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Abstract. The two traditional streams of multiparty computation
(MPC) protocols consist of– (a) protocols achieving guaranteed output
delivery (god) or fairness (fn) in the honest-majority setting and (b) pro-
tocols achieving unanimous or selective abort (ua, sa) in the dishonest-
majority setting. The favorable presence of honest majority amongst the
participants is necessary to achieve the stronger notions of god or fn.
While the constructions of each type are abound in the literature, one
class of protocols does not seem to withstand the threat model of the
other. For instance, the honest-majority protocols do not guarantee pri-
vacy of the inputs of the honest parties in the face of dishonest majority
and likewise the dishonest-majority protocols cannot achieve god and
fn, tolerating even a single corruption, let alone dishonest minority. The
promise of the unconventional yet much sought-after species of MPC,
termed as ‘Best-of-Both-Worlds’ (BoBW), is to offer the best possible
security depending on the actual corruption scenario.
This work nearly settles the exact round complexity of two classes of
BoBW protocols differing on the security achieved in the honest-majority
setting, namely god and fn respectively, under the assumption of no setup
(plain model), public setup (CRS) and private setup (CRS + PKI or
simply PKI). The former class necessarily requires the number of parties
to be strictly more than the sum of the bounds of corruptions in the
honest-majority and dishonest-majority setting, for a feasible solution to
exist. Demoting the goal to the second-best attainable security in the
honest-majority setting, the latter class needs no such restriction.
Assuming a network with pair-wise private channels and a broadcast
channel, we show that 5 and 3 rounds are necessary and sufficient for
the class of BoBW MPC with fn under the assumption of ‘no setup’ and
‘public and private setup’ respectively. For the class of BoBW MPC with
god, we show necessity and sufficiency of 3 rounds for the public setup
case and 2 rounds for the private setup case. In the no setup setting, we
show the sufficiency of 5 rounds, while the known lower bound is 4. All
our upper bounds are based on polynomial-time assumptions and assume
black-box simulation. With distinct feasibility conditions, the classes dif-
fer in terms of the round requirement. The bounds are in some cases
different and on a positive note at most one more, compared to the max-
imum of the needs of the honest-majority and dishonest-majority setting.
Our results remain unaffected when security with abort and fairness are
upgraded to their identifiable counterparts.

? This article is the full version of an earlier article to appear in ASIACRYPT 2020.



1 Introduction

In secure multi-party computation (MPC) [1,2,3], n parties wish to jointly per-
form a computation on their private inputs in a way that no adversary A actively
corrupting a coalition of t parties can learn more information than their out-
puts (privacy), nor can they affect the outputs of the computation other than
by choosing their own inputs (correctness). MPC protocol comes in distinct
flavours with varying degree of robustness– guaranteed output delivery (god),
fairness (fn), unanimous abort (ua) and selective abort (sa). The strongest secu-
rity, god, implies that all parties are guaranteed to obtain the output, regardless
of the adversarial strategy. In the weaker notion of fn, the corrupted parties
receive their output if and only if all honest parties do. In the further weaker
guarantee of ua, fairness may be compromised, yet the adversary cannot break
unanimity of honest parties. That is, either all or none of the honest parties re-
ceive the output. Lastly, sa security, the weakest in the lot, allows the adversary
to selectively deprive some honest parties of the output.

While highly sought-after, the former two properties can only be realised,
when majority of the involved population is honest [4]. In the absence of this
favorable condition, only the latter two notions can be attained. With these
distinct affordable goals, MPC with honest majority [5,6,7,8,9,10,11] and dis-
honest majority [1,12,13,14,15,16,17] mark one of the earlier demarcations in
the world of MPC. With complementary challenges and techniques, each set-
ting independently stands tall with spectacular body of work. Yet, the most
worrisome shortcoming of these generic protocols is that: a protocol in one set-
ting completely breaks down in the other setting i.e. the security promises are
very rigid and specific to the setting. For example, a protocol for honest majority
might no longer even be “private” or “correct” if half (or more) of the parties are
corrupted. A protocol that guarantees security with ua for arbitrary corruptions
cannot pull off the stronger security of god or fn even if only a “single” party
is corrupt. In many real-life scenarios, it is highly unlikely for anyone to guess
upfront how many parties the adversary is likely to corrupt. In such a scenario,
the best a practitioner can do, is to employ the ‘best’ protocol from her favorite
class and hope that the adversary will be within assumed corruption limit of
the employed protocol. If the guess fails, the employed protocol, depending on
whether it is an honest or dishonest majority protocol, will suffer from the above
mentioned issues. The quest for attaining the best feasible security guarantee in
the respective settings of honest and dishonest majority in a single protocol sets
the beginning of a brand new class of MPC protocols, termed as ‘Best of Both
Worlds (BoBW)’ [18,19,20]. In critical applications like voting [21,22], secure
auctions [23], secure aggregation [24], federated learning and prediction [25,26],
financial data analysis [27] and others, where privacy of the inputs of an honest
party needs protection at any cost and yet a robust completion is called for (as
much as theoretically feasible), BoBW protocols are arguably the best fit.

Denoting the threshold of corruption in honest and dishonest majority case
by t and s respectively, an ideal BoBW MPC should promise the best possi-
ble security in each corruption scenario for any population of size n, as long
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as t < n/2 and s < n. Quite contrary to the expectation, the grand beginning
of BoBW MPC with the works of [18,19,20] is mostly marred with pessimistic
results showing the above goal is impossible for many scenarios. For reactive
functionalities that receive inputs and provide outputs in multiple rounds main-
taining a state information between subsequent invocations, it is impossible to
achieve BoBW security [18]. While theoretical feasibility is not declined, non-
reactive or standard functionalities are shown to be impossible to realise as long
as t + s ≥ n in expected polynomial time (in the security parameter), making
any positive result practically irrelevant [19,20]. A number of meaningful relax-
ations were proposed in the literature to get around the impossibility of BoBW
security when t + s ≥ n [19,20]. The most relevant to our work is the relax-
ation proposed in [28] where the best possible security of god is compromised
to the second-best notion of fn in the honest-majority setting. Other attempts
to circumvent the impossibility result appear in [18] and [19,29] where the secu-
rity in dishonest-majority setting is weakened to allowing the adversary to learn
s evaluations of the function (each time with distinct inputs exclusively corre-
sponding to the corrupt parties) in the former and achieving a weaker notion
of O(1/p)-security with abort (actions of any polynomial-time adversary in the
real world can be simulated by a polynomial-time adversary in the ideal world
such that the distributions of the resulting outcomes cannot be distinguished
with probability better than O(1/p)) in the latter. [18] shows yet another cir-
cumvention by weakening the adversary in dishonest-majority case from active
to passive. On the contrary, constructions are known when t+ s < n is assumed
[18], tolerating active corruptions and giving best possible security in both the
honest and dishonest majority case.

In this work, we consider two types of BoBW MPC protocols and study
their exact round complexity: (a) MPC achieving the best security of god and
ua in the honest and dishonest majority setting respectively assuming s+ t < n,
referred as (god|ua)-BoBW; (b) MPC achieving second-best security notion of
fn in the honest majority and the best possible security of ua in the dishon-
est majority for any n, referred as (fn|ua)-BoBW. The adversary is considered
malicious, rushing and polynomially-bounded in either world. The latter notion
(introduced in [28]) is an elegant and meaningful relaxation that brings back
the true essence of BoBW protocols with no constraint on n, apart from the
natural bounds of t < n/2 and s < n. Furthermore, fn is almost as good as god
for many practical applications where the adversary is rational enough and does
not wish to fail the honest parties at the expense of losing its own output. In
spite of immense practical relevance of BoBW protocols, the question of their
exact round complexity has not been tackled so far. Below, we review relevant
literature on BoBW protocols and exact round complexity of MPC.

1.1 On the Round Complexity of BoBW MPC

The phenomenal body of work done on round complexity catering to various
adversarial settings and network models emphasises its theoretical importance
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and practical relevance. For instance, the exact round complexity of MPC inde-
pendently in honest and dishonest majority has been examined and the recent
literature is awash with a bunch of upper bounds that eluded for quite a long
time [30,31,16,17]. We review the round complexity of the honest-majority and
dishonest-majority MPC in the cryptographic setting which define natural yet
possibly loose bounds for the BoBW MPC. To begin with, 2 rounds are known
to be necessary to realize any MPC protocol, regardless of the setting, no mat-
ter whether a setup is assumed or not as long as the setup (when assumed) is
independent of the inputs of the involved parties [32].

In the dishonest-majority setting, when no setup is assumed (plain model) 4
rounds are necessary [33]. Tight upper bounds appear in [14,15,16,17,34], with
the latter three presenting constructions under polynomial-time assumptions, yet
with sa security. In the presence of a public setup (Common Reference String
a.k.a. CRS setting), the lower bound comes down to 2 rounds [32]. A series
of work present matching upper bounds under various assumptions [13,35,36],
culminating with the works of [30,31] that attain the goal under the minimal
assumption of 2-round oblivious transfer (OT). In the honest-majority setting
and in plain model, 3 rounds are shown to be necessary for fn (and hence for
god) protocols, in the presence of pairwise-private and broadcast channels for
t ≥ 2 active corruptions [37] and for any t as long as n/3 < t < n/2 [38]. The
results of [37,38] hold in the presence of CRS but does not hold in the presence
of correlated randomness setup such as PKI. Circumventing the lower bound of
3 for fn, [39] shows a 2-round 4PC protocol against a single active corruption
achieving god even without a broadcast channel. The matching upper bounds
appear in [11] for the general case under public-key assumption, and in [38] for
the special case of 3PC under the minimal assumption of (injective) OWF. In the
CRS model, 3 rounds remains to be the lower bound for fn in a setting where
broadcast is the only medium of communication (broadcast-only setting) [40]
and additionally with point-to-point channels [38,37,41]. Given PKI, the bound
can be improved to 2 [40].

In the BoBW setting, constant-round protocols are presented in (or can be
derived from) [18,20] for (god|ua)-BoBW and BoBW where only semi-honest
corruptions are tolerated in the dishonest majority. The recent work of [42]
settled the exact round complexity of the latter class, as a special case of a
strong adversarial model that allows both active (with threshold ta) and passive
(with threshold tp, which subsumes the active corruptions) corruption for a range
of thresholds for (ta, tp) starting from (dn/2e−1, bn/2c) to (0, n−1). Lastly, the
round complexity of BoBW protocols of [29] that achieve 1/p- security with abort
in dishonest-majority (and god in honest majority), depends on the polynomial
p(κ) (where κ denotes the security parameter).

1.2 Our Results

This work nearly settles the exact round complexity for two classes of BoBW
protocols, (god|ua)-BoBW and (fn|ua)-BoBW, under the assumption of no setup
(plain model), public setup (CRS) and private setup (CRS + PKI or simply
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PKI). The adversary is assumed to be rushing, active and static. The parties are
connected via pair-wise private channels and an additional broadcast channel.
All our upper bounds are based on polynomial-time assumptions and assume
black-box simulation. We summarise our results below.

(fn|ua)-BoBW. We settle the exact round complexity of this class of BoBW
protocols by establishing the necessity and sufficiency of: (a) 5 rounds in the plain
model and (b) 3 rounds in both the public (CRS) and private (CRS+PKI) setup
setting. In the CRS model, the necessity of 3 rounds for honest-majority MPC
achieving fn (and hence for (fn|ua)-BoBW) has been demonstrated in [40,37,38],
the former in a setting where broadcast is the only mode of communication
(broadcast-only) and the latter two additionally with pairwise-private channels.
However, these results do not hold in the presence of PKI. Our lower bound
argument, on the other hand, is resilient to the presence of both CRS and PKI,
and further holds in the presence of broadcast and pairwise-private channels.

No setup (Plain Model) Public Setup (CRS) Private Setup (CRS + PKI)

Honest Majority
t < n/2
fn / god

Round: 3
Lower Bound: [38,37]
Upper Bound: [11,43]

Round: 3
Lower Bound: [38,37]
Upper Bound: [40,11,43]

Round: 2
Lower Bound: [32]
Upper Bound: [40]

Dishonest Majority
s < n
sa / ua

Round: 4
Lower Bound: [33]
Upper Bound: [16,17,34]
(sa only)

Round: 2
Lower Bound: [32]
Upper Bound: [13,35]
[36,30,31]

Round: 2
Lower Bound: [32]
Upper Bound: [13,35]
[36,30,31]

(fn|ua)-BoBW
t < n/2, s < n
fn & ua

Round: 5
Lower Bound: This paper
Upper Bound: This paper

Round: 3
Lower Bound: [37,38]
Upper Bound: This paper

Round: 3
Lower Bound: This paper
Upper Bound: This paper

(god|ua)-BoBW
t < n/2, t+ s < n
god & ua

Round: –
Lower Bound: 4 [33]
Upper Bound: 5 This paper

Round: 3
Lower Bound: This paper
Upper Bound: This paper

Round: 2
Lower Bound: [32]
Upper Bound: This paper

Table 1: Summary of results

(god|ua)-BoBW. In this regime, we demonstrate that 4, 3 and 2 are the respec-
tive lower bounds in the no-setup, public setup and private setup setting. The
first lower bound follows from the fact that BoBW MPC in this class trivially
subsumes the dishonest majority MPC when t = 0 and the lower bound for
dishonest-majority MPC is 4 [33]. The last lower bound follows from the stan-
dard 2-round bound for MPC needed to counter “residual function attack” [32].
Regarding the lower bound of 3 for the public setup (CRS) setting, we point
that it follows directly from the 2-round impossibility of MPC with fn for hon-
est majority in the CRS model [40,38,37] for most values of (t, s, n) satisfying
s+t < n. However, these existing results do not rule out the possibility of 2-round
(god|ua)-BoBW MPC for (t = 1, s > t, n ≥ 4). (In fact the protocols of [44,39]
circumvent the 3-round lower bound for fn when t = 1, n ≥ 4 ). We address this
gap by giving a unified proof that works even for s > t, for all values of t (includ-
ing t = 1). This is non-trivial and it demonstrably breaks down in the presence
of PKI. The bounds are totally different from the ones for previous class, owing
to the different feasibility condition of s + t < n. While our upper bound falls
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merely one short of matching the first lower bound in case of no-setup, the upper
bounds of the other two settings are tight. We leave the question of designing or
alternately proving the impossibility of 4-round (god|ua)-BoBW MPC protocol
as open. Our results summarised and put along with the bounds known in the
honest and dishonest majority setting appear in Table 1.

Extensions. We can boost the security of all our protocols to offer identifi-
ability (i.e. public identifiability of the parties who misbehaved) when abort
happens– (fn|ua)-BoBW protocols with identifiable fairness and abort in honest
and dishonest majority setting respectively and (god|ua)-BoBW protocols with
identifiable abort in dishonest-majority setting. Our lower bound results hold as
is when ua and fn are upgraded to their stronger variants with identifiability.
Furthermore, all our upper bounds relying on CRS have instantiations based
on a weaker setup, referred as common random string, owing to the availability
of 2-round OT [45] and Non-Interactive Zero Knowledge (NIZK) [46] under the
latter setup assumption. Lastly, we also propose few optimizations to minimize
the use of broadcast channels in our compilers upon which our upper bounds
are based. Specifically, these optimizations preserve the round complexity of our
upper bounds at the cost of relaxing the security notion in dishonest majority
setting to sa (as opposed to ua).

