
RANDCHAIN: Decentralised Randomness Beacon
from Sequential Proof-of-Work

Runchao Han∗†, Jiangshan Yu∗¶, Haoyu Lin‡§
∗Monash University, {runchao.han, jiangshan.yu}@monash.edu

†CSIRO-Data61
‡Bytom Foundation, chris.haoyul@gmail.com

§ZenGo X

Abstract— Decentralised Randomness Beacon (DRB) is a
service that periodically generates publicly verifiable randomness,
which plays critical roles in various cryptographic protocols.
However, constructing DRB protocols is challenging. Existing
DRB protocols suffer from either strong network synchrony
assumptions, high communication complexity or attacks.

In this paper, we propose RANDCHAIN, a new family of
permissioned DRB protocols. RANDCHAIN is constructed from
Sequential Proof-of-Work (SeqPoW) – a Proof-of-Work (PoW)
variant that is sequential, i.e., non-parallelisable – and Nakamoto
consensus. In RANDCHAIN, nodes jointly maintain a blockchain,
and each block attaches a random output. Given the last block,
each node deterministically derives a SeqPoW puzzle, and keeps
solving SeqPoW (aka. mining) until finding a valid solution, of
which the value is unpredictable. The first node solving SeqPoW
includes a block to the blockchain. The SeqPoW solution’s hash is
the random output in this block. RANDCHAIN applies Nakamoto
consensus so that nodes agree on a unique blockchain.

We formalise SeqPoW, propose two constructions, prove their
security and evaluate their performance. Our results show that
SeqPoW is practical. We then formalise DRBs and analyse
RANDCHAIN’s security. Our analysis shows that RANDCHAIN im-
plements a DRB protocol and can produce strongly unpredictable
and unbiasible randomness. While as simple and scalable as PoW-
based consensus, RANDCHAIN achieves better energy efficiency
and decentralisation than PoW-based consensus, thanks to the
non-parallelisable mining. We also discuss considerations of de-
ploying RANDCHAIN in practice, including adding finality, mining
non-outsourceability, and difficulty adjustment to RANDCHAIN.

1. INTRODUCTION

Randomness beacon (RB) is a service that periodically gen-
erates publicly verifiable randomness – an essential building
block for various cryptographic primitives. RB is not always
reliable: malicious RBs may generate biased randomness
to compromise the security and/or fairness of randomness-
based cryptographic primitives. To make RB trustworthy, a
promising approach is the decentralised randomness beacon
(DRB). In a DRB, a group of participants (aka. nodes) generate
randomness that they agree on. No party can fully control the
generated randomness, so biasing or predicting the randomness
can be hard. DRBs have been integrated into various protocols,
especially blockchains [1]–[4].

However, constructing secure and scalable DRBs is chal-
lenging, mainly due to four obstacles. First, DRBs usually

¶ Corresponding author.

execute in rounds, leading to the lock-step synchrony assump-
tion, where all messages are delivered at the end of each round.
Lock-step synchrony is a strong assumption, and is considered
unrealistic in real-world networks with delays. Second, DRBs
usually suffer from high communication overhead – usually no
less than O(n2) where n is the number of nodes. Third, some
DRBs can be vulnerable [2], [5]–[7], including being biasible,
i.e., the adversary can bias the randomness to its preferred
values, and being predictable, i.e., the adversary can predict
randomness in the future. Last, some DRBs [6]–[10] rely on
trustworthy components such as full-fledged blockchains and
smart contracts, which are not always realistic.

In this paper, we propose RANDCHAIN– a new family of
DRB protocols constructed from Sequential Proof-of-Work
(SeqPoW) – a Proof-of-Work (PoW) [11] variant that is
non-parallelisable. In RANDCHAIN, nodes jointly maintain a
blockchain, i.e., a chain of blocks, and each block consists
of a random output. Given the blockchain, each participant
keeps solving a SeqPoW puzzle derived from the last block.
The first participant solving the SeqPoW puzzle proposes a
block with the next randomness, of which the value is decided
by the SeqPoW solution. RANDCHAIN employs Nakamoto
consensus [12] so that nodes agree on the longest blockchain.

While inheriting PoW-based consensus’ simplicity, security
and scalability, RANDCHAIN is also energy efficient and
decentralised. As SeqPoW is non-parallelisable, each node
can only use a single processor for SeqPoW mining. This
prevents mining from marketisation and thus keeps RAND-
CHAIN energy efficient, unlike PoW-based blockchains where
nodes invest high-end mining hardware with massively parallel
processors. In addition, SeqPoW mining can only be accel-
erated using processors with high clock rate, which is hard
to improve further, given the voltage limit of processors [13].
Thus, powerful nodes cannot obtain much speedup on mining,
leading to high degree of mining power decentralisation.

Compared to existing DRBs, RANDCHAIN makes three
unique design choices. First, nodes in RANDCHAIN are com-
petitive, i.e, each node tries to produce the next randomness
before other nodes, whereas nodes in existing DRBs are
usually collaborative, i.e., nodes contribute their local random
inputs and combine them to a unique one. Second, RAND-
CHAIN reuses random entropy from bootstrap, whereas nodes
in existing DRBs usually sample new random entropy for

every round. Last, RANDCHAIN uses uncontrollable entropy
such as nodes’ Byzantine behaviours and network delay,
whereas existing DRBs usually allow nodes to sample their
own entropy. Concretely, we make the following contributions.

Sequential Proof-of-Work (SeqPoW). We propose SeqPoW,
a PoW [11] variant that is non-parallelisable. To solve a PoW
puzzle, the prover searches for a random string (aka. nonce)
that satisfies a difficulty parameter. The search is done by
enumerating all possible nonces, which can be parallelised
using multiple processors. Meanwhile in a SeqPoW, the prover
takes a predefined nonce, and executes an iteratively sequential
function over this nonce. The prover keeps incrementing the
iteratively sequential function until finding an output that
satisfies the difficulty parameter. In this way, one cannot
accelerate solving SeqPoW by parallelism. Like VDFs, the
only way of accelerating solving SeqPoW is to use a processor
with high clock rate, which gives little optimisation space.

We formalise SeqPoW and propose two SeqPoW construc-
tions, one is from Verifiable Delay Functions (VDFs) [14]
and the other is from the Sloth hash function [15]. We
formally analyse the security and efficiency of both SeqPoW
constructions. We also implement them and evaluate their
performance. Our results show that SeqPoW from Pietrzak’s
VDF [16] exhibits the best candidate, given the efficient proof
generation and verification and the acceptable proof size.

Of independent interest, SeqPoW is a powerful primitive
and can be applied to various protocols. We discuss potential
applications of SeqPoW, including leader election and Proof-
of-Stake (PoS)-based consensus.

RANDCHAIN– DRB from SeqPoW and Nakamoto con-
sensus. We then construct RANDCHAIN– a new family of
DRBs that is simple, secure and scalable in the meantime.
In RANDCHAIN, nodes jointly maintain a blockchain, each
of which includes a random output. Nodes continuously work
on SeqPoW mining, where a participant can append a new
block only after solving a SeqPoW puzzle. Each participant
derives its SeqPoW input from the precedent block and its
identity in the system, and cannot choose its own SeqPoW
input freely. Thus, given the local view of the blockchain,
the participant has only one valid SeqPoW input, and can-
not accelerate SeqPoW mining by parallelism. RANDCHAIN
implements Nakamoto consensus, i.e., the longest-chain rule
where nodes agree on the longest blockchain, so that nodes
have a consistent view on the blockchain.

We present the detailed construction of RANDCHAIN and
formally analyse its security. We formally define DRBs
with four properties, namely consistency, liveness, uniform-
distribution and unpredictability. Consistency and liveness
follow the definitions in Nakamoto consensus [12]. Uniform-
distribution requires each output is pseudorandom, i.e., uni-
formly distributed. Unpredictability requires the adversary
cannot predict random outputs either generated by other nodes
or by itself. Our analysis shows that RANDCHAIN implements
a DRB protocol with strong unpredictability guarantee. In
addition, we show that while inheriting PoW-based consensus’

Work on

Prover

PoW puzzle

Verifier

...

Fig. 1: Proof-of-Work.

simplicity, security and scalability, RANDCHAIN is energy
efficient and decentralised. We also analyse several consid-
erations for deploying RANDCHAIN, including supporting
finality [17] i.e., no block is committed and later reverted, non-
outsourceability, i.e., preventing nodes from solving others’
SeqPoW puzzles, and dynamic difficulty adjustment.
Paper organisation. Section 2 describes the background.
Section 3 introduces SeqPoW, including definitions, construc-
tions and analysis. Section 4-6 describe the construction,
security analysis and practical considerations of RANDCHAIN,
respectively. Section 7 compares RANDCHAIN with existing
RBs. Section 8 concludes this paper and discusses future work.
We defer some security proofs of our SeqPoW constructions
to Appendix A.

2. PRELIMINARIES

Notations. Let H(·) and H ′(·) be two different hash functions
that take an arbitrarily long string {0, 1}∗ and output a fixed-
length string {0, 1}κ. Let G be a cyclic group, and HG(·) be
a hash function that takes an arbitrarily long string {0, 1}∗ to
a point on G.
PoW and PoW-based consensus. Proof-of-Work (PoW) can
be seen as a computationally intensive puzzle. To solve a
PoW puzzle, a prover should finish an amount of computation.
Given a PoW’s solution, the verifier can verify whether the
prover has finished that amount of computation with negligible
overhead. PoW can be constructed from hash functions. As
shown in Figure 1, the prover needs to find a nonce i
which makes H(in‖i) ≤ 2κ

T , where in is the puzzle, and
T ∈ (1,∞) is the difficulty parameter. As hash functions
produce pseudorandom outputs, brute-force searching is the
prover’s only strategy. Statistically, with a larger T , the prover
needs to try more nonces.

PoW-based consensus – first introduced in Bitcoin [12] –
has become a practical and scalable alternative of traditional
Byzantine Fault Tolerant (BFT) consensus. In PoW-based con-
sensus, nodes jointly maintain a blockchain. To append a block
to the blockchain, a node should solve a computationally hard
PoW puzzle [18]. Given the latest block, each node derives its

2

own PoW puzzle then keeps trying to solve it. Once solving
the puzzle, the node appends its block to the blockchain. PoW
specifies the amount of work needed by a difficulty parameter.
By adaptively adjusting the PoW’s difficulty parameter, PoW-
based consensus ensures only one node solves the puzzle for
each time period with high probability. Nodes in PoW-based
consensus are known as miners, the process of solving PoW
puzzles is known as mining, and the computation power used
for mining is known as mining power.

