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Abstract Komargodski et.al. introduced Evolving Secret Sharing which allows an
imaprtial participant, called dealer, to share a secret among unbounded number of
participants over any given access structure. In their construction for evolving secret
sharing over general access structure, the size of share of the ith participant happens
to be exponential (O(2i−1)). They also provided constructions for (k,∞) threshold
secret sharing. We consider the problem of evolving secret sharing with t essential
participants, namely, over t-(k,∞) access structure, a generalization of (k,∞) se-
cret sharing (t = 0). We further generalize this access structure to a possible case
of unbounded number of essential participants and provide a construction for se-
cret sharing on it. Both the constructions are information theoretically secure and
reduce the share size of the construction due to Komargodski et.al. over general ac-
cess structure, exponentially. Moreover, the essential participants receive ideal (and
hence, optimal) shares in the first construction.
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1 Introduction

In secret sharing one can so share an information (usually a field element) among
n (fixed and pre-decided) participants that certain subsets are able to reconstruct it
back while others are not [18]. Given any access structure on a set of participants,
there exists a secret sharing scheme realizing it. Evolving secret sharing generalizes
the notion of usual secret sharing where the participants’ set was to be known be-
forehand. It allows participants to join one by one and the dealer hands them their
shares without refreshing shares already distributed. Komargodski et.al. introduced
evolving secret sharing in [8]. We discuss few of these notions in details in Section
2. In Section 3 we introduce t-(k,∞) and (t,∞,k,∞) secret sharing and provide two
constructions. In Section 4 we summarize our results and suggest further research
directions.

Our Contribution: In this paper, we provide a construction for secret sharing realiz-
ing t-(k,∞) access structure where fixed t participants are essential. Essential partici-
pants in this scheme receive a share of size O(1) whereas ith of the other participants
receives a share of the size (k−1) · log i+ poly(k, `) ·O(log i) for an `-bit secret be-
ing shared. We further generalize this access structure to (t,∞,k,∞) access structure
and provide a construction for secret sharing realizing it. In the latter construction,
the ith participant receives a share of size O((k− 1) · log i+ poly(k, `) ·O(log i)).
Share sizes in both the schemes are a huge (exponential) improvement compared
to the scheme for general access structure having share size O(2i−1) in [8]. We
compare our results with [8] for a single bit secret in Table 1.

Construction Share Size of the ith party
[8] General Access Structure 2i−1

[8] (k,∞) (k−1) · log i+ poly(k) ·O(log i)
1. This paper t-(k,∞)
(i) Essential O(1)
(i) Other (k−1) · log i+ poly(k) ·O(log i)
2. This paper (t,∞,k,∞)
(i) Essential O((k−1) · log i+ poly(k) ·O(log i))
(i) Other (k−1) · log i+ poly(k) ·O(log i)

Table 1 Comparison of Size of Shares for a single bit secret

2 Preliminaries

For a given access structure Γ ⊂ 2P on a participants’ set P , a subset A of par-
ticipants is called qualified if and only if A ∈ Γ ; otherwise A is forbidden. A
(t,n) threshold access structure on n participants consists of qualified sets which
are precisely of size t or more. For secret sharing on any given access structure,
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an impartial participant D /∈P (called the Dealer) invokes the share generation
protocol ShareGen and generates n shares, one for each participant. In the hour
of need for reconstruction of the secret, certain participants pool their shares in
the reconstruction protocol Reconst. The secret sharing scheme is denoted by
Π = (ShareGen,Reconst). The correctness property in a secret sharing scheme
ensures that any qualified set of participants is able to reconstruct the secrets with
certainty, i.e. Pr[s′ = s|s′← Reconst(A ) and A ∈ Γ ] = 1. On the other hand, due
to perfect secrecy, Reconst outputs for the correct secret from a forbidden set’s
share with probability no more than that derived from the probability distribution of
the secret space S , i.e. Pr[s′= s|s′←Reconst(A ) and A ∈ 2P \Γ ] =Pr[s←S ].
Share size of a participant Pi is size of collection of all possible shares for him; this
collection (called the share space Vi of Pi) is generated due to different values of
randomness of the share generation algorithm. In an ideal secret sharing scheme,
the share size and secret size are same.