1.3 Techniques

(fn|ua)-BoBW. The lower bounds are obtained via a reduction to 3-round OT in
plain model and 1-round OT in private setup setting, both of which are known
to be impossible [33,32] (albeit under the black-box simulation paradigm which
is of concern in this paper). The starting point is a protocol π between 3 parties
which provides fn when 1 party is corrupt and ua when 2 parties are corrupt,
in 4 rounds when no setup is assumed and 2 rounds when private/public setup
is assumed. The heart of the proof lies in devising a function f such that the
realization of f via π, barring its last round, leads to an OT.

The upper bounds are settled with a proposed generic compiler that turns
an r-round dishonest-majority MPC protocol achieving ua to an (r + 1)-round
BoBW MPC protocol information-theoretically. The compiler churns out a 5-
round and a 3-round BoBW protocol in the plain model and in the presence of a
CRS respectively, when plugged with appropriate ua-secure dishonest-majority
protocol in the respective setting. Since the constructions of the known 4-round
dishonest-majority MPC relying on polynomial-time assumptions [16,17,34] pro-
vide only sa security, we transform them to achieve ua for our purpose which
invokes non-triviality for [16]. With CRS, the known constructions of [30,31]
achieve unanimity and readily generate 3-round BoBW protocols.

Our compiler motivated by [47] uses the underlying r-round protocol to com-
pute authenticated secret sharing of the output y with a threshold t(< n/2) en-
abling the output reconstruction to occur in the last round. Fairness is ensured
given the unanimity of the underlying protocol and the fact that the adversary
(controlling t corrupt parties) has no information about the output y from the
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t shares he owns. However, using pairwise MACs for authentication defies una-
nimity in case of arbitrary corruptions because a corrupt party can choose to
provide a verified share to a selected set of honest parties enabling their out-
put reconstruction while causing the rest to abort. To address this, a form of
authentication used in the Information Checking Protocol (ICP) primitive of
[48,49] and unanimously identifiable commitments (UIC) of [50] can be used.
This technique maintains unanimity amongst the honest parties during output
reconstruction.

(god|ua)-BoBW. The non-trivial lower bound for this class is for the CRS setting.
The other bounds imply from the dishonest-majority case. In the CRS setting,
we prove a lower bound of 3 rounds. We start with assuming a 2 round BoBW
protocol π for a specifically articulated 4-party function f . Next, we consider a
sequence of executions of π, with different adversarial strategies in the order of
their increasingly malicious behaviour such that the views of a certain party stays
the same between the executions. This sequence finally leads us to a strategy
where the adversary is able to learn the input of an honest party breaching
privacy, hence coming to a contradiction. The crux of the lower bound argument
lies in the design of the adversarial strategies that shuffle between the honest
and dishonest majority setting encapsulating the challenge in designing BoBW
protocols. This is in contrast to existing lower bounds in traditional models that
deal with a fixed setting and single security notion at a time.

In the presence of a CRS, we build a 3-round protocol in two steps: a) we
provide a generic compiler that transforms a broadcast-only ua-secure 2-round
semi-malicious protocol such as [30,31] to a 3-round broadcast-only BoBW pro-
tocol of this class against a semi-malicious adversary (that follows the protocol
honestly but can choose bad random coins for each round which are available to
the simulator) b) then, the round-preserving compiler of [51] (using NIZKs) is
applied on the above protocol to attain malicious security. The first compiler, in
spirit of [11], ensures god against t non-cooperating corrupt parties in the last
round, via secret-sharing the last-round message of the underlying protocol dur-
ing the penultimate round of the compiled protocol. This is achieved by means
of a garbled circuit sent by each party outputting its last-round message of the
underlying protocol and the shares of the encoded labels with a threshold of s
so that s+ 1 parties (in case of honest majority) can come together in the final
round to construct the last-round message of the corrupt parties. This garbled
circuit of a party Pi also takes into account the case when some other parties
abort in the initial rounds of the protocol by taking the list of aborting parties
as input and hard-coding their default input and randomness such that Pi’s last
round message is computed considering default values for parties who aborted.
The compiler is made round-preserving with additional provision of pairwise-
private channels or alternately, PKI. The latter (with PKI) just like its 3-round
avatar can be compiled to a malicious protocol via the compiler of [51].

In the plain model, we provide a 5-round construction which is substantially
more involved than our other upper bounds. To cope up with the demands of
(god|ua)-BoBW security in the plain model, we encountered several roadblocks
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that were addressed by adapting some existing techniques combined with new
tricks. The construction proceeds in two steps: a) we boost the security of our
broadcast-only 3-round semi-malicious BoBW protocol to a stronger notion of
delayed-semi-malicious security (where the adversary is required to justify his
messages by giving a valid witness only in the last but one round) and b) we
plug this 3-round BoBW protocol in the compiler of [31] with some additional
modifications to obtain a 5-round BoBW protocol secure against a malicious
adversary. The compiler of [31] takes as input a (k − 1)-round protocol secure
with abort against a delayed-semi-malicious adversary and churns out a k-round
protocol secure with abort against a malicious adversary for any k ≥ 5. The
major challenges in our construction surface in simulation, where we cannot
terminate in the honest-majority case even if the adversary aborts on behalf of
a corrupt party (unlike the compiler of [31] that achieves abort security only).
Furthermore, we observed that the natural simulation strategy to retain the
BoBW guarantee suffered from a subtle flaw, similar to the one pointed in the
work of [52], which we resolve with the help of the idea suggested therein. To
bound the simulation time by expected polynomial-time, we further needed to
introduce two ‘dummy’ rounds (rounds which do not involve messages of the
underlying protocol being compiled) in our compiler as opposed to one as in
[31]. This does not inflate the round complexity as our underlying delayed-semi-
malicious protocol only consumes 3 rounds (instead of 4 as in the case of [31]).
As a step towards resolving the question left open in this work (namely proving
the impossibility or alternately constructing a 4-round (god|ua)-BoBW protocol
under polynomial-time assumption), we present a sketch of a 4-round (god|ua)-
BoBW protocol based on sub-exponentially secure trapdoor permutations and
ZAPs. This construction builds upon the work of [53]. The pictorial roadmap to
obtain the upper bounds is given in the figure below.

2-round
Semi-malicious
ua-dishonest-
majority
Broadcast-only
no setup

3-round
Semi-malicious
(god|ua)-BoBW
Broadcast-only
no setup

2-round
Semi-malicious
(god|ua)-BoBW
Broadcast-only
PKI

2-round
Semi-malicious
(god|ua)-BoBW
Broadcast +
private channel
no setup

3-round
Malicious
(god|ua)-BoBW
Broadcast-only
CRS

2-round
Malicious
(god|ua)-BoBW
Broadcast-only
CRS + PKI

3-round
Delayed Semi-
Malicious
(god|ua)-BoBW
Broadcast-Only
no setup

5-round
Malicious
(god|ua)-BoBW
Broadcast-Only
no setup

Sec 5.1.1

Sec
5.1.2

Se
c
5.
1.
2

Sec 5.1.3

Sec 5.1.3

A
pp

F.
1

Sec 5.2.2

1.4 Related works on BoBW MPC

An orthogonal notion of BoBW security is considered in [54,55,28] where
information-theoretic and computational security is the desired goal in honest
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and dishonest majority setting respectively. Avoiding the relaxation to computa-
tional security in dishonest-majority setting, the work of [56] introduces the best
possible information-theoretic guarantee achievable in the honest and dishonest
majority settings simultaneously; i.e. the one that offers standard information-
theoretic security in honest majority and offers residual security (the adversary
cannot learn anything more than the residual function of the honest parties’
inputs) in dishonest-majority setting. A more fine-grained graceful degradation
of security is dealt with in the works of [28,57,58,59,42] considering a mixed
adversary that can simultaneously corrupt in both active and semi-honest style.
Lastly, [60] studies the communication efficiency in the BoBW setting.

1.5 Our Model

Before moving onto the technical section, we detail our model here. We consider
a set of n parties P = {P1, . . . Pn} connected by pairwise-secure and authentic
channels and having access to a broadcast channel. A few protocols in our work
that are referred to as being broadcast-only do not assume private channels. Each
party is modelled as a probabilistic polynomial time (PPT) Turing machine. We
assume that there exists a PPT adversary A, who can corrupt a subset of these
parties. We denote the set of indices corresponding to parties controlled by A
and the honest parties with C and H respectively. We denote the cryptographic
security parameter by κ. A negligible function in κ is denoted by negl(κ). A
function negl(·) is negligible if for every polynomial p(·) there exists a value N
such that for all m > N it holds that negl(m) < 1

p(m) . We denote by [x], the set

of elements {1, . . . , x}. Our protocols are proven in real-world and ideal-world
paradigm. The detailed security definition and target functionalities appear in
Appendix A.

Roadmap. Our lower and upper bounds for (fn|ua)-BoBW appear in Section 2-3.
Our lower and upper bounds for (god|ua)-BoBW appear in Section 4 - 5. The
primitives used in our upper bounds are described in Appendix B.

2 Lower Bounds for (fn|ua)-BoBW

In this section, we show two lower bounds concerning (fn|ua)-BoBW protocols–
one with no setup and the other with private setup. In the plain model, we show
that it is impossible to design a 4-round (fn|ua)-BoBW protocol (with black-
box simulation). In the CRS setting, the 3-round lower bound for (fn|ua)-BoBW
protocols follows directly from the impossibility of 2-round protocol achieving fn
[40,37,38]. However, they do not hold in the presence of PKI. While the argument
of [40] crucially relies on the adversary being able to eavesdrop communication
between two honest parties (which does not hold in the presence of PKI), the
lower bounds of [37,38] also do not hold if PKI is assumed (as acknowledged /
demonstrated in [37,41]). In the setting with CRS and PKI, we show impossibility
of a 2-round protocol. The proof of both our lower bounds relies on the following
theorem, which we formally state and prove below.
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Theorem 1. An n-party r-round (fn|ua)-BoBW protocol implies a 2-party (r−
1)-round maliciously-secure oblivious transfer (OT).

Proof. We prove the theorem for n = 3 parties with t = 1 and s = 2 which can be
extended for higher values of n, as elaborated later. Let P = {P1, P2, P3} denote
the 3 parties and the adversary A may corrupt at most two parties. As per the
hypothesis, we assume that there exists a r-round (fn|ua)-BoBW protocol pro-
tocol πf that can compute the function f defined as f((m0,m1), (c,R2), R3) =
((mc + R2 + R3),mc,mc) which simultaneously achieves fn when t = 1 parties
are corrupt and ua when s = 2 parties are corrupt. At a high-level, we transform
the r-round 3-party protocol πf among {P1, P2, P3} into a (r−1)-round 2-party
OT protocol between a sender PS with inputs (m0,m1) and a receiver PR with
input c.

Let q = 1−negl(κ) denote the overwhelming probability with which security
of πf holds, where the probability is defined over the choice of setup (in case a
setup is assumed) and the random coins used by the parties. Before describing
the transformation, we present the following lemma:

Lemma 1. Protocol πf must be such that the combined view of {P2, P3} at
the end of Round (r − 1) suffices to compute their output, with overwhelming
probability.

Proof. Consider an adversary A who corrupts only a minority of the parties (t =
1). A controls party P1 with the following strategy: P1 behaves honestly in the
first (r−1) rounds while he simply remains silent in Round r (last round). Since
P1 receives all the desired communication throughout the protocol, it follows
directly from correctness of πf (which holds with overwhelming probability q)
that A must be able to compute the output with probability q. Since πf is
assumed to be fair (with probability q) for the case of t = 1, it must hold that
when P1 learns the output, the honest parties P2 and P3 must also be able to
compute the output with overwhelming probability q × q = q2; without any
communication from P1 in Round r. This implies that the combined view of
{P2, P3} at the end of Round (r − 1) must suffice to compute the output with
overwhelming probability q2. ut
Our transformation from πf to a (r − 1)-round OT protocol πOT between a
sender PS with inputs (m0,m1) and a receiver PR with input c goes as follows.
PS emulates the role of P1 during πf while PR emulates the role of both parties
{P2, P3} during πf using random inputs R2, R3 respectively. In more detail,
let mr

i→j denote the communication from Pi to Pj in round r of πf . Then for
r ∈ [r − 1], the interaction in round r of protocol πOT is the following: PS sends
mr

1→2 and mr
1→3 to PR while PR sends mr

2→1 and mr
3→1 to PS . PR computes the

output mc using the combined view of {P2, P3} at the end of Round (r− 1). PS
outputs nothing. Recall that the output of the OT between (PS , PR) is (⊥,mc)
respectively. We now argue that πOT realizes the OT functionality (Appendix
B.4).

Lemma 2. Protocol πOT realizes the OT functionality.
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Proof. We first prove that πOT is correct. By Lemma 1, it follows that PR
emulating the role of both {P2, P3} of πf must be able to compute the correct
output mc (with overwhelming probability) by the end of Round (r − 1). We
now consider the security properties. First, we consider a corrupt PR (emulating
the roles of {P2, P3} in πf ). Since by assumption, πf is a protocol that should
preserve privacy of P1’s input even in the presence of an adversary corrupting
{P2, P3} (s = 2 corruptions), the input m1−c of PS must remain private against
a corrupt PR. Next, we note that privacy of πf against a corrupt P1 (t = 1
corruption) guarantees that P1 does not learn anything beyond the output (mc+
R2 +R3) in the protocol πf which leaks nothing about c. It thus follows that a
corrupt PS in πOT emulating the role of P1 in πf will also not be able to learn
anything about PR’s input c. More formally, we can construct a simulator for
the OT protocol πOT for the cases of corrupt PR and corrupt PS by invoking the
simulator of πf for the case of dishonest majority (s = 2) and honest majority
(t = 1) respectively. In each case, it follows from the security of πf (which
holds with overwhelming probability) that the simulator of πf would return a
view indistinguishable from the real-world view with overwhelming probability;
directly implying the security of the OT protocol πOT. ut
Thus, we can conclude that a (r − 1)-round 2-party OT protocol πOT can be
derived from r-round πf . This concludes the proof of Theorem 1. ut

Theorem 2. There exists a function f for which there is no 4-round (resp. 2
round) protocol computing f in the plain model (resp. with CRS and PKI) that
simultaneously realises– (1) Ffair (Fig. 8) when t < n/2 parties are corrupted
(2) Fua (Fig. 7) when s < n parties are corrupted. In the former setting (plain
model), we assume black-box simulation.