Iteratively sequential functions. A sequential function g(·)
is that, one cannot accelerate computing g(·) by parallelism.
An iteratively sequential function f(t, x) is implemented by
composing a sequential function g(x) for a number t of times,
denoted as gt(x). The iteratively sequential function f(·)
inherits the sequentiality of g(·): the fastest way of computing
f(t, x) is to iterate g(x) for t times. In addition, f(·) preserves
a useful property called self-composability: for any x and
(t1, t2), let y ← f(x, t1), we have f(x, t1 + t2) = f(y, t2).
Commonly used iteratively sequential functions include re-
peated squaring [16], [19] and repeated square rooting [15]
on cyclic groups.

Time-based cryptography. Iteratively sequential functions
are the key ingredient of time-based cryptographic primitives.
Rivest, Shamir and Wagner first introduce the timelock puzzle
and constructs it from repeated squaring on RSA groups [20].
Proofs of Sequential Work (PoSW) [21] allow to prove he
has finished an amount of sequential computation with a
succinct proof. Verifiable Delay Functions (VDFs) [14] can be
seen as PoSW with uniqueness. After finishing the sequential
computation, the prover in addition produces an output that is
unique, i.e., it’s computationally hard to find two inputs that
give the same output. Formally,

Definition 1 (Verifiable Delay Function). A Verifiable Delay
Function VDF is a tuple of four algorithms

VDF = (Setup,Eval,Prove,Verify)

Setup(λ)→ pp : On input security parameter λ, outputs pub-
lic parameter pp. Public parameter pp specifies an input
domain X and an output domain Y . We assume X is
efficiently sampleable.

Eval(pp, x, t)→ y : On input public parameter pp, input x ∈
X , and time parameter t ∈ N+, produces output y ∈ Y .

Prove(pp, x, y, t)→ π : On input public parameter pp, input
x, and time parameter t, outputs proof π.

Verify(pp, x, y, π, t)→ {0, 1} : On input public parameter pp,
input x, output y, proof π and time parameter t, produces
1 if correct, otherwise 0.

that satisfies the following properties

• VDF-Completeness: For all λ, x and t,

Pr

 Verify(pp, x, y,
π, t) = 1

∣∣∣∣∣∣
pp← Setup(λ)
y ← Eval(pp, x, t)

π ← Prove(pp, x, y, t)

 = 1

• VDF-Soundness: For all λ and adversary A,

Pr

[
Verify(pp, x, y, π, t) = 1
∧Eval(pp, x, t) 6= y

∣∣∣∣ pp← Setup(λ)
(x, y, π, t)← A(pp)

]
≤ negl(λ)

• σ-VDF-Sequentiality: For any λ, x, t, A0 which runs in
time O(poly(λ, t)) and A1 which runs in parallel time
σ(t),

Pr

 Eval(x, y, t) = y

∣∣∣∣∣∣
pp← Setup(λ)
A1 ← A0(λ, t, pp)

y ← A1(x)


≤ negl(λ)

VDFs can be constructed from two ingredients: 1) an
iteratively sequential function f(·), and 2) a succinct argu-
ment on f(·)’s execution results. For example, two prevalent
VDFs [16], [19] employ repeated squaring as the iteratively
sequential function. Such VDFs inherit the self-composability
from iteratively sequential functions, and are known as self-
composable VDFs [22].

Definition 2 (VDF-Self-Composability). A VDF
(Setup,Eval,Prove,Verify) satisfies VDF-Self-Composability
if for all λ, x, (t1, t2),

Pr

[
Eval(pp, x, t1 + t2)
= Eval(pp, y, t2)

∣∣∣∣ pp← Setup(λ)
y ← Eval(pp, x, t1)

]
= 1

Lemma 1. If a VDF (Setup,Eval,Prove,Verify) satisfies
VDF-Self-Composability, then for all λ, x, (t1, t2),

Pr

 Verify(pp, x, y′,
π, t1 + t2) = 1

∣∣∣∣∣∣∣∣
pp← Setup(λ)

y ← Eval(pp, x, t1)
y′ ← Eval(pp, y, t2)

π ← Prove(pp, x, y′, t1 + t2)

 = 1

3. SEQUENTIAL PROOF-OF-WORK

In this section, we introduce Sequential Proof-of-Work
(SeqPoW), a variant of PoW that is sequential and cannot
be accelerated by parallelism. We formally define SeqPoW,
provide two constructions with security proofs, evaluate their
performance, and discuss its applications.

A. Intuition and applications

Figure 2 gives the intuition of SeqPoW. Given an initial
SeqPoW puzzle S0, the solver keeps solving the puzzle by
incrementing an iteratively sequential function. Each solving
attempt takes the last output Si−1 as input to produce a new
output Si. For each output Si, the prover checks whether Si
satisfies a difficulty parameter T . If yes, then Si is a valid
solution of this SeqPoW puzzle. The prover can generate a
proof πi on a valid solution Si, and the verifier with Si and
πi can check Si’s correctness without solving the puzzle again.
Due to the data dependency, the prover cannot solve a SeqPoW
puzzle in parallel.

SeqPoW is the main ingredient of RANDCHAIN. Of in-
dependent interest, SeqPoW can also be applied to other
protocols, such as leader election and PoS-based consensus.

3

Work on

Prover

SeqPoW puzzle

Verifier

...

Diff checkDifficulty
parameter T Diff check Diff check

Iteratively
Sequential
Function

Fig. 2: Sequential Proof-of-Work.

Leader election. In PoW-based consensus, PoW mining can
be seen as a way of electing leaders: given a set of nodes,
the first node proposing a valid PoW solution becomes the
leader and proposes a block. As a drop-in replacement of PoW,
SeqPoW can be used for leader election. Compared to PoW-
based leader election, SeqPoW-based leader election is much
fairer and energy efficient. Each node can only run a single
processor, which prevents marketisation of mining and gives
little optimisation space of mining speed. Later in §5-E we
will discuss this in detail.
PoS-based consensus. In Proof-of-Stake (PoS)-based con-
sensus [23], each node’s chance of mining the next block is
in proportion to its stake, which can be deposit or balance.
In some PoS-based consensus designs [24]–[26], each node
solves a VDF with time parameter inversely proportional to
its stake, and the first node solving its VDF proposes the
next block. However, such designs suffer from the “winner-
takes-all” problem, where the node with most stake always
solves VDFs faster than others. To avoid the “winner-takes-
all” problem, one can replace VDF with SeqPoW, and specify
the difficulty parameter in inverse proportion to each node’s
stake. As the number of iterations taken to solve a SeqPoW
is randomised, the node with most stake is not always the
winner, but only with higher chance.

B. Definition

We formally define SeqPoW as follows.

Definition 3 (Sequential Proof-of-Work (SeqPoW)). A Se-
quential Proof-of-Work SeqPoW is a tuple of algorithms

SeqPoW = (Setup,Gen, Init,Solve,Verify)

Setup(λ, ψ, T)→ pp : On input security parameter λ, step
ψ ∈ N+ and difficulty T ∈ (1,∞), outputs public
parameter pp. Public parameter pp specifies an input
domain X , an output domain Y , and a cryptographically
secure hash function H : Y → X . We assume X is
efficiently sampleable.

Gen(pp)→ (sk, pk) : Probabilistic. On input public parame-
ter pp, produces a secret key sk ∈ X and a public key
pk ∈ X .

Init(pp, sk, x)→ (S0, π0) : On input public parameter pp,
secret key sk, and input x ∈ X , outputs initial solution
S0 ∈ Y and proof π.

Solve(pp, sk, Si)→ (Si+1, bi+1) : On input public parameter
pp, secret key sk, and i-th solution Si ∈ Y , outputs (i+
1)-th solution Si+1 ∈ Y and result bi+1 ∈ {0, 1}.

Prove(pp, sk, i, x, Si)→ πi : On input public parameter pp,
secret key sk, i, input x, and i-th solution Si, outputs
proof πi.

Verify(pp, pk, i, x, Si, πi)→ {0, 1} : On input pp, public key
pk, i, input x, i-th solution Si, and proof πi, outputs
result {0, 1}.

We define honest tuples and valid tuples as follows.

Definition 4 (Honest tuple). A tuple (pp, sk, i, x, Si, πi) is
(λ, ψ, T)-honest if and only if for all λ, ψ, T and pp ←
Setup(λ, ψ, T), the following holds:

• i = 0 and (S0, π0)← Init(pp, sk, x), and
• i ∈ N+, (Si, bi) ← Solve(pp, sk, Si−1) and πi ←
Prove(pp, sk, i, x, Si), where (pp, sk, i−1, x, Si−1, πi−1)
is (λ, ψ, T)-honest.

Definition 5 (Valid tuple). For all λ, ψ, T , and pp ←
Setup(λ, ψ, T), a tuple (pp, sk, i, x, Si, πi) is (λ, ψ, T)-valid
if

• (pp, sk, i, x, Si, πi) is (λ, ψ, T)-honest, and
• Solve(pp, sk, Si−1) = (·, 1)

SeqPoW should satisfy SeqPoW-Completeness, SeqPoW-
Soundness and SeqPoW-Sequentiality, and one of SeqPoW-
Hardness or SeqPoW-Uniqueness.

Definition 6 (SeqPoW-Completeness). A SeqPoW scheme
satisfies SeqPoW-Completeness iff for all λ, ψ, T ,

Pr

 Verify(pp, pk, i,
x, Si, πi) = 1

∣∣∣∣∣∣
(sk, pk)← Gen(pp)
(pp, pk, i, x, Si, πi)
is (λ, ψ, T)-valid

 = 1

Definition 7 (SeqPoW-Soundness). A SeqPoW scheme satis-
fies SeqPoW-Soundness iff for all λ, ψ, T ,

Pr

 Verify(pp, pk, i,
x, Si, πi) = 1

∣∣∣∣∣∣
(sk, pk)← Gen(pp)
(pp, pk, i, x, Si, πi)

is not (λ, ψ, T)-valid

 ≤ negl(λ)

Then, we define SeqPoW-Hardness, which requires that each
attempt of Solve(·) has the success rate of 1

T .

Definition 8 (SeqPoW-Hardness). A SeqPoW scheme satis-
fies SeqPoW-Completeness iff for all (λ, ψ, T)-honest tuple
(pp, sk, i, x, Si, πi),

Pr

[
bi+1 = 1

∣∣∣∣ (Si+1, bi+1)←
Solve(pp, sk, Si, πi)

]
≤ 1

T
+ negl(λ)

4

We also consider a stronger notion of SeqPoW-Hardness,
which we call SeqPoW-Uniqueness. SeqPoW-Uniqueness re-
quires that, each SeqPoW puzzle only has a single valid
solution Si. Before finding Si each Solve(·) attempt follows
the definition SeqPoW-Hardness, but after finding the solution
Si no Solve(·) attempt leads to a valid solution.

