
Security in banking ⋆

Arthur Van Der Merwe, David Paul, Jelena Schmalz, and Timothy M. Schaerf

School of Science and Technology, University of New England, Armidale NSW, 2351,
Australia

Abstract. We examine the security of the Australian card payment sys-
tem by analysing existing cryptographic protocols. In this analysis, we
examine TDES and DES-V key derivation and the use of secure crypto-
graphic devices, then contrast this with alternative mechanisms to en-
able secure card payments. We compare current Australian cryptographic
methods with their international counterparts, such as the ANSI meth-
ods, and then motivate alternative methods for authenticated encryption
in card payment systems.

Keywords: AS 2805 · authenticated encryption · financial · encryp-
tion · TR-31

1 Introduction

The protection of the financial system in every country is the primary directive
of payment system regulators. Vulnerable architectures in the financial system,
more specifically, card payment systems might cause uncertainty in the opera-
tional effectiveness of economic activities. Historically, each country relied on a
combination of international and local standards to maintain the effectiveness
and security of payment systems. In recent years, card manufacturing organ-
isations started a commercial company with the view to standardise security
practices across the globe. The established commercial company, named Pay-
ment Card Industry Security Standards Council (PCI-SSC), headed by US-based
card companies (Visa, MasterCard, American Express), imposes security require-
ments and specifications developed by their working groups. The PCI-SSC is not
a standards organisation. However, they produce industry specifications adopted
widely in several regions [MR08]. The industry standards by PCI-SSC provide a
set of security and test requirements, and the use of a set of approved laborato-
ries to test if participants meet the desired specifications based on their function
in the payments landscape. Recently, PCI-SSC required the management of all
cryptographic keys in structures called “Key Blocks”. Key blocks are defined in
the ANS X9 TR-31 Technical Report (TR-31) [Ins18], which was in response
to the ANSI X9 24.1 Standard [Ins17]. The goal of ANSI’s X9.24-1-2017 is to
specify some minimum requirements for the management of symmetric crypto-
graphic keys used for financial transactions; typically these requirements apply
⋆ This research is supported by an Australian Government Research Training Program

(RTP) Scholarship.

2 Van Der Merwe et al.

to POS and ATM transactions, in addition to banking messages. In this paper
we focus on the notion of key blocks defined in the TR-31 technical report.

2 Our Contribution

Since the development of the Australian Key Scheme series in the Australian Na-
tional Standards (the AS 2805 series of standards) there remains an open prob-
lem to define security bounds and a definition of security. TR-31 has the same
open question, though TR-31 resembles an authenticated encryption scheme. We
evaluate the TR-31 and AS 2805 schemes and draw a formal comparison. The
goal is to investigate the differences and advantages between the two systems.
We analyse key generation, key derivation, and key separation, then motivate
changes to the AS 2805 standards for enhancement.

3 Preliminaries

This section provides key definitions. Some aspects are standard, but others
(particularly tidiness, AEAD schemes recognizing their domains, and identifying
encryption schemes by their encryption algorithms) are not. We abstract the use
of any specific encryption scheme and focus on general constructions. We start by
reviewing the necessary tools and definitions that are required for our results.
We begin by establishing the notation for block ciphers, data encryption and
cipher block chaining (CBC) to secure the encryption of multiple blocks of a
block cipher. We look at message authentication (MAC) to provide integrity
followed by authenticated encryption to enable both data security and integrity.
Lastly, we define authenticated encryption with associated data (AEAD).

3.1 Notation

We use [n] to denote the set {1, ..., n} and ∅ to denote the empty set. A binary
string of size n is represented as {0, 1}n and {0, 1}∗ represents a set of all strings
of finite length. For any two binary strings s1 and s2, we denote the size of
s1 as |s1| and the concatenation of the string s1 immediately followed by s2 as
s1||s2. For any non-negative integer k ≤ |s1|, we use ⌊s1⌋k to represent the string
obtained by the truncation of s1 to the leftmost k bits. The process of uniformly
sampling a value from a finite set S and assigning the result to x ∈ S is written
as x

$← S. We use the ⊕ symbol to denote the binary addition modulo two or
exclusive OR (XOR) operator and ⊥ indicating an error.
We model security using the code-based game-playing framework by Bellare
et.al. [BR06] where the interaction between the adversary with the game is
implicit. Throughout the following text, we refer to a single-use arbitrary number
used in cryptographic algorithms as a nonce. In practice a nonce is often a
random or pseudo-random number to prevent replay attacks, which introduces
randomness into an algorithm.

Security in banking 3

3.2 Negligible, super-poly, and poly-bounded functions
We begin by defining the notions of negligible, super-poly, and poly-bounded func-
tions. A negligible function f is one that not only tends to zero as n → ∞, but
does so faster than the inverse of any reciprocal.
Definition 1. f is called negligible if for all c ∈ Z > 0 there exists n0 ∈ Z≥1

such that for all integers n ≥ n0, we have |f(n)| < 1/nc.

Z≥1 → R is negligible if and only if for all c > 0, we have
lim

n→∞
f(n)nc = 0.

The definition of a negligible function leads to the definition of a super-poly
function:
Definition 2. A function f is called super-poly if 1/f is negligible.
A poly-bounded function f is one that is bounded in absolute value by some
polynomial. Formally:
Definition 3. A function f is called poly-bounded, if there exists c, d ∈ Z>0

such that for all integers n ≥ 0,we have |f(n)| ≤ nc + d.

Intuitively, we refer to a negligible value as a value so small as to be “zero for all
practical purposes”, for example 2−100. We also use the following terms:

– A function f(n) is polynomial time computable if there exists a Turing ma-
chine M and a polynomial p(n), such that M computes the function f(n)
such that M runs in time ≤ p(n) for all inputs of length n.

– If a function f(n) is polynomial time computable, then f(n) is poly-bounded.
– An efficient adversary is one that runs in polynomial-time. The Bachmann–

Landau O notation [Bac94] [Lan09] captures the notion of an adversary that
cannot find any polynomial-time algorithm to determine the key from a given
algorithm. Consider the task of finding the correct k-bit key among all 2k
possibilities, using brute-force. Without additional information provided by
cryptanalysis, the best way is to check every key. The brute-force task takes
O(2k) computations which is not polynomial-time but exponential time. The
calculation is therefore asymptotically out of reach for a polynomial-time
adversary.

– A value N is called super-poly if 1/N is negligible.
– A poly-bounded value is a “reasonably” sized number. In particular, an ef-

ficient adversary is one whose running time is poly-bounded.

Random Experiments. We refer to a protocol game played by a group of
interactive probabilistic algorithms as random experiments. These games are
expressed as a list of actions by players, where the result of the actions is an
event with a discrete probability, denoted as:

Pr[action1; action2; ...; actionn : event] (1)
The outcome of the game in (1) is the probability of event after executing
action1; ...; actionn in sequential order. event is taken over a probability space, of
all random variables involved in the actions.

4 Van Der Merwe et al.

3.3 Block Ciphers

A block cipher is a deterministic cipher E = (E, D) with an encrypt (E) and
decrypt (D) function defined over a message space M and ciphertext space C.
The message space M ∈ X and ciphertext space C ∈ X are the same finite set,
where X = {0, 1}n and |X | = 2n. The key space K ∈ {0, 1}n, and we say that E
is a block cipher defined over (K, X) . We call an element x ∈ X a data block,
and refer to X as the data block space of E .
For every fixed key k ∈ K, we can define the function fk := E(k, ·) ; that is,
fk : X → X sends x ∈ X to E(k, x) ∈ X . The usual correctness requirement
for any cipher implies that, for every fixed key k, the function fk is one-to-one
and, as X is finite, fk must be onto as well. Thus, fk is a permutation on X ,
and D(k, ·) is the inverse permutation f−1

k .

Definition 4. A block cipher E is secure if, for all efficient adversaries A, A
has a negligible probability in determining the key. We denote this probability as
Adv[A, E] ≤ ϵ, where epsilon is a negligible value.

3.4 Block cipher mode of operations

If there are multiple data blocks in the message space of a block cipher, |X | > 1,
then a method is needed to combine several blocks of encryption together.

CBC mode of operation One such method is to use a block cipher in cipher
block chaining (CBC) mode. CBC mode chains ciphertext blocks together where
the current block is dependent on the previous encrypted block. Let the key gen-
eration algorithm return a random key for the block cipher, and the IV be the
initial a also chosen at random, a $← X . We denote the size of each block by n,
and break the message m ← [m1,m2, . . . ,mj , . . . ,mv] into blocks equal to the
block size n. The result of the algorithm is the combination of each ciphertext
block c ← [c1, c2, . . . , cj , . . . , cv] and the initial value, abbreviated as IV we call
a. If the message is not multiples of the block size, |m| mod n ̸= 0, then we pad
the message with the function m ← p(m) such that |m| mod n = 0. We can
then define ⟨c, a⟩ ← E(k,m), where c is computed according to the following
algorithm:

c← E(k,m)
If (|m| mod n ̸= 0) then m← p(m):
Break m into n-bit blocks m← [m1,m2, . . . ,mj , . . . ,mv]

c0 ← a
$← X

for j ← 1 to v do
cj ← E(k, (cj−1 ⊕mj))

c← c1||c2|| . . . ||cj || . . . ||cv
output ⟨c, a⟩;

Security in banking 5

For k ∈ K and c ∈ X , with v ← |c|, we define m ← D(k, c), where m is
computed according to the following algorithm:

⟨D(k, c), a⟩
If (|c| mod n ̸= 0) then return ⊥:
Break c into n-bit blocks c← [c1, c2, . . . , cj , . . . , cv]

c0 ← IV ← a
for j ← 1 to v do

mj ← D(k, (cj−1 ⊕ cj))
m← [m1||m2|| . . . ,mj || . . . ||mv]
output m;

Fig. 3.1. The CBC mode of encryption

ECB mode of operation Similarly to CBC mode, we can define Electronic
Code Book (ECB) mode of operation (in Figure 3.2) where each block of data
is encrypted independently of the previous encrypted block, using the block
cipher. After which each encrypted block is concatenated together to form the
ciphertext.
For k ∈ K and m ∈ X , with v = |m|, we define c ← E(k, m), where c is
computed according to the following algorithm:

c← E(k,m)
If (|m| mod n ̸= 0) then m← p(m):
Break m into n-bit blocks m← [m1,m2, . . . ,mj , . . . ,mv]

for j ← 1 to v do
cj ← E(k, (mj)

c← c1||c2|| . . . ||cj || . . . ||cv
output c

6 Van Der Merwe et al.

Fig. 3.2. The ECB mode of operation

CTR mode of operation Counter mode of operation uses a mechanism simi-
lar to ECB mode, but includes a counter and a nonce for each block. For k ∈ K
and m ∈ X , with v = |m|. Let ρ be a unique nonce for the duration of the
algorithm, and tj be a counter value, increasing with every encrypted block. We
define c← E(k, m), where c is computed according to the following algorithm:

c← E(k,m)
If (|m| mod n ̸= 0) then m← p(m):
Break m into n-bit blocks m← [m1,m2, . . . ,mj , . . . ,mv]

for j ← 1 to v do
aj ← E(k, ρ||tj)
cj ← aj ⊕m)j

c← c1||c2|| . . . ||cj || . . . ||cv
output c

Fig. 3.3. The CTR mode of encryption

Security in banking 7

3.5 Message Authentication Code (MAC)

A message integrity system that is based on a shared secret key between the
sender and receiver is called a Message Authentication Code or MAC for short.

Definition 5. A MAC system I = (T , V) is a pair of efficient algorithms,
T and V, where T is called a signing algorithm and V is called a verification
algorithm. Algorithm T is used to generate tags and algorithm V is used to verify
tags.

– T is a probabilistic algorithm that is invoked as τ
$← T (k, m), where k is a

key, m is a message, and the output τ is called a tag.
– V is a deterministic algorithm that is invoked as r ← V(k, m, τ) ,where k

is a key, m is a message, τ is a tag, and the output r is either “accept” or
“reject”.