Secret sharing with essential participants was initiated in a work by Arumugam
et.al. in [2]. They denoted this type of access structure as (k,n)∗ access structure
where a secret image was shared into n shadow images where presence of the
shadow corresponding to one particular participant was essential. Later this notion
was generalized to access structures containing t essential participants as t-(k,n)
secret sharing in [14, 7, 5]. A further generalization (t,s,k,n) secret sharing was
considered in [10] by Li et.al. where at least t essential shadows (among s of those)
were necessary to reconstruct the secret, along with the threshold condition being
satisfied.

Evolving secret sharing was introduced by Komargodski et.al. in [8]. As opposed
to usual secret sharing with n participants, they considered a far more practical vari-
ant where there is no upper bound on number of participants. Participants join one
by one and they are handed over a share based on shares distributed to previous
participants but without interacting with the previous participants. In other words,
shares are not refreshed. Most of the secret sharing schemes are linear [18] in na-
ture and requires the underlying field of be of size at least log(field size), where
(field size) > #(participants). This creates a problem for the evolving setup where
the number of participants in not known beforehand. Komargodski et.al. provided a
beautiful solution for this problem in [8] on general access structure where the ith

participant receives a share of size ` · 2i−1 for an ` bit secret. They also provided a
(k,∞) secret sharing scheme sharing an ` bit string with share size of the ith par-
ticipant being (k− 1) · log i+ poly(k, `) ·O(log i). A few more follow up works in
evolving setup can be found in [11, 9, 4, 3, 6].

3 Evolving Secret Sharing with Essential Participants

Secret sharing with essential participants is a generalized case of usual threshold
secret sharing. Though being well studied in traditional secret sharing, this notion
is yet unexplored in evolving setup except for a work by Dutta et.al. [6]. In the
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following sections, we introduce secret sharing on t-(k,∞) and (t,∞,k,∞) access
structures.

3.1 A Construction for t-(k,∞) Secret Sharing Scheme

In a t-(k,∞) secret sharing, qualified subsets are those which are of at least size
k and contain t special participants, called the essential participants. The essential
participants are predefined and fixed, and are free to join as and when they wish to,
just like other non-essential participants. Of course, until the last essential partici-
pant has joined, no subset of participants is qualified. We define an attribute function
f : P → {0,1} for each participant Pi as : f (Pi) = 1 if and only if Pi is an essential
participant. The function f can also be interpreted as the characteristic function of
the subset of essential participants. Let us demonstrate the simple case of 1− (2,∞)
secret sharing: To share a secret s ∈ {0,1}` = S , give the essential participant Pα

a random number r←S and every other participant r⊕ s. Reconstruction is done
by XORing two shares. Every participant receives a share of constant size and this
scheme is ideal. This example portrays a somewhat extremal case of evolving se-
cret sharing with essential participants. Another such extremal case of consideration
would be k−(k,∞) secret sharing. In this case all but the essential participants would
receive dummy shares which might play no role whatsoever in secret reconstruction.
For the rest of this paper, we shall assume that t < k. Now that we are warmed up
with how two simplest instances of t-(k,∞) secret sharing schemes work, let us
move on to a more general construction. We assume the availability of (k,∞) - se-
cret sharing schemes Πk due to Komargodski et.al. [8] for every k≥ 2. We shall use
this scheme as a black-box to generically produce a t-(k,∞) secret sharing scheme.

Theorem 1. For positive integers t,(<)k and `, there exists a t-(k,∞) secret shar-
ing scheme sharing an ` bit secret, meeting the correctness and perfect secrecy
conditions. Moreover, the scheme is ideal for essential participants and for the ith

non-essential participant, share size is given by (k−1) · log i+ poly(k, `) ·O(log i).

Proof. For k > t, we demonstrate the following secret sharing scheme (ShareGen,
Reconst) attaining the said conditions.

ShareGen : For a secret s∈{0,1}` =S , we describe the share generation protocol
below :

1. Generate t +1 random numbers r1,r2, . . . ,rt ,rt+1
$←− {0,1}` such that s =

t+1⊕
i=1

ri.

2. Initialize c = 0.
3. On arrival of the ith participant Pi (i = 1,2,3, . . .), if Pi is an essential participant,

i.e. if f (Pi) = 1, then update c by adding 1 to it and give rc to Pi as his share; else
run the share generation algorithm of Πk−t to generate a share wi of rt+1 and give
it to Pi. If at any point of share generation c > t, then ShareGen aborts.
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Reconst : k participants including the t essential participants pool their shares; the
k− t non-essential participants reconstruct rt+1 using reconstruction algorithm of
Πk−t . Further, they find s by bit wise XORing r1,r2, . . . ,rt ,rt+1. If a forbidden set
submits shares for reconstruction, FAIL is output.