Proof. We start with the proof in the plain model, followed by the proof with
CRS and PKI. We assume for contradiction that there exists a 4-round (fn|ua)-
BoBW protocol (with black-box simulation) in the plain model. Then, it follows
from Theorem 1 that there must exist a 3-round 2-party maliciously-secure OT
protocol with black-box simulation in the plain model. We point that this OT
derived as per the transformation of Theorem 1 is a bidirectional OT, where each
round consists of messages from both the OT sender and the receiver. Using the
round-preserving transformation from bidirectional OT to alternating-message
OT (where each round consists of a message from only one of the two parties)
[34], we contradict the necessity of 4 rounds for alternating OT in the plain
model with black-box simulation [33]. This completes the proof for plain model.

Next, we assume for contradiction that there exists a 2-round (fn|ua)-BoBW
MPC protocol in the presence of CRS and PKI. Then, it follows from Theorem
1 that there exists 1-round OT protocol in this model. We have arrived at a
contradiction since non-interactive OT is impossible to achieve in a model with
input-independent setup that includes CRS and PKI (notably 1-round OT con-
structions which use an input-dependent PKI setup such as [61] exist). To be
more specific, a 1-round OT protocol would be vulnerable to the following resid-
ual attack by a corrupt receiver PR: PR can participate in the OT protocol with
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input c and get the output mc at the end of the 1-round OT protocol (where
(m0,m1) denote the inputs of sender PS). Now, since the Round 1 messages of
PS and PR are independent of each other, PR can additionally plug in his input
as being (1− c) to locally compute m1−c as well which is a violation of sender’s
security as per the ideal OT functionality.

Before concluding this section, we elaborate on how the proof of Theorem 1
can be generalized to higher values of n. The n-party r-round protocol πf (where
n = s+ t) can be transformed to an (r − 1) round OT protocol between sender
PS and receiver PR where PS emulates the role of {P1, . . . ., Pt} and PR emulates
the role of {Pt+1, . . . ., Pn} in πf . Upon incorporating this modification, the rest
of the arguments follow similar to the 3-party case. ut

3 Upper Bounds for (fn|ua)-BoBW

In this section, we construct two upper bounds for the (fn|ua)-BoBW class. Our
upper bounds take 5 and 3 rounds in the plain model and in the CRS setting
respectively, tightly matching the lower bounds presented in Section 2. We begin
with a general compiler that transforms any n-party r-round actively-secure
MPC protocol achieving ua in dishonest majority into an (r + 1)-round (fn|ua)-
BoBW protocol.

3.1 The Compiler

At a high-level, our compiler uses the compiler of [47] and a form of authentica-
tion used in the Information Checking Protocol (ICP) primitive of [48,49] and
unanimously identifiable commitments (UIC) of [50]. Drawing motivation from
the compiler of [47] from ua to fn in the honest majority setting, our compiler
uses the given r-round protocol achieving ua security to compute an “authenti-
cated” secret sharing with a threshold of t of the output y and reconstruct the
output y during the (r + 1)th round. The correct reconstruction is guaranteed
thanks to unanimity offered by the underlying protocol and the authentication
mechanism that makes equivocation of a share hard. Alternatively termed as
error-correcting secret sharing (ECSS) [47], the authenticated secret sharing was
instantiated with pairwise information-theoretic or one-time MAC as a form of
authentication. This, when taken as is in our case, achieves fairness in the hon-
est majority setting as in the original transformation. The sharing threshold t
ensures that the shares of the honest set, consisting of at least t+ 1 parties, dic-
tate the reconstruction of the output, no matter whether the corrupted parties
cooperate or not. The pairwise MAC, however, makes it challenging to maintain
unanimity in the dishonest majority case of the transformed protocol, where a
corrupt party may choose to verify its share to selected few enabling their output
reconstruction. This seems to call for a MAC that cannot be manipulated part-
wise to keep the verifiers on different pages. A possible approach to achieve the
property of public verifiability is by means of digital signatures (App. B.6) i.e.
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each party obtains a signed output share which it broadcasts during reconstruc-
tion and can be verified by remaining parties using a common public verification
key (that the parties obtain as part of the output of the r-round protocol achiev-
ing ua). Alternately, if the form of authentication used in the ICP of [48,49] and
UIC of [50] is used, then digital signatures can be avoided and the compiler
(transforming any n-party r-round actively-secure MPC protocol achieving ua
in dishonest majority into an (r+1)-round (fn|ua)-BoBW protocol) achieves the
desirable property of being information-theoretic (i.t).

Achieving i.t security is a worthwhile goal, as substantiated by its exten-
sive study in numerous settings including those where achieving this desirable
security notion demands additional tools. For instance, there are well-known
results circumventing the impossibility of achieving i.t security in dishonest ma-
jority by relying on additional assistance such as tamper-proof hardware tokens
[62,50,63] and Physically Uncloneable Functions (PUFs) [64,65]. Having an i.t
compiler opens up the possibility of achieving i.t BoBW MPC by plugging in an
i.t. secure dishonest majority protocol (say, that uses hardware tokens / PUFs
or other assistance) in the compiler. We present the formal details of the i.t
compiler below.

Our i.t compiler is realized via a clean trick inspired from a form of authenti-
cation used in the Information Checking Protocol (ICP) primitive of [48,49] and
unanimously identifiable commitments (UIC) of [50]. A value s is authenticated
using a ‘joint’ MAC which is a t-degree (uniform) polynomial a(x) over a field
with constant term s. Each verifier Pj receives evaluation of a(x) at a random se-
cret point Kj as verification information– (Kj , a(Kj)). The secret random points
when picked from large enough field make it statistically hard for a corrupt au-
thenticator to lie about the MAC polynomial (and the underlying secret) that
can cause disagreement across the verifiers. We now define authentication with
public verifiability and authenticated t-sharing below. Subsequently, we present
a protocol for reconstruction of an authenticated t-shared value and capture the
unanimity it offers in a lemma (Lemma 3). The protocol and the lemma are used
in our compiler and its security proof respectively.

Definition 1 (Authentication with Public Verifiability). A value s ∈ F =
GF (2κ) is said to be authenticated with public verifiability with an authenticator
P and n verifiers P = {P1, . . . , Pn}, if the designated authenticator holds a
polynomial a(x) of degree at most t over F, picked uniformly at random, with the
constraint that a(0) = s and each verifier Pi holds vi = (Ki, a(Ki)) for a random
secret value Ki ∈ F \ {0}. a(x) is denoted as MAC and vi as the corresponding
verification information of verifier Pi.

Definition 2 (Authenticated t-sharing). A value s ∈ F = GF (2κ) is said to
be authenticated t-shared (refer to Appendix B for t-sharing) amongst n parties
{P1, . . . , Pn} if there exists a polynomial p(x) of degree at most t over F, picked
uniformly at random, with the constraint that p(0) = s, such that each share
si = p(i) of s is authenticated with public verifiability w.r.t. authenticator Pi
and verifiers P and jth verifier holding common point Kj for all authentication
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instances. Each Pi holds ai(x) as the MAC of si and vij = (Ki, aj(Ki)) as the
verification information corresponding to MAC aj(x) held by Pj.

Protocol Rec
Input: Party Pi holds

(
ai(x), {vij = (Ki, aj(Ki))}j∈[n]

)
.

Output: Secret s or ⊥
Round 1: Pi broadcasts ai(x). If aj(x) broadcasted by Pj is a polynomial of degree

at most t and is consistent with vij , then Pi adds j in a set Vi, marked as veri-
fied, which is initialized to {i}. If |Vi| ≥ t + 1 and {aj(0)}j∈Vi lie on a t-degree
polynomial, it reconstructs the secret s as the constant term of the interpolated
polynomial. Else it outputs ⊥.

Fig. 1: Protocol Rec to reconstruct an authenticated t-shared value

Lemma 3. All the honest parties either output s or ⊥ in Rec (Fig 1), except

with probability at most n2

|F|−1 .

Proof. To prove the lemma, we show that the respective V sets held by all honest
parties are identical and do not comprise of any j such that Pj broadcasts an

incorrect MAC polynomial a∗j (x) 6= aj(x), except with probability at most n2

|F|−1 .

The latter condition would prove that the reconstructed secret (if any) would be
s while the former would show that all honest parties compute the same output.
With F = GF (2κ), the above probability is negligible in κ.

First, consider an honest Pi with verification information vij =
(
Ki, aj(Ki)

)
corresponding to MAC aj(x) held by Pj . According to Rec, Pi would include
j in Vi only if a∗j (x) broadcast by Pj is consistent with vij . Since a potentially
corrupt Pj has no information about the random secret point Ki, the probability
that Pj broadcasts a∗j (x) 6= aj(x) but a∗j (Ki) = aj(Ki) is the probability that Pj
guessed the secret point Ki correctly which is 1

|F|−1 (Ki was picked uniformly at

random from F \ {0}). Extending this argument to all potentially corrupt Pj ’s,
the probability that Vi includes at least one j such that a∗j (x) 6= aj(x) is at most
|C|
|F|−1 (applying union bound), where C is the set of parties controlled by the

adversary A. Finally, applying the union bound over the set of honest parties H,
we conclude that the probability that at least one honest party includes some

j in its V set such that Pj broadcast a∗j (x) 6= aj(x) is at most |H|·|C||F|−1 . Taking

into account that |H|, |C| < n, this probability is bounded by n2

|F|−1 . Thus all

honest parties would have identical V sets, excluding js such that Pj broadcast

the incorrect MAC polynomial, except with probability n2

|F|−1 . ut
We present our protocol πbw.fair in Fig. 3. The correctness and security of

πbw.fair are analyzed in Theorem 3 and Theorem 4, respectively, in a hybrid-
execution model where the parties have access to a functionality Fauth

ua (Figure
2) that computes the authenticated t-sharing of the output y = f(x1 . . . xn) with
ua security.
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Fauth
ua

Input: On message (sid, Input, xi,Ki) from a party Pi (i ∈ [n]), do the following: if such
a message was received from Pi earlier, then ignore. Otherwise record it internally.
If (xi,Ki) is outside of the domain for Pi (i ∈ [n]), consider xi = abort.

Output to adversary: If there exists i ∈ [n] such that xi = abort, send
(sid, Output,⊥) to all the parties. Else, compute y = f(x1 . . . xn) and compute the
authenticated t-sharing of secret s = y (Definition 2). Let p(x) denote the t-degree
polynomial with p(0) = y, ai(x) denote the MAC of si = p(i) and vij =

(
Ki, aj(Ki)

)
represent the verification information corresponding to MAC aj(x) held by Pj . Set
zi =

(
ai(x), {vij = (Ki, aj(Ki))}j∈[n]

)
. Send (sid, Output, {zi}i∈C) to the adversary,

where C denotes the set of parties controlled by the adversary.
Output to honest parties: Receive either continue or abort from adversary. In

case of continue, send zi to each honest Pi, whereas in case of abort send ⊥ to
all honest parties.

Fig. 2: Ideal Functionality Fauth
ua

Protocol πbw.fair

Inputs: Party Pi has xi for i ∈ [n]
Model: Fauth

ua - hybrid model (Figure 2)
Output: y = f(x1 . . . xn) or ⊥
Round 1 – r: Pi interacts with Fauth

ua with input (xi,Ki) to compute authenticated
t-sharing of output y = f(x1 . . . xn), where Ki denotes its secret random key from
F \ {0}.

Round (r + 1): If Fauth
ua returns ⊥, Pi outputs ⊥. Else it participates in Rec with the

output obtained from Fauth
ua and outputs the output of Rec.

Fig. 3: (fn|ua)-BoBW protocol

Theorem 3. Protocol πbw.fair is correct, except with negligible probability.

Proof. We argue that an honest party’s output y which is not ⊥ is correct, with
very high probability. In Fauth

ua -hybrid model, the output of Fauth
ua is indeed a cor-

rect authenticated t-sharing of the output y = f(x1 . . . xn) where xi denotes the
input committed by Pi to Fauth

ua . In the honest majority setting (i.e. t < n/2), |Vi|
of an honest Pi will contain all the honest parties. Therefore, the reconstructed
polynomial via the points {aj(0)}j∈Vi is indeed the correct polynomial and com-
putes the correct output y. In the dishonest majority setting (i.e. s < n), |Vi| of
an honest Pi may contain a corrupt party Pj broadcasting a wrong aj(x) with
probability at most s

|F|−1 and as a consequence a wrong t-degree polynomial may

get reconstructed. Therefore, except with probability s
|F|−1 , Pi’s reconstructed

output is correct. ut

Theorem 4. Protocol πbw.fair realises– (i) Ffair (Fig. 8) when at most t < n/2
parties are corrupt and (ii) Fua (Fig. 7) when at most s < n parties are corrupt,
in the Fauth

ua -hybrid model. It takes (r + 1) rounds, assuming the realization of
Fauth

ua requires r rounds.
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We conclude this section with a brief intuition of the proof of Theorem 4,
while full proof appears in Appendix C. First, consider the case of dishonest
majority. If A aborts the computation of Fauth

ua , then all honest parties output
⊥. Suppose A allows all honest parties to get authenticated t-shares of the
output y as output of Fauth

ua , then honest parties would either output y or
⊥ depending on whether (t + 1) valid output shares are received in Round
(r + 1) or not. Unanimity amongst the honest parties follows directly from the
argument of Lemma 3. Thus we can conclude that πbw.fair achieves ua in case
of dishonest majority. Moving on to the honest majority setting, A again has
two choices - whether to allow computation of Fauth

ua to succeed or not. In the
former case, since there are (t + 1) honest parties, their output shares would
suffice to reconstruct the output irrespective of any misbehavior of A during
Round (r+ 1); leading to output computation by all. In the latter case, since A
has access to only upto t output shares, he learns nothing about the output and
all parties output ⊥. Thus, πbw.fair achieves fn in case of the honest majority
setting. This completes the intuition.

3.2 The Upper Bounds

Building our round-optimal (fn|ua)-BoBW protocols in the plain and CRS model
involves constructing 2 and 4 round protocols that achieve ua security against
dishonest majority in the respective models. Such protocols when plugged in our
compiler of Section 3.1 would directly yield the round-optimal (fn|ua)-BoBW
protocols. In the CRS setting, the known 2-round protocols of [30,31] achieve
ua and thereby lead to a 3-round (fn|ua)-BoBW protocol, matching the lower
bound. Note that this 3-round upper bound in the public setup (CRS setting)
also serves as the round-optimal upper bound in the private setup.

We now consider the plain model. Unfortunately, the existing 4-round MPC
protocols in the plain model relying on polynomial-time assumptions [16,17,34],
in spite of convenient use of broadcast, only satisfy the weaker notion of sa. In
this work, we demonstrate how the protocol of [16] and [17,34] can be tweaked
to achieve ua in Appendix D. The former reuses the technique of authentication
with public verifiability introduced previously and involves a few other tinkering.
With respect to the above mentioned ua protocols, our (fn|ua)-BoBW MPC pro-
tocols rely on the assumption of 2-round OT in the common random/reference
string model and 4-round OT in the plain model.