– We require that tags generated by T are always accepted by V; that is, the
MAC must satisfy a correctness property, such that for every valid key k
and message pair, we have V(k, m, T (k, m)) = accept

I = (T , V) is defined over (K, M, T). Whenever algorithm V outputs “accept”
for some message-tag pair (m, τ) , we say that τ is a valid tag for m under key
k, or that (m, τ) is a valid pair under k. The simplest type of system is one in
which the signing algorithm T is deterministic, and the verification algorithm is
defined as

V(k, m, τ) =

{
accept if T (k, m) = τ,
reject otherwise.

(2)

We call such a MAC system a deterministic MAC system. Where a deterministic
MAC system has unique tags: for a given key k, and a given message m, there
is a unique valid tag for m under k.

3.6 Authenticated encryption with associated data (AEAD)

An authenticated encryption scheme with associated data AEAD is a pair of
efficient algorithms (E , D), with an optional header in plaintext (associated
data) that will not be encrypted such that:

– The deterministic encryption algorithm E : K×N ×P ×M→ {0, 1}∗ takes
as input a secret key K, a nonce N , associated data P , and a message M to
return a ciphertext C.

– The deterministic decryption algorithm D : K×N ×P×{0, 1}∗ →M∪{⊥}
takes as input a secret key K, a nonce N , associated data P , and a ciphertext
C to return either a message in M or ⊥.

SetsK,N ,P, andM denote respectively the key space, the nonce space, the asso-
ciated data space, and the message space associated with the scheme. We assume
throughout that E and D are never queried on inputs outside of these sets. An au-
thenticated encryption scheme is required to be correct and tidy. Correctness re-
quires that for all K,N,P,M if E(K, N, P, M) = C then D(K, N, P, C) = M .

8 Van Der Merwe et al.

Analogously, tidiness requires that for all K,N,P,C if D(K, N, P, C) = M ̸=⊥
then E(K, N, P, M) = C. Furthermore we demand that encryption be length
regular, i.e for all K,N,P,M it should hold that |E(K, N, P, M)| is entirely
determined by |N |, |P |, and |M |.

3.7 Payments terminology

We define the terminology used in payment systems in terms of the directionality.
Given a key k ←− K apply a function kv ←− f(v) to derive a variant key kv
where the value v is public. We restrict ourselves to the the following kv variants
and their usages where r denotes a receive and s a send key. General data is
denoted as mα and PIN data as mβ :

– KMACs: used in a MAC algorithm T : τ $← T (KMACs, m).
– KMACr: used in a MAC algorithm V : r ← V(KMACr,m, τ).
– KDs: given a block cipher, cardholder data E: c $← E(KDs,mα)
– KDr: given a block cipher, cardholder data D: mα ←− D(KDr, c)
– KPEs: given a block cipher, PIN data E: c $← E(KPEs,mβ)
– KPEr: given a block cipher, PIN data D: mβ ←− D(KPEr, c)

In addition to the above we define a key which encrypts other keys as: a key
encryption key (KEK), a terminal master key (TMK), a zone master key (ZMK)
or a key wrapping key. The key wrapping keys are used to transport variant keys
and protect them in storage. We note that the function to derive a variant key
kv ←− f(v) includes the ⊕ operation.

4 Current payment system models

The card payment system in Australia consists of several components used to
initiate payments, transport sensitive data, translate data between systems and
verify card and PIN information. We detail the parts and actors here for clarity.
A payment terminal accepts card information from either the magnetic stripe on
the card or from the smartcard through near field communication (NFC) using
protocols defined by the EMVCo specifications [EMV04] [EMV11] [EMV09]. The
terminal itself is loaded with keys from a processor, which we call an acquirer.
The acquirer follows a set of rules and guidelines to initialise the payment ter-
minal with TMKs. The encryption of session keys with a TMK aims to protect
them in transport. The keys exchanged with the acquirer are stored in the secure
memory of the terminal. After every 256 transactions, the terminal requests new
session keys from the acquirer, whereby the acquirer sends the terminal a set of
keys for data encryption (KDs), PIN encryption (PKEs) and message authenti-
cation (KMACs). When the terminal initiates a transaction from an end user,
the terminal encrypts the cardholder data with the session keys as follows:

1. The cardholder data is encrypted with the KDs.

Security in banking 9

2. PIN is formatted under the appropriate ISO pin block rules defined in [fS17].
3. The PIN is then encrypted with the PKEs.
4. The system generates a MAC on the entire payment message using the

KMACs.

The acquirer, having exchanged keys with a third party or the card issuer:

1. Verifies the MAC on the message with the local KMACr.
2. Unpacks the payment message.
3. Decrypts the cardholder data with KDr.
4. Decrypts the PIN using KPr.
5. Encrypts the data with the issuer or third party keys.
6. Sends data to issuer or third party.

In this process, all key operations are conducted in the confines of a secure cryp-
tographical device, also known as a Payment Hardware Security Module (HSM).
The method of generating keys by the acquirer includes a key separation process,
whereby the Payment HSM applies variants to the session keys. Variants aim to
enforce the acquirer to only use a key for a single purpose, either to encrypt or
decrypt, or generate or verify. We denote this separation by the key directional-
ity, KDs for “send” and encryption and KDr for “receive” and decryption. The
variants are constant bits that are XORed with the key. The constant bits are
publicly defined in [Sta13b]. The Payments HSM in the acquirer environment
generates a single (session) key, then applies the KD, KMAC and PKE variants
respectively. The acquirer transports keys to the terminal encrypted under the
TMK, using Triple DES encryption (TDES) [Bar17] in CBC mode. Data and
PIN encryption also use TDES with CBC, and message authentication uses a
TDES cipher, also known as a retail CBC-MAC [fS16]. When the issuer receives
the financial request, then a MAC verification algorithm verifies the integrity of
the message, after which the issuer verifies the PIN and checks if there are avail-
able funds, then sends the transaction response to the acquirer who forwards the
message to the terminal.
The model described above is a simplified and abstracted overview of the meth-
ods used in AS 2805. In addition to above, the AS 2805 suite of standards
prescribes, in detail, the interactions, message formats and security mechanisms
allowed between all participants of the payments ecosystem. Other payment sys-
tems, like those in the USA, do not prescribe any particular method of initialis-
ing terminals with a TMK, although the American National Standards Institute
detail mechanisms in their standards [Ins17]. Several regions do not have any
standards for the terminal to acquirer interactions, acquirer to third-parties or
issuers interactions.
Instead of rigid prescriptive standards, card networks rely on the PCI-SSC to
develop industry standards to secure card payments, based on a combination of
standards from NIST, ANSI and ISO. These industry standards are the defacto
mechanisms used in several countries. The participation in the PCI-SSC is re-
stricted to card network members only, and participation from other members
is on a “pay to contribute” model [PCI].

10 Van Der Merwe et al.

In this paper, we examine the current AS 2805 Standards and contrast the
scheme to the industry standards of PCI-SSC. Where there is no industry stan-
dard, we evaluate the security bounds of the mechanisms imposed by AS 2805
and suggest additional mechanisms to improve the bounds and align closer to
industry standards. We start with a brief overview of key generation, then fol-
low with key derivation and then key separation. We investigate current attacks
on TDES in CBC mode of operation and discuss mechanisms for authenticated
encryption with associated data (TR-31). We then discuss the future state of
payments cryptography while defining open problems.

5 Key generation, derivation and separation

Under the presumption that secure ciphers such as Advanced Encryption Stan-
dard (AES) [RD01] and Triple DES (TDES) [Bar17], exist, we first turn our
deliberation to the use of keys within a payments system, namely: random num-
bers, generating keys, deriving session keys and the separation of keys for distinct
operations. We start with a discussion on the mechanisms of key generation.

5.1 Key generation

Random, true-random, and psuedo-random numbers There are two types of
random number generators in computer systems:

1. A true random number generator (TRNG) which measures physical ran-
dom features to generate bits; these are bits of entropy. True randomness is
entropy, satisfying statistical randomness and conditions to eliminate bias.

2. A deterministic random algorithm that produces a stream of apparently
random bits, based on some random input. We denote the random input as
a seed. We call this algorithm a pseudo-random number generator (PRNG).

Generally, key generation starts with a seed and the use of a pseudorandom
number generator (PRNG) to expand the seed to form a distribution of bits.
The theory behind a TRNG is to amplify the noise in resistors then sample
the signal data and apply von Neumann correctors [FGM+18]. The output of a
TRNG is often used as a seed for a PRNG. A PRNG is a poor source of random-
ness, as a PRNG uses a deterministic algorithm to produce a seemingly random
output. With knowledge of the seed, an adversary can reproduce the “random”
stream of the PRNG. In the past, methods to create a PRNG included Prime
Modulus Multiplicative Linear Congruential Generators [FM86] (PMMLGC)
and shift registers with feedback [Rog89]. However, these generators perform
poorly under statistical tests, suffering from initialization sensitivity and par-
titioning problems [Lia05]. Modern methods use an accumulator [GDPSM11],
where multiple PRNGs are combined. Combining several PRNG with distinct
seed sources produces cryptographically secure pseudo-random number genera-
tors (CSPRNG) [VV84]. In financial systems today, a set of CSPRNGs satisfying
a range of statistical tests are used and have been validated by NIST [NIS10].

Security in banking 11

Random numbers Generating random numbers is an essential part of generating
keys for cryptographic systems. Block ciphers like AES are ideally instantiated
with a unique key for each encryption and random numbers are required when
generating public/private key pairs in asymmetric systems. In the information-
theoretical sense, a secure key is one that an adversary cannot generate or derive.
In practice, this is achieved by using the entropy of a system to create a seed and
then expanding the seed using a PRNG. In almost all cases, an adversary can
recover the key by recovering the seed, then running the expansion function. We
denote the seed as the information space. This process of key recovery is often
achieved by trial and error when the information space is small enough. The
ability of the adversary to run this attack must be acceptably low, depending
on the system. The size of the space the adversary must search is dependent on
the size of the information space in an information-theoretical sense [KSWH98].
The study of random numbers with respect to information theory, dates back
to the work of Shannon [Sha48]. [Sha48] studied this problem with respect to
entropy in terms of the number of different secret values possible and the prob-
ability of each:

entropy = −
n∑

i=1

pi log2 (pi) , (3)

where n is the number of possible secret values, indexed by i, and pi is the prob-
ability of observing the ith secret value. While the analysis by Shannon [Sha48]
gives the correct average probability of recovering the information space, Shan-
non does not account for the information-theoretic work factor of the adversary.
If we assume that we have a PRNG generating 128-bit keys, where half of the
key bits are 0’s and the other 2128−64 are random then, from the Shannon equa-
tion, there are 64-bits of information in one key value. An adversary can try the
value zero and break half of the key, ignoring the random parts. It is, therefore,
reasonable to look at other measures such as min-entropy:

min-entropy = − log2(maximum(pi)) (4)

where i indexes the possible secret values, like above. Here we have 1-bit of
min-entropy as opposed to 64-bits of Shannon entropy. The Renyi entropy is
a continuous spectrum of entropies, specified by a parameter r. Here r = 1 is
Shanon entropy and r = ∞ is min-entropy. If r = 0, Shanon entropy is log2(n)
where n is the number of non-zero probabilities. Since the Renyi entropy is a
non-increasing function of r, we determine that min-entropy is the most conser-
vative measurement of entropy and the best method to use in cryptographical
evaluations.
Sources of entropy are dependent on the implementation. In contrast, once a
system has collected enough entropy, the system can be used as the seed to
produce the required amount of cryptographically strong pseudo-randomness.
One might think that there is hope for truly strong portable randomness, but to
achieve this, one needs hardware as a physical source of unpredictability since
software systems can be subjected to manipulation.