Proof of Correctness: Every qualified set of participants A ∈ Γ contains the t es-
sential participants and at least k− t other participants. Due to correctness property
of reconstruction algorithm of Πk−t , these k− t or more participants can uniquely
reconstruct rt+1. The secret s is found by XORing ri’s for i ∈ [t +1].

Proof of Perfect Secrecy: In t-(k,∞) access structure there are two kind of forbid-
den sets possible, namely, (i) Type 1 forbidden sets which contain k or more par-
ticipants but do not contain at least one essential participant; (ii) Type 2 forbidden
sets which contain at most k− 1 participants in total. For a Type 1 forbidden set
A , members of A possess the following set of information in f o(1) = {ri : for ≤
t−1 values of i from [t] }t{shares of rt+1}, where t denotes disjoint union. Using
in f o(1) A can reconstruct rt+1, since there are at least k− (t−1) = k− t +1 shares
of rt+1 present. Without loss of generality, let us assume that the 1st essential partic-
ipant is not present in A , then participants of A can reconstruct with a probability

Pr[Finding s = r1⊕ r2⊕ ·· ·⊕ rt+1|r2,r3, . . . ,rt ,rt+1] = Pr[r1
$←− {0,1}`] = Pr[s $←−

S ], i.e. the best that a Type 1 forbidden set can do with their shares is guess the se-
cret s (without looking at any share, like any person not present in P). A Type 2 for-
bidden set either consists of all the essential participants but k− t−1 non-essential
participants; or, t − 1 or lesser essential participants. The proof of perfect secrecy
for the latter of these two cases can be done in a manner similar to Type 1. We
only prove perfect secrecy for the former case now. A possesses the following set
of information: in f o(2) = {r1,r2, . . . ,rt}t{k− t−1 shares of rt+1}. Due to perfect
secrecy of Πk−t used, it follows that Pr[Finding s = r1⊕ r2⊕·· ·⊕ rt+1|in f o(2)] =

Pr[rt+1
$←− {0,1}`] = Pr[s $←−S ].

Share Size Analysis: The scheme described above is ideal for essential participants.
For the ith non-essential participant, share size is given by (k−1) · log i+ poly(k, `) ·
O(log i). It is convenient to assume k ≥ 3 as for k = 2, the access structure reduces
to two trivial sub-cases of 1− (2,∞) and 2− (2,∞) access structures, where secret
sharing can be done trivially, as shown in the beginning of this section. Due to our
construction, share size of the ith non-essential participant preserves the share size
of the ith participant in (k,∞) secret sharing scheme of [8] by Komargodski et.al.
sharing ` bit strings. �

We further generalize t-(k,∞) secret sharing in the following section. Specifi-
cally, we give rise to a new access structure called (t,∞,k,∞) access structure in
Section 3.2 in which qualified subsets are those which contain any t of the possibly
infinite collection of pseudo-essential participants and also k participants in total.
We call these participants pseudo-essential because essentiality of these participants
doesn’t depend on their individuality but on their grouping with other similar par-
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ticipants in sufficient number. It can be noted that, unlike t-(k,∞) access structure,
in this access structure one may find qualified subsets consisting of only pseudo-
essential participants. As a particular case, if no new pseudo-essential participant
arrives after the t-th one, it is nothing but a t-(k,∞) access structure, establishing
the fact that (t,∞,k,∞) access structure is indeed a generalization of t-(k,∞) access
structure. Moreover, (t,∞,k,∞) access structure can be seen as a generalization of
another access structure, namely (t,s,k,n) access structure. Secret sharing was done
on the latter access structure by Li et.al. in [10].

3.2 A Construction for (t,∞,k,∞) Secret Sharing Scheme

We define a new access structure called (t,∞,k,∞) access structure in this section
where a qualified subset of participants contains at least k participants in total includ-
ing at least t participants from a subset Pps of special participants called pseudo-
essential participants. The subset may not be known in the beginning but this subset
can be characterized by defining an attribute function as in Section 3.1. To summa-
rize, f : P→{0,1} is a function defined on the collection of participants P [which
is also unknown in the beginning but f can be identified with a function with similar
properties being defined on the set N of natural numbers and, hence, is convenient]
as : f (Pi) = 1 if and only if Pi is a pseudo-essential participant. In the beginning of
the scheme, we set Pps = /0 and whenever a new pseudo-essential party joins, we
add him to the set Pps. We assume availability of (k,∞) - secret sharing schemes Πk
[8] for every k ≥ 2. In this construction, every pseudo essential participant receives
share which is heavier than the size of every other participant, the convenience of
which we describe in proof of Theorem 2.