Definition 9 (SeqPoW-Uniqueness). For any two (λ, ψ, T)-
valid tuples (pp, sk, i, x, Si, πi) and (pp, sk, i, x, Sj , πj), it
holds that i = j. In addition, for any (λ, ψ, T)-honest tuple
(pp, sk, j, x, Sj , πj),

Pr

[
bj+1 = 1

∣∣∣∣ (pp, sk, i, x, Si, πi) is (λ, ψ, T)-valid
(Sj+1, bj+1)← Solve(pp, sk, Sj , πj)

]
≤

{
1
T + negl(λ) j ≤ i
negl(λ) j > i

In addition, we define SeqPoW-Sequentiality that the fastest
way of computing Sk is computing Solve(·) for k times
honestly. Similar to VDF-Sequentiality, SeqPoW-Sequentiality
also captures the unpredictability that, the adversary A1 cannot
predict Si’s value before time σ(ψi).

Definition 10 (σ-SeqPoW-Sequentiality). For all λ, ψ, T , i,
x, A0 which runs in less than time O(poly(λ, ψ, i)) and A1

which runs in less than time σ(ψi),

Pr

 (pp, sk, i, x, Si, πi)
is (λ, ψ, T)-honest

∣∣∣∣∣∣∣∣∣∣
pp← Setup(λ, ψ, T)
(sk, pk)← Gen(pp)
A1 ← A0(pp, sk)
Si ← A1(i, x)

πi ← Prove(pp, sk, i, x, Si)


≤ negl(λ)

C. Constructions

SeqPoW from self-composable VDFs. We first present a
SeqPoW construction SeqPoWVDF based on self-composable
VDFs. Let ψ be a step parameter, x be the input, and T be the
difficulty parameter. Let the initial solution S0 = HG(pk‖x).
We take each of Si = f(iψ, S0) = VDF.Evali(pp, S0, ψ)
as an intermediate output. The prover keeps calculating
each Si, and checks if Si satisfies the difficulty T

by calculating H(pk‖Si)
?
≤ 2κ

T . If true, then Si is a
valid solution. The prover can then compute a succinct
argument of the statement Si = VDF.Evali(pp, S0, ψ)
by running VDF.Prove(ppVDF, S0, Si, iψ). Note that
by VDF-Self-Composability, VDF.Evali(pp, S0, ψ) =
VDF.Eval(pp, S0, iψ). With the pk, i, Si and πi, the verifier
then can check whether 1) Si satisfies the difficulty T , and
2) Si = Evali(pp, S0, ψ). Figure 3 describes our SeqPoWVDF

construction in detail.
Unique SeqPoW from Sloth. SeqPoWVDF does not provide
SeqPoW-Uniqueness: the prover can keep incrementing the
iteratively sequential function to find as many valid solutions
as possible. We present SeqPoWSloth – a SeqPoW construction
with SeqPoW-Uniqueness. SeqPoWSloth is based on Sloth [15],
a hash function that supports hashchains with fast verification.

TABLE I: Efficiency of two SeqPoW constructions. ISF stands
for iteratively sequential function.

Construction Efficiency

ISF Proof Solve(·) Prove(·) Verify(·) Proof size
(Bytes)

SeqPoWVDF
Repeated SQ.

Wes19 [19]
O(ψ) O(ψT) O(logψT) s

Pie19 [16] O(ψ) O(
√
ψT logψT) O(logψT) s log2 ψT

SeqPoWSloth Repeated
SQRT.

Repeated
SQ.

O(ψ) 0 O(ψT) 0

Sloth employs repeated square rooting on a cyclic group as
the iteratively sequential function. The prover square roots
(on a cyclic group G) the input for a predefined number t
of times to get the output. To verify the output, the veri-
fier squares – which is O(log |G|) times faster than square
rooting – the output for t times to recover the input. This
means Sloth is reversible [27]: given the output, the verifier
can recover intermediate results and the input. Same as in
SeqPoWVDF, SeqPoWSloth takes each of Si = f(iψ, S0) as
an intermediate output and checks if H(pk‖Si) ≤ 2κ

T . In
addition, SeqPoWSloth only treats the first solution satisfying
the difficulty as valid, which makes the solution unique.
Figure 4 describes the detailed construction of SeqPoWSloth.

Other possible constructions. The main challenge of con-
structing SeqPoW is the succinct argument of iteratively se-
quential functions. In addition to VDFs and Sloth, Incremental
Verifiable Computation (IVC) [28] can also provide such
arguments. IVC is a powerful primitive that, for every step
of a computation, a prover can produce a succinct proof
by updating the last step’s proof rather than computing the
proof from scratch. Given an input, an output, a series of
computation and the proof, one can verify current output is
produced from the series of computation on the input.

The advantage of IVC-based SeqPoW is that it supports
any iteratively sequential functions. This means IVC-based
SeqPoW can be more egalitarian by using iteratively sequential
functions that are more hard to parallelise and optimise.
However, IVC is usually constructed from complicated crypto-
graphic primitives, such as SNARKs [28]–[32]. This makes the
construction inefficient and the implementation challenging. In
addition, when generating proofs in IVC takes non-negligible
time, IVC-based SeqPoW may not be fair, as miners with pow-
erful hardware can take advantage of mining by accelerating
SeqPoW.Prove(·).

D. Security and efficiency analysis

Security. We defer full security proofs to Appendix A. Proofs
of SeqPoW-Completeness and SeqPoW-Soundness directly fol-
low the completeness, soundness and self-composability of
Sloth and VDFs. By pseudorandomness of hash functions
and sequentiality of Sloth and VDFs, Solve(·) outputs un-
predictable solutions and the probability that the solution
satisfies the difficulty is 1

T , leading to SeqPoW-Hardness.
SeqPoW-Sequentiality directly follows the sequentiality and
self-composability of Sloth and VDFs.

5

SeqPoWVDF.Setup(λ, ψ, T)

1 : ppVDF ← VDF.Setup(λ)

2 : G,HG ← ppVDF

3 : pp← (ψ,G,HG, T)

4 : return pp

SeqPoWVDF.Gen(pp)

1 : (ψ,G,HG, T)← pp

2 : Sample random sk ∈ N
3 : pk ← sk ·G
4 : return (sk, pk)

SeqPoWVDF.Init(pp, sk, x)

1 : (ψ,G,HG, T)← pp

2 : pk ← sk ·G
3 : S0 ← HG(pk‖x)
4 : return S0

SeqPoWVDF.Solve(pp, sk, Si)

1 : (ψ,G,HG, T)← pp

2 : ppVDF ← G,HG

3 : pk ← sk ·G
4 : Si+1 ← VDF.Eval(ppVDF, Si, ψ)

5 : bi+1 ← H(pk‖Si+1) ≤
2κ

T
? 1 : 0

6 : return (Si+1, bi+1)

SeqPoWVDF.Prove(pp, sk, i, x, Si)

1 : (ψ,G,HG, T)← pp

2 : pk ← sk ·G
3 : ppVDF ← (G,HG)

4 : S0 ← HG(pk‖x)
5 : πVDF ← VDF.Prove(ppVDF, S0, Si, iψ)

6 : return πVDF

SeqPoWVDF.Verify(pp, pk, i, x, Si, πi)

1 : (ψ,G,HG, T)← pp

2 : ppVDF ← (G,HG)

3 : S0 ← HG(pk‖x)
4 : if VDF.Verify(ppVDF, S0, Si, πi, iψ) = 0

5 : return 0

6 : if H(pk‖Si) >
2κ

T
then return 0

7 : return 1

Fig. 3: Construction of SeqPoWVDF.

SeqPoWVDF.Setup(λ, ψ, T)

1 : ppVDF ← VDF.Setup(λ)

2 : G,HG ← ppVDF

3 : pp← (ψ,G,HG, T)

4 : return pp

SeqPoWVDF.Gen(pp)

1 : (ψ,G,HG, T)← pp

2 : Sample random sk ∈ N
3 : pk ← sk ·G
4 : return (sk, pk)

SeqPoWSloth.Init(pp, sk, x)

1 : (ψ,G,HG, T)← pp

2 : pk ← sk ·G
3 : g ← HG(pk‖x)
4 : S0 ← g

5 : return S0

SeqPoWSloth.Solve(pp, sk, Si)

1 : (ψ,G,HG, T)← pp

2 : pk ← sk ·G

3 : Si+1 ← y
1

2ψ

4 : bi+1 ← H(pk‖Si+1) ≤
2κ

T
? 1 : 0

5 : return (Si+1, bi+1)

SeqPoWSloth.Prove(pp, sk, i, x, Si)

1 : return ⊥
SeqPoWSloth.Verify(pp, pk, i, x, Si, πi)

1 : (ψ,G,HG, T)← pp

2 : y ← Si

3 : if H(pk‖y) > 2κ

T
, then return 0

4 : repeat i times

5 : y ← y2
ψ

6 : if H(pk‖y) ≤ 2κ

T
then return 0

7 : g ← HG(pk‖x)
8 : if g 6= y then return 0

9 : return 1

Fig. 4: Construction of SeqPoWSloth.

Efficiency. Table I summarises the efficiency analysis of
two SeqPoW constructions. SeqPoWVDF and SeqPoWSloth

employ repeated squaring on an RSA group and repeated
square rooting on a group of prime order as the iteratively
sequential function, respectively. Let s be the size (in Bytes)
of an element on the group, and ψ be the step parameter.
Each Solve(·) executes ψ steps of the iteratively sequential
function. By SeqPoW-Hardness and SeqPoW-Uniqueness, a
node attempts Solve(·) for T times to find a valid solution
on average. Thus, Prove(·) generates proofs on ψT steps, and
Verify(·) verifies proofs of ψT steps. SeqPoWVDF employs
either Wesolowski’s VDF (Wes19) [19] or Pietrzak’s VDF
(Pie19) [16] for succinct arguments of repeated squaring.
According to existing analysis [33], the proving complex-
ity, verification complexity and proof size of Wes19’s suc-
cinct argument are O(ψT), O(logψT) and s Bytes, respec-

tively; and the proving complexity, verification complexity and
proof size of Pie19’s succinct argument are O(

√
ψT logψT),

O(logψT) and s log2 ψT , respectively. There have been tech-
niques for optimising and parallelising VDF.Prove(·) for both
VDFs [16], [19], [34]. SeqPoWSloth does not have proofs;
instead, the verifier keeps squaring the solution to recover the
input and check whether the recovered input equals to the real
one. This leads to verification complexity of O(ψT).

