L Rivest, Adi Shamir, and Leonard Adleman. A method for
obtaining digital signatures and public-key cryptosystems. Communica-
tions of the ACM, 21(2):120–126, 1978.

[18] Taher El Gamal. A public key cryptosystem and a signature scheme
based on discrete logarithms. IEEE Trans. Inf. Theory, 31(4):469–472,
1985.

[19] Victor S Miller. Use of elliptic curves in cryptography. In Conference on
the theory and application of cryptographic techniques, pages 417–426.
Springer, 1985.

[20] Adi Shamir. Identity-based cryptosystems and signature schemes.
volume 196, pages 47–53. Springer, 1984.

[21] Ritika Yaduvanshi and Shivendu Mishra. An efficient and secure pairing
free short id-based signature scheme over elliptic curve. Ssrn Electronic
Journal, 2019.

[22] Boneh Dan and Matthew Franklin. Identity-based encryption from the
weil pairing. IEEE Trans Wireless Commun, 32(3):213–229.

[23] Harendra Singh and Girraj Kumar Verma. Id-based proxy signature
scheme with message recovery. Journal of Systems & Software,
85(1):209–214, 2012.

[24] Raylin Tso, Chunxiang Gu, Takeshi Okamoto, and Eiji Okamoto.
Efficient id-based digital signatures with message recovery. volume
4856, pages 47–59. Springer, 2007.

[25] Hongzhen Du and Qiaoyan Wen. An efficient identity-based short
signature scheme from bilinear pairings. pages 725–729. IEEE Computer
Society, 2007.

[26] Joseph K. Liu, Joonsang Baek, Jianying Zhou, Yanjiang Yang, and
Jun Wen Wong. Efficient online/offline identity-based signature for
wireless sensor network. International Journal of Information Security,
9(4):287–296, 2010.

[27] Ikram Ali, Tandoh Lawrence, and Fagen Li. An efficient identity-based
signature scheme without bilinear pairing for vehicle-to-vehicle com-
munication in VANETs. Journal of Systems Architecture, 103:101692,
2020.

[28] Craig Gentry. Certificate-based encryption and the certificate revocation
problem. volume 2656, pages 272–293. Springer, 2003.

[29] Jiguo Li, Xinyi Huang, Yi Mu, Willy Susilo, and Qianhong Wu.
Certificate-based signature: Security model and efficient construction.
volume 4582, pages 110–125. Springer, 2007.

[30] Jiguo Li, Xinyi Huang, Yichen Zhang, and Lizhong Xu. An efficient
short certificate-based signature scheme. Journal of Systems & Software,
85(2):314–322, 2012.

[31] Jiguo Li, Zhiwei Wang, and Yichen Zhang. Provably secure certificate-
based signature scheme without pairings. Information Sciences,
233(Complete):313–320, 2013.

[32] Caixue Zhou and Zongmin Cui. Certificate-based signature scheme in
the standard model. Iet Information Security, 11(5):256–260, 2017.

[33] Haiting Du, Jiguo Li, Yichen Zhang, Li Tao, and Yuexin Zhang.
Certificate-based key-insulated signature.

[34] Hu Xiong, Shikun Wu, Ji Geng, Emmanuel Ahene, Songyang Wu, and
Zhiguang Qin. A pairing-free key-insulated certificate-based signature
scheme with provable security. KSII Trans. Internet Inf. Syst., 9(3):1246–
1259, 2015.

[35] Jiguo Li, Haiting Du, and Yichen Zhang. Certificate-based key-insulated
signature in the standard model. The Computer Journal, 59(7):1028–
1039, 2016.

[36] Hu Xiong, Qian Mei, and Yanan Zhao. Efficient and provably secure
certificateless parallel key-insulated signature without pairing for IIoT
environments. IEEE Systems Journal, 14(1):310–320, 2019.

[37] Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. Aggregate
and verifiably encrypted signatures from bilinear maps. volume 2656,
pages 416–432. Springer, 2003.

[38] Xinxin Ma, Jun Shao, Cong Zuo, and Ru Meng. Efficient certificate-
based signature and its aggregation. volume 10701, pages 391–408.
Springer, 2017.

[39] Girraj Kumar Verma, B. B. Singh, Neeraj Kumar, Omprakash Kaiwartya,
and Mohammad S. Obaidat. PFCBAS: pairing free and provable
certificate-based aggregate signature scheme for the e-healthcare moni-
toring system. IEEE Systems Journal, 14(2):1704–1715, 2020.

[40] Qian Mei, Hu Xiong, Jinhao Chen, Minghao Yang, Saru Kumari, and
Muhammad Khurram Khan. Efficient certificateless aggregate signature
with conditional privacy preservation in IoV. IEEE Systems Journal,
DOI: 10.1109/JSYST.2020.2966526.

[41] Hu Xiong, Yanan Zhao, Yingzhe Hou, Xin Huang, Chuanjie Jin, Lili
Wang, and Saru Kumari. Heterogeneous Signcryption with Equality
Test for IIoT environment. IEEE Internet of Things Journal, DOI:
10.1109/JIOT.2020.3008955.