Theorem 5. Assuming the existence of a 4 (resp., 2) round MPC protocol that
realizes Fua (Fig 7) for upto n − 1 malicious corruptions in the plain (resp.,
CRS) model, there exists a 5 (resp., 3)-round MPC protocol in the plain (resp.,
CRS) model that simultaneously realises– (1) Ffair (Fig. 8) when t < n/2 parties
are corrupted (2) Fua (Fig. 7) when s < n parties are corrupted.

A minor observation regarding the use of broadcast in our compiler is that
we can replace it with point-to-point communication at the expense of relaxing
ua to sa security in the dishonest majority setting.
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Security with Identifiability. Our compiler preserves the property of identifia-
bility. Since the underlying dishonest-majority protocols [30,31] can be boosted
to achieve identifiable abort (as shown by [66]), the upper bound in the CRS
model achieves identifiable fairness and abort in the honest and dishonest major-
ity setting respectively. With respect to the plain model, we show how security
of [17] can be boosted to achieve identifiable abort with minor tweaks in Ap-
pendix D.2. This variant, when compiled using our compiler of Section 3.1 would
achieve identifiable fairness and abort in the honest and dishonest majority set-
ting respectively. We therefore get a version of Theorem 5 where Fua and Ffair

are replaced with Fidua (Fig 10) and Fidfair (Fig 11) respectively.

4 Lower Bounds for (god|ua)-BoBW

In this section, we prove that it is impossible to design a 2-round (god|ua)-
BoBW protocol with t + s < n in the CRS model. Note that the necessity of
3 rounds for (god|ua)-BoBW protocol for most values of (n, s, t) follows from
the 2-round impossibility of fair MPC for honest majority in the CRS model
[40,38,37]. Accounting for the fact that these existing results do not rule out the
possibility of 2-round (god|ua)-BoBW MPC for (t = 1, s > t, n ≥ 4), we present
a unified proof that works even for s > t, for all values of t (including t = 1). Our
proof approach deals with adversarial strategies that shuffle between the honest
and dishonest majority setting, highlighting the challenge of designing protocols
that simultaneously provide different guarantees for different settings. This is in
contrast to the existing lower bounds of [40,38,37] which deal only with honest
majority setting and single security notion of fn. Lastly, we demonstrate why
our proof breaks down in the presence of PKI. Indeed, we construct a 2-round
(god|ua)-BoBW protocol assuming CRS and PKI in this work.

Theorem 6. Let n, t, s be such that t+s < n and t < n/2. There exist functions
f for which there is no two-round protocol in the CRS model computing f that
simultaneously realizes– (1) Fgod (Fig. 9) when t < n/2 parties are corrupted
(2) Fua (Fig. 7) when s < n parties are corrupted.

Proof. We prove the theorem for n = 4 parties with t = 1 and s = 2. The result
then can be extended for higher values of n, which we elaborate upon later. Let
P = {P1, P2, P3, P4} denote the set of 4 parties and A may corrupt at most
two among them. We prove the theorem by contradiction. We assume that there
exists a 2-round (god|ua) BoBW protocol π in the CRS model that can compute
the function f(x1, x2, x3, x4) defined below for Pi’s input xi: f(x1, x2, x3, x4) =
1 if x1 = x2 = 1; 0 otherwise. By assumption, π achieves god when t = 1
parties are corrupt and ua security when s = 2 parties are corrupt (satisfying
feasibility criteria t+ s < n).

At a high level, we discuss three adversarial strategies A1,A2 and A3 of A.
While both A1 and A3 deal with t = 1 corruption with the adversary corrupt-
ing P1, A2 involves s = 2 corruptions where the adversary corrupts {P3, P4}.
We consider Ai strategy as being launched in execution Σi (i ∈ [3]) of π. The
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executions are assumed to be run for the same input tuple (x1, x2,⊥,⊥) and
the same random inputs (r1, r2, r3, r4) of the parties. (Same random inputs are
considered for simplicity and without loss of generality. The same arguments
hold for distribution ensembles as well.) Our executions and adversarial strate-
gies are sequenced in the order of increasingly more non-cooperating malicious
adversaries. Yet, keeping the views of a certain party between two consecutive
executions same, we are able to conclude the party would output the correct
value even in the face of stronger malicious behaviour. Finally, we reach to the
final execution Σ3 where we show that a party can deduce the output in the end
of Round 1 itself. Lastly, we show a strategy for the party to explicitly breach
the input privacy of one of the input-contributing parties.

We assume that the communication done in the second round of π is via
broadcast alone. This holds without loss of generality since the parties can
perform point-to-point communication by exchanging random pads in the first
round and then use these random pads to unmask later broadcasts. We use the
following notation: Let p1

i→j denote the pairwise communication from Pi to Pj in
round 1 and bri denote the broadcast by Pi in round r, where r ∈ [2], {i, j} ∈ [4].
These values may be function of CRS as per the working of the protocol. V`i
denotes the view of party Pi at the end of execution Σ` (` ∈ [3]) of π. Below we
describe the strategies A1,A2 and A3.

A1: A corrupts P1 here. P1 behaves honestly towards P2 in Round 1, i.e. sends
the messages p1

1→2, b
1
1 as per the protocol. However P1 does not communicate

privately to {P3, P4} in Round 1. In Round 2, P1 behaves honestly as per
the protocol.

A2: A corrupts {P3, P4} here. {P3, P4} behave honestly in Round 1 of the pro-
tocol. In Round 2, Pk (k ∈ {3, 4}) acts as per the protocol specification when
no private message from P1 is received in Round 1. Specifically, suppose Pk
did not receive p1

1→k in Round 1. Let b2
k denote the message that should be

sent by Pk as per the protocol in Round 2 in such a scenario. Then as per
A2, corrupt Pk sends b2

k in Round 2.
A3: Same as inA1 and in addition– during Round 2, P1 simply remains silent i.e.

waits to receive the messages from other parties, but does not communicate
at all.

Next we present the views of the parties in Σ1, Σ2 and Σ3 in Table 2. Here,
b2
k (k ∈ {3, 4}) denotes the message that should be sent by Pk according to the

protocol in Round 2 in case Pk did not receive any private communication from
P1 in Round 1.

Σ1 Σ2 Σ3

V1
1 V1

2 V1
3 V1

4 V2
1 V2

2 V2
3 V2

4 V3
1 V3

2 V3
3 V3

4

Input (x1, r1) (x2, r2) r3 r4 (x1, r1) (x2, r2) r3 r4 (x1, r1) (x2, r2) r3 r4

R1
p1
2→1, p1

3→1 p1
1→2, p1

3→2, –, p1
2→3, –, p1

2→4, p1
2→1, p1

3→1 p1
1→2, p1

3→2, p1
1→3, p1

2→3, p1
1→4, p1

2→4, p1
2→1, p1

3→1 p1
1→2, p1

3→2, –, p1
2→3, –, p1

2→4,
p1
4→1, p1

4→2, p1
4→3, p1

3→4, p1
4→1, p1

4→2, p1
4→3, p1

3→4, p1
4→1, p1

4→2, p1
4→3, p1

3→4,
b1
2, b1

3, b1
4 b1

1, b1
3, b1

4 b1
1, b1

2, b1
4 b1

1, b1
2, b1

3 b1
2, b1

3, b1
4 b1

1, b1
3, b1

4 b1
1, b1

2, b1
4 b1

1, b1
2, b1

3 b1
2, b1

3, b1
4 b1

1, b1
3, b1

4 b1
1, b1

2, b1
4 b1

1, b1
2, b1

3

R2 b2
2, b2

3, b2
4 b2

1, b2
3, b2

4 b2
1, b2

2, b2
4 b2

1, b2
2, b2

3 b2
2, b2

3, b2
4 b2

1, b2
3, b2

4 b2
1, b2

2, b2
4 b2

1, b2
2, b2

3 b2
2, b2

3, b2
4 –, b2

3, b2
4 –, b2

2, b2
4 –, b2

2 b2
3

Table 2: Views of P1, P2, P3, P4 in Σ1, Σ2, Σ3
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We now prove a sequence of lemmas to complete our proof. Let y denote the
output computed as per the inputs (x1, x2) provided by the honest P1 and P2.
Let q = 1− negl(κ) denote the overwhelming probability with which security of
π holds, where the probability is defined over choice of setup and the random
coins used by the parties.

Lemma 4. The view of P2 is the same in Σ1 and Σ2 and it outputs y in both
with overwhelming probability.

Proof. We observe that as per both strategies A1 and A2, P2 receives com-
munication from P1, P3, P4 as per honest execution in Round 1. In Round 2,
according to A1, corrupt P1 did not send private messages to P3 and P4 who
therefore broadcast b2

3 and b2
4 respectively as per protocol specification. On the

other hand, according to A2, corrupt P3 and corrupt P4 send the same messages
respectively as per protocol specification for case when P3, P4 receive no private
message from P1 in Round 1. It is now easy to check (refer Table 2) that V1

2 = V2
2.

Now, since Σ1 involves t = 1 corruption, by assumption, π must be robust (with
overwhelming probability q) and V1

2 must lead to output computation, say of
output y′. Due to view equality, P2 in Σ2 must also output y′ with probability
q. In Σ2, P1 and P2 are honest and their inputs are x1 and x2 respectively. Due
to correctness of π (which holds with overwhelming probability q) during Σ2, it
must then hold that y′ = y i.e. the output computed based on V2

2 is according
to honest P1’s input x1 during Σ2, with overwhelming probability q × q = q2.
This completes the proof. ut

Lemma 5. The view of P1 is the same in Σ2 and Σ3 and it outputs y in both
with overwhelming probability.

Proof. An honest P2 has the same view in both Σ1 and Σ2 and outputs y with
overwhelming probability as per Lemma 4. As π achieves ua (with probability q)
in the presence of s = 2 corruptions, when P2 learns the output in Σ2, P1 must
learn y in Σ2 with overwhelming probability q2×q = q3. We now show that P1’s
view in Σ2 and Σ3 are the same and so it outputs y in Σ3 with overwhelming
probability q3. First, it is easy to see that the Round 1 communication towards
P1 is as per honest execution in both Σ2, Σ3. Next, recall that as per A2, both
corrupt {P3, P4} send messages in Round 2 according to the scenario when they
didn’t receive any private communication from P1 in Round 1. A similar message
would be sent by honest {P3, P4} in Σ3 who did not receive private message from
corrupt P1 as per A3. Finally, since corrupt P1 behaved honestly to P2 in Round
1 of Σ3 as per A3, the Round 2 communication from P2 is similar to that in
execution Σ2. It is now easy to verify (refer Table 2) that V2

1 = V3
1 from which

output y can be computed. ut

Lemma 6. P2 in Σ3 should learn the output y by the end of Round 1, with
overwhelming probability.

Proof. Firstly, it follows directly from Lemma 5 and the assumption that protocol
π is robust against t = 1 corruption that all parties including P2 must learn
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output y at the end of Σ3 with overwhelming probability q3 × q = q4. Next,
we note that as per strategy A3, P1 only communicates to P2 in Round 1. We
argue that the second round communication from P3, P4 does not impact P2’s
output computation as follows: we observe that the output y depends only on
(x1, x2). Clearly, Round 1 messages of P3, P4 does not depend on x1. Next, since
there is no private communication to P3, P4 from P1 as per strategy A3, the
only communication that can possibly hold information on x1 and can impact
the round 2 messages of P3, P4 is b1

1. However, since this is a broadcast message,
P2 also holds this by the end of Round 1 itself. Thus, P2 must be able to compute
the output y at the end of Round 1.

In more detail, P2 can choose randomness r3, r4 on behalf of P3, P4 to locally
emulate their following Round 1 messages {p1

3→2, p
1
4→2, p

1
3→4, p

1
4→3, b

1
3, b

1
4}. Next,

P2 can now simulate P3’s Round 2 message b2
3 which is a function of its view

comprising of {p1
2→3, p

1
4→3, b

1
1, b

1
2, b

1
4} (all of which are available to P2, where b1

1

was broadcast by P1 in Round 1). Similarly, P2 can locally compute P4’s Round

2 message b2
4. We can thus conclude that P2’s view at the end of Σ3 comprising

of {p1
1→2, p

1
3→2, p

1
4→2, b

1
1, b

1
3, b

1
4, b

2
3, b

2
4} can be locally simulated by him at the

end of Round 1 itself from which the output y can be computed. ut

Lemma 7. A corrupt P2 violates the privacy property of π.

Proof. The adversary corrupting P2 participates in the protocol honestly by
fixing input x2 = 0. Since P2 can get the output at the end of Round 1 with
overwhelming probability (Lemma 6), it must be true that P2 can evaluate f
locally by plugging in any value of x2. Now a corrupt P2 can plug in x2 = 1
locally and learn x1 (via the output x1 ∧ x2) with overwhelming probability. In
the ideal world, corrupt P2 must learn nothing beyond the output 0 as it has
participated in the protocol with input 0. But in the execution of π (in which P2

participated honestly with input x2 = 0), P2 has learnt x1 with overwhelming
probability. This is a breach of privacy as P2 learns x1 regardless of his input. ut

Hence, we have arrived at a contradiction, completing proof of Theorem 6.
ut

We draw attention to the fact that Lemma 6 would not hold in the pres-
ence of any additional setup such as PKI. With additional setup, P3, P4 may
possibly hold some private information (such as their secret key in case of PKI
used to decode P1’s broadcast message in Round 1) that is not available to P2.
Due to this reason, we cannot claim that P2 can emulate Round 2 messages of
{P3, P4} locally at the end of Round 1. However, this holds in case of CRS as
the knowledge of CRS is available to all parties at the beginning of the protocol.

Before concluding this section, we elaborate upon how the proof can be gen-
eralized for higher values of n where n = t + s + 1. Consider the partition
S1 = {P1, . . . , Pt}, S2 = {Pt+1} and S3 = {Pt+2, . . . , Pn}. We tweak the func-
tion description f to involve inputs only from {P1, . . . , Pt+1} and modify the
adversarial strategies as follows: A1 involves corruption of t parties in S1 who do
not communicate privately to parties in S3 in Round 1. A2 involves corruption
of s parties in S3 who behave in Round 2 as per protocol specifications when no
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private message from parties in S1 was received in Round 1. A3 remains same
as A1 except that parties in S1 remain silent in Round 2. Upon incorporating
these modifications, the rest of the arguments follow similar to the 4-party case.

5 Upper Bounds for (god|ua)-BoBW

In this section, we present three (god|ua)-BoBW MPC protocols, assuming t+s <
n which is the feasibility condition for such protocols ([20]) consuming– a) 3-
rounds with CRS b) 2-rounds with an additional PKI setup c) 5-rounds in plain
model. The first two are round-optimal in light of the lower bound of Section 4
and [32] respectively. The third construction is nearly round-optimal (falls just
one short of the 4-round lower bound of [33]). Among our upper bounds, the
construction in the plain model is considerably more involved and uses several
new tricks in conjugation with existing techniques.