12 Van Der Merwe et al.

The requirements to generate cryptographic keys and withstand statistical and
entropy poisoning attacks is a long research discussion. Current payments speci-
fications rely on the validation of random number systems against requirements
produced by the American National Institute of Standards and Technology
(NIST). NIST is an arm of the U.S. Department of Commerce, and their mis-
sion is: “ to promote U.S. innovation and industrial competitiveness by advancing
measurement science, standards, and technology in ways that enhance economic
security and improve our (the U.S.) quality of life.” Although this might sound
like an organisation looking after the U.S. interests, they have developed several
algorithms widely used by financial systems, such as TDES and AES. Both the
Australian AS 2805 and PCI-SSC Standards refer to the NIST specification NIST
SP 800-90A [BKS12] as an approved mechanism to generate deterministic bits,
for use as cryptographical keys. Currently, there are three (allegedly) crypto-
graphically secure pseudorandom number generators (CSPRNG) for use in pay-
ments cryptography, Hash_DRBG (based on hash functions), HMAC_DRBG
(based on HMAC), and CTR_DRBG (based on block ciphers in counter mode).
Regulators validate HSMs and payment systems against the requirements for
random number generation and only permit systems that satisfy these require-
ments. In 2015, the first publication of the NIST SP 800-90A Standard had a
fourth generator for elliptic curve cryptography, Dual_ECD_RBG, which was
found to contain a cryptographic backdoor inserted by the United States Na-
tional Security Agency (NSA). The backdoor was proven in the work of Dan
Shumow and Niels Ferguson in 2007 [SF07], but Dual_EC_DRBG was contin-
ually in use by RSA until 2017 [Upa16].

Statistical randomness We can informally define a numeric sequence as statisti-
cally random when there is no recognisable pattern or irregularity. Examples of
this are the results of an ideal dice roll, or the digits of π. Statistical randomness
does not imply true randomness but only pseudorandomness, using statistical
methods to ascertain recognisable patterns or irregularities. There is a signifi-
cant distinction between local and global randomness. Most of the theoretical
randomness is thought of as global randomness; if a system samples a distribu-
tion (local randomness) from global randomness, there is no guarantee that the
sampled data is random. In a truly random distribution, there is a strong proba-
bility of repeating sequences. Although the global distribution might be random,
a sample comprising of repeating sequences will not be. Local randomness im-
plies that there is a minimum sequence length in which random distributions
are approximate. We note that, according to the principles of Ramsey [GRS90],
complete disorder is impossible, and a sufficiently large object must contain a
given substructure. The use of statistical tests assesses some degree of random-
ness, which is sufficient for most applications. Several legislators impose specific
standards of statistical test, like gambling [GWP+17] and financial cryptogra-
phy [SC15].
M.G. Kendall and Bernard Babington Smith published the first tests for ran-
dom numbers in the Journal of the Royal Statistical Society in 1939 [Ken39]
using statistical tools, such as Pearson’s chi-squared tests. The chi-squared tests

Security in banking 13

distinguished if experimental phenomena matched theoretical probabilities. The
tests by Kendall et al. [Ken76] initially proved that random dice experiments did
not exhibit random behaviour. The tests took the original idea that each number
in a random sequence had an equal chance of occurring, and other patterns of
data should be distributed equiprobably. These tests included a:

– Frequency test: checking that there are roughly the same number of digits
– Serial test: a frequency test for multiple digits. Comparing their observed

frequencies with their hypothetical predictions.
– Poker test: testing for sequences of five numbers, based on poker hands.
– Gap test: looking at the distances between zeros in the sequence.

Kendall et al. [Ken76] defined a locally random distribution as one that passed all
the tests with a given degree of significance. We note that a global distribution
might pass the Kendall et al. [Ken76] tests, but a local distribution sampled
from the global randomness might not. After the seminal work of Kendall et
al. [Ken76], several other tests were developed with increasingly complex testing
mechanisms such as Diehard tests [Mar], Maurer’s Universal Statistical Test
[Mau92], and the Wald–Wolfowitz runs test [AG91]. Current industry statistical
tests for random numbers rely on NIST standards, which takes sets of tests
from academia. These tests are not without fault, with the work of Yongge
Wang [Wan14] showing that the NIST SP800-22 [NIS10] testing standard is
insufficient, proposing additional statistically distance-based randomness tests.
Both the AS 2805 and PCI-SSC rely on the SP800-22 testing standard to produce
statistical randomness as a seeding mechanisms to generate encryption keys.

Key generation A Deterministic Random Bit Generator (DRBG) generates keys
within payment systems. The NIST SP 800-90A and the ANSI X9.82 series spec-
ify algorithms satisfying the requirements of ISO 11568 and ANSI X9.24. In the
initial process of a DRBG, the DRBG is instantiated with a seed. After that, the
DRBG is reseeded with another seed in the reseeding function. The seed in the
reseed function is XORed with the initial seed. After the seeding initialisation,
the generate function outputs the requested number of bits. The instantiation
and generation functions operate within a secure cryptographic module. Several
papers in the literature have surfaced over the past few years proving that the
DRBG is pseudorandom [YGS+17] [Hir08], given that the source of the seed and
entropy is not under the control or influence of an adversary.

14 Van Der Merwe et al.

5.2 Master Keys

The purpose of master keys (TMKs) in payment terminals and hosts (acquir-
ers) is to encrypt the session keys (KDs, KPEs, KMACs). To achieve this, the
terminal and the host must share a TMK. The initial objective of initialising
a terminal is to transfer the master key into the terminal in a secure manner;
we denote this process as the key injection process. This key injection process is
achievable using several standards and processes [Ins17] [Sta17]. For this paper,
we assume the loading mechanisms for the master key is secure, and all keys in a
terminal are within a secure cryptographic boundary and meet the requirements
of a secure cryptographic device [oS17b].
For the next few sections, we illustrate the flow of information between par-
ties before starting an informal analysis. We note the simplified components
of a card payment system in Figure (5.1). Several components of a traditional
payments system are omitted from the diagram, as we only focus our security
analysis on the methods of key derivation, separation and storage. We discuss
the components of Figure (5.1) in Section (6.1).

𝑇𝑀𝐾

𝐾𝐷𝑠

𝐾𝑃𝐸𝑠

𝐾𝑀𝐴𝐶𝑠

𝐾𝐷𝑟

𝐾𝑃𝐸𝑟

𝐾𝑀𝐴𝐶𝑟

eKDs(Card Data)
eKPEs(PIN Data)
Additional Data

KMACs

M
AC

Verify

AS2805 Message

Generate𝐾𝑆𝐾

Derive

StoreStore

Transmit

Terminal Card Issuer

Encrypt MAC

Fig. 5.1. A reduced high-level view of AS 2805 keys in a payment system.

Security in banking 15

6 Key derivation

In a system that implements the AS 2805 Standards, the XOR operation of indi-
vidual purpose bits separates keys for different purposes. In the ISO [oS17a] and
AS 2805 [Sta13b] standards, this process is called key calculations, variant keys
or ‘key purpose variants’. Given a master key K, we take a purpose bit sequence
VKTK and create a variant key as: KKTK ←− VKTK ⊕K where |VKTK | = |K|.
These methods of creating variant keys are in use throughout the financial in-
dustry, with the sole purpose of separating different keys for different purposes.
Each region, country and vendor have defined their own variant bits to enable
this separation, which creates an interoperability problem, where systems from
various regions cannot re-use the variant bits. To combat this interoperability
problem, ANSI X9 created a new method of key derivation and separation and
published a technical report TR-31 [Ins18]. The technical report outlines an
implementation to achieve key separation, interoperability, key derivation and
integrity. In this section, we review the AS 2805 and TR-31 methodologies, and
make an informal comparison.

6.1 AS 2805 key derivation and separation

Of the AS 2805 standards, the AS 2805.6.x series covers key management which
is implemented on point of interaction (POI) devices specifically, there are two
standards for symmetric key management systems which are used in the vast
majority of point of interaction (POI) devices deployed in Australia:

– AS 2805.6.2 – Terminal to Host Key Management using Transaction Keys
– AS 2805.6.4 – Terminal to Host Key Management using Session Keys

Key management in AS 2805 shows how a system may derive a new TMK
for payment terminals from an existing key with private data, in addition to
the separation keys for different purposes. Given an existing key Kinit a new
key is obtained by using the private data and a keyed hash function (HMAC)
H(Kinit, data), to produce random output, which is used as an initialization
vector IV (nonce) for a TDES encryption under CBC mode, denoted by the
function, ECBC

Kinit
(IV, data) using Kinit as the key and the output of the keyed

hash function as the data. The resultant encryption is then XORed with the
private data, to produce the new key. We illustrate the process in the function
in (5) and Figure (6.1):

Knew ←− ECBC
Kinit(H(Kinit,data))⊕ data (5)

The function in (5) is noted to be a one-way function (OWF) as specified in AS
2805.5.4 [Sta13a]. This function ensures that an adversary, even with knowledge
of the resultant key Knew and data, cannot invert the function.
We can illustrate the adversary’s capability in the following informal security

16 Van Der Merwe et al.

𝐷

HMAC

CBC-TDES

𝐾𝑛𝑒𝑤

𝐾𝑖𝑛𝑖𝑡

IV

Fig. 6.1. Terminal master key derivation.

game. Given an adversary interacting with the OWF described in [Sta13a] as
P and an random function F , where the random function produces a random
value, the adversary, given the output of the OWF, should not be able to distin-
guish between the output of the random value or the OWF. The adversary would
only have the ability to recover the TDES encryption by applying Knew ⊕ data
with prior knowledge of the data, but assuming that CBC-TDES is probabilistic,
CBC-TDES would be indistinguishable from random. The only realistic attacks
on the method for key derivation would imply that the adversary can reveal a
vulnerability in the underlying CBC-TDES encryption and already have knowl-
edge of the data.
The use of key calculations in payment systems is discouraged by various in-
dustry bodies, such as PCI-SSC , where some of the calculation functions are
invertible. Knowledge of a single key would enable an adversary to recover all
future and previous keys. Methods of calculating variants of keys are evident in
AS 2805.6.3 [Sta13b]. The keys in AS 2805.6.3 [Sta13b] are session keys, whereby
the generation of a single key enables the calculation of several session keys by
applying an XOR operation with known public constants. The public constants
used in AS 2805.6.3 [Sta13b] are presented in Table (6.1):

Security in banking 17

MAC send key (KMACs) x‘24C0’ VKMACs

MAC receive key (KMACr) x‘48C0’ VKMACr

PIN encipher key (KPEs) x‘28C0’ VKPEs

Data encryption key (KDs) x‘22C0’ VKDs

Data decryption key (KDr) x‘44C0’ VKDr

Random number (RN) x‘8282’ VRN

Inverted random number (∼RN) x‘8484’ V∼RN

Table 6.1. AS 2805 session key variants

A system generates a terminal master key, then the same key is used to derive
additional keys for various purposes by XOR’ing the variant constants. Given:
k

$← K, we expand the variant V such that |V | = |k|. The variant values in
Table (6.1) is used to calculate the following session keys:

• KPEs←− (k ⊕ VKPEs)
• KPEr ←− (k ⊕ VKPEr)
• KMACs←− (k ⊕ VKMACs)
• KMACr ←− (k ⊕ VKMACr)
• KDs←− (k ⊕ VKDs)
• KDr ←− (k ⊕ VKDr)
• RN ←− (k ⊕ VRN)
• ∽ RN ←− (k ⊕ V∽RN)

Since payment systems rely on the separation of keys for different purposes,
the variant constant method of key derivation has trivial attacks assuming an
attacker can recover any of the keys variants of the master key. Given a KPEs,
an adversary can change the key purpose by re-applying k ←− KPEs⊕ VKPEs

then applying another variant, such as KDr ← k ⊕ VKDr. This enables an
attacker to create a data decryption key from a PIN encryption key, and recover
the user PIN. The practicality of the attack is more complex, as transmitted
keys are encrypted by a TMK during transport, and the extracted keys are
stored in a secure cryptographic device (SCD), satisfying tamper resistance and
tamper responsive mechanisms as defined by ISO [oS17b]. An open question is to
formally define resistance of the CBC-TDES encryption of the key in transport
given the public variant bits. Also, given the CBC-TDES encryption of a key,
can one calculate the related (variant) keys? We do however discuss, in Section
(7), meet-in-the-middle attacks and the DES-V scheme and show that variants
have an additional 264 computational complexity in meet-in-the-middle attacks
as compared to traditional TDES.