E. Performance evaluation

We evaluate the performance of our two SeqPoW construc-
tions. The code is available at Github1. Our results show that
SeqPoWVDF with Pie19 is the best among these constructions,
given its efficient generation and verification of proofs and
acceptable proof size.

1ANONYMISED

6

0.0 0.5 1.0 1.5 2.0 2.5
Time parameter t 1e5

0.0

0.1

0.2

0.3

0.4

Ti
m

e
(s

)

Solve
Prove
Verify

(a) SeqPoWVDF + Wes19 [19].

0.0 0.5 1.0 1.5 2.0 2.5
Time parameter t 1e5

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16

Ti
m

e
(s

)

Solve
Prove
Verify

(b) SeqPoWVDF + Pie19 [16].

0.0 0.5 1.0 1.5 2.0 2.5
Time parameter t 1e5

0
2
4
6
8

10
12
14

Ti
m

e
(s

)
Solve
Verify

(c) SeqPoWSloth.

Fig. 5: Evaluation of SeqPoW constructions.

Implementation. We implement the two SeqPoW construc-
tions in Rust programming language2. We use the rug3 crate
for big integer arithmetic. We implement the RSA group with
1024-bit keys and the group of prime order. We implement
the two SeqPoWVDF constructions based on the RSA group,
and SeqPoW.Sloth based on the group of prime order. Our
implementations strictly follow their original papers [15], [16],
[19] without any optimisation.

Experimental setup. We benchmark Solve(·), Prove(·)
and Verify(·) for each SeqPoW construction. We test ψ ∈
[1000, 2000, 4000, 8000, 16000, 32000, 64000, 128000, 256000]
and assume i = 1. Note that SeqPoWSloth does not have
Prove(·). We benchmark the performance using Rust’s native
benchmarking suite cargo-bench4 and criterion5.
We sample ten executions for each configuration, i.e., a
function with a unique group of parameters. We specify
O3-level optimisation when compiling. All experiments were
conducted on a MacBook Pro with a 2.2 GHz 6-Core Intel
Core i7 Processor and a 16 GB 2400 MHz DDR4 RAM.

Results (Figure 5). For all SeqPoW constructions, the
running time of Solve(·) increases linearly with time parameter
t. This is as expected as Solve(·) is dominated by the iteratively
sequential function. For SeqPoWVDF with Wes19, Prove(·)
takes more time than Solve(·). This is because we implement
the non-optimised proof generation algorithm. There have
been optimised and parallelisable alternatives for Wes19’s
Prove(·) [34]. SeqPoWVDF with Pie19 achieves ideal perfor-
mance: Prove(·) and Verify(·) takes negligible time compared
to Solve(·). Meanwhile, the proof size of Pie19 is also ac-
ceptable. Thus, without optimisation, SeqPoWVDF with Pie19

2https://www.rust-lang.org/
3https://crates.io/crates/rug
4https://doc.rust-lang.org/cargo/commands/cargo-bench.html
5https://github.com/bheisler/criterion.rs

more practical than with Wes19. For SeqPoWSloth, Solve(·) is
approximately five times slower than Verify(·). Although this
is far from theoretically optimal value, i.e, log2 |G| = 2048
in our case [27], the verification overhead is acceptable when
random outputs are not generated frequently.

4. RANDCHAIN: DRB FROM SEQPOW

Based on SeqPoW, we construct RANDCHAIN, a new
family of DRBs. Figure 6 describes the full construction of
RANDCHAIN.

System setting. RANDCHAIN works in a permissioned sys-
tem. Nodes P = {p1, . . . , pn} register themselves into the
system through a Public Key Infrastructure (PKI). PKI assigns
each registered node pi ∈ P with a pair of secret key ski and
public key pki. Each node is identified by its public key in
the system. Given a public key, any node in the system can
verify whether the node is in the system by querying the PKI.
There can be unlimited number of registered nodes. Each node
does not the exact number of nodes in the system, and is only
directly connected to a subset of peers.

Structure (Figure 7a). All nodes jointly maintain a
blockchain. Each block B is of the format (h−, h, i, S, pk, π),
where h− is the previous block ID, h is the current block ID,
i is the SeqPoW solution index, S is the SeqPoW solution,
pk is the public key of this block’s creator, and π is the proof
that S is a valid SeqPoW solution on input h−. The block ID
B.h is calculated as B.h = H(pk‖S). The block’s random
output B.rand is calculated as B.rand = H ′(pk‖S).

Each node pi has its local view Ci of the blockchain. The
local view Ci may have forks: there may be multiple blocks
following the same block. RANDCHAIN applies Nakamoto
consensus that, nodes considers the longest chain among all
forks as valid. As described in mainChain(·) of Figure 6, node
pi considers the longest fork of Ci as the main chain MCi.
Process (Figure 7b). We describe the process of RAND-
CHAIN from a node pi’s perspective. Node pi runs two
routines: the synchronisation routine SyncRoutine(·) and the
mining routine MineRoutine(·). In SyncRoutine(·), node pi
synchronises its local blockchain Ci with other nodes. The
synchronisation process is same as in other blockchains: node
pi keeps receiving blocks from other nodes, verifying them,
and adding valid blocks to its local blockchain Ci.

In MineRoutine(·), node pi keeps mining, i.e., adding new
blocks, on the main chain MCi. To append a block to
the blockchain, node pi should solve a SeqPoW puzzle. In
particular, node pi finds its latest main chain MCi, and
derives a SeqPoW puzzle from MCi’s last block. Then,
node pi executes SeqPoW.Init(·) to find the starting point
of mining. Node pi keeps solving SeqPoW by iterating
SeqPoW.Solve(·) until finding a solution S satisfying the
difficulty. As SeqPoW.Init(·) takes each node’s secret key as
input, nodes’ SeqPoW puzzles start from different points and
take different steps to solve. With a valid solution S, node
pi constructs a block B consisting of a random output, and
appends B to MCi.

7

mainChain(Ci)
1 : tmp← ε

2 : for Cki ∈ Ci
3 : tmp← max(Cki , tmp)
4 : returnMCi = tmp

MainProcedure(pp, ski, pki)

1 : Synchronise chain as Ci
2 : MineRoutine(pp, ski, pki, Ci) in a thread
3 : SyncRoutine(pp, Ci) in a thread

SyncRoutine(pp, C)
1 : while True

2 : Wait for a new block as B

3 : (h−, h, i, S, pk, π)← B

4 : if h− /∈ Ci then Discard B
5 : if h 6= H(pk‖S) then Discard B

6 : if SeqPoW.Verify(pp, pk, i, h−, S, π) = 0

7 : Discard B

8 : Append B to Ci after block with hash h−

9 : Propagate B

MineRoutine(pp, ski, pki, Ci)
1 : while True

2 : MCi ← mainChain(Ci)
3 : B− ←MCi[−1]
4 : i← 0

5 : S ← SeqPoW.Init(pp, ski, B
−.h)

6 : while True

7 : S, b← SeqPoW.Solve(pp, ski, S)

8 : if b = 1 then Break

9 : i+ = 1

10 : MC′i ← mainChain(Ci)
11 : if MCi 6=MC′i
12 : MCi ←MC′i
13 : Repeat line3-6
14 : h← H(pki‖S)
15 : π ← SeqPoWVDF.Prove(pp, sk, i, B

−.h, S)

16 : B ← (B−.h, h, i, S, pki, π)

17 : New random output B.rand← H ′(pki||S)
18 : Append B to MCi after B−

19 : Propagate B

Fig. 6: Construction of RANDCHAIN.

Similar to PoW-based blockchains, RANDCHAIN’s
blockchain may have forks, and it’s possible that B is
committed then reverted by a longer chain. By applying a
high difficulty parameter T , the average time of mining a
new block can be set much longer than network delay. This
gives nodes sufficient time to propagate new blocks, and
thus the fork rate can be reduced. Meanwhile, by Nakamoto
consensus, if the majority of nodes honestly mine the longest
chain and a sufficient number of valid blocks are appended
after B, then B cannot be reverted, i.e., is stable, except
for negligible probability [35]. We analyse RANDCHAIN’s
consistency guarantee in §5, and discuss how to achieve
finality, i.e., make block irreversible in §6-A.

5. SECURITY AND EFFICIENCY OF RANDCHAIN

In this section, we analyse the security and efficiency
of RANDCHAIN. We formalise the notion of Decentralised
Randomness Beacon (DRB), and prove RANDCHAIN imple-
ments a DRB. In addition, we show that although constructed
from PoW variants and Nakamoto consensus, RANDCHAIN is
energy efficient and decentralised.

A. Security model

We consider the network is synchronous: all messages are
delivered within a known time bound ∆. We do not assume
rounds or lock-step synchrony [35]. The network consists of
n nodes, each of which controls the same amount of mining
power. We consider an adaptive Byzantine adversary who can

corrupt any of αn nodes at any time, where α ∈ [0, 1].
The adversary can coordinate its corrupted nodes in real-time
without delay, and can arbitrarily delay, drop, forge and modify
messages sent from its corrupted nodes. Let β = 1−α be the
percentage of correct nodes.

B. Defining Decentralised Randomness Beacon

We start from defining security properties of DRB. First,
similar to Nakamoto consensus, DRB should satisfy consis-
tency and liveness. DRB-Consistency requires nodes to have
consistent view on the blockchain. Without DRB-Consistency,
nodes may revert random outputs arbitrarily.

Definition 11 (DRB-Consistency). Parametrised by k ∈ N≥0.
We say a DRB satisfies k-DRB-Consistency if for any two
correct nodes at any time, their chains can differ only in the
last k blocks, except for negligible probability.

The parameter k defines the degree of consistency guaran-
tee. Some DRB-based applications require RB to have finality,
i.e., at any time, correct nodes do not have conflicted views
on the blockchain. The finality here is equivalent to 0-DRB-
Consistency. In §6 we discuss two approaches for adding
finality to RANDCHAIN.

DRB-Liveness requires DRB to produce no less than bτ · tc
random outputs for every time period of t. Without liveness,
DRB may stop producing randomness forever. Existing pa-
pers usually define termination [5], [36], [37] or Guaranteed
Output Delivery (G.O.D.) [38]–[41] that, for every round,

8

Blockchain

Random outputs

(a) Beacon structure.

Blockchain

Random outputs

Miners with their own
SeqPoW puzzles

...

...

...

...

Puzzle solved

Construct
block

 Commit and propagate block

(b) Process of mining.

Fig. 7: Illustration of RANDCHAIN beacon.

there will always be a new random output. We do not follow
their definitions, as RANDCHAIN neither iterates single-shot
DRG protocols nor uses the concept of rounds. In §7 we will
compare RANDCHAIN with existing DRBs in detail.