5.1 (god|ua)-BoBW MPC with Public and Private Setup

To arrive at the final destination, the roadmap followed is: (i) A 2-round MPC
achieving ua security is compiled to a 3-round (god|ua)-BoBW MPC protocol,
both against a weaker semi-malicious adversary. With the additional provision
of PKI, this compiler can be turned to a round-preserving one. (ii) The semi-
malicious (god|ua)-BoBW MPC protocols are compiled to malicious ones in CRS
setting via the known round-preserving compiler of [51] (using NIZKs, App. B.5).
All the involved and resultant constructions are in broadcast-only setting. The
protocol just with CRS tightly upper bounds the 3-round lower bound presented
in Section 4, which accounts for both pair-wise and broadcast channels. The
protocol with additional PKI setup works in 2 rounds, displaying the power of
PKI and that our lower bound of 3-rounds in Theorem 6 breaks down in the
presence of PKI. Yet, this construction is round optimal, in light of the known
impossibility of 1-round MPC [32].

5.1.1 3-round (god|ua)-BoBW MPC in semi-malicious setting. Here,
we present a generic compiler that transforms any 2-round MPC protocol πua.sm

achieving ua security into a 3-round broadcast-only (god|ua)-BoBW MPC pro-
tocol πbw.god.sm assuming t + s < n. Our compiler borrows techniques from the
compiler of [11] which is designed for the honest majority setting and makes
suitable modifications to obtain BoBW guarantees. Recall that a semi-malicious
adversary needs to follow the protocol specification, but has the liberty to decide
the input and random coins in each round. Additionally, the parties controlled
by the semi-malicious adversary may choose to abort at any step. For complete-
ness, semi-malicious security is defined in Appendix A.1. The underlying and
the resultant protocol use broadcast as the only medium of communication.

To transform πua.sm to guarantee BoBW security, the compiler banks on the
idea of giving out the Round 2 message of πua.sm in a way that ensures god in
case of honest majority. The dishonest majority protocols usually do not provide
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this feature even against a single corruption, let alone a minority. Mimicking the
Round 1 of πua.sm as is, πbw.god.sm achieves this property by essentially giving out
a secret sharing of the Round 2 messages of πua.sm with a threshold of s. When
at most t parties are corrupt, the set of s+ 1 honest parties pool their shares to
reconstruct Round 2 messages of πua.sm and compute the output robustly as in
πua.sm. This idea is enabled by encoding (i.e. garbling) the next message functions
of the second round of πua.sm and secret-sharing their encoding information using
a threshold of s in Round 2 and reconstructing the appropriate input labels in
the subsequent round. (Refer Appendix B.2 for details on Garbling Schemes.)
The next-message circuit of a party Pi hard-codes Round 1 broadcasts of πua.sm,
Pi’s input and randomness and the default input and randomness of all the other
parties. It takes n flags as input, the jth one indicating the alive/non-alive status
of Pj . Pj turning non-alive (aborting) translates to the jth flag becoming 0 in
which case the circuit makes sure Pj ’s default input is taken for consideration by
internally recomputing Pj ’s first round broadcast and subsequently using that
to compute the Round 2 message of Pi. Since the flag bits become public by
the end of Round 2 (apparent as broadcast is the only mode of communication),
the parties help each other by reconstructing the correct label, enabling all to
compute the garbled next-message functions of all the parties and subsequently
run the output computation of πua.sm. The agreement of the flag bits further
ensures output computation is done on a unique set of inputs. The transfer
of the shares in broadcast-only setting is enabled via setting up a (public key,
secret key) pair in the first round by every party. Broadcasting the encrypted
shares emulates sending the share privately. This technique of garbled circuits
computing the augmented next-message function (taking the list of alive (non-
aborting) parties as input) followed by reconstruction of the appropriate input
label was used in the work of [11] for the honest majority setting. The primary
difference in our compiler is with respect to the threshold of the secret-sharing
of the labels, to ensure BoBW guarantees. The formal description of protocol
πbw.god.sm, its security and correctness proofs are deferred to Appendix E.1. We
only state the theorems for correctness and security below.

Theorem 7. Protocol πbw.god.sm is correct, except with negligible probability.

Theorem 8. Let (n, s, t) be such that s+ t < n. Let πua.sm realises Fua for upto
n−1 semi-malicious corruptions. Then protocol πbw.god.sm realises– (i) Fgod (Fig
9) when at most t < n/2 parties are corrupt and (ii) Fua (Fig 7) when at most
s < n parties are corrupt, semi-maliciously in both cases. It takes 3 rounds,
assuming that πua.sm takes 2 rounds.

5.1.2 2-round (god|ua)-BoBW MPC in semi-malicious setting. The
compiler of the previous section can be made round preserving by assuming
pair-wise channels or alternately, PKI. The main difference lies in preponing
the actions of Round 2 of πbw.god.sm to Round 1, by exploiting the presence of
private channels or PKI. We describe these extensions that can be used to ob-
tain a 2-round semi-malicious (god|ua)-BoBW MPC assuming pair-wise channels
(protocol φbw.god.sm) or alternately, PKI (protocol ψbw.god.sm) in Appendix E.2.
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5.1.3 The upper bounds with public and private setup The 2-round
semi-malicious broadcast-only protocol of [30,31] can be plugged in as πua.sm

in our compilers from previous sections to directly yield a 3-round broadcast-
only protocol πbw.god.sm, 2-round protocol φbw.god.sm that uses both broadcast
and pairwise-private channels and 2-round broadcast-only protocol ψbw.god.sm

assuming PKI, all in the semi-malicious setting. Next, the compiler of [51] that
upgrades any broadcast-only semi-malicious protocol to maliciously-secure by
employing NIZKs, can be applied on πbw.god.sm and ψbw.god.sm to yield a 3-round
(god|ua)-BoBW protocol in the CRS model and a 2-round (god|ua)-BoBW pro-
tocol given both CRS and PKI. We elaborate on how the BoBW guarantees are
preserved from the semi-malicious to malicious setting upon applying the com-
piler in App. E.3. Note that the compiler of [51] works only for broadcast-only
protocols and cannot be used to boost security of φbw.god.sm to malicious setting
(details deferred to App. E.3). Assumption wise, our upper bound constructions
rely on 2-round semi-malicious oblivious transfer and NIZK in the common ran-
dom/reference string model upon using the protocols of [30,31] to realize πua.sm.
We state the formal theorem below and defer its proof (with a formal description
of the (god|ua)-BoBW upper bounds with public and private setup) to App. E.3.

Theorem 9. Let (n, s, t) be such that s+ t < n. Assuming the existence of a 3-
round (resp., 2-round with PKI) broadcast-only semi-malicious (god|ua)-BoBW
MPC and NIZKs, there exists a 3 (resp., 2)-round MPC protocol in the presence
of CRS (resp., CRS and PKI) that simultaneously achieves (i) Fgod (Fig 9) when
at most t < n/2 parties are corrupt and (ii) Fua (Fig 7) when at most s < n
parties are corrupt, maliciously in both cases.

A minor observation is that we can replace the last round broadcast with
point-to-point communication at the expense of relaxing ua to sa security in
the dishonest majority setting. However, use of broadcast in earlier rounds is
crucial for honest parties to be in agreement, which subsequently ensures that
the output computation is done on a unique set of inputs.

Security with Identifiability. Lastly, since the compiler of [51] uses NIZKs to
prove correctness of each round, it offers the property of identifiability. Thus our
maliciously-secure (god|ua)-BoBW protocols achieve the stronger notion of iden-
tifiable abort in case of dishonest majority, with no extra assumption. Therefore,
we obtain the above theorem where Fua is replaced with Fidua (Fig 10).

5.2 Upper Bound for (god|ua)-BoBW MPC in Plain Model

In this section, we present a 5-round (god|ua)-BoBW protocol in the plain model.
For our construction, we resort to the compiler of [31] that transforms any generic
(k−1)-round delayed-semi-malicious MPC protocol to a k-round malicious MPC
protocol for any k ≥ 5. Our 5-round construction comes in two steps: a) first, we
show that our 3-round semi-malicious protocol πbw.god.sm (described in Section
5.1.1) is delayed-semi-maliciously secure (refer Appendix F.1 for proof) and then
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b) we plug in this 3-round BoBW protocol in a modified compiler of [31] that
carries over the BoBW guarantees, while the original compiler works for security
with abort. Our final 5-round compiled protocol faces several technical difficulties
in the proof, brought forth mainly by the need to continue the simulation in case
the protocol must result in god, which needs deep and non-trivial redressals.
The techniques we use to tackle the challenges in simulation are also useful
in constructing a 4-round (god|ua)-BoBW protocol based on sub-exponentially
secure trapdoor permutations and ZAPs. We give a sketch of this construction
in Appendix F.4 (built upon the protocol of [53]) as a step towards resolving the
open question of proving the impossibility or alternately constructing a 4-round
(god|ua)-BoBW protocol under polynomial-time assumptions.

5.2.1 The compiler of [31]. Substituting k = 5, we recall the relevant details
of the compiler of [31] that transforms a 4-round delayed-semi-malicious protocol
φdsm to a 5-round maliciously-secure protocol π achieving security with abort.
The tools used in this compiler appears in Fig 4. Each party commits to her input
and randomness using a 2-round statistically binding commitment scheme Com
in the first two rounds. The four rounds of the delayed-semi-malicious protocol
φdsm are run as it is in Round 1, 2, 4 and 5 respectively (Round 3 is skipped) with
two additional sets of public-coin delayed-input witness indistinguishable proofs
(WI). The first set of proofs (WI1) which is completed by Round 4, is associated
with the first 3 rounds of φdsm. In addition to proving honest behaviour in these
rounds, this set of proofs enables the simulator of the malicious protocol to
extract the inputs of the corrupt parties, in order to appropriately emulate the
adversary for the delayed-semi-malicious simulator in the last but one round.
The second set of proofs (WI2) which is completed by Round 5, is associated
with proving honest behaviour in all rounds of φdsm. To enable the simulator to
pass the WI proofs without the knowledge of the inputs of the honest parties,
it is endowed with a cheat route (facilitated by the cheating statement of the
WI proof, while the honest statement involves proving honest behaviour wrt
inputs committed via Com) which requires the knowledge of the trapdoor of the
corrupt parties; which the simulator can obtain by rewinding the last 2 rounds
of a trapdoor-generation protocol (Trap) run in the first 3 rounds of the final
construction. To enable this cheat route of the simulator, the compiler has an
additional component, namely 4-round non-malleable commitment NMCom run
in Rounds 1 - 4. We discuss further details of the compiler in Appendix F.2.1.

Next, we give an overview of the simulator S (details appear in [31]) for the 5-
round compiled protocol π that uses the simulator Sφ of the underlying 4-round
protocol φdsm. To emulate the ideal-world adversary corrupting parties in set C,
S invokes the malicious adversary Aπ and simulates a real execution of π for Aπ
by acting on behalf of the honest parties in set H. Recall that the delayed-semi-
malicious security of φdsm guarantees that it is secure against an adversary Aφ
who can choose to behave arbitrarily in the protocol as long as it writes a valid
witness (which consists of an input randomness pair ({xi, ri}i∈C) on behalf of
all corrupt parties) on the witness tape of the simulator Sφ in the penultimate
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Tools used in the compiler [31]

- A (k − 1)-round delayed-semi-malicious protocol φdsm for computing a function
f .

- A 2-message statistically binding commitment scheme Com from one-way func-
tions.

- A 3-round protocol Trap to set up a trapdoor between a sender (S) and a receiver
(R) as the following sequence of rounds:
R1: S samples a signing and verification key pair (sk, vk) of a signature scheme

and sends vk to R.
R2: R sends a random message m← {0, 1}λ to S.
R3: S computes a signature σ on m using sk and sends σ to R who accepts

if (m,σ) is valid w.r.t. vk.
A valid trapdoor td w.r.t. a verification key vk constitutes of (m,σ,m′, σ′)
such that m′ 6= m and σ and σ′ are valid signatures of messages m and m′

respectively corresponding to vk.
- A 4-round non-malleable commitment scheme NMCom.
- A 4-round public-coin delayed-input witness indistinguishable proof WI.

Fig. 4: Tools used in the compiler of [31]

round such that the witness (x, r) can justify all the messages sent by him. In
order to avail the services of Sφ, S needs to transform the malicious adversary
Aπ to a delayed-semi-malicious adversary Aφ i.e. it needs a mechanism to write
(x, r) on the witness tape of Sφ. This is enabled via extraction of witness i.e.
{xi, ri}i∈C from the WI1 proofs sent by Aπ as the prover via rewinding its last
two rounds (Round 3, 4 of π).

Apart from the above set of rewinds for extraction of corrupt parties’ inputs,
another set of rewinds is required for the following reason: Consider messages of
honest parties simulated by Sφ that are used by S to interact with Aπ during the
execution of π. Here, S cannot convinceAπ in the two sets of WI proofs that these
messages are honestly generated. Hence, he opts for the route of the cheating
statement of the WI proofs which requires the knowledge of the trapdoor of the
corrupt parties. The trapdoor of a party, say Pi consists of two valid message-
signature pairs with respect to the verification key of Pi (described in Fig 4).
The simulator extracts the trapdoor of parties in C by rewinding the adversary
Aπ in Rounds 2 and 3 till he gets an additional valid message-signature pair.
The trapdoor has been established this way to ensure that only the simulator
(and not the adversary itself) is capable of passing the proofs via the cheating
statement.

Finally, we point that the two sets of rewinds (Round 2-3 and Round 3-4
of π) can be executed by S while maintaining that the interaction with Sφ is
straight-line since Round 3 of the compiled protocol is ‘dummy’ i.e. does not
involve messages of φdsm. This ‘dummy’ round is crucial to avoid rewinding of
messages in φdsm. Since there are no messages of φdsm being sent in Round 3, S
can simply replay the messages of φdsm (obtained via Sφ) to simulate Round 2
and Round 4 of π during the rewinds.
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5.2.2 Our 5-round BoBW construction. Our final goal of a (god|ua)-
BoBW protocol πbw.god.plain is obtained by applying the compiler of [31] to our
delayed-semi-malicious-secure (god|ua)-BoBW protocol πbw.god.sm (described in
Section 5.1.1) with slight modifications. Broadly speaking, to preserve the BoBW
guarantees from semi-malicious to malicious setting upon applying the compiler,
the malicious behaviour of corrupt Pi in the compiled protocol is translated to an
analogous scenario when semi-malicious Pi aborts (stops communicating) in the
underlying protocol πbw.god.sm. Towards this, we make the following modification:
Recall from the construction of πbw.god.sm that each party Pi is unanimously as-
signed a boolean indicator i.e. flagi by the remaining parties which is initialized
to 1 and is later set to 0 if Pi aborts (stops) in the first two rounds. Accounting
for malicious behavior, we now require the value of flagi to be decided based
on not just Pi’s decision to abort in a particular round but also on whether he
misbehaves in the publicly-verifiable Trap protocol or WI proofs. Specifically, if
Pi misbehaves in Trap or the first set of proofs WI1 with Pi as prover fails, flagi
is set to 0 (analogous to Pi aborting in Round 1 or 2 of πbw.god.sm). Further, if
the second set of proofs WI2 with Pi as prover fails, then the last round message
of Pi is discarded (analogous to Pi aborting in last round of πbw.god.sm).

Next, we point that in our compiled protocol, the 3 rounds of the un-
derlying semi-malicious protocol πbw.god.sm are run in Rounds 1, 4 and 5 re-
spectively. As opposed to compiler of [31] which needed a single ‘dummy’
round on top of the delayed-semi-malicious protocol, we face an additional
simulation technicality (elaborated in the next section) that demands two
‘dummy’ rounds. This could be enabled while maintaining the round complex-
ity of 5, owing to our 3 (and not 4) round delayed semi-malicious protocol.

πbw.god.sm Com Trap NMCom WI1 WI2

Round 1 R1 R1 R1 R1 R1

Round 2 R2 R2 R2 R2 R1

Round 3 R3 R3 R3 R2

Round 4 R2 R4 R4 R3

Round 5 R3 R4

Table 3: πbw.god.plain

Furthermore, as described earlier, in order to
simulate the WI proofs on behalf of an hon-
est prover towards some corrupt verifier Pi,
the simulator requires the knowledge of the
trapdoor of Pi which would be possible only
if Pi is alive (has not aborted) during the
rounds in which trapdoor extraction occurs
i.e. Round 2 and Round 3. While the simu-
lator of [31] simply aborts incase any party
aborts, the simulator of our BoBW protocol cannot afford to do so as god must
be achieved even if upto t < n/2 parties abort. We handle this by adding a sup-
plementary condition in our construction, namely, a prover needs to prove the
WI proofs only to verifiers who have been alive until the round in consideration.
This completes the description of the modifications of our compiler over [31].
The round-by-round interplay of the different components is given in Table 3.
We present our 5-round (god|ua)-BoBW MPC protocol πbw.god.plain (incorporat-
ing the above modifications) in the plain model in Fig 5-6.

5.2.3 Proof-sketch for 5-round (god|ua)-BoBW protocol. The simula-
tor for the compiler of [31] runs in different stages. Plugging it for our 5-round
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5-round Malicious (god|ua)-BoBW MPC Protocol πbw.god.plain from
3-round delayed-semi-malicious BoBW protocol φdsm

Primitives: Tools mentioned in Fig 4 with φdsm instantiated with πbw.god.sm (de-
scribed in Section 5.1.1).

Round 1. Each party Pi, i ∈ [n] does the following with Pj , j ∈ [n] \ {i}:
- Execute Round 1 of φdsm. Initialize flagk = 1 for all k ∈ [n] as per φdsm.
- Run Round 1 of Comi→j to commit to his input and randomness (xi, ri) to

Pj . Let the commitment be denoted by ci→j . Run Round 1 of Comj→i
(where Pj acts as committer) as receiver.

- Run Round 1 of Trapi→j as sender, with vki→j denoting the verification key.
- Run Round 1 of NMComi→j as committer and Round 1 of NMComj→i as

receiver (with Pj as committer).
- Run Round 1 of WI1i→j as prover and Round 1 of WI1j→i as verifier (with Pj

as prover).
Round 2. Each party Pi, i ∈ [n] does the following with Pj , j ∈ [n] \ {i}:

- Run Round 2 of Comi→j and Comj→i.
- Run Round 2 of Trapj→i (as receiver).
- Run Round 2 of NMComi→j and NMComj→i.
- Run Round 2 of WI1i→j and WI1j→i. Also, run Round 1 of WI2i→j as prover

and Round 1 of WI2j→i as verifier (with Pj as prover).
- Set flagj = 0 if Pj aborts in Round 1 or Round 2.

Round 3. Each party Pi, i ∈ [n] does the following with Pj , j ∈ [n] \ {i}:
- Run Round 3 of Trapi→j (as sender).
- Run Round 3 of NMComi→j and NMComj→i.
- Run Round 3 of WI1i→j and WI1j→i. Also, run Round 2 of WI2i→j and WI2j→i.
- Set flagj = 0 if either Pj aborts in Round 3 or if there exists a k ∈ [n], k 6= j

such that the message-signature pair (m,σ) in Trapj→k is not valid w.r.t.
vkj→k. Broadcast enables everyone to agree on this.

Fig. 5: The Modified Compiler for (god|ua)-BoBW MPC (Part 1)

(god|ua)-BoBW construction with appropriate modifications, we present a high-
level overview of the simulation. Let Sbw.god.plain and Sbw.god.sm denote the sim-
ulators corresponding to πbw.god.plain and the underlying delayed semi-malicious
protocol πbw.god.sm respectively. Stage 1 involves running the first three rounds
with the following changes compared to the real-execution of the protocol: a)
Commit to 0 in Com instances (run in Round 1, 2) involving honest party as
committer. b) Invoke the simulator for the semi-malicious protocol, Sbw.god.sm to
generate the first message of πbw.god.sm in Round 1 on behalf of honest parties.
The rest of the actions in Round 1 - 3 on behalf of honest parties are emulated
by Sbw.god.plain as per protocol specifications. Note that the simulator wrt com-
piler in [31] proceeds beyond the first stage only when the adversary did not
cause an abort on behalf of any corrupt party in Stage 1. Else, it aborts. This
works out because their protocol promises security with abort and hence, simply
terminates if a party aborts. However our protocol, in case of honest majority,
promises god with the output being computed on the actual input of the parties
who have been alive till last but one round. To accommodate this, Sbw.god.plain

cannot simply afford to terminate in case a corrupt party aborts. It needs to
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5-round Malicious (god|ua)-BoBW MPC Protocol πbw.god.plain from
3-round delayed-semi-malicious BoBW protocol φdsm

Round 4. Each party Pi, i ∈ [n] does the following with Pj , j ∈ [n] \ {i}:
- Execute Round 2 of φdsm.
- Run Round 4 of NMComi→j in order to commit to a random string s0i→j . Run

Round 4 of NMComj→i as receiver. Additionally, send another random
string s1i→j on clear to Pj .

- Run Round 4 of WI1j→i as verifier. If flagj = 1, run Round 4 of WI1i→j
to prove to Pj the correctness of the first 2 messages of φdsm. In detail,
WI1i→j proves correctness of one of the following statements: (1) Honest
Statement: Pi has correctly generated the first 2 messages of φdsm using
the input and randomness committed in ci→j . (2) Cheating Statement:
XOR of the share s0i→j committed to in NMComi→j and the share s1i→j is
a valid trapdoor tdj→i w.r.t. verification key vkj→i.

- Run Round 3 of WI2i→j and WI2j→i.
- Set flagj = 0 if either Pj aborts in Round 4 or if there exists a k ∈ [n], k 6= j

such that WI1j→k leads to reject. Public verifiability of WI proofs enables
this.

Round 5. Each party Pi, i ∈ [n] does the following Pj , j ∈ [n] \ {i}:
- Execute Round 3 of φdsm.
- Run Round 4 of WI2j→i as verifier. If flagj = 1, run Round 4 of WI2i→j to

prove to Pj the correctness of all messages of φdsm that he broadcasted.
In detail, WI2i→j proves correctness of one of the following statements: (1)
Honest Statement: Pi has correctly generated all messages of φdsm using
the input and randomness committed in ci→j (2) Cheating Statement:
XOR of the share s0i→j committed to in NMComi→j and the share s1i→j is
a valid trapdoor tdj→i w.r.t. verification key vkj→i.

- Output Computation: If any proof WI2j→k is not accepting for any k ∈
[n], k 6= j, discard the message from Pj . Compute the output as per φdsm.

Fig. 6: The Modified Compiler for (god|ua)-BoBW MPC (Part 2)

continue the simulation with respect to corrupt parties who are alive, which de-
mands rewinding. It can thus be inferred that Sbw.god.plain must always proceed
to rewinds unless all the corrupt parties are exposed by adversary in Stage 1.

The second and the fourth stage, in particular, are concerned with rewinding
of the adversary to enable Sbw.god.plain to extract some information. In Stage 2, the
adversary is reset to the end of Round 1 and Rounds 2, 3 are rewound in order to
enable Sbw.god.plain to extract trapdoor of corrupt parties. In more detail, consider
Trapj→i executed between corrupt sender Pj and honest Pi wrt verification key
vkj→i. Now, Sbw.god.plain acting on behalf of Pi computes the trapdoor of Pj wrt
vkj→i to be two message-signature pairs constituted by one obtained in Stage
1 and the other as a result of rewinding in Stage 2 (note that both signatures
are wrt vkj→i sent in Round 1 of Trapj→i; rewinds involve only Round 2, 3). To
enable continuation of the simulation after Stage 2, which requires the knowledge
of the trapdoors of corrupt parties who are alive, the logical halt condition for
the rewinds is: stop when you have enough! This translates to- stop at the `th

rewind if a valid trapdoor has been obtained for the set of corrupt parties alive
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across the `th rewind. Since the `th (last) rewind is expected to provide one valid
(m,σ) pair (i.e. message, signature pair) out of two required for the trapdoor,
all that is required is for the corrupt party to have been alive across at least
one previous rewind. Let the set of parties alive across ith rewind be denoted by
Ai+1 (A1 represents the set of parties that were alive in the execution preceeding
the rewinds i.e. after Stage 1), then the condition formalizes to: halt at rewind
` if A`+1 ⊆ A1 ∪ · · · ∪ A`.

While this condition seems appropriate, it leads to the following subtle issue.
The malicious adversary can exploit this stopping condition by coming up with
a strategy to choose the set of aborting and the alive parties (say, according
to some unknown distribution D pre-determined by the adversary) such that
the final set of alive parties A in the transcript output by the simulator (when
the rewinds halt) will be biased towards the set of parties that were alive in
the earlier rewinds. (Ideally the distribution of the set of alive parties when
simulator halts should be identical to D). This would lead to the view output
by the simulator being distinguishable from the real view. A very similar subtle
issue appears in zero-knowledge (ZK) protocol of [52] - While we defer the details
of this issue of [52] to Appendix F.2.2, we give a glimpse into how their scenario is
analogous to ours below. Consider a basic 4-round ZK protocol with the following
skeleton: the verifier commits to a challenge in Round 1 which is subsequently
decommitted in Round 3. The prover responds to the challenge in Round 4. At a
very high-level, the protocol of [52] follows a cut-and-choose paradigm involving
N instances of the above basic protocol. Here, the verifier chooses a random
subset S ⊂ [N ] of indices and decommits to the challenges made in those indices
in Round 3. Subsequently, the prover completes the ZK protocol for instances
with indices in S. The simulator for the zero-knowledge acting on behalf of the
honest prover involves rewinds to obtain ‘trapdoors’ corresponding to the indices
in S. However, note that the verifier can choose different S in different rewinds.
Therefore, the simulator is in a position to produce an accepting transcript and
stop at the `th rewind only when it has trapdoors corresponding to all indices in
S chosen by the adversary during the `th rewind. However, if the simulation is
stopped at the execution where the above scenario happens for the ‘first’ time,
their protocol suffers an identical drawback as ours. In particular, the malicious
verifier can choose the set of indices S in a manner that the distribution of
the views output by the simulator is not indistinguishable from the real view.
Drawing analogy in a nutshell, the set of indices chosen by the malicious verifier
is analogous to the set of alive corrupt parties in our context (details in Appendix
F.2.2). We thereby adopt the solution of [52] and modify our halting condition
as: halt at rewind ` if A`+1 ⊆ A1 ∪ · · · ∪ A` and A`+1 * A1 ∪ · · · ∪ A`−1. [52]
gives an elaborate analysis showing why this simulation strategy results in the
right distribution. With this change in simulation of Stage 2, the simulation of
Stage 3 can proceed identical to [31] which involves simulating the WI1 proofs
via the fake statement using the knowledge of trapdoor.

Proceeding to simulation of Stage 4, we recall that the simulator of [31]
involves another set of rewinds in Stage 4 which requires to rewind Round 3 and
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4 to extract the witness i.e. the inputs and randomness of the corrupt parties from
WI1. Similar to Stage 2, two successful transcripts are sufficient for extraction.
Thus, the simulator is in a position to halt at `th rewind if all the corrupt
parties that are alive in Stage 4 have been alive across at least one previous
rewind. Next, following the same argument as Stage 2, it seems like the halting
condition for Stage 2 should work, as is, for Stage 4 too. With this conclusion, we
stumbled upon another hurdle elaborated in this specific scenario: Recall that
the trapdoors extracted for corrupt parties in Stage 2 are used here to simulate
the WI1 proofs (as described in Stage 3). It is thereby required that Sbw.god.plain

already has the trapdoors for the corrupt parties that are alive in Stage 4. Let
T be the set of trapdoors accumulated at the end of Stage 2. Consider a party,
say Pi, which stopped participating in Round 3 of the last rewind ` of Stage
2 (Pi was alive till Round 2 of `th rewind). Sbw.god.plain still proceeds to Stage
4 without being bothered about the trapdoor of Pi (as the halting condition is
satisfied). However in Stage 4, when the adversary is reset to the end of Round
2 of `th rewind, Pi came back to life again in Round 3. The simulation of WI1

proofs with Pi as a verifier will be stuck if T does not contain the trapdoor for
Pi. Hence, it is required to accommodate the knowledge of set T during Stage
4. Accordingly Sbw.god.plain does the following in Stage 4: During each rewind,
if a party (say Pi) whose trapdoor is not known becomes alive during Round
3, store the signature sent by Pi in Round 3 (as part of Trap) and go back to
Stage 2 rewinds (if Pi’s trapdoor is still unknown). Looking ahead, storing the
signature of Pi ensures that the missing trapdoor of Pi in T can cause Sbw.god.plain

to revert to Stage 2 rewinds atmost once (if the same scenario happens again
i.e. Pi becomes alive in Round 3 during Stage 4 rewinds, then another (message,
signature) pair wrt verification key of Pi is obtained in this rewind by Sbw.god.plain;
totalling upto 2 pairs which suffices to constitute valid trapdoor of Pi which can
now be added to T). Else, if T comprises of the trapdoor of all the corrupt
parties that are alive during the rewind of Stage 4, then adhere to the same
halting condition as Stage 2. This trick tackles the above described problematic
scenario, while ensuring that the simulation terminates in polynomial time and
maintains indistinguishability of views.

Before concluding the section, we highlight two important features regarding
the simulation of πbw.god.plain: Despite the simulator Sbw.god.plain reverting to Stage
2 rewinds in some cases (unlike the simulation of [31]), the simulation terminates
in polynomial-time since this can occur atmost once per corrupt party (as argued
above). Lastly, since there is a possibility of reverting back to simulation of
Round 2 after simulation of Round 4, we keep an additional ‘dummy’ Round 2
as well (on top of ‘dummy’ Round 3 as in [31]) in our construction. This allows us
to maintain the invariant that Sbw.god.sm is never rewound. To be more specific, as
there are no messages of underlying semi-malicious protocol being sent in Round
2, 3; even if Sbw.god.plain needs to return to Stage 2 from Stage 4 (after Round 4 has
been simulated by obtaining the relevant message from Sbw.god.sm) and resume
the simulation from Stage 2 onwards, the message of πbw.god.sm sent in Round 4
can simply be replayed. We are able to accommodate two dummy rounds while
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maintaining the round complexity of 5 owing to the privilege that our delayed-
semi-malicious protocol is just 3 rounds. This completes the simulation sketch.
Assumption wise, our construction relies on 2-round semi-malicious oblivious
transfer (a building block of our 3-round delayed-semi-malicious BoBW MPC
πbw.god.sm). We state the formal theorem below.

Theorem 10. Let (n, s, t) be such that s + t < n. Let πbw.god.sm realises– (i)
Fgod (Fig 9) when at most t < n/2 parties are corrupt and (ii) Fua (Fig 7) when
at most s < n parties are corrupt, delayed-semi-maliciously in both cases. Then
πbw.god.plain in the plain model realises– (i) Fgod when at most t < n/2 parties are
corrupt and (ii) Fua (Fig 10) when at most s < n parties are corrupt, maliciously
in both cases. It takes 5 rounds, assuming that πbw.god.sm takes 3 rounds.

Proof. The proof which includes the complete description of the simulator, a
discussion about its indistinguishability to the real view and its running time is
deferred to Appendix F.3. ut

Extension to Identifiability. We additionally point that the publicly-verifiable
WI proofs render identifiability to our construction. Thus our maliciously-secure
(god|ua)-BoBW protocol achieves the stronger notion of identifiable abort in
case of dishonest majority, with no extra assumption. Therefore, we obtain the
above theorem where Fua is replaced with Fidua (Fig 10). A minor observation is
that we can replace the last round broadcast with point-to-point communication
in our (god|ua)-BoBW protocol πbw.god.plain at the expense of relaxing ua to sa
security in the dishonest-majority setting.
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Supplementary Material

A The Security Model

We prove the security of our protocols based on the standard real/ideal world
paradigm. Essentially, the security of a protocol is analyzed by comparing what
an adversary can do in the real execution of the protocol to what it can do in
an ideal execution, that is considered secure by definition (in the presence of an
incorruptible trusted party). In an ideal execution, each party sends its input to
the trusted party over a perfectly secure channel, the trusted party computes the
function based on these inputs and sends to each party its respective output.
Informally, a protocol is secure if whatever an adversary can do in the real
protocol (where no trusted party exists) can be done in the above described
ideal computation. We refer to [67,68,69] for further details regarding the security
model.

The “ideal” world execution involves n parties {P1 . . . Pn}, an ideal adversary
S who may corrupt some of the parties, and a functionality F . The “real” world
execution involves the PPT parties {P1 . . . Pn}, and a real world PPT adversary
A who may corrupt some of the parties. We let idealF,S(1κ, z) denote the
output pair of the honest parties and the ideal-world PPT adversary S from the
ideal execution with respect to the security parameter 1κ and auxiliary input z.
Similarly, let realΠ,A(1κ, z) denote the output pair of the honest parties and
the adversary A from the real execution with respect to the security parameter
1κ and auxiliary input z.

Definition 3. For n ∈ N, let F be a functionality and let Π be an n-party
protocol. We say that Π securely realizes F if for every PPT real world adversary
A, there exists a PPT ideal world adversary S, corrupting the same parties, such
that the following two distributions are computationally indistinguishable:

idealF,S
c
≈ realΠ,A.

Target Functionalities. Taking motivation from [69,40], we define ideal func-
tionalities Fua, Ffair,Fgod in Figures 7, 8, 9 for secure MPC of a function f with
unanimous abort (ua), fairness (fn) and guaranteed output delivery (god) re-
spectively. Additionally, we also define the ideal functionalities Fidua and Fidfair

in Figures 10, 11 for identifiable abort and identifiable fairness respectively.

A.1 Semi-malicious and Delayed-semi-malicious Security

Semi-malicious security had been introduced in [51] and subsequently used by
many works as a stepping-stone for achieving malicious security. We use two
variants of semi-malicious security– the original definition of [51,35] and a variant
known as delayed-semi-malicious security [31].

A semi-malicious adversary is modelled as an interactive Turing machine
which, in addition to the standard tapes, has a special witness tape. In each
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Fua

Input: On message (sid, Input, xi) from a party Pi (i ∈ [n]), do the following: if such a
message was received from Pi earlier, then ignore. Otherwise record it internally.
If xi is outside of the domain for Pi (i ∈ [n]), consider xi = abort.

Output to adversary: If there exists i ∈ [n] such that xi = abort, send
(sid, Output,⊥) to all the parties. Else, send (sid, Output, y) to the adversary, where
y = f(x1 . . . xn).

Output to honest parties: Receive either continue or abort from adversary. In
case of continue, send y to honest parties, whereas in case of abort send them ⊥.

Fig. 7: Ideal Functionality for ua security

Ffair

Input: On message (sid, Input, xi) from a party Pi (i ∈ [n]), do the following: if such a
message was received from Pi earlier, then ignore. Otherwise record it internally.
If xi is outside of the domain for Pi (i ∈ [n]), consider xi = abort.

Output: If there exists i ∈ [3] such that xi = abort, send (sid, Output,⊥) to all
the parties. Else, send (sid, Output, y) to party Pi for every i ∈ [n], where y =
f(x1, . . . , xn).

Fig. 8: Ideal Functionality for fn

Fgod

Input: On message (sid, Input, xi) from a party Pi (i ∈ [n]), do the following: if such a
message was received from Pi earlier, then ignore. Otherwise record it internally. If
xi is outside of the domain for Pi, set xi to be some predetermined default value.

Output: Compute y = f(x1, . . . , xn) and send (sid, Output, y) to party Pi for every
i ∈ [n].

Fig. 9: Ideal Functionality for god

Fidua

Input: On message (sid, Input, xi) from a party Pi (i ∈ [n]), do the following: if such a
message was received from Pi earlier, then ignore. Otherwise record it internally.
If xi is outside of the domain for Pi (i ∈ [n]), consider xi = (abort, i).

Output to adversary: If there exists a set I with |I| ≥ 1 such that xi = (abort, i)
for i ∈ I, send (sid, Output, (⊥, I)) to all the parties. Else, send (sid, Output, y) to
the adversary, where y = f(x1, . . . xn).

Output to honest parties: Receive either continue or (abort, I) from adversary
where I is a subset of corrupt parties chosen by the adversary and |I| ≥ 1. In case
of continue, send (sid, Output, y) to honest parties, whereas in case of abort send
(sid, Output, (⊥, I)) to all honest parties.

Fig. 10: Ideal Functionality for identifiable abort

round of the protocol, whenever the adversary produces a new protocol message
m on behalf of some party Pk, it must also write to its special witness tape
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Fidfair

Input: On message (sid, Input, xi) from a party Pi (i ∈ [n]), do the following: if such a
message was received from Pi earlier, then ignore. Otherwise record it internally.
If xi is outside of the domain for Pi (i ∈ [n]), consider xi = (abort, i).

Output: If there exists a set I with |I| ≥ 1 such that xi = (abort, i) for i ∈ I,
send (sid, Output, (⊥, I)) to all the parties. Else, send (sid, Output, y) to all, where
y = f(x1, . . . xn).

Fig. 11: Ideal Functionality for identifiable fairness

some pair (x, r) of input x and randomness r that explains its behavior. More
specifically, all of the protocol messages sent by the adversary on behalf of Pk
up to that point, including the new message m, must exactly match the honest
protocol specification for Pk when executed with input x and randomness r.
Note that the witnesses given in different rounds need not be consistent. Also,
we assume that the attacker is rushing and hence may choose the message m and
the witness (x, r) in each round adaptively, after seeing the protocol messages of
the honest parties in that round (and all prior rounds). Lastly, the adversary may
also choose to abort the execution on behalf of Pk in any step of the interaction.

Definition 4. We say that a protocol π securely realizes F for semi-malicious
adversaries if it satisfies Definition 3 when we only quantify over all semi-
malicious adversaries A.

We point that a party controlled by the semi-malicious adversary must invoke
the ideal functionality with either ⊥ or a valid input in the input phase.

A stronger variant of semi-malicious adversary, denoted as delayed semi-
malicious, was introduced in the work of [31]. Informally, a party Pk, under
the influence of delayed-semi-malicious adversary, acts like one under a semi-
malicious adversary, except that, it only “explains” all its messages once, before
the last round (unlike a semi-malicious party who explains each of its messages
after each round). This is formalized by letting Pk write to its special witness
tape before the last round some pair (x, r) of input x and randomness r which
is required to be consistent with all Pk’s messages.

Definition 5. We say that a protocol π securely realizes F for delayed-semi-
malicious adversaries if it satisfies Definition 3 when we only quantify over all
delayed-semi-malicious adversaries A.

The real world for delayed-semi-malicious security is defined identically as the
real world for semi-malicious security except that adversary A is only required
to provide a witness in the second last round i.e. round L− 1 with respect to a
protocol of L rounds. Correspondingly, the ideal world is defined identically as
the ideal world for semi-malicious security except that the simulator interacting
with the adversary A (as a black-box) receives the witness that A output after
round L− 1.
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B Primitives

B.1 Threshold Secret Sharing

Informally, a d (denoting threshold) out of n threshold secret sharing scheme
distributes a secret among n participants, in such a way that any group of d+ 1
or more participants can together reconstruct the secret but no group of fewer
than d+1 players can. Shamir secret sharing is an instance of a threshold secret-
sharing [70]. We present the formal definition below.

Definition 6. A d-out-of-n threshold secret sharing scheme, defined for a finite
set of secrets K and a set of P participants, comprises of two protocols– Sharing
and Reconstruction (Sh,Re), with the following requirements:

- Correctness. The secret can be reconstructed by any set of (d + 1) parties via
Re. That is, ∀s ∈ K and ∀S = {i1, . . . id+1} ⊆ {1, . . . n} of size (d + 1),
Pr[Re(si1 . . . sid+1

) = s] = 1.
- Privacy. Any set of d parties cannot learn anything about the secret from their

shares. That is: ∀s1, s2 ∈ K, ∀S = {i1, . . . id} ⊆ {1, . . . n} of size d, and
for every possible vector of shares {sj}j∈S, Pr[{{Sh(s1)}S = {sj}ij∈S ] =
Pr[{{Sh(s2)}S = {sj}ij∈S ], where {Sh(si)}S denotes the set of shares as-
signed to the set S as per Sh when si is the secret for i ∈ {1, 2}.

B.2 Garbling Schemes

The term ‘garbled circuit’ (GC) was coined by Beaver [8], but it had largely only
been a technique used in secure protocols until they were formalized as a primi-
tive by Bellare et al. [71]. ‘Garbling Schemes’ as they were termed, were assigned
well-defined notions of security, namely correctness, privacy, obliviousness, and
authenticity. A garbling scheme G is characterised by a tuple of PPT algorithms
G = (Gb,En,Ev,De) described as follows:

– Gb (1κ, C) is invoked on a circuit C in order to produce a ‘garbled circuit’
C, ‘input encoding information’ e, and ‘output decoding information’ d.

– En (x, e) encodes a clear input x with encoding information e in order to
produce a garbled/encoded input X.

– Ev (C,X) evaluates C on X to produce a garbled/encoded output Y.
– De (Y, d) translates Y into a clear output y as per decoding information d.

We look for the security properties of correctness and privacy from our gar-
bling schemes. Correctness enforces that a garbled circuit, when evaluated, gives
the correct output of the underlying circuit. Privacy aims to protect the privacy
of encoded inputs.

Definition 7. (Correctness) A garbling scheme G is correct if for
all input lengths n ≤ poly(κ), circuits C : {0, 1}n → {0, 1}m
and inputs x ∈ {0, 1}n, the following probability is negligible in κ:
Pr

(
De(Ev(C,En(e, x)), d) 6= C(x) : (C, e, d)← Gb(1κ, C)

)
.
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Definition 8. (Static Privacy) A garbling scheme G (Gb′,En′,Ev′,De′) satisfies
static privacy if for all input lengths n ≤ poly(κ), circuits C : {0, 1}n → {0, 1}m,
there exists a PPT simulator Sst such that for all inputs x ∈ {0, 1}n, for all
probabilistic polynomial-time adversaries A, the following two distributions are
computationally indistinguishable:

– Real(C, x) : run (C′, e′, d′)← Gb′(1κ, C), and output (C′,En′(x, e′), d′).
– IdealSst(θ(C), C(x)): output (C′,X′, d′) ← Sst(1

κ, θ(C), C(x)). Here θ(C)
refers to the side information function which captures the information that
garbled circuit is allowed to reveal about C such as its size, topology, the
original circuit itself or something else.

We are interested in a class of garbling schemes referred to as projective in
[71]. When garbling a circuit C : {0, 1}n 7→ {0, 1}m, a projective garbling scheme
produces encoding information of the form e =

(
ei,0, ei,1

)
i∈[n], and the encoded

input X for x = (xi)i∈[n] can be interpreted as X = En(x, e) =
(
ei,xi

)
i∈[n].

B.3 Adaptively-secure Garbling Scheme

In our work, we use garbling schemes with stronger privacy notion, referred to
as adaptive [71]. Informally, such garbling schemes remain private against an
adversary A who obtains the garbled circuit C and then selects the input x.

Definition 9. (Adaptive Privacy) A garbling scheme G satisfies adaptive privacy
if for all input lengths n ≤ poly(κ), circuits C : {0, 1}n → {0, 1}m, there exists
a PPT simulator Sad such that for all inputs x ∈ {0, 1}n, for all probabilistic
polynomial-time adversaries A, the following is negligible in κ:

|Pr[Expad
A,Sad

(1λ, 0) = 1]− Pr[Expad
A,Sad

(1λ, 1) = 1]|

where the experiment Expad
A,Sad

is defined as follows:

– The adversary A specifies the circuit C, corresponding to which it obtains
(C, d) created as follows:
◦ If b = 0: (C, e, d)← Gb(1λ, C). Return (C, d)
◦ If b = 1: Return (C, d)← Sad(1λ, θ(C), 0). A call with ‘0’ indicates Sad to

return (C, d) and θ(C) refers to the side-information about C. Side-
information function θ(C) deterministically maps the circuit C to a
string θ(C) which captures the information that the garbled circuit is
allowed to reveal about C such as its size, topology (the circuit structure
without the gate information), the original circuit itself or something
else.