6.2 ANSI X9 TR-31 key blocks

TR-31 [Ins18], published initially in 2001, defines a mechanism outlined in the
ANSI X9.24.1 Standard [Ins17] to store key information with the key. We remark

18 Van Der Merwe et al.

Key

CMAC

CBC-TDES

ciphertext

𝐾
𝐾𝐾𝐵𝐴𝐾

𝐼𝑉

Header Key length Padding

𝐾
𝐾𝐾𝐵𝐸𝐾

MACHeader

𝐷

𝐷

MAC

Fig. 6.2. TR-31 Key block protection.

that this mechanism corresponds with the security of an AEAD scheme, where
header information possesses data on key usage, and a derived encryption key
encrypts the data. A MAC is then generated on the message, including the
header information. We can describe the TR-31 system informally as follows:
A system produces a key block, protection key (KBPK), which is a TMK. The
key derivation process (in [Ins18]) derives a key block encryption key (KBEK)
and a key block authentication key (KBAK). If a system generates a key for
transport or storage, then we apply the mechanisms in Figure (6.1), with the
derived KBEK and KBAK to secure the key. In Section (7) we discuss open
questions for this construction, but for now, we note that the header information
is a nonce (or a counter) with additional key usage information. In a practical
sense, the TR-31 method of key wrapping provides an interoperable way to
exchange keys and bind key usage information to the key itself. The key usage
cannot be altered, as in the AS 2805 variant method. In a practical sense, the
security of this scheme depends on the collision resistance of the hash function
as well as the adversaries’ capability to perform an attack on the encryption
method. If the method of encryption is CBC, then the scheme is not malleable as
the integrity check will fail. Similarly in ECB mode, where encrypted blocks are
interchangeable with other encrypted blocks, again, the integrity check would
fail, making the attack infeasible. While the TR-31 method has integrity on
the key, AS 2805 ensures integrity on financial messages, including the keying
material. We discuss similarities in Section (8).

6.3 Payments HSMs

Key operations in financial systems occur within the confines of a Payment Hard-
ware Security Module (HSM). We note that separate implementations of HSMs
exist, called general-purpose HSMs. We limit our discussion to Payments HSMs
as general-purpose HSMs can output clear keys and are not used in card payment

Security in banking 19

systems. Integrated into the design of HSMs is the capability to withstand a di-
versity of side-channel attacks [ZF05], where all cryptographic operations occur
within the secure module resisting these classical side channel attacks. Tradi-
tional payments processing systems also demand strict controls around access
to HSMs, assuring split knowledge and dual control at all times, which is in line
with key management methodologies [FL93] and industry standards [Cou16].
Separate regions and regulatory bodies administer regular audits in these HSM
environments to ensure that payment processors abide by the strict controls.
Additionally, Payments HSMs are obligated to satisfy testing requirements by
numerous industry bodies [Cou16]. Some test side-channel resistance, while oth-
ers, like Australia, extend these testing requirements to the firmware and soft-
ware running on the HSM [SC15].
Generally speaking, a Payment HSM produces a secret symmetric key stored in
the secure hardware that encrypts any key exported from the HSM using AES
or TDES. The payment HSM restricts the export of any clear text keys. We call
this primary key a master file key (MFK) or a local master key (LMK). Environ-
ments interacting with a Payments HSM form a key set, the HSM outputs one
set of keys, encrypted with a TMK, and another encrypted with the MFK. The
encrypted TMK key set is transmitted to either a terminal or a partner, while
the system stores the MFK key set in a database. The system performs subse-
quent translation and data decryption operations by commanding a function on
the HSM with the corresponding MFK encrypted key. In terms of the TR-31
scheme, keys stored in the system database have a MAC over the cleartext parts
and ciphertext which prevent key manipulation, while the AS 2805 schemes do
not. Keys transported by the system, encrypted under the TMK, have whole
message integrity under the AS 2805 scheme, while TR-31 provides integrity for
each key. Taking into consideration that keys are always encrypted and never
present in the clear, what is the impact when cryptographical operations occur
outside of the boundaries of a Payments HSM and clear keys exist in a system?
We consider these issues in Section (8).

7 Attacks on two-key and three-key triple DES and CBC
variants

In this section we investigate various attacks possible on TDES in various key
modes, as well as the AS 2805 variant mode we call TDES-V. We draw inspiration
from the research on DES-X [Rog96] [KR01] and DES-EXE [Pha04] [CKS+05]
variants and evaluate the security of the AS 2805 scheme in terms of practical
attacks such as Meet-in-the-middle and malleability. We investigate attribute
modification attacks on the AS 2805 scheme, where modifications include::

– Changing or replacing any bit(s) in the encrypted data
– Interchanging any bits of the encrypted data with bits from another part of

the encrypted data
TDES is a standard secure encryption cipher and widely used in financial ser-
vices. The TDES cipher is the combination of three independent DES operations,

20 Van Der Merwe et al.

with either two or three distinct keys. We define the 3 key TDES encryption (EK)
and decryption (DK) operations, using keys K1, K2 and K3 and plaintext P as
follows:

C ←− EK3(DK2(EK1(P)))

P ←− DK1(EK2(DK3(C)))

In two key TDES we have:

C ←− EK1
(DK2

(EK1
(P)))

P ←− DK1(EK2(DK1(C)))

The DES-V scheme used in the analysis is a variant of the TDES scheme, which
we can define as 4 key encryption (EK) and decryption (DK) operations, using
keys K1, K2, K3 and K4 and plaintext P , where K1 is a variant:

C ←− EK4(DK3(EK2(P ⊕K1)))

In three key DES-V we have:

C ←− EK2
(DK3

(EK2
(P ⊕K1)))

We note that the DES-V K1 is a constant variant V , as illustrated in Table (6.1).

Fig. 7.1. The TDES-V Meet-in-the-middle attack

7.1 Meet-in-the-Middle attacks

We investigate the AS 2805 DES-V encryption scheme where the variant is a
primary 64-bit key which is XORed with the plaintext before encryption. We
present meet-in-the-middle attacks (MITM) and examine the potential effective-
ness of these attacks on the DES-V scheme. The results from traditional TDES
MITM attacks are taken from from the work of [IYKP13], while we assume the

Security in banking 21

Fig. 7.2. The TDES Meet-in-the-middle attack

additional complexity of the DES-V scheme based on the results of [IYKP13].
The traditional MITM attack is described in Figure (7). In a traditional 3-key
TDES encryption scheme, we obtain a pair of plaintext, and ciphertext (P,C)
and consider K1 seperate from (K2,K3), computing EK1

(P) = EK2
(DK3

(C))
for all possible keys. We accept values for (K1,K2,K3) such that the encryption
is true for three plaintext-ciphertext pairs (≈ log264 2

168). This attack requires
a time complexity in the order of 2113 encryptions and memory complexity of
(64 + 56)256 ≈ 263 bits.
A similar search can be carried out in the DES-V scheme for

EK2(P ⊕K1) = EK3(DK4(C)).

where we accept values for (K1,K2,K3,K4) for consistent results over log264 2212
for 4 plaintext ciphertext pairs with a time complexity in the order of 2117 and a
memory complexity of 263. If we look at 2-key TDES, then we can apply similar
logic where we expect that log264 2112 or two plaintext ciphertext pairs to confirm
the correct values for K1 and K2 with time complexity of 2112 with negligible
memory. However, with the DES-V scheme in three-key mode, we accept values
in log264 2

176 or three plaintext ciphertext values with time complexity of 2117
with negligible memory complexity. We see that the additional 64-bit key that
is XORed with the plaintext before encryption increases the time complexity of
the basic MITM attack by 264.

Merkle-Hellman MITM Attack Merkle and Hellman developed a chosen-plaintext
alternative to the MITM attack in 1981 [MH81], which we will illustrate over
2-key TDES. First, we decrypt a 64-bit ciphertext A for all possible 264 values
of K1. For every value of A, we then make a chosen-plaintext query (Q) to get
the corresponding ciphertext and then decrypt each A value based on the K1

value we guessed. These values are stored, then we exhaustively search all K2

values such that:
DK1(Q(DK1(A))) = DK2(A).

We stop the attack when we have log264 2
112 or two plaintext ciphertext pairs

consistent with the keys (K1,K2). The Merkle-Hellman attack has a time com-
plexity of 3(256) ≈ 257.6 encryptions, with a memory complexity of 263. In the

22 Van Der Merwe et al.

DES-V construction, we should consider a 3-key variant of K1 and K2 separate
from K3, where we search:

DK1(Q(DK2(A⊕K1))) = DK3(A).

We collect the values of (K1,K2,K3) when we have log264 2
176 or three plaintext

ciphertext pairs consistent with the keys, with a memory complexity of 263 and
time 2121.6. This attack provides no advantage over the original MITM attack.
Thus similar to the original attack, the DES-V scheme increases the chosen
plaintext MITM attack complexity by a factor of 264.

Van Oorshot - Wiener MITM Attack A known-plaintext extension of the Merkle-
Hellman chosen-plaintext attack is the Van Oorshot-Wiener MITM Attack [vOW91].
This attack is applicable in the case of 2-key TDES, where we have seen that
the Merkle-Hellman attack significantly reduces the complexity of the initial at-
tack by Oorschot and Wiener. If we select 232 values of plaintext for each P ,
we should calculate all 256 permutations of DK1

(P) and compare each against
the 232 plaintext-ciphertext pairs. If there is a match, then we calculate B as
B = DK1

(C) and store the pair B,K1 for which there should be 256 memory en-
tries. On each of the memory entries, we then do an exhaustive search for K2 and
test the candidate pairs K1,K2 with extra plaintext-ciphertext pairs. We repro-
duce the process with several values for P until we come across the correct key.
The attack has a time complexity of 289 encryptions with 232 known-plaintext
ciphertext pairs and memory complexity of 263. We can implement this attack
over our DES-V scheme, starting with 232 plaintext-ciphertext pairs and acquire
a value for (K1,K2,K3) if log264 2176 or three plaintext-ciphertext pairs are con-
sistent. We expect this attack to have a memory complexity of 264 and a time
complexity of 2153. We have thus shown in the instance of 2-key TDES that the
DES-V scheme has an increased time complexity of 263.

Other MITM Attacks Although there are other MITM attacks published by
several researchers [Luc98], we only focus on the three methods above, since
they are practically possible. Methods by Lucks et al. [Luc98] have increased
effort in memory and computational complexity. One question that comes to
mind is, what if the K1 is a public constant, like in AS 2805, can the attacker
have an advantage with a MITM attack? Based on the discussion above, we
ascertain that there should be no increase in the computational and memory
complexity in this case. In the case of a public K1, we can assume the DES-
V scheme would have the same adversarial advantage as the TDES scheme in
either 2 or 3-key mode.

7.2 CBC malleability

An encryption algorithm is malleable if it is possible to transform a ciphertext
into another ciphertext which decrypts to a related plaintext. Malleability is an
undesirable property of a cryptosystem, as this property allows an adversary

Security in banking 23

to modify the underlying encrypted plaintext by modifying the ciphertext. The
properties of malleability do not mean that an attacker has any significant ad-
vantage to recover the plaintext, even after the ciphertext transformation. The
attacker may not know what the related plaintext is unless he has prior knowl-
edge of some parts of the plaintext.
Nevertheless, malleability would have a non-negligible advantage in an adaptive
chosen ciphertext attack model. Vaudenay presented the first public padding
oracle attack in Eurocrypt 2002 [Vau02], and since then, research in the area has
expanded [PY04a] [RD10a] [BFK+12]. The padding oracle attack assumes that
an adversary can intercept messages encrypted in CBC mode, and has access
to a padding oracle. The padding oracle O must return some indication to the
attacker if the padding on the encrypted message is valid using the following
game:

– Adversary submits a CBC encrypted ciphertext C to an oracle O
– The oracle decrypts the ciphertext under a fixed key K, and checks if the

padding is correct.
– The oracle outputs VALID or INVALID according to the correctness of the

padding.