Definition 12 (DRB-Liveness). Parametrised by t, τ ∈ R+.
We say a DRB satisfies (t, τ)-DRB-Liveness if for any time
period t, every correct node receives at least bτ ·tc new outputs.

Then, as a DRB, each output should be pseudorandom, i.e.,
uniformly distributed.

Definition 13 (DRB-Uniform-Distribution). Every output is
indistinguishable with a uniformly random string with the
same length, except for negligible probability.

Last, each output should be unpredictable: given the current
blockchain, no one can learn any knowledge of the next output.
If one can predict the next output, it may take advantage in
protocols based on the DRB. From a node’s perspective, this
includes two scenarios: 1) the next output is generated by
itself, and 2) the next output is generated by other nodes. In
some papers [40]–[43], unpredictability in the first scenario

is refereed as bias-resistance. We follow the IND1-secrecy
(Indistinguishability of secrets) notion in SCRAPE [38] to
define DRB-Unpredictability. IND1-secrecy requires that each
node cannot learn anything about the final output before
finishing the protocol.

Definition 14 (DRB-Unpredictability). We say a DRB sat-
isfies DRB-Unpredictability if no adversary can obtain non-
negligible advantage on the following game. Assume all nodes
are correct and all messages are delivered instantly. Given
an agreed blockchain, the adversary makes a guess on the
output of the next block. The advantage is quantified as the
probability that the adversary makes an accurate guess on the
output.

As RANDCHAIN is built upon Nakamoto consensus, RAND-
CHAIN inherits most security issues from Nakamoto con-
sensus. Nonetheless, RANDCHAIN is a DRB rather than a
transaction ledger, and security issues for transaction ledgers
may not be critical for DRB. For example, selfish mining [44]
– which prevents Nakamoto consensus from achieving ideal
chain quality – does not affect DRB’s security guarantee.
In addition, RANDCHAIN does not consider incentive, so is
secure against all attacks on Nakamoto consensus’ incentive
mechanisms [45]–[48].

C. Proofs of Consistency, Liveness and Uniform Distribution

As each random output is produced by a hash function,
RANDCHAIN satisfies DRB-Uniform-distribution.

Lemma 2 (DRB-Uniform-distribution). RANDCHAIN satis-
fies DRB-Uniform-distribution.

Proof. In RANDCHAIN, for every block B, B.rand is pro-
duced by the hash function H ′(·). By pseudorandomness of
hash functions, B.rand indistinguishable with a uniformly
random κ-bit string.

RANDCHAIN’s DRB-Consistency and DRB-Liveness are
guaranteed by Nakamoto consensus. There have been exten-
sive works [35], [49]–[55] analysing and proving consistency
and liveness guarantee of Nakamoto consensus. As RAND-
CHAIN works in the same system model as that of Ren [52],
RANDCHAIN at least satisfies the consistency and liveness
bound proved by Ren [52].

Lemma 3 (DRB-Consistency). Let g = e−α∆. If g2α > (1−
δ)β, then RANDCHAIN satisfies k-DRB-Consistency except
for e−Ω(δ2g2k) probability.

Lemma 4 (DRB-Liveness). Let g = e−α∆. If gα > (1 + δ)β,
then RANDCHAIN satisfies (t, δ6gαt − k − 1)-DRB-Liveness
except for e−Ω(δ2gαt) probability.

D. Proofs of Unpredictability

In the prediction game, the next output is either produced
by correct nodes or the adversary’s nodes. If the adversary’s
advantage is negligible for both cases, then RANDCHAIN
satisfies DRB-Unpredictability. We prove the adversary’s ad-
vantage for both cases. For the first case that the next output

9

Generates

I like this output;
publish before B4

Fig. 8: Unpredictability game.

is produced by correct nodes, the adversary’s best strategy is
guessing, leading to negligible advantage.

Lemma 5. Given a set of correct nodes and the latest valid
ledger they agree on, if the next output is produced by a correct
node, then the adversary’s advantage on the prediction game
is 1

2κ .

We then consider the case that the next output is produced
by the adversary’s nodes. By the SeqPoW-Sequentiality, the
adversary cannot predict each of its SeqPoW solution. Thus, as
shown in Figure 8, the adversary’s best strategy is to produce
as many blocks before the next honest block as possible.
With more blocks, the adversary has more random outputs to
choose, leading to higher advantage. Recall that SeqPoW has
two levels of hardness guarantee, namely SeqPoW-Hardness
and SeqPoW-Uniqueness. We first analyse RANDCHAIN using
SeqPoW with SeqPoW-Hardness, e.g., SeqPoWVDF.

Lemma 6. Consider RANDCHAIN using SeqPoW with
SeqPoW-Hardness. Given a set of correct nodes and the latest
valid ledger they agree on, if the next output is produced by the
adversary, then the adversary’s advantage on the prediction
game is k

2κ with αkβ probability, where k ≤ αn.

Proof. The adversary controls αn nodes, and k ≤ αn. Let Vk
be the event that “the adversary mines k blocks before correct
nodes mine the first block”. By SeqPoW-Hardness, each node
can find unlimited valid SeqPoW solutions given a fixed input.
Then, we have

Pr[Vk] = αkβ

When Vk happens, the adversary’s advantage is k
2κ .

Thus, with the probability αkβ, the adversary mines k
blocks before correct nodes mine a block, leading to the
advantage of k

2κ (where k ≤ αn).

We then analyse RANDCHAIN using SeqPoW with SeqPoW-
Uniqueness, e.g., SeqPoWSloth.

Lemma 7. Consider RANDCHAIN using SeqPoW with
SeqPoW-Uniqueness. Given a set of correct nodes and the
latest valid ledger they agree on, if the next output is produced
by the adversary, then the adversary’s advantage on the
prediction game is

∏k−1
i=0

αn−i
n−i · β with αkβ probability.

Proof. The adversary controls αn nodes, and k ≤ αn. Let
V ′k be the event that “the adversary mines k blocks before
correct nodes mine the first block”. By SeqPoW-Uniqueness,
each node can find only one valid SeqPoW solutions given a
fixed input. Let αk be the mining power of the adversary’s
k-th node, and

∑
αk = α. Then, we have

Pr[V ′0] = β (1)
Pr[V ′1] = αβ (2)

Pr[V ′2] =
αn− 1

n− 1
αβ (3)

Pr[V ′3] =
αn− 2

n− 2
· αn− 1

n− 1
αβ (4)

. . . (5)

Pr[V ′k] =

k−1∏
i=0

αn− i
n− i

· β (6)

When V ′k happens, the adversary’s advantage is k
2κ .

Therefore, with less than the probability
∏k−1
i=0

αn−i
n−i ·β, the

adversary mines k blocks before correct nodes mine a block,
leading to the advantage of k

2κ (where k ≤ αn).

Remark 1. Note that the probability that the adversary
achieves a certain advantage in RANDCHAIN with SeqPoW-
Uniqueness is always smaller than in RANDCHAIN without
SeqPoW-Uniqueness. In particular, for every k, Pr[V ′k] ≤
Pr[Vk]. Given k, we have

Pr[V ′k] =

k−1∏
i=0

αn− i
n− i

· β (7)

=

k−1∏
i=0

[
α · αn− i

αn− αi

]
· β (8)

As i ≤ 0 and α ∈ [0, 1], αn−i
αn−αi ≤ 1. Thus,

Pr[V ′k] ≤
k−1∏
i=0

α · β (9)

= αkβ = Pr[Vk] (10)

E. Efficiency

Mining in RANDCHAIN is non-parallelisable: 1) SeqPoW
is sequential, and 2) given the last block, each node’s input
of SeqPoW is fixed. Thanks to non-parallelisable mining,
RANDCHAIN is more energy efficient and decentralised than
PoW-based consensus.

Mining in PoW-based consensus is parallelisable. Paral-
lelisable mining leads to mining marketisation, which further
leads to centralisation and huge energy consumption. When
mining is parallelisable, miners can employ specialised mining
hardware such as GPUs, FPGAs and ASICs to maximise
their mining reward. Due to the mining reward, blockchain
mining has been marketised: people manufacture, invest and
trade high-end mining hardware for higher profit. Eventually,

10

most blocks are mined by several miners with massive high-
end mining hardware, while few blocks are mined by nor-
mal miners. Mining power centralisation weakens PoW-based
consensus’ security, as powerful miners can perform various
attacks, e.g., 51% attacks [12] to break PoW-based consensus.
In addition, mining – which enforces hardware to fully operate
all the time – is energy inefficient. As miners deploy powerful
mining hardware, mining has cost a great amount of electricity.
For example, in 2019, Bitcoin costs 58.93 KWh energy – more
than Switzerland which costs 58.46 KWh [56].

RANDCHAIN is more energy efficient and decentralised
compared to PoW-based consensus. In RANDCHAIN, miners
cannot parallelise mining: each miner can only use a single
processor to mine. Compared to massively parallel PoW
mining, a single fully operating processor costs negligible elec-
tricity. In addition, the performance gap on SeqPoW.Solve(·)
between high-end and low-end hardware is small. Given the
sequentiality, SeqPoW.Solve(·) can only be accelerated by
using processors with higher clock rate. The highest clock rate
achieved by processors is 8.723 GHz, while laptops’ clock
rate is usually more than 2 GHz [57]. This means one can
only speed up SeqPoW mining for 4 ∼ 5 times. In addition,
given the voltage limit of processors, high clock rate is hard
to improve further [13]. Thus, powerful nodes cannot obtain
much speedup on mining, leading to high degree of mining
power decentralisation.

6. PRACTICAL CONSIDERATIONS

A. Adding finality

Finality [17] is a property for Byzantine consensus that,
previously agreed proposals cannot be reverted. RANDCHAIN
does not satisfy finality due to its Nakamoto consensus nature.
In some scenarios, we require a DRB to satisfy finality. For
example, consider leader election where a group of nodes elect
a leader with a random output from RANDCHAIN as input. If
the used random output is reverted before the end of leader
election, then nodes may stop working and end up with no
leader. RANDAO [7] and Proofs-of-Delay [10] bypass this
by replacing H ′(·) with a VDF which takes time more than
generating k blocks to execute, where k is the degree of k-
DRB-Consistency. Nodes can reveal every random output only
after the block deriving this random output becomes stable.
However, this enables frontrunning: nodes with fast processors
always learn random outputs earlier than normal nodes.