– Next, A provides an input x of his choice, corresponding to it obtains the
encoded input X created as follows: Return ⊥ if x is invalid. Else,
◦ If b = 0: Return X← En(e, x).
◦ If b = 1: Let y ← C(x). Return X ← Sad(y, 1). A call with ‘1’ indicates
Sad to return X.
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We now recall the transformation of [72] which transforms a garbling scheme
(Gb′,En′,Ev′,De′) satisfying static privacy (such as Yao’s garbled circuits [3]) to
an adaptively-secure garbling scheme (Gb,En,Ev,De). The side-information θ(C)
is assumed to be the topology of the circuit C. The transformation uses one-
time pads to mask C and d produced by the statically-secure scheme, and then
appends the pads to X. This will ensure that the adversary learns nothing about
C and d until it fully specifies function C and x. For the sake of completeness,
we describe this construction below.

Fig. 12: Transformation of statically-secure garbling scheme (Gb′,En′,Ev′,De′)
to adaptively-secure garbling scheme (Gb,En,Ev,De)

(a) Gb(1κ, C)

- (C′, e′, d′)← Gb′(1κ, C)

- Let Cpad ← {0, 1}|C
′|; dpad ← {0, 1}|d

′|

- C← C′ ⊕ Cpad, d← d′ ⊕ dpad

e← (e′, Cpad, dpad)
- return (C, e, d)

(b) En(e, x)

- (e′, Cpad, dpad)← e
- X′ ← En′(e′, x)
- Return X = (X′, Cpad, dpad)

(c) Ev(C,X)

- (X′, Cpad, dpad)← X
- C′ ← C⊕ Cpad; Y′ ← Ev′(C′,X′)
- Return Y = (Y′, dpad)

(d) De(Y, d)

- (Y′, dpad)← Y
- d′ ← d⊕ dpad

- Return De′(Y′, d′)

The transformation of garbling scheme G1 = (Gb′,En′,Ev′,De′) with static
privacy (Definition 8) to garbling scheme G2 = (Gb,En,Ev,De) with adaptive
privacy (refer Definition 9) is described in Figure 12. The idea is to use one-time
pads to mask the garbled circuit C′ and decoding information d′ obtained by
running Gb′ of G1 and append the pads to the encoding information and the en-
coded input. This ensures that the adversary learns nothing about the garbled
circuit C′ and decoding information d′ until the input is specified. The simulator
Sad of the garbling scheme G2, when invoked with (1κ, θ(C), 0) simply returns
random (C, d). In the second phase, given y, Sad runs the simulator of G1 (say,
S) to obtain (C′,X′, d′)← S(1κ, θ(C), y) and returns X = (X′,C⊕C′, d⊕ d′).
We point that while this transformation does not need G1 to be projective, if
G1 is projective, so is G2. Thus, the projective adaptive garbled circuit used in
our 3-round semi-malicious (god|ua)-BoBW MPC protocol πbw.god.sm (Fig 21,
Appendix E.1) can be obtained by applying this transformation on Yao’s pro-
jective garbling scheme satisfying static privacy. We assume the side-information
θ(C) leaks the topology of the circuit, that reveals the topological circuit but
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not the functionality of each gate. Since the topology is leaked, the simulator Sad

will know the lengths to be picked for random C, d returned in the first phase.
For details, we refer to [72].

B.4 Oblivious Transfer

1-out-of-2 Oblivious Transfer (OT) [73] is a two-party functionality involving a
sender with input (m0,m1) and a receiver with input b ∈ {0, 1}. The receiver
should learn mb (and nothing else) and the sender should learn nothing. The
ideal oblivious transfer functionality FOT [74] appears below.

FOT

Let S, R, A denote the oblivious transfer sender, receiver and adversary respectively.

- Upon receiving a message (sender, sid,m0,m1) from S, where m0,m1 ∈ {0, 1}m,
record (m0,m1). (The length of the strings m is fixed and known to all parties).

- Upon receiving a message (receiver, sid, b) from R, where b ∈ {0, 1}, send (sid,mb)
to R and (sid) to A and halt. (If no (sender, sid,m0,m1) message was previously
sent, then send nothing to R.)

Fig. 13: Ideal Functionality for OT [74]

B.5 Non-Interactive Zero Knowledge (NIZK)

Definition 10. Let R be a polynomially-bounded, polynomial time computable
binary relation. Let L be the NP language L = {x : ∃w (x,w) ∈ R}. The set of
efficient (PPT) algorithms (K,P, V ) described below

- Key Generation: σ ← K(1κ) generates the common random/reference public
string

- Prover: π ← P (σ, x, w) produces the proof
- Verifier: V (σ, x, π) outputs {0, 1} to accept / reject the proof

is a non-interactive proof system for R if the following properties hold.

- Completeness: ∀x ∈ L,w such that (x,w) ∈ R: Pr[σ ← K(1κ);π ←
P (σ, x, w) : V (σ, x, π) = 0] ≤ negl(κ)

- Soundness: For all x /∈ L, and all PPT adversaries A, Pr[σ ← K(1κ);π ←
A(σ, x) : V (σ, x, π) = 1] ≤ negl(κ)

- Zero-Knowledge: There exists a PPT simulator S such that ∀x ∈ L,w such
that (x,w) ∈ R, the two distributions are computationally indistinguishable:

- Run σ ← K(1κ), π ← P (σ, x, w). Output (σ, π)
- Run (σ, π)← S(1κ, x). Output (σ, π).

In this work, we use NIZKs in the CRS model to realize the ideal functionality
FRzk defined below [51]
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FRzk

The functionality is parameterized with NP relation R of an NP language L. Suppose
P1 is the prover and P2, . . . , Pn denote the verifiers.

- Upon receiving a common input (x, sid) from P1, . . . Pn and an input (w, sid) from
P1 check that R(x,w) = 1. If so, send (1, sid) to all parties. Else return (0, sid).

Fig. 14: Ideal Functionality for zero knowledge

B.6 Digital Signatures

Definition 11. A digital signature scheme consists of PPT algorithms
(Gen,Sig,Ver) described below

- (sk, vk) ← Gen(1κ). A randomized algorithm takes security parameter κ as
input and generates a signing key sk and a verification key vk.

- σ ← Sig(sk,m). A randomized algorithm that takes a message m and signing
key sk as input and outputs a signature σ.

- 0/1 ← Ver(vk,m, σ). A deterministic algorithm that takes verification key
vk and a message-signature pair (m,σ) as input and outputs 1 for valid
signature and 0 otherwise.

which satisfy the following correctness and security properties.

- Correctness: For all (sk, vk) ← Gen(1κ), any message m,
Ver(vk,m,Sig(sk,m)) = 1

- Unforgeability: A signature scheme is unforgeable if for any PPT adversary
A, the following game outputs 1 with negligible probability (in security pa-
rameter).

- Initialize. Run (vk, sk)← Gen(1κ). Give vk to A. Initiate a list L = ∅.
- Signing queries. On query m, return σ ← Sig(sk,m). Run this step for

polynomially many queries by A. Then, insert m into the list L.
- Output. Receive output (m∗, σ∗) from A. Return 1 if and only if

Ver(vk, (m∗, σ∗)) = 1 and m∗ 6∈ L, and 0 otherwise.

C Upper Bounds for (fn|ua)-BoBW MPC

Proof of Theorem 4. We prove the theorem by presenting two separate simulators
for the honest and for the dishonest majority case respectively.

Dishonest Majority. Let A be a malicious adversary controlling s parties in the
hybrid-model execution of πbw.fair. The simulator Sdm

bw.fair, running an ideal-world
evaluation of the functionality Fua (refer Figure 7) computing f whose behaviour
simulates the behaviour of A is described in Figure 15.

We argue that the view of A in the hybrid world and the ideal world is
indistinguishable due to the following reason: Observe that the only difference
in the ideal world as compared to the hybrid world is in the output computation
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Simulator Sdm
bw.fair

Let C ⊂ [n] and H = [n]\C be the set of indices of s corrupt parties and the indices
corresponding to honest parties respectively. The following steps are carried out
by Sdm

bw.fair:

– Receive {xi}i∈C sent to Fauth
ua in this hybrid execution model. If for any i ∈ C, xi

is outside of the domain of input, send ⊥ as output of Fauth
ua to A and send ⊥ as

the input to Fua on behalf of the corrupt parties. The simulation is completed
in this case. Else invoke Fua on behalf of A with {xi}i∈C to receive an output
value y in return.

– Compute the authenticated t-sharing of value y (Definition 2) as done by Fauth
ua

and send zi =
(
ai(x), {vij = (Ki, aj(Ki))}j∈[n]

)
as output of Fauth

ua to Pi (i ∈ C)
– If Sdm

bw.fair receives abort on behalf of Fauth
ua from the adversary, it sends the ‘abort’

signal to Fua on behalf of A. This concludes the simulation for this case.
– If Sdm

bw.fair receives continue on behalf of Fauth
ua from the adversary, it simulates

Round (r + 1) as follows:
- Broadcast ai(x) for each (i ∈ H) on behalf of honest Pi and receive mes-

sage {a∗j (x)}j∈C from the corrupt parties in Round (r + 1).
- Let C′ ⊂ C denote the set of indices for which a∗j (x) = aj(x). If |C′|+ |H| ≥
t+ 1, then send ‘continue’ to Fua. Else send ‘abort’ to Fua.

Fig. 15: Simulator Sdm
bw.fair for the case of dishonest majority

of the honest parties - In the ideal world, all honest parties output y if |C′|+|H| ≥
t + 1, where C′ ⊂ C is the set of indices such that a∗j (x) = aj(x), else they all
output ⊥. In contrast, in the hybrid world, each honest party Pi outputs the
output of Rec in which it participates with the output of Fauth

ua in Round (r+ 1).
It follows from the argument in Lemma 3 that all honest parties would have
identical V sets comprising only of parties in H and C′, except with probability
n2

|F|−1 . Thus, when |H|+ |C′| ≥ t+ 1, for each honest Pi, |Vi| ≥ t+ 1 leading Pi
to output y as output of Rec in the hybrid world as well. Similarly, all honest
parties would output ⊥ in both the ideal and the hybrid world when |H|+ |C′| <
t + 1. Thus the difference between the two worlds occurs with probability at

most n2

|F|−1 ≈ ε, which is negligible when F = GF (2κ), where ε ≥ n22−κ. This

completes the proof for the case of dishonest majority.

Honest Majority. LetA be a malicious adversary controlling t parties in a hybrid-
model execution of πbw.fair. The simulator Shm

bw.fair, running an ideal-world evalua-
tion of the fair functionality Ffair (refer Figure 8) computing f , whose behaviour
simulates the behaviour of A, is described in Figure 16.

We now claim that the view of A in the hybrid world and the ideal world is
indistinguishable due to the following: The difference between the hybrid and the
ideal execution is that whenA receives

(
ai(x), {vij}j∈[n]

)
for each i ∈ C as output

from Fauth
ua , the values vij in the former are computed as verification information

of the authenticated t-shares of the output y (Definition 2) (i.e. vij = (Ki, aj(Ki))
with aj(0) = p(j) as a t-share of y), while in the latter they are random for j /∈ C.
It is easy to verify that the indistinguishability follows since A has access to at
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Simulator Shm
bw.fair

Let C ⊂ [n] and H = [n]\C be the set of indices of t corrupt parties and the indices
corresponding to honest parties respectively. The following steps are carried out
by Shm

bw.fair:

– Receive {xi}i∈C sent to Fauth
ua by A in this hybrid-execution model. If for any

i ∈ C, xi is outside of the domain of input, send ⊥ as output of Fauth
ua to A and

send ⊥ as the input to Ffair on behalf of the corrupt parties. The simulation
is completed in this case. Else it does the following. Noticeably, in this case
Shm

bw.fair cannot call Ffair yet with the inputs, as the adversary can still abort the
protocol by signaling Fauth

ua with abort in which case all parties will obtain ⊥
as the output.

- Choose t random shares {si}i∈C ∈ F. For each i ∈ C, compute MAC-
polynomial ai(x) that authenticates si (Definition 1) with corresponding
verification information as vji = (Kj , ai(Kj)) of verifier Pj .

- For each i ∈ C, j /∈ C, set vij = (Ki,Tij) where Ki,Tij are sampled ran-
domly from F.

- Send
(
ai(x), {vij}j∈[n]

)
as output of Fauth

ua to Pi (i ∈ C).
– If Shm

bw.fair receives abort on behalf of Fauth
ua from the adversary, it sends ⊥ as the

adversary’s input to Ffair. This completes the simulation for this case.
– If Shm

bw.fair receives continue on behalf of Fauth
ua from the adversary, it sends the

inputs {xi}i∈C to Ffair and receives output y in return. Recall that Shm
bw.fair had

sent
(
ai(x), {vij}j∈[n]

)
as output of Fauth

ua to Pi (i ∈ C) where vij = (Ki,Tij)

for j /∈ C. Shm
bw.fair does the following to simulate Round (r + 1):

- Interpolate a degree-t polynomial p(x) satisfying p(0) = y and p(i) = ai(0)
for i ∈ C. Set s′j = p(j) for j /∈ C.

- Corresponding to each j /∈ C, interpolate a degree-t polynomial aj(x)
satisfying aj(0) = s′j and aj(Ki) = Tij for i ∈ C.

- Broadcast aj(x) on behalf of each honest Pj (j /∈ C) in Round (r + 1).
Output y on behalf of all honest parties.

Fig. 16: Simulator Shm
bw.fair for the case of honest majority

most t points on the degree t polynomial aj(x) for j /∈ C. Finally, in the case
when A allows honest parties to obtain the output shares from Fauth

ua , it is easy to
check that since |Vi| ≥ t+1 for each honest Pi (as there are at least (t+1) honest
parties), each Pi would proceed to reconstruction. Furthermore, the argument
made in Lemma 3 shows that all honest parties would exclude js from their V
sets such that Pj broadcast the incorrect MAC polynomial corresponding to its
output share, except with negligible probability. Subsequently, the correct secret
y would be reconstructed. We can thus conclude that all honest parties obtain
output y in both the ideal and the hybrid execution, except with negligible
probability. This completes the proof for the honest majority setting.

This completes the proof of Theorem 4.
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D MPC with ua security

In this section, we discuss in detail how to augment the security of the existing
4-round MPC protocols of [16,17,34] from sa to ua.

D.1 Boosting security of [16] to ua

This section is organised as follows: After a brief informal overview of the pro-
tocol of [16], we first highlight the manner in which the adversary could disrupt
unanimity and our proposed fixes to tackle the issues. Next, for the sake of com-
pleteness, we recall the original protocol of [16]. Lastly, we present the modified
protocol that incorporates the fixes and achieves ua.

D.1.1 Issues in boosting security of [16] to ua. We begin with a high-level
sketch of the protocol of [16]. The Boolean circuit, corresponding to the function
f to be computed, is first made resilient to additive attacks by applying the AMD
transformations of [75,76] and then the BMR randomized encoding [8] is applied
on the transformed function. As per BMR encoding, each party Pi (i ∈ [n]) picks
two keys kiw,0, k

i
w,1 and a bit λiw for every wire w, the latter as its contribution

to a mask bit