The adversary can use the padding oracle attack to determine the message
length. An attacker could then extend the attack above to recover the last mes-
sage block using the commutative properties of the XOR operations. Current
literature details several examples of padding attacks [BU02] [YPM05] [PY04b]
[RD10b]. We capture this notion of padding attacks based on the CBC algo-
rithm. We can see from the algorithm in Section (3.4) that the CBC decryption
is the XOR of each plaintext block with the ciphertext block as:

mj = D(k, cj)⊕ cj−1,

c0 = IV.

Therefore a single byte change in c1 will correspond to a change in m2. When
an adversary has two ciphertext blocks c1 and c2 and wants to decrypt c2 to
get m2, the adversary can adjust c′1 ← c1, and send c′1||c2 and IV to the server.
The server then returns showing that the padding on the last block m′

2 is either
correct (equal to 0x01) or not. If the padding is correct, the adversary identifies
the last byte 0x01← D(k, c2)⊕c′1, therefore D(k, c2) = c′1⊕ 0x01. If the padding
oracle indicates the padding is incorrect, then the adversary can replace the last
byte of c′1 with the next value. To guess every potential value for each byte, the
adversary would need to make at least 256 queries to the oracle. The adversary
can use the same procedure to find the second last byte of m2. Given TDES
has a 64-bit block, an attacker would need to make 256·(64/8)=2048 queries to
recover the final block, which is significantly less than a brute force attack.
The main reason that CBC, as detailed in figure (3.1), has this vulnerability
is due to the lack of integrity on the ciphertext. Several padding methods on
ISO and financial standards are shown to be vulnerable to this attack [PY04a].
The main protection mechanism in financial systems to subdue this attack is to

24 Van Der Merwe et al.

decrypt ciphertext within a certified HSM. Stringent software tests on Payments
HSMs ensure the functions do not provide an oracle that enables an attacker to
execute this attack. General purpose HSMs are, however, vulnerable [PY04a].
Several cryptosystems are malleable [SMK19], most notably stream ciphers,
RSA, El Gamal [TY98] [Wik02] and Pallier [DDN03]. A stream cipher pro-
duces ciphertext by combining the plaintext and a pseudorandom stream based
on a secret key k with the XOR operation Ek(m) = m ⊕ S(k). An adversary
can construct the encryption of the message m and some malicious value t as:
Ek(m⊕ t) = m⊕ t⊕S(k). The RSA cryptosystem has a public key (e, n) where
the encryption of the plaintext m is E(m) = me mod n. Given a ciphertext, c
an adversary can construct a ciphertext of mt as: E(m) = te mod n = (mt)e

mod n = E(mt). However padding mechanisms such as RSA-OAEP and PKCS1
have mechanisms which aim to prevent this attack. Unfortunately, the recent at-
tack against PKCSv1 v1.5 [BFK+12] shows that RSA-OAEP might not be as
strong as was previously thought. In the Paillier, ElGamal, and RSA cryptosys-
tems, it is also possible to combine several ciphertexts in such a way to produce
a related ciphertext. In systems like Paillier, an adversary needs the public key
and the encryption of two plaintexts, m1 and m2 to compute a valid sum of
their encryptions m1 +m2. In RSA and El Gamal, in contrast, one can combine
encryptions of m1 and m2 to produce valid encryptions of their products.
Changing or replacing any bit(s) in encrypted data is possible in various cryp-
tosystems, not only when encrypting data in CBC mode. However, to have valid
ciphertext that decrypts to a related plaintext, the adversary requires access to
a padding oracle to exploit the malleability of CBC. Other cryptosystems are
partly homomorphic by design. However, CBC-MAC does not have this property
as the protocol only retains the tag of the last block.
Interchanging any bits of the encrypted data with bits from another part of the
encrypted data would imply that the mode of operation is ECB. This structure
of ECB has the advantage of supporting parallel processing. Because the en-
cryption of each block does not depend on any other, an adversary can replace
any block with a previously intercepted block without being detected. In mech-
anisms like CBC, each encrypted block depends on the previous block of data.
New diffusion mechanisms proposed recently [EAAER09] attempt to solve this
issue.

8 Future state of payments cryptography

Most payment systems today use TDES as the primary cipher for encryption,
although NIST and other industry bodies have marked TDES for depreciation
as soon as 2023 [BR18]. AES and ciphers with longer block length do produce
higher security bounds, but lack ciphertext integrity. One method to ensure high
confidence in any payment system is to move to a set of standards that have
secure encryption, integrity and misuse resistance. We explore the generic com-
position schemes in Section (9) by looking at the work of [BN08]. Realistically,
using a cryptosystem like TR-31 is an excellent fit to achieve these requirements,

Security in banking 25

and the TR-31 scheme matches the A4 model in [NRS14]. The A4 model uses the
output of the MAC as the IV of the encryption scheme. Another method is to use
an alternative key wrapping mechanism [RS07] called SIV (synthetic IV). We
can see that the SIV mode operation also matches the A4 model [NRS14], and
the security proofs for them are identical to those in [RS06]. Both TR-31 and SIV
mode are deterministic authenticated-encryption (DAE) schemes satisfying the
notions of a misuse-resistant authenticated encryption scheme from [RS06]. In
addition to satisfying misuse resistance, and the encrypt-then-MAC paradigm,
payment systems should use secure underlying algorithms, and move away from
TDES where, in recent years, several attacks have surfaced due to the smaller
64-bit block size [BL16]. In the above, we do not draw a formal comparison
between the methods used in AS 2805 and TR-31. We do note that both these
schemes protect the same assets (private data and keys), and have the same
security goals.

9 Formal differences between AS 2805 and TR-31

We start by our formal analysis by comparing AS 2805 and TR-31 in a series
of well-known security games, establishing ciphertext and plaintext security in
addition to strong integrity.

9.1 Attack analysis

To demonstrate the differences in security between AS 2805 and TR-31, we
use adversarial games to demonstrate the insecurity of CBC with the use of
a zero initialization vector. We then look at indistinguishable chosen-ciphertext
security (IND-CCA), then extend the security games to indistinguishable chosen
plaintext security (IND-CPA). We then look at the composition paradigm, where
we discuss the composition of privacy and integrity. The strategy of the security
games is to illustrate the differences in the security bounds between the AS2805
financial messages and TR-31 Key Blocks. We start by defining financial message
operations as a pair of efficient algorithms (E , D), with a header, additional data
and a nonce that will not be encrypted such that:

– The deterministic encryption algorithm E : K ×N × P ×M → C × T × P
takes as input a secret key K ← K, associated data P ← P, and a message
M ← M to return a ciphertext C ← C a tag T ← T and the cleartext
associated data P ← P

– The deterministic decryption algorithm D : K×N ×P×C →M∪{⊥} takes
as input a secret key K, a nonce N , associated data P , and a ciphertext C to
return either a message in M or ⊥ indicating that the ciphertext is invalid.

The two algorithms above should have both privacy and integrity on the plain-
text and ciphertext. However, the security of the construction relies on the com-
position of the operations. The literature [BN08] explores several compositional
paradigms for authenticated encryption constructions ranging from methods

26 Van Der Merwe et al.

that use unique nonces and initial values and methods where weak message
authentication is used. We start with the use of CBC mode with a fixed IV
and define two separate worlds, left and right denoted as LR. The adversary is
given the result of either the left or right world. If the adversary can identify
where the result comes from, the scheme is considered insecure. The adversary
must have at most a 0.5 probability of guessing the world he operates in. The
adversary queries the LR world in a black box manner with no visibility of the
inner workings, only observing the input and output. We use the notion of an
oracle, which computes and encryption and decryption operations external to
the adversary. The LR is either an encryption or decryption operation with a
bit b, indicating left or right. We denote the oracle as Ek(LR(·, ·, b)) and an
adversary A accessing the oracle as AEk(LR(·,·,b)).
Our definition of security associates a symmetric encryption scheme S with an
adversary A in a security game, capturing each of the worlds above. The ad-
versary’s advantage and its success in breaking the scheme is the difference in
probabilities of the two experiments returning the bit one.

Definition 6. Let S = (K, E ,D) be a symmetric encryption scheme and the
adversary A be an algorithm that has access to an oracle.

We consider the following two experiments in the LR world, where we regard
Exp1

S as the left world and Exp0
S as the right world :

Adversary: AEk(LR(·,·,b)) Adversary: AEk(LR(·,·,b))

Experiment 1: Exp1
S(A) Experiment 2: Exp0

S(A)
K ← K K ← K

d← AEk(LR(·,·,1)) d← AEk(LR(·,·,0))

return d return d

We denote the advantage of A in distinguishing between the two worlds as:

AdvS(AEk(LR(·,·,b))) = Pr[Exp1
S(AEk(LR(·,·,b))) = 1]−Pr[Exp0

S(AEk(LR(·,·,b))) = 1].

In the game above, before the adversary interacts with the oracle, either the left
or right world is decided to respond to the oracle requests. We denote the left
world as world 1 and right world as world 0. In world 0, all the requests from the
adversary are answered from world 0, similarly in world 1. The requests do not
change oracles dynamically. If AdvS(A) is negligible, and the adversary cannot
tell which world he is operating in, then the scheme is secure. If AdvS(A) is close
to 1, then the adversary is doing well, and the scheme S is not secure. Infor-
mally, for a symmetric scheme to be secure against a chosen-plaintext attack,
the advantage of the adversary must be small regardless of what strategy the
adversary tries. However, we have to be realistic, as the adversary invests more

Security in banking 27

effort in his attack, this advantage may grow. We have to consider the adver-
sary’s resources and restrict the resources to a reasonable amount. With this, we
consider a scheme to be secure against a chosen-plaintext attack if the adversary
is efficient and cannot obtain a non-negligible advantage. We denote this game
left-or-right indistinguishably under chosen-plaintext attack or IND-CPA.

9.2 Attack on AS 2805 (ECB and CBC with a fixed and counter IV)

In the ECB mode of operation, we show that an adversary has a high IND-CPA
advantage, using a small number of resources. We slightly adjust our notation
and allow the adversary to input the choice of which world he operates in the
form of a bit b. The block size of the ECB scheme is denoted as n, where the
adversary submits two messages to the oracle, each message being two blocks.
One message consists of all zeros, 02n and one consists of a zero block concate-
nated with ones, 0n||1n. The goal of A is to determine the value of b.

Adversary: AEk(LR(·,·,b))

Experiment: Expb
ECB

M1 ← 02n; M0 ← 0n||1n
C[1], C[2]← Ek(LR(M1,M0, b))
If C[1] = C[2], then return 1 else return 0;

In the above C[1] and C[2] encryptions are the output blocks of ECB mode
decided by the input bit b; we claim that A has a significant IND-CPA advan-
tage, with only one oracle query, such that:

Pr[Exp1
ECB(AEk(LR(·,·,b))) = 1] = 1

and
Pr[Exp0

ECB(AEk(LR(·,·,b))) = 1] = 0.