We consider principled approaches for adding finality.
Adding finality is equivalent to achieve 0-DRB-Consistency:
correct nodes decide the same block at every height. This
is further equivalent to making RANDCHAIN to execute in
rounds, in each of which nodes execute a Byzantine agree-
ment [58] to agree on a block. RANDCHAIN satisfies validity
and termination, but does not satisfy the agreement property
of Byzantine agreement, as nodes may temporarily agree on
different blocks at the same height. We discuss two approaches
to achieve agreement, namely the quorum-based approach and
the herding-based consensus.

Quorum-based approach. In Byzantine agreement, quo-
rum [59] is the minimum number of votes that a proposal
has to obtain for being agreed by nodes. If a proposal obtains
a quorum of votes in a view, then this means nodes agree on
this proposal. The quorum size is n−f , where n and f be the
number of nodes and faulty nodes in the system, respectively.
Existing research [59], [60] shows that n ≥ 3f +1 is required
to achieve agreement in partially synchronous networks, and
n ≥ 2f + 1 is required to achieve agreement in synchronous
networks. A quorum certificate of a proposal is a collection of
n−f votes on this proposal. A vote is usually represented as a
digital signature on the proposal, view ID and other metadata.

To achieve agreement in RANDCHAIN, we can apply the
quorum mechanism as follows. The system should additionally
assume 2f+1 nodes are correct. A node signs a block to vote
this block. The node’s view is represented as the previous
block hash, which is inside the signed block. Nodes actively
propagate their votes – i.e., signatures on blocks – the same
way as propagating blocks. Each node keeps received votes
locally, and considers a block as finalised if collecting a
quorum certificate, i.e., ≥ 2f + 1 signatures on this block.

If the system allows temporary non-finalised blocks for
better liveness, then RANDCHAIN can still keep Nakamoto
consensus: even without quorum certificate, a block is consid-
ered finalised with a sufficiently long sequence of succeeding
blocks. This resembles the Streamlet blockchain [61]. If not,
then nodes should obtain a quorum certificate for every block
before proposing succeeding blocks.

Herding-based consensus. There have been a family of
consensus protocols based on herding. Herding is a social
phenomenon where people make choices according to other
people’s preference. In herding-based consensus, nodes keep
exchanging their votes with each other and decide the proposal
with most votes. Existing research [62], [63] shows that,
with overwhelming probability, nodes will eventually agree
on a proposal by herding in a short time period. In addition,
herding-based consensus introduces much less communication
overhead than traditional Byzantine consensus.

To achieve agreement in RANDCHAIN, we can apply the
herding-based consensus as follows. Upon a new block, nodes
execute a herding-based consensus on it. If a block is the only
block in a long time period, then nodes will agree on this block
directly. If there are multiple blocks within a short time period,
then nodes will agree on the most popular block among them
with overwhelming probability. This approach has also been
discussed in Bitcoin Cash community, who seeks to employ
Avalanche [63] as a finality layer for Bitcoin Cash [64].

B. Making SeqPoW mining non-outsourceable

RANDCHAIN does not prevent outsourcing: the adversary
can solve others’ SeqPoW puzzles. An adversary with massive
processors and others’ public keys can mine for all nodes. If
the adversary’s processors are with high clock rate, then it can
always learn randomness earlier than others, or even publish
its preferred random outputs only.

11

To avoid this, we can adopt the idea of VRF-based min-
ing [65]. Verifiable Random Function (VRF) – which can
be seen as a public key version of hash functions – takes
the prover’s secret key sk and an input x, and outputs a
random string y. The prover can also generates a proof π
that, 1) y is a valid output of x, and 2) y is generated
by the owner of sk. We replace H(pk‖Si+1) ≤ 2κ

T with
VRFHash(sk, Si+1) ≤ 2κ

T in SeqPoW’s difficulty mechanism,
where VRFHash(·) is a VRF [66]. As correct nodes do
not share their secret keys to others, the adversary cannot
execute VRFHash(·) for others. While this modification adds
negligible overhead to SeqPoWVDF, it greatly increases the
proof size of SeqPoWSloth, as the proof should carry all VRF
outputs and proofs for proving no prior solution satisfies the
difficulty. More efficient SeqPoW constructions with SeqPoW-
Uniqueness are considered as future work.

C. Dynamic difficulty

PoW-based blockchains employ difficulty adjustment mech-
anism for stabilising the block rate, i.e., the average number
of new blocks in a time unit. This is particularly useful
when churn [67] is high and/or the network size is frequently
changing. Although we analyse RANDCHAIN while assuming
a fixed difficulty and a fixed set of nodes, RANDCHAIN
can support dynamic difficulty adjustment with little change.
First, same as in PoW-based blockchains, RANDCHAIN can
include a timestamp to each block, so that RANDCHAIN
can infer historical block rate using timestamps. In addition,
RANDCHAIN includes the number i of iterations running
SeqPoW.Solve(·), and i can also infer the historical block rate.
If historical values of i are large, then this means mining is
too hard and the difficulty should be reduced, and vice versa.

7. COMPARISON WITH EXISTING DRB PROTOCOLS

In this section, we compare RANDCHAIN with existing
DRB protocols. There are three paradigms of constructing
DRB, namely 1) DRB from external randomness source, 2)
DRB from Distributed Randomness Generation (DRG), and
3) DRB from iteratively sequential functions. RANDCHAIN–
which is constructed from SeqPoW and Nakamoto consensus
– does not belong to any of them. Compared to existing
paradigms, RANDCHAIN does not rely on strong assumptions
such as trusted third party and lock-step synchrony, while
being secure, scalable, energy efficient and decentralised.

DRBs from external randomness source. Some DRBs that
derive randomness from real-world random entropy, including
financial data, e.g., stock prices [8] and public blockchains [6],
[9], [10] Such DRBs introduce little communication overhead.
However, these DRB protocols’ security relies on the random-
ness source’s security. For example, if the randomness source
is biasible, then these DRB protocols are likely to be biasible
as well. In addition, clients and/or servers should access the
randomness source from trustworthy communication channels.
Otherwise, an adversary who hijacks the channels can bias the
randomness arbitrarily.

DRG-based DRBs. A large number of DRB protocols are
constructed by executing a Distributed Randomness Gener-
ation (DRG) protocol in rounds. DRG allows a group of
nodes to generate a random output or a batch of random
outputs. It has a well-known variant called multi-party coin
tossing/flipping [68], where the random output is only a binary
bit. DRG can be constructed from various cryptographic prim-
itives, such as commitments [7], [69], threshold signatures [3],
[36], [37], VRFs [2], [5], [70]–[72], secret sharing [1], [38],
[39], [42], [43] and homomorphic encryption [40].

There are some issues in DRG-based DRBs. First, if the
DRG relies on a leader, then a leader should be elected for
every round. The leader is elected either by a trusted third party
or running a leader election protocol. Previous research [73]
shows that constructing leader election is challenging. Boneh
et al. [74] propose two leader election constructions, which
however rely on a RB in return. Second, if the network is
not synchronous, then the DRG-based DRB should rely on
a pacemaker [75] for liveness. without synchrony, a node
cannot know whether other nodes receive its message, and
nodes may not agree on which round they reach. When this
happens, nodes may stop working forever. The pacemaker
is responsible to inform nodes when to start a new round.
Last, a DRG-based DRB inherits the assumption, security and
performance from its used DRG. If the DRG does not scale,
then DRBs based on this DRG cannot scale as well. Existing
research [43], [76] shows that existing DRG protocols either
rely on strong assumptions, fail to be unpredictable, or suffer
from high communication complexity of more than O(n2).
This makes DRG-based DRBs hard to scale.

DRBs from iteratively sequential functions. DRBs can
also be constructed from an iteratively sequential function
f(·). Given a random seed, f(·) can produce random outputs
continuously. As f(·) is deterministic, no one can bias random
outputs. As f(·) is sequential, no one can obtain outputs
without computing f(·) honestly. Lenstra and Wesolowski [15]
and Ephraim et. al. [77] construct DRBs from Sloth and
Continuous VDFs, respectively.

The biggest challenge of this paradigm is frontrunning. If
the random seed is previously known by someone, then it can
pre-compute and learn random outputs earlier than others. This
can be solved by a trusted setup, e.g., the Sapling ceremony
for Zcash [78]. In addition, nodes with faster processors learn
random outputs earlier than others.

RandRunner [41] extends this paradigm by allowing nodes
to execute iterations of f(·) in turn. In each round, nodes elect
a leader with the last random output as input. With the last
output as input, the leader runs the trapdoor VDF while others
run the normal VDF to obtain the next random output. Due to
the trapdoor, the leader learns the next random output earlier
than others. If the leader is malicious, other nodes can still
learn the next random output, but slower. This does not prevent
frontrunning: the leader always learns randomness earlier than
others. In addition, RandRunner relies on a leader election,
which as discussed can be challenging in dynamic networks.

12

8. CONCLUSION AND FUTURE WORK

In this paper, we propose RANDCHAIN, a new family
of Decentralised Randomness Beacon (DRB) protocols that
are simple, secure and scalable. To construct RANDCHAIN,
we introduce Sequential Proof-of-Work (SeqPoW), a variant
of Proof-of-Work that is sequential, i.e., non-parallelisable.
For SeqPoW, we provide concrete constructions of SeqPoW,
and show that SeqPoW is practical and useful for various
cryptographic protocols. For RANDCHAIN, we show that
while inheriting simplicity, security, and scalability from PoW-
based consensus, RANDCHAIN remains energy efficient and
decentralised.

Compared to existing DRBs, RANDCHAIN explores a dif-
ferent approach with several unique design choices. In the
future, we will explore these design choices further and
propose more secure and scalable DRBs based on them.
Competitive nodes v.s. collaborative nodes. In RAND-
CHAIN, nodes are competitive with each other: each node
tries to propose the next random output earlier than others.
Meanwhile, in most existing DRBs – especially DRG-based
DRBs – nodes are collaborative: nodes contribute their local
random outputs and combine them to a unique one.

Compared to collaborative DRBs, competitive DRBs intro-
duce less communication overhead. In competitive DRBs, each
random output is generated by a single node, and a single
message, i.e., a block, needs to be propagated for each random
output. Meanwhile in collaborative DRBs, the majority of
nodes should contribute to the randomness, and all of these
nodes need to broadcast some messages. This introduces non-
negligible communication overhead.
Reusing entropy v.s. regenerating entropy. Consider
RANDCHAIN works in an ideal setting, where all nodes mine
at the same speed and are correct, and all messages are deliv-
ered instantly. Given the latest block, who solves SeqPoW first
is deterministic. Given the SeqPoW puzzle, the solution and
the random output are also deterministic. Thus, in this ideal
setting, RANDCHAIN resembles a DRB based on iteratively
sequential functions, which takes the genesis block as random
seed and is run by multiple nodes in turn. As analysed in §7,
DRBs based on iteratively sequential functions are strongly
unpredictable, but suffer from frontrunning attacks.
Uncontrollable entropy v.s. node-chosen entropy. Then,
consider RANDCHAIN works in real-world settings where
nodes can be Byzantine and messages are delivered with
random latency. Given the latest block, the next output are no
longer determined. First, the node A that should have found
the first SeqPoW solution may be offline or crashed. Second,
A may propagate its block slower than another node B who
finds a SeqPoW solution a bit later than A.