Theorem 2. For positive integers t,(<)k and `, there exists a (t,∞,k,∞) secret
sharing scheme sharing an ` bit secret, satisfying correctness and perfect se-
crecy conditions. Moreover, the share of size of the ith participant is O((k −
1) · log i + poly(k, `) ·O(log i)) if he is pseudo-essential; otherwise share size is
(k−1) · log i+ poly(k, `) ·O(log i).

Proof. For k > t, we demonstrate the following secret sharing scheme (ShareGen,
Reconst) attaining the said conditions.

ShareGen : For a secret s∈{0,1}` =S , we describe the share generation protocol
below :

1. Generate a random number r $←−S .
2. On arrival of the ith participant Pi, if f (Pi) = 1 then run the share generation

algorithms of Πt and Πk−t to generate a new shares w1,i and w2,i of r and r⊕ s
respectively and give (w1,i,w2,i) to Pi as his share; else run the share generation
algorithm of Πk−t to generate a new share w2,i of r⊕ s and give it to Pi.
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Reconst : Suppose, k parties Pi1 ,Pi2 , . . . ,Pik pool their shares.

1. Set Pps,t = /0 and L = {i1, i2, . . . , ik}.
2. Adjoin the first t pseudo essential participants present for reconstruction to Pps,t

and delete their corresponding indices from L. In other words:
c = 0
for (i in L) :

if ( f (Pi) = 1) :
Pps,t = Pps,t ∪{Pi}
L = L\{i}.
c += 1
if (c = t):

break.
3. Run the reconstruction algorithm of Πt on

{
w1,i : Pi ∈Pps,t

}
to reconstruct r.

Run the reconstruction algorithm of Πk−t on {w2,i : i ∈ L} to reconstruct r⊕ s.
XOR r and r⊕ s to reconstruct s. If a forbidden set submits shares, Reconst
outputs FAIL.

Proof of Correctness: Every qualified set A in this access structure is of size≥ k and
contains t pseudo-essential participants. If A contains more than t pseudo-essential
participants, we ‘treat’ the first t of them as pseudo-essential and the others ordi-
narily. The (first) t pseudo-essential participants reconstruct r and the remaining
participants reconstruct r⊕ s using respective reconstruction algorithms of Πt and
Πk−t . Since both the algorithms possess correctness, the property is preserved for
our construction as well.

Proof of Perfect Secrecy: The proof for perfect secrecy is similar to Theorem 1.

Share Size Analysis: The ith participant receives a share of size of size O((k− 1) ·
log i+ poly(k, `) ·O(log i)) if he is pseudo-essential; otherwise share size is (k−1) ·
log i+ poly(k, `) ·O(log i). It can be noted that pseudo-essential participants receive
shares which are heavier compared to other participants. This is convenient as there
are qualified sets consisting of only pseudo-essential participants, and hence, they
should possess shares corresponding to both r and r⊕ s. �

4 Conclusion and Future Research

To sum up, we provide a secret sharing scheme realizing t-(k,∞) access struc-
ture where t (fixed) participants are essential. Essential participants in this con-
struction receive a share of size O(1) whereas ith of the other participants re-
ceives a share of the size (k− 1) · log i + poly(k, `) ·O(log i) for an `-bit secret
being shared. We further generalize this access structure to a new access struc-
ture called (t,∞,k,∞) access structure and provide a secret sharing scheme re-
alizing it. In the latter construction, the ith participant receives a share of size
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O((k− 1) · log i+ poly(k, `) ·O(log i)). Share sizes in both the schemes are a huge
(exponential) improvement compared to the scheme for general access structure
having share size O(2i−1) in [8].

A further research direction could be considering dynamic thresholds (both in t
and k) like [9] in both the access structures demonstrated. Another interesting follow
up work would be to introduce secret sharing with cheaters [19, 13, 12, 15, 16, 1, 17]
in evolving setup.
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