In world 1, (where b = 1) the oracle returns C[1], C[2]← Ek(0
n)||Ek(0

n), there-
fore C[1] = C[2] and A can return 1. In world 0, (where b = 0), the oracle returns
C[1], C[2] ← Ek(0

n)||Ek(1
n). Since Ek is a permutation, C[1] ̸= C[2] so A can

confidently return 0. This means that the ECB mode of operation is insecure,
even if the underlying block cipher is secure.
Similarly, CBC mode is insecure when executed with a fixed IV. Given the oracle
is queried twice, and the Ek(LR(M1,M0, b)) is implemented with the encryption
algorithm or a random permutation, we can devise another game:
In the first game, the oracle submits two messages M0 ← 0n and an IV0 ← 0n.
Together with M1 ← 1n and an IV1 ← 1n. We denote the security of this scheme
in the following two games:

Adversary: AEk(LR(·,·,b))

Game: Expb1
CBC

M0 ← 0n; IV0 ← 0n

M1 ← 1n; IV1 ← 1n

28 Van Der Merwe et al.

C[1], C[2]← Ek(LR(M1,M0, b))

We see that regardless of which bit the oracle chooses, C[1] = C[2] and the adver-
sary does not have an advantage to distinguish between the possible worlds. This
property is due to the fact that CBC mode produces M⊕IV prior to encryption
of the first block. This results in either 0n⊕ 0n = 0n or 1n⊕ 1n = 0n. Given two
messages M0 ← 0n and an IV0 ← 0n together with a message M2 ← 0n and an
IV0 ← 0n where the message M2 is a random distribution and |M2| = |M1|, we
can devise Expb2

CBC which follows Expb1
CBC in the following game:

Adversary: AEk(LR(·,·,b))

Game: Expb2
CBC

M0 ← 0n; IV0 ← 0n

M2
$← S; IV0 ← 1n

C[3], C[4]← Ek(LR(M2,M0, b))
If C[3] = C[1], then return 1 else return 0;

We claim that A in CBC mode with a fixed IV has a non-negligible IND-CPA
advantage, with two oracle queries, such that:

Pr[Expb1
CBC(A

Ek(LR(·,·,b))) + Expb2
CBC(A

Ek(LR(·,·,b)))] = 1

Similarly, when the IV is a counter, the adversary can distinguish between the
counter values. Given two games where the IV is either 0n or 0n−1||1 we have
the following game:

Adversary:AEk(LR(·,·,b))

Game: Expb
CBC

M0,1 ← 0n; M1,1 ← 0n

M0,2 ← 0n; M1,2 ← 0n−1||1
IV1, C1 ← Ek(LR(M0,1,M1,1, b))
IV2, C2 ← Ek(LR(M0,2,M1,2, b))
If C1 = C2, then return 1 else return 0;
We claim that:

Pr[Exp1
CBC(AEk(LR(·,·,b))) = 1] = 1,

and
Pr[Exp0

CBC(AEk(LR(·,·,b))) = 1] = 0.

We prove this by considering world 0, where b = 0 meaning IV0 = 0 and IV1 = 1.
In this case we have C1 = Ek(0) and C2 = Ek(1) such that C1 ̸= C2 and the
experiment retuns 0. When b = 1 and we are in world 1, then IV1 = 0 and
IV2 = 1. In this case we have C1 = Ek(0) and C2 = Ek(0) and the experiment
returns 1.
With the reasoning above, we can see that the AS 2805 scheme is insecure. An
adversary has a significant advantage in distinguishing between ciphertexts.
Next, we consider the scheme with the use of a random IV, while assuming

Security in banking 29

the block cipher is a secure PRP or PRF. We call this randomised CBC mode,
denoted as CBC$. Taken from the work of [GB96]:

Theorem 1. The security of CBC$. Given a block cipher S = (K, E ,D), and
a CBC$ encryption scheme E : K × {0, 1}n → {0, 1}n. Let A be an adversary
attacking the IND-CPA security of S, running at most time t and using at most
q queries, totalling at most σ n-bit blocks. Then there is an adversary B attacking
the PRF security of S, such that:

Advind-cpa
CBC$ (A) ≤ Advprf

S (B) + σ2

2n+1

In Theorem 1, (taken from [GB96]) B runs in time at most t′ = t+O(q+nσ) and
asks q′ = σ oracle queries. Bellare et al. [BN08] describe the proof of Theorem 1
elegantly, showing that the bounds are tight, falling off by an amount that is at
most quadratic in the number of blocks σ, asked by the adversary.
In the IND-CPA paradigm, traditional block ciphers are not secure as they are
deterministic and will never win the IND-CPA game. In the case of TR-31, the
MAC is used as input to the block cipher which makes the scheme a probabilistic
composition. We conclude that AS 2805 is not IND-CPA secure, while TR-31
is IND-CPA secure and probabilistic in nature. We leave the TR-31 IND-CPA
insecurity proof as an open problem.

9.3 IND-CCA Security

If a block cipher is indistinguishable from a random distribution with an ad-
versary having access to a decryption oracle, then the mode provides indistin-
guishably based on chosen ciphertext attacks. We denote this as IND-CCA. As
before, we observe interactions with an adversary and an oracle. The adver-
sary is given black box access to the encryption c = Ek(m) and decryption
m = Dk(c) oracle, where the adversary cannot send a previous ciphertext ob-
tained by c = Ek(m) to the decryption oracle m = Dk(c). The adversary com-
putes two ciphertexts, c0 = Ek(m0) and c1 = Ek(m1). The oracle computes
c′ = Ek(m

′, b) for b′
$← {0, 1}, which is given to the adversary. The adversary

interacts with the oracles, and must output the bit b, indicating in which world
he is operating. We capture this notion in the following security game:

Adversary:ADk(LR(·,·,b))

Game: Expb
IND-CCA

Adversary interacts with the oracle:
c0 ← Ek(LR(m0))
c1 ← Ek(LR(m1))
The oracle computes:
b′

$← {0, 1}
m← Dk(LR(c2, c3, b))

30 Van Der Merwe et al.

Adversary interacts with the oracle:
m← Dk(c

′) for any c′ except c0 or c1
Adversary outputs a bit b′, if b′ = b then the adversary wins the game.
We claim, for a randomised encryption scheme, the advantage is negligible:

Pr[Exp1
IND-CCA(ADk(LR(·,·,b))) = 1]− Pr[Exp0

IND-CCA(ADk(LR(·,·,b))) = 1]

= |Pr[b′ = b]− 1/2| = ϵ.

We note that the probability above only holds for a randomised scheme, and
some modes of operations like ECB, and CBC are not IND-CCA secure. The
malleability of both ECB and CBC were described in Section 7.2, and we use
the following Theorem and proof for clarity:

Theorem 2. ECB, CTR and CBC are not IND-CCA secure.

To prove Theorem 2, we construct an adversary A with two messages m0 ← 0p

and m1 ← 1p for p > 1, where p is the block size of the symmetric encryp-
tion scheme. The adversary then interacts with the oracle to obtain c0 ←
Ek(LR(m0)) and c1 ← Ek(LR(m1)). Let y1 = ⌊c1⌋p and y2 = ⌊c2⌋p. The
adversary interacts with the decryption oracle, Dk(y1, y2, b), and obtains valid
plaintext of either m0 or m1. The adversary wins the game, as he can distinguish
in which world he operates in, based on which plaintext is correctly received.
The rule that the CCA adversary cannot submit previously generated ciphertext
is not valid in this game, as the length is manipulated and we can view this as a
different message. In order to construct a secure IND-CCA scheme, for a given
ciphertext y and a message m, the adversary should not be able to construct
a ciphertext z, for a related or truncated message. This implies that only non-
malleable schemes can be secure in the IND-CCA game. AS 2805 is malleable, it
is not IND-CCA secure, but the TR-31 scheme uses the output of a MAC as the
IV input to the CBC encryption. The IV MAC input provides randomisation to
the CBC encryption, so the addition of a MAC to the ciphertext protects the
scheme against malleability.

NM-CCA Security A non-malleable chosen ciphertext adversary, denoted by
NM-CCA has an advantage, as we described in Section 9.2, and given the TR-
31 scheme is not malleable we conclude that TR-31 is secure under NM-CCA,
while AS 2805 is not. Traditionally the notion on NM-CPA Security is captured
using an asymmetric scheme, we adapt the current notions to the symmetric
setting.
A cipher is NM-CCA secure if, after interacting with a CPA adversary, the
adversary interacts with another oracle and cannot find a non-trivial relation
between a plaintext and ciphertext.

Theorem 3. ECB, CTR and CBC are not NM-CCA secure.

To prove theorem (3) we first construct an CCA adversary in the following se-
curity game:

Security in banking 31

Adversary: ADk(·),Ek(·)

Game: Expf
NM-CCA

Adversary interacts with the encryption oracle:
c← Ek(m)
Adversary modifies the ciphertext with a function f :
c′ ← f(c)
Adversary interacts with the oracle:
{m′,⊥} ← Dk(c

′)
If the oracle returns an invalid plaintext (⊥), the adversary modifies the cipher-
text and interacts with the decryption oracle again, until:
m′ ← Dk(c

′)

The adversary A wins the game above if he is able to find a m′ that has a
relation to the original plaintext m. The adversary A for NM-CCA only has
c with no knowledge of m, and submissions to the decryption oracle must be
modified variations of c, that is c′. The adversary A in the NM-CCA case devi-
ates his function f(·) until a relation is found. If the adversary can find the f(·)
function, then he wins the game.
In the case of CTR it is trivial to find that an adversary can flip bits δ in
the ciphertext that decrypts to a related plaintext, such that c′ = c ⊕ δ with
m′ ← m⊕ δ since:

c′ ← c⊕ δ ← Ek(m)← Ek(m⊕ δ)← Ek(m
′)

We used similar reasoning in Section (7.2) to show plaintext relations can be
obtained with CBC and ECB. We claim that for an adversary A we have the
following advantage in the NM-CCA game for ECB, CTR and CBC:

AdvNM-CCA
CBC (ADk(·),Ek(·))) = Pr[Expf

NM-CCA(A
Dk(·),Ek(·))] = 1

AdvNM-CCA
CTR (ADk(·),Ek(·))) = Pr[Expf

NM-CCA(A
Dk(·),Ek(·))] = 1

AdvNM-CCA
ECB (ADk(·),Ek(·))) = Pr[Expf

NM-CCA(A
Dk(·),Ek(·))] = 1

9.4 Plaintext (INT-PTXT) and ciphertext (INT-CTXT) integrity

In our consideration of the integrity for these systems, we look at two notions
of integrity. The integrity of plaintext (INT-PTXT) and the integrity of cipher-
text (NT-CTXT). If a scheme is NT-PTXT secure, then it is computationally
infeasible to produce a ciphertext, which decrypts to a plaintext that the oracle
never encrypted. In a INT-CTXT secure scheme it is infeasible to produce a
ciphertext not produced by the oracle. In both cases we allow the adversary to
perform a chosen message attack, and a secure scheme should be secure under
a unforgeable chosen-message attack (UF-CMA). The notions of authenticity
are by themselves quite disjoint from the notions of privacy, as a system might
send unencrypted plaintext with a MAC, achieving INT-CTXT, but no privacy.

32 Van Der Merwe et al.

In the comparison between AS 2805 and TR-31 we have to consider the com-
bination of both privacy and integrity. In the AS 2805 scheme, the MAC is
computed over the entire payment message, which contains unique information
for each payment message, and varies in length. AS 2805 encrypted keys are
stored in databases without the MAC. We first only look at the INT-PTXT and
INT-CTXT security of financial messages in databases. The TR-31 scheme com-
putes a MAC over the plaintext header and encrypted data of the key block; the
plaintext and encrypted data is fixed in size. Therefore we consider the TR-31
scheme INT-PTXT and INT-CTXT secure only if the MAC is unforgeable in the
UF-CMA sense. We capture the INT-PTXT and INT-CTXT games as follows:

ExpINT-PTXT
S (A) ExpINT-CTXT

S (A)
Initialize

k
$← K; S ← ∅ k

$← K; S ← ∅
Encrypt(m)

c
$← Ek(m);S ← S ∪ {m} c

$← Ek(k,m);S ← S ∪ {c}
return c return c

Verify(c)
m← Dk(c) m← Dk(c)

If m ̸=⊥ and m /∈ S then win ← true If m ̸=⊥ and c ̸= S then win ← true
return m ̸=⊥ return m ̸=⊥

Finalize ← win

The two games above an adversary A wins the INT-PTXT security game, if he
submits to verification phase a ciphertext whose decryption is a message m ̸=⊥,
which was not previously sent to Encrypt(m). An adversary A wins the INT-
CTXT game if he submits a ciphertext to Verify(c), not previously returned
by Encrypt(m). For any adversary A. The AS 2805 schemes have no ability to
produce authenticity as part of the encryption process, because of this we claim:

AdvINT-PTXT
AS 2805 (A) = Pr[ExpINT-PTXT

AS 2805 (A)] = 1.

AdvINT-CTXT
AS 2805 (A) = Pr[ExpINT-CTXT

AS 2805 (A)] = 1.

This is trivially proven as part of the malleability of the CBC encryption in
Section (7.2). Since the scheme is malleable, an adversary can find a related
plaintext from modifying the ciphertext without detection. TR-31 uses a CMAC,
where modification to both the plaintext and ciphertext is detectable, we claim:

AdvINT-PTXT
TR-31 (A) = Pr[ExpINT-PTXT

TR-31 (A)] > ϵ.

AdvINT-CTXT
TR-31 (A) = Pr[ExpINT-CTXT

TR-31 (A)] > ϵ.

In the claim above, we assume that the CMAC is strongly unforgeable, which
we will explore by extending the definition of message authentication (as in

Security in banking 33

Definition 5). We do this by creating two security games, specifying two different
notions, one for weakly unforgeable message authentication (WUF-CMA) and
another for strongly unforgeable message authentication (SUF-CMA):

ExpWUF-CMA
S (A) ExpSUF-CMA

S (A)
Initialize

k
$← K; S ← ∅ k

$← K; S ← ∅
Tag(m)

τ
$← T (k,m);S ← S ∪ {M} τ

$← T (k,m);S ← S ∪ {(M, τ)}
return τ return τ

Verify(m, τ)
b← V(k,m, τ) b← V(k,m, τ)

If b = 1 and m /∈ S then win ← true If b = 1 and (m, τ) /∈ S then win ← true
return b return b

Finalize ← win

In the two security games above, the left hand side WUF-CMA game captures
the notion of unforgeability under chosen-message attacks. An adversary is suc-
cessful if he can forge a message that was not submitted to the Tag(m) procedure.
The SUF-CMA game captures a stronger notion whereby the message tag sub-
mitted to the Verify(m, τ) oracle needs to be new. We denote the advantage of
the adversary in each game as follows:

AdvWUF-CMA
S (A) = Pr[ExpWUF-CMA

S (A)].

AdvSUF-CMA
S (A) = Pr[ExpSUF-CMA

S (A)].

From the games we can easily distinguish that SUF-CMA implies WUF-CMA,
that is, if a scheme is SUF-CMA secure then it is also WUF-CMA secure. The
CMAC algorithm used in TR-31 is assumed to be SUF-CMA secure, therefore
secure in both SUF-CMA and WUF-CMA while the AS 2805 scheme has no
integrity and is not secure. We summarise our results in Table (9.1), taking
motivation from the work by [BN08].

Composition Method Privacy Integrity
IND-CPA IND-CCA NM-CPA INT-PTXT INT-CTXT

TR-31 secure secure secure secure secure
AS 2805 insecure insecure insecure insecure insecure

Table 9.1. Financial encryption composition security

34 Van Der Merwe et al.

The security notions investigated in this section were discussed individually. We
now explore the relationships between these notions in a financial security sense
highlighting key differences in the work of [BN08].

9.5 Relations among notions

We now state the implications of satisfying the notions above, and how this may
imply other security notions. We do not provide full proofs of theorems, as they
are captured in [BN08]. We use the results of the composition for our overall
analysis when comparing TR-31 and AS 2805.

Theorem 4. (INT-PTXT→ INT-CTXT) If a symmetric scheme is NT-CTXT
secure, then it is also INT-CTXT secure. We denote the advantage of an chosen
plaintext adversary as:

AdvINT-PTXT
S (A) ≤ AdvINT-CTXT

S (A)

Theorem 5. (INT-PTXT ∧ IND-CPA → IND-CCA)Any scheme that is both
INT-PTXT and IND-CPA secure, is also IND-CCA secure. Another way to
express this, is that weak privacy combined with strong integrity implies strong
privacy. If we let A be an IND-CCA adversary against S, then we can construct
an INT-CTXT adversary and an IND-CPA adversary such that:

AdvIND-CCA
S (A) ≤ 2 ·AdvINT-CTXT

S (A) + AdvIND-CPA
S (A)

9.6 Secure composition

We turn our attention to the composition of privacy and integrity detailed
in [BN08], where we note that the TR-31 scheme conforms to the MAC-then-
Encrypt (MtE) as opposed to AS 2805 which conforms to Encrypt-then-MAC
(EtM). The work of [BN08] states that EtM works well and is alone secure, when
the underlying primitives are sound. That is, when a IND-CCA secure scheme is
combined with a SUF-CMA secure MAC, we could have a secure composition.
We extend our analysis of AS 2805 to messages in transit, where there is a CBC
MAC calculated on the payment message.

AS 2805 (EtM) analysis AS 2805 Encrypt-then-MAC (EtM) scheme combines a
symmetric encryption scheme S = (ke, Eke

(m), Dke
(c)) and a message authen-

tication algorithm M = (km, Tkm
(m),Vkm

(m, τ)) and additional plaintext P ,
that is not encrypted with the following algorithm:

Security in banking 35

Algorithm: K Algorithm E(ke, km,m, P) Algorithm D(ke||km, c)

ke
$← K c′

$← Eke(m, IV) c′, τ ← c

km
$← K τ

$← Tkm(c||P) v ← Vkm(c′, τ)

IV ← 0|ke| c← c′||τ m← Dke(c
′)

return (ke, km) return c If v = 1 then return m else return ⊥

AS 2805 uses a fixed IV in CBC encryption, making the encryption scheme
deterministic. With our analysis, we can see that AS 2805 is not IND-CPA,
IND-CCA or NM-CPA secure. The malleability of CBC mode in the determinis-
tic setting leads us to determine that an adversary is able to find a corresponding
ciphertext with a binary relation to the plaintext, violating privacy. According
to [BN08] CBC MAC is only secure if you restrict the MAC to strings in the
domain {0, 1}mn for some constant m. If a CBC MAC is applied to a string
varying in length, then an adversary can distinguish the object from a random
function. This attack is possible when given a tag on a message τ ← Tk(m1),
one can XOR the tag τ with a second message m

′

2 ← m2 ⊕ τ and compute the
tag on τ ′ ← Tk(m

′

2). It turns out that τ ′ is a valid tag for both m1 and m2. We
capture this advantage in the following LR security game:

Adversary:ATk(·,b)

Game: Expb
CBC-MAC

m1 ← 1n; m2
$←R

τ1,m1 ← Tk(m1, b))
τ2,m2 ← Tk(m2, b))
τ3 ← m2 ⊕ τ1
m3 ← m1||τ3||m2

τ3,m3 ← Tk(m3, b))
If τ3 = τ2, then return 1 else return 0;
Then we have:

AdvCBC-MAC
S (ATk(·,b)) = Pr[Expb

CBC-MAC(ATk(·,b))] = 1

This problem cannot be solved by adding a message-size block. We recommend
the use of CMAC (like in TR-31) for variable length message, to mitigate against
this attack.
For a PRF adversary attacking a fixed length CBC MAC in the domain {0, 1}mn

for some constant m, we can define the following theorem and security bound
(taken from [BPR05]):

Theorem 6. For a fixed n ≤ 1, m ≤ 1, and q ≤ 2. Let A be an adversary,
asking at most q queries. Each query is of nm bits, then we have:

Advprf
CBC MAC(A) ≤

mq2

2n

36 Van Der Merwe et al.

TR-31 Mac-then-Encrypt (MtE) analysis The TR-31 Mac-then-Encrypt (MtE)
scheme combines a symmetric encryption scheme S = (ke, Eke

(m), Dke
(c) and a

message authentication algorithm M = (km, Tkm(m),Vkm(m, τ)), where output
of the MAC is the IV of the symmetric scheme and the MAC is computed over
additional plaintext P , that is not encrypted with the following algorithm:

Algorithm: K Algorithm E(ke||km,m, P) Algorithm D(ke||km, c)

ke
$← K τ

$← Tkm(P ||m) c′, τ, P ← c

km
$← K c′

$← Eke(m, τ) m← Dke(c
′, τ)

return (ke||km) c← P ||c′||τ v ← Vkm(P ||m, τ))
return c If v = 1 then return m else return ⊥

The tag τ of the MAC is computed on a fixed size message, outputting ran-
domised data as the IV of the CBC encryption. The CBC$ encryption is prob-
abilistic in nature, and secure under IND-CPA, IND-CCA, NM-CPA. The rela-
tions among the notions hold for TR-31, and the MtE construction is shown to
be more secure than the implementation of EtM AS2805 scheme. An adversary

attacking the TR-31 CBC$ encryption scheme is upper bounded by σ2

2n+1
and

the integrity by mq2

2n
. With the combination of both schemes we can establish

the following bounds for an PRF adversary:

Advprf
TR-31(A) ≤

mq2

2n
+

σ2

2n+1

While in the case of AS 2808 the bounds are non-negligible.

Advprf
AS 2805(A) > ϵ

10 Conclusion

We present the TR-31 encryption mode and draw a formal comparison to the
AS 2805 methods. We investigated a new encryption scheme called DES-V based
on AS 2805 variants and illustrate higher computational and memory resistance
against MITM attacks, compared with traditional TDES. We then discussed
some open problems and formed a formal analysis concerning payment system
models. In the study of CBC and ECB, we showed that fixed and counter IVs
is not secure in the IND-CCA and IND-CPA attack models, and we discussed
the non-malleable security of CBC MAC. The CBC mode was compared with
CBC$, showing a clear adversary advantage. Lastly, we showed that the AS 2805
Encrypt-then-MAC scheme is not a secure composition method, while the TR-
31 MAC-then-encrypt scheme does not present the same disadvantages in the
attack models.

Security in banking 37

References

AG91. Ian Abramson and Larry Goldstein. Efficient nonparametric testing by
functional estimation. Journal of Theoretical Probability, 4(1):137–159,
1991.

Bac94. P Bachmann. Die analytische zahlentheorie. zahlentheorie, pt. 2, 1894.
Bar17. Elaine Barker. Sp 800-67 rev. 2, recommendation for triple data encryption

algorithm (tdea) block cipher. NIST special publication, 800:67, 2017.
BFK+12. Romain Bardou, Riccardo Focardi, Yusuke Kawamoto, Lorenzo Simion-

ato, Graham Steel, and Joe-Kai Tsay. Efficient padding oracle attacks on
cryptographic hardware. In Annual Cryptology Conference, pages 608–625.
Springer, 2012.

BKS12. Elaine Barker, John Kelsey, and John Bryson Secretary. Nist special
publication 800-90a recommendation for random number generation us-
ing deterministic random bit generators, 2012.

BL16. Karthikeyan Bhargavan and Gaëtan Leurent. On the practical (in-) secu-
rity of 64-bit block ciphers: Collision attacks on http over tls and openvpn.
In Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, pages 456–467, 2016.

BN08. Mihir Bellare and Chanathip Namprempre. Authenticated encryption: Re-
lations among notions and analysis of the generic composition paradigm.
Journal of Cryptology, 21(4):469–491, 2008.

BPR05. Mihir Bellare, Krzysztof Pietrzak, and Phillip Rogaway. Improved security
analyses for cbc macs. In Annual International Cryptology Conference,
pages 527–545. Springer, 2005.

BR06. Mihir Bellare and Phillip Rogaway. The security of triple encryption and
a framework for code-based game-playing proofs. In Annual International
Conference on the Theory and Applications of Cryptographic Techniques,
pages 409–426. Springer, 2006.

BR18. Elaine Barker and Allen Roginsky. Transitioning the use of cryptographic
algorithms and key lengths. Technical report, National Institute of Stan-
dards and Technology, 2018.

BU02. John Black and Hector Urtubia. Side-channel attacks on symmetric en-
cryption schemes: The case for authenticated encryption. In USENIX
Security Symposium, pages 327–338, 2002.

CKS+05. Jaemin Choi, Jongsung Kim, Jaechul Sung, Sangjin Lee, and Jongin Lim.
Related-key and meet-in-the-middle attacks on triple-des and des-exe. In
International Conference on Computational Science and Its Applications,
pages 567–576. Springer, 2005.

Cou16. Payment Card Industry Security Standards Council. PIN Transaction Se-
curity (PTS) Hardware Security Module (HSM) Modular Security Require-
ments Version 3.0. Payment Card Industry Security Standards Council,
June 2016.

DDN03. Danny Dolev, Cynthia Dwork, and Moni Naor. Nonmalleable cryptogra-
phy. SIAM review, 45(4):727–784, 2003.

EAAER09. Ibrahim F Elashry, Osama S Farag Allah, Alaa M Abbas, and S El-Rabaie.
A new diffusion mechanism for data encryption in the ecb mode. In 2009
International Conference on Computer Engineering & Systems, pages 288–
293. IEEE, 2009.

38 Van Der Merwe et al.

EMV04. EMV EMVCo. Integrated circuit card specifications for payment sys-
tems�book1 application independent icc to terminal interface require-
ments, version 4.1, 2004.

EMV09. EMV EMVCo. Contactless specifications for payment systems. EMVCo,
July, 2009.

EMV11. LLC EMVCo. Emv integrated circuit card specifications for payment
systems book 2 security and key management version 4.3, 2011.

FGM+18. Houda Ferradi, Rémi Géraud, Diana Maimuţ, David Naccache, and
Amaury de Wargny. Regulating the pace of von neumann correctors.
Journal of Cryptographic Engineering, 8(1):85–91, 2018.

FL93. Walter Fumy and Peter Landrock. Principles of key management. IEEE
Journal on selected areas in communications, 11(5):785–793, 1993.

FM86. George S Fishman and Louis R Moore, III. An exhaustive analysis of mul-
tiplicative congruential random number generators with modulus 2^31-1.
SIAM Journal on Scientific and Statistical Computing, 7(1):24–45, 1986.

fS16. International Organization for Standardization. ISO/IEC 9797-1:2011 In-
formation technology — Security techniques — Message Authentication
Codes (MACs) — Part 1: Mechanisms using a block cipher. International
Organization for Standardization, 2016.

fS17. International Organization for Standardization. ISO 9564-1:2017: Finan-
cial services — Personal Identification Number (PIN) management and
security — Part 1: Basic principles and requirements for PINs in card-
based systems. International Organization for Standardization, 2017.

GB96. Shafi Goldwasser and Mihir Bellare. Lecture notes on cryptography. Sum-
mer course “Cryptography and computer security” at MIT, 1999:1999,
1996.

GDPSM11. Victor R Gonzalez-Diaz, Fabio Pareschi, Gianluca Setti, and Franco Mal-
oberti. A pseudorandom number generator based on time-variant recur-
sion of accumulators. IEEE Transactions on Circuits and Systems II:
Express Briefs, 58(9):580–584, 2011.

GRS90. Ronald L Graham, Bruce L Rothschild, and Joel H Spencer. Ramsey
theory, volume 20. John Wiley & Sons, 1990.

GWP+17. Meredith K Ginley, James P Whelan, Rory A Pfund, Samuel C Peter, and
Andrew W Meyers. Warning messages for electronic gambling machines:
Evidence for regulatory policies. Addiction Research & Theory, 25(6):495–
504, 2017.

Hir08. Shoichi Hirose. Security analysis of drbg using hmac in nist sp 800-90.
In International Workshop on Information Security Applications, pages
278–291. Springer, 2008.

Ins17. American National Standards Institute. ANSI X9.24-1-2017: Retail Fi-
nancial Services Symmetric Key Management Part 1: Using Symmetric
Techniques. ANSI, 2017.

Ins18. American National Standards Institute. ASC X9 TR 31-2018: Interoper-
able Secure Key Exchange Key Block Specification. ANSI, 2018.

IYKP13. Ruth Ng Ii-Yung, Khoongming Khoo, and Raphael C-W Phan. On the
security of the xor sandwiching paradigm for multiple keyed block ci-
phers. In 2013 International Conference on Security and Cryptography
(SECRYPT), pages 1–8. IEEE, 2013.

Ken39. Maurice G Kendall. The geographical distribution of crop productivity in
england. Journal of the Royal Statistical Society, 102(1):21–62, 1939.

Security in banking 39

Ken76. MG Kendall. Rank auto correlation methods, 4th edn., griffin, 1976.
KR01. Joe Kilian and Phillip Rogaway. How to protect des against exhaustive

key search (an analysis of desx). Journal of Cryptology, 14(1):17–35, 2001.
KSWH98. John Kelsey, Bruce Schneier, David Wagner, and Chris Hall. Cryptanalytic

attacks on pseudorandom number generators. In International Workshop
on Fast Software Encryption, pages 168–188. Springer, 1998.

Lan09. Edmund Landau. Handbuch der Lehre von der Verteilung der Primzahlen:
Zweiter Band. BG Teubner, 1909.

Lia05. Guinan Lian. Testing primitive polynomials for generalized feedback shift
register random number generators. 2005.

Luc98. Stefan Lucks. Attacking triple encryption. In Proceedings of the 5th Inter-
national Workshop on Fast Software Encryption, FSE ’98, page 239–253,
Berlin, Heidelberg, 1998. Springer-Verlag.

Mar. G Marsaglia. Diehard statistical tests.[electronic resource]. Access mode:
http://stat. fsu. edu/~ geo/diehard. html.

Mau92. Ueli M Maurer. A universal statistical test for random bit generators.
Journal of cryptology, 5(2):89–105, 1992.

MH81. Ralph C Merkle and Martin E Hellman. On the security of multiple
encryption. Communications of the ACM, 24(7):465–467, 1981.

MR08. Edward A Morse and Vasant Raval. Pci dss: Payment card industry
data security standards in context. Computer Law & Security Review,
24(6):540–554, 2008.

NIS10. NIST. A Statistical Test Suite for Random and Pseudorandom Number
Generators for Cryptographic Applications. National Institute of Stan-
dards and Technology, 2010.

NRS14. Chanathip Namprempre, Phillip Rogaway, and Thomas Shrimpton. Re-
considering generic composition. In Annual International Conference on
the Theory and Applications of Cryptographic Techniques, pages 257–274.
Springer, 2014.

oS17a. International Organization of Standardization. ISO 11568-2:2012 Finan-
cial services — Key management (retail) — Part 2: Symmetric ciphers,
their key management and life cycle. International Organization of Stan-
dardization, 2017.

oS17b. International Organization of Standardization. ISO 13491-1:2007 Banking
— Secure cryptographic devices (retail) — Part 1: Concepts, requirements
and evaluation methods. International Organization of Standardization,
2017.

PCI. Official pci security standards council site - verify pci compliance, down-
load data security and credit card security standards.

Pha04. Raphael C-W Phan. Related-key attacks on triple-des and desx variants.
In Cryptographers’ Track at the RSA Conference, pages 15–24. Springer,
2004.

PY04a. Kenneth G Paterson and Arnold Yau. Padding oracle attacks on the
iso cbc mode encryption standard. In Cryptographers’ Track at the RSA
Conference, pages 305–323. Springer, 2004.

PY04b. Kenneth G Paterson and Arnold Yau. Padding oracle attacks on the
iso cbc mode encryption standard. In Cryptographers’ Track at the RSA
Conference, pages 305–323. Springer, 2004.

RD01. Vincent Rijmen and Joan Daemen. Advanced encryption standard. Pro-
ceedings of Federal Information Processing Standards Publications, Na-
tional Institute of Standards and Technology, pages 19–22, 2001.

40 Van Der Merwe et al.

RD10a. Juliano Rizzo and Thai Duong. Practical padding oracle attacks. In
WOOT, 2010.

RD10b. Juliano Rizzo and Thai Duong. Practical padding oracle attacks. In
WOOT, 2010.

Rog89. Yves Roggeman. Varying feedback shift registers. In Workshop on the
Theory and Application of of Cryptographic Techniques, pages 670–679.
Springer, 1989.

Rog96. Phillip Rogaway. The security of desx. RSA Laboratories Cryptobytes,
2(2), 1996.

RS06. Phillip Rogaway and Thomas Shrimpton. A provable-security treatment of
the key-wrap problem. In Annual International Conference on the Theory
and Applications of Cryptographic Techniques, pages 373–390. Springer,
2006.

RS07. Phillip Rogaway and Thomas Shrimpton. The siv mode of operation for
deterministic authenticated-encryption (key wrap) and misuse-resistant
nonce-based authenticated-encryption. UC Davis, 20:3, 2007.

SC15. Code Set and Acquirers Code. Australian payments clearing association
limited. 2015.

SF07. Dan Shumow and Niels Ferguson. On the possibility of a back door in
the nist sp800-90 dual ec prng. In Proceedings of Crypto 2007, volume 7,
2007.

Sha48. Claude E Shannon. A mathematical theory of communication. Bell system
technical journal, 27(3):379–423, 1948.

SMK19. Rashmi R Salavi, Mallikarjun M Math, and UP Kulkarni. A survey of
various cryptographic techniques: From traditional cryptography to fully
homomorphic. Innovations in Computer Science and Engineering: Pro-
ceedings of the Sixth ICICSE 2018, 74:295, 2019.

Sta13a. Australian Standards. Electronic funds transfer - Requirements for in-
terfaces ciphers - Data encipherment algorithm 3 (DEA 3) and related
techiniques. Australian Standards, 2013.

Sta13b. Australian Standards. Electronic funds transfer - Requirements for inter-
faces, Part 6.3: Key management—Sessionkeys—Nodeto node. Australian
Standards, 2013.

Sta17. Australian Standards. Electronic funds transfer - Requirements for inter-
faces, Part 6.5.3: Key management - TCU initialization - Asymmetric.
Australian Standards, 2017.

TY98. Yiannis Tsiounis and Moti Yung. On the security of elgamal based en-
cryption. In International Workshop on Public Key Cryptography, pages
117–134. Springer, 1998.

Upa16. Bancha Upanan. Research on cryptographic backdoors. 2016.
Vau02. Serge Vaudenay. Security flaws induced by cbc padding—applications to

ssl, ipsec, wtls... In International Conference on the Theory and Applica-
tions of Cryptographic Techniques, pages 534–545. Springer, 2002.

vOW91. C. van Oorschot and Michael J. Wiener. A known-plaintext attack on
two-key triple encryption. In Proceedings of the Workshop on the Theory
and Application of Cryptographic Techniques on Advances in Cryptology,
page 318–325, Berlin, Heidelberg, 1991. Springer-Verlag.

VV84. Umesh V Vazirani and Vijay V Vazirani. Efficient and secure pseudo-
random number generation. In Workshop on the Theory and Application
of Cryptographic Techniques, pages 193–202. Springer, 1984.

Security in banking 41

Wan14. Yongge Wang. On the design of lil tests for (pseudo) random generators
and some experimental results. Citeseer, 2014.

Wik02. Douglas Wikström. A note on the malleability of the el gamal cryptosys-
tem. In International Conference on Cryptology in India, pages 176–184.
Springer, 2002.

YGS+17. Katherine Q Ye, Matthew Green, Naphat Sanguansin, Lennart Beringer,
Adam Petcher, and Andrew W Appel. Verified correctness and security of
mbedtls hmac-drbg. In Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, pages 2007–2020, 2017.

YPM05. Arnold KL Yau, Kenneth G Paterson, and Chris J Mitchell. Padding oracle
attacks on cbc-mode encryption with secret and random ivs. In Interna-
tional Workshop on Fast Software Encryption, pages 299–319. Springer,
2005.

ZF05. YongBin Zhou and DengGuo Feng. Side-channel attacks: Ten years after
its publication and the impacts on cryptographic module security testing.
IACR Cryptology ePrint Archive, 2005(388), 2005.

	Security in banking