This means that in addition to the genesis block, nodes’
Byzantine behaviours and network delay also affect the outputs
of RANDCHAIN. The adversary cannot control both entropy
sources, so frontrunning can be no longer realistic. This
makes RANDCHAIN even more secure than DRBs based on
iteratively sequential functions.

REFERENCES

[1] A. Kiayias, A. Russell, B. David, and R. Oliynykov,
“Ouroboros: A provably secure proof-of-stake
blockchain protocol,” in Annual International
Cryptology Conference, Springer, 2017, pp. 357–388.

[2] B. David, P. Gaži, A. Kiayias, and A. Rus-
sell, “Ouroboros praos: An adaptively-secure, semi-
synchronous proof-of-stake blockchain,” in Annual In-
ternational Conference on the Theory and Applications
of Cryptographic Techniques, Springer, 2018, pp. 66–
98.

[3] T. Hanke, M. Movahedi, and D. Williams, “Dfinity
technology overview series, consensus system,” arXiv
preprint arXiv:1805.04548, 2018.

[4] G. Wood et al., “Ethereum: A secure decentralised
generalised transaction ledger,” Ethereum project yellow
paper, vol. 151, no. 2014, pp. 1–32, 2014.

[5] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N.
Zeldovich, “Algorand: Scaling byzantine agreements for
cryptocurrencies,” in Proceedings of the 26th Sympo-
sium on Operating Systems Principles, 2017, pp. 51–68.

[6] J. Bonneau, J. Clark, and S. Goldfeder, “On bitcoin
as a public randomness source.,” IACR Cryptol. ePrint
Arch., vol. 2015, p. 1015, 2015.

[7] Randao: A dao working as rng of ethereum, last ac-
cessed on 02/08/2020. [Online]. Available: https : / /
github.com/randao/randao.

[8] J. Clark and U. Hengartner, “On the use of financial
data as a random beacon.,” EVT/WOTE, vol. 89, 2010.

[9] M. Andrychowicz and S. Dziembowski, “Distributed
cryptography based on the proofs of work.,” IACR
Cryptol. ePrint Arch., vol. 2014, p. 796, 2014.

[10] B. Bünz, S. Goldfeder, and J. Bonneau, “Proofs-of-
delay and randomness beacons in ethereum,” IEEE
Security and Privacy on the blockchain (IEEE S&B),
2017.

[11] M. Jakobsson and A. Juels, “Proofs of work and bread
pudding protocols,” in Secure information networks,
Springer, 1999, pp. 258–272.

[12] S. Nakamoto et al., “Bitcoin: A peer-to-peer electronic
cash system,” 2008.

[13] “Why has cpu frequency ceased to grow?,” last accessed
on 01/08/20. [Online]. Available: https://software.intel.
com/content/www/us/en/develop/blogs/why-has-cpu-
frequency-ceased-to-grow.html.

[14] D. Boneh, J. Bonneau, B. Bünz, and B. Fisch, “Verifi-
able delay functions,” in Annual international cryptol-
ogy conference, Springer, 2018, pp. 757–788.

[15] A. K. Lenstra and B. Wesolowski, “A random zoo:
Sloth, unicorn, and trx.,” IACR Cryptol. ePrint Arch.,
vol. 2015, p. 366, 2015.

[16] K. Pietrzak, “Simple verifiable delay functions,” in 10th
innovations in theoretical computer science conference
(itcs 2019), Schloss Dagstuhl-Leibniz-Zentrum fuer In-
formatik, 2018.

13

[17] V. Buterin and V. Griffith, “Casper the friendly finality
gadget,” arXiv preprint arXiv:1710.09437, 2017.

[18] C. Dwork and M. Naor, “Pricing via processing or com-
batting junk mail,” in Annual International Cryptology
Conference, Springer, 1992, pp. 139–147.

[19] B. Wesolowski, “Efficient verifiable delay functions,”
in Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Springer,
2019, pp. 379–407.

[20] R. L. Rivest, A. Shamir, and D. A. Wagner, “Time-lock
puzzles and timed-release crypto,” 1996.

[21] M. Mahmoody, T. Moran, and S. Vadhan, “Publicly
verifiable proofs of sequential work,” in Proceedings
of the 4th conference on Innovations in Theoretical
Computer Science, 2013, pp. 373–388.

[22] N. Döttling, S. Garg, G. Malavolta, and P. N. Vasude-
van, “Tight verifiable delay functions.,” IACR Cryptol.
ePrint Arch., vol. 2019, p. 659, 2019.

[23] S. King and S. Nadal, “Ppcoin: Peer-to-peer crypto-
currency with proof-of-stake,” self-published paper, Au-
gust, vol. 19, p. 1, 2012.

[24] Nakamoto consensus with vdf and vrf, last accessed on
01/08/20. [Online]. Available: https : / / ethresear. ch / t /
nakamoto-consensus-with-vdf-and-vrf/5671.

[25] Pos based on synthetic pow using vdf and vrf, last
accessed on 01/08/20. [Online]. Available: https : / /
ethresear. ch / t / pos - based - on - synthetic - pow - using -
vdf-and-vrf/7271.

[26] J. Long and R. Wei, “Nakamoto consensus with veri-
fiable delay puzzle,” arXiv preprint arXiv:1908.06394,
2019.

[27] H. Abusalah, C. Kamath, K. Klein, K. Pietrzak, and
M. Walter, “Reversible proofs of sequential work,” in
Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Springer,
2019, pp. 277–291.

[28] P. Valiant, “Incrementally verifiable computation or
proofs of knowledge imply time/space efficiency,” in
Theory of Cryptography Conference, Springer, 2008,
pp. 1–18.

[29] M. Naor, O. Paneth, and G. N. Rothblum, “Incremen-
tally verifiable computation via incremental pcps,” in
Theory of Cryptography Conference, Springer, 2019,
pp. 552–576.

[30] N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer,
“Recursive composition and bootstrapping for snarks
and proof-carrying data,” in Proceedings of the forty-
fifth annual ACM symposium on Theory of computing,
2013, pp. 111–120.

[31] S. Bowe, J. Grigg, and D. Hopwood, “Halo: Recur-
sive proof composition without a trusted setup.,” IACR
Cryptol. ePrint Arch., vol. 2019, p. 1021, 2019.

[32] B. Bünz, A. Chiesa, P. Mishra, and N. Spooner, “Proof-
carrying data from accumulation schemes.,” IACR Cryp-
tol. ePrint Arch., vol. 2020, p. 499, 2020.

[33] D. Boneh, B. Bünz, and B. Fisch, “A survey of two
verifiable delay functions.,” IACR Cryptol. ePrint Arch.,
vol. 2018, p. 712, 2018.

[34] V. Attias, L. Vigneri, and V. Dimitrov, “Implementation
study of two verifiable delayfunctions.,” IACR Cryptol.
ePrint Arch., vol. 2020, p. 332, 2020.

[35] J. Garay, A. Kiayias, and N. Leonardos, “The bit-
coin backbone protocol: Analysis and applications,” in
Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Springer,
2015, pp. 281–310.

[36] C. Cachin, K. Kursawe, and V. Shoup, “Random ora-
cles in constantinople: Practical asynchronous byzantine
agreement using cryptography,” Journal of Cryptology,
vol. 18, no. 3, pp. 219–246, 2005.

[37] E. Kokoris-Kogias, A. Spiegelman, D. Malkhi, and
I. Abraham, “Bootstrapping consensus without trusted
setup: Fully asynchronous distributed key generation.,”
IACR Cryptol. ePrint Arch., vol. 2019, p. 1015, 2019.

[38] I. Cascudo and B. David, “Scrape: Scalable randomness
attested by public entities,” in International Confer-
ence on Applied Cryptography and Network Security,
Springer, 2017, pp. 537–556.

[39] ——, “Albatross: Publicly attestable batched random-
ness based on secret sharing,”

[40] A. Cherniaeva, I. Shirobokov, and O. Shlomovits, “Ho-
momorphic encryption random beacon.,” IACR Cryptol.
ePrint Arch., vol. 2019, p. 1320, 2019.

[41] P. Schindler, A. Judmayer, M. Hittmeir, N. Stifter, and
E. Weippl, Randrunner: Distributed randomness from
trapdoor vdfs with strong uniqueness, Cryptology ePrint
Archive, Report 2020/942, https://eprint.iacr.org/2020/
942, 2020.

[42] E. Syta, P. Jovanovic, E. K. Kogias, N. Gailly, L.
Gasser, I. Khoffi, M. J. Fischer, and B. Ford, “Scalable
bias-resistant distributed randomness,” in 2017 IEEE
Symposium on Security and Privacy (SP), Ieee, 2017,
pp. 444–460.

[43] P. Schindler, A. Judmayer, N. Stifter, and E. Weippl,
“Hydrand: Efficient continuous distributed random-
ness,” in 2020 IEEE Symposium on Security and Pri-
vacy (SP), pp. 32–48.

[44] I. Eyal and E. G. Sirer, “Majority is not enough: Bit-
coin mining is vulnerable,” in International conference
on financial cryptography and data security, Springer,
2014, pp. 436–454.

[45] J. Bonneau, E. W. Felten, S. Goldfeder, J. A. Kroll, and
A. Narayanan, “Why buy when you can rent? bribery
attacks on bitcoin consensus,” 2016.

[46] K. Liao and J. Katz, “Incentivizing blockchain forks
via whale transactions,” in International Conference on
Financial Cryptography and Data Security, Springer,
2017, pp. 264–279.

[47] A. Judmayer, N. Stifter, A. Zamyatin, I. Tsabary, I.
Eyal, P. Gazi, S. Meiklejohn, and E. R. Weippl, “Pay-
to-win: Incentive attacks on proof-of-work cryptocur-

14

rencies.,” IACR Cryptol. ePrint Arch., vol. 2019, p. 775,
2019.

[48] R. Han, Z. Sui, J. Yu, J. Liu, and S. Chen, “Fact and
fiction: Challenging the honest majority assumption of
permissionless blockchains,”

[49] J. Garay, A. Kiayias, and N. Leonardos, “The bitcoin
backbone protocol with chains of variable difficulty,” in
Annual International Cryptology Conference, Springer,
2017, pp. 291–323.

[50] R. Pass, L. Seeman, and A. Shelat, “Analysis of the
blockchain protocol in asynchronous networks,” in An-
nual International Conference on the Theory and Ap-
plications of Cryptographic Techniques, Springer, 2017,
pp. 643–673.

[51] L. Kiffer, R. Rajaraman, and A. Shelat, “A better
method to analyze blockchain consistency,” in Proceed-
ings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, 2018, pp. 729–744.

[52] L. Ren, “Analysis of nakamoto consensus.,” IACR Cryp-
tol. ePrint Arch., vol. 2019, p. 943, 2019.

[53] J. A. Garay, A. Kiayias, and N. Leonardos, “Full analy-
sis of nakamoto consensus in bounded-delay networks.,”
IACR Cryptol. ePrint Arch., vol. 2020, p. 277, 2020.

[54] A. Dembo, S. Kannan, E. N. Tas, D. Tse, P.
Viswanath, X. Wang, and O. Zeitouni, “Everything
is a race and nakamoto always wins,” arXiv preprint
arXiv:2005.10484, 2020.

[55] P. Gazi, A. Kiayias, and A. Russell, “Tight consistency
bounds for bitcoin,” 2020.

[56] “Bitcoin’s energy consumption ’equals that of switzer-
land’,” last accessed on 01/08/20. [Online]. Available:
https://www.bbc.com/news/technology-48853230#:∼:
text=Bitcoin%20uses%20as%20much%20energy,the%
20University%20of%20Cambridge%20shows .&text=
Currently%2C%20the%20tool%20estimates%20that,0.
21%25%20of%20the%20world’s%20supply..

[57] Amd breaks 8ghz overclock with upcoming fx processor,
sets world record, last accessed on 01/08/20. [Online].
Available: http://hothardware.com/News/AMD-Breaks-
Frequency-Record-with-Upcoming-FX-Processor/.

[58] C. Cachin, R. Guerraoui, and L. Rodrigues, Introduc-
tion to reliable and secure distributed programming.
Springer Science & Business Media, 2011.

[59] D. Malkhi and M. Reiter, “Byzantine quorum systems,”
Distributed computing, vol. 11, no. 4, pp. 203–213,
1998.

[60] C. Dwork, N. Lynch, and L. Stockmeyer, “Consensus in
the presence of partial synchrony,” Journal of the ACM
(JACM), vol. 35, no. 2, pp. 288–323, 1988.

[61] B. Y. Chan and E. Shi, “Streamlet: Textbook stream-
lined blockchains.,” IACR Cryptol. ePrint Arch.,
vol. 2020, p. 88, 2020.

[62] T.-H. H. Chan, R. Pass, and E. Shi, “Consensus through
herding,” in Annual International Conference on the
Theory and Applications of Cryptographic Techniques,
Springer, 2019, pp. 720–749.

[63] T. Rocket, M. Yin, K. Sekniqi, R. van Renesse,
and E. G. Sirer, “Scalable and probabilistic leaderless
bft consensus through metastability,” arXiv preprint
arXiv:1906.08936, 2019.

[64] “Bch avalanche transactions show finality speeds 10x
faster than ethereum,” last accessed on 01/08/20. [On-
line]. Available: https : / / news . bitcoin . com / bch -
avalanche - transactions - show - finality - speeds - 10x -
faster-than-ethereum/.

[65] “Vrf-based mining: Simple non-outsourceable cryp-
tocurrency mining,” last accessed on 01/08/20. [Online].
Available: https://github.com/DEX- ware/vrf- mining/
blob/master/paper/main.pdf.

[66] S. Micali, M. Rabin, and S. Vadhan, “Verifiable random
functions,” in 40th Annual Symposium on Foundations
of Computer Science (Cat. No. 99CB37039), IEEE,
1999, pp. 120–130.

[67] D. Stutzbach and R. Rejaie, “Understanding churn in
peer-to-peer networks,” in Proceedings of the 6th ACM
SIGCOMM conference on Internet measurement, ACM,
2006, pp. 189–202.

[68] M. Blum, “Coin flipping by telephone a protocol for
solving impossible problems,” ACM SIGACT News,
vol. 15, no. 1, pp. 23–27, 1983.

[69] B. Awerbuch and C. Scheideler, “Robust random num-
ber generation for peer-to-peer systems,” in Interna-
tional Conference On Principles Of Distributed Sys-
tems, Springer, 2006, pp. 275–289.

[70] Y. Dodis, “Efficient construction of (distributed) verifi-
able random functions,” in International Workshop on
Public Key Cryptography, Springer, 2003, pp. 1–17.

[71] V. Kuchta and M. Manulis, “Unique aggregate signa-
tures with applications to distributed verifiable random
functions,” in International Conference on Cryptology
and Network Security, Springer, 2013, pp. 251–270.

[72] D. Galindo, J. Liu, M. Ordean, and J.-M. Wong, “Fully
distributed verifiable random functions and their appli-
cation to decentralised random beacons.,” IACR Cryptol.
ePrint Arch., vol. 2020, p. 96, 2020.

[73] C. Gómez-Calzado, A. Lafuente, M. Larrea, and M.
Raynal, “Fault-tolerant leader election in mobile dy-
namic distributed systems,” in 2013 IEEE 19th Pacific
Rim International Symposium on Dependable Comput-
ing, IEEE, 2013, pp. 78–87.

[74] D. Boneh, S. Eskandarian, L. Hanzlik, and N. Greco,
“Single secret leader election.,” IACR Cryptol. ePrint
Arch., vol. 2020, p. 25, 2020.

[75] M. Yin, D. Malkhi, M. K. Reiter, G. G. Gueta, and
I. Abraham, “Hotstuff: Bft consensus with linearity
and responsiveness,” in Proceedings of the 2019 ACM
Symposium on Principles of Distributed Computing,
2019, pp. 347–356.

[76] G. Wang, Z. J. Shi, M. Nixon, and S. Han, “Sok:
Sharding on blockchain,” in Proceedings of the 1st ACM
Conference on Advances in Financial Technologies,
2019, pp. 41–61.

15

[77] N. Ephraim, C. Freitag, I. Komargodski, and R. Pass,
“Continuous verifiable delay functions,” in Annual In-
ternational Conference on the Theory and Applications
of Cryptographic Techniques, Springer, 2020, pp. 125–
154.

[78] D. Hopwood, S. Bowe, T. Hornby, and N. Wilcox,
“Zcash protocol specification,” GitHub: San Francisco,
CA, USA, 2016.

APPENDIX

A. Security proof of two SeqPoW constructions

We formally prove security guarantee of two SeqPoW
constructions. We start from SeqPoWVDF.

Lemma 8. SeqPoWVDF satisfies SeqPoW-Completeness.

Proof. Assuming there is an (λ, ψ, T)-valid tuple
(pp, sk, i, x, Si, πi). By VDF-Completeness and Lemma 1,
VDF.Verify(·) will pass. As hash functions are deterministic,
difficulty check will pass. Therefore,

SeqPoWVDF.Verify(pp, pk, i, x, Si, πi) = 1

Lemma 9. SeqPoWVDF satisfies SeqPoW-Soundness.

Proof. We prove this by contradiction. Assuming there exists
a tuple (pp, sk, i, x, Si, πi) that is not (λ, ψ, T)-valid such that

SeqPoWVDF.Verify(pp, pk, i, x, Si, πi) = 1

By VDF-Soundness and Lemma 1, if (y, y+, π+, ψ) is gen-
erated by A, VDF.Verify(·) will return 0. As hash functions
are deterministic, if Si > 2κ

T , difficulty check will return 0.
Thus, if (pp, sk, i, x, Si, πi) is not (λ, ψ, T)-valid, then the
adversary should break VDF-Soundness. Thus, this assumption
contradicts VDF-Soundness.

Lemma 10. SeqPoWVDF satisfies SeqPoW-Hardness.

Proof. We prove this by contradiction. Assuming

Pr

[
bi+1 = 1

∣∣∣∣ Si+1, bi+1 ←
Solve(pp, sk, T, Si)

]
>

1

T

By VDF-Sequentiality, the value of Si+1 is unpredictable
before finishing Solve(·). By pseudorandomness of hash func-
tions, H(pk‖Si+1) is uniformly distributed, and the probabil-
ity that H(pk‖Si+1) ≤ 2κ

T is 1
T with negligible probability.

This contradicts the assumption.

Lemma 11. SeqPoWVDF does not satisfy SeqPoW-
Uniqueness.

Proof. By SeqPoW-Hardness, each of Si has the probability
1
T to be a valid solution. As i can be infinite, with over-
whelming probability, there exists more than one honest tuple
(pp, sk, i, x, Si, πi) such that H(pk‖Si) ≤ 2κ

T .

Lemma 12. If the underlying VDF satisfies σ-VDF-
Sequentiality, then SeqPoWVDF satisfies σ-SeqPoW-
Sequentiality.

Proof. We prove this by contradiction. Assuming there exists
A1 which runs in less than time σ(ψi) such that

Pr

 (pp, sk, i, x, Si, πi)
∈ H

∣∣∣∣∣∣∣∣∣∣

pp← Setup(λ, ψ, T)

(sk, pk)
R← Gen(pp)

A1 ← A0(λ, pp, sk)
Si ← A1(i, x)

πi ← Prove(pp, sk, i, x, Si)


By σ-VDF-Sequentiality, A1 cannot solve
VDF.Eval(ppVDF, y, ψ) within σ(ψ). By Lemma 1, Si can and
only can be computed by composing VDF.Eval(ppVDF, y, ψ)
for i times, which cannot be solved within σ(ψi). This
contradicts the assumption.

The completeness, soundness, hardness and sequentiality
proofs of SeqPoWSloth are identical with SeqPoWVDF’s. We
prove SeqPoWSloth satisfies SeqPoW-Uniqueness below.

Lemma 13. SeqPoWSloth satisfies SeqPoW-Uniqueness.

Proof. We prove this by contradiction. Assuming there
exists two (λ, ψ, T)-valid tuples (pp, sk, i, x, Si, πi)
and (pp, sk, i, x, Si, πi) where j < i. According
to SeqPoWSloth.Solve(·), we have H(pk‖Si) ≤ 2κ

T

and H(pk‖Sj) ≤ 2κ

T , and initial difficulty check in
SeqPoWSloth.Verify(·) will pass. However, in the for loop
of SeqPoWSloth.Verify(·), if Si is valid, then verification of
Sj will fail. Then, SeqPoWSloth.Verify(·) returns 0, which
contradicts the assumption.

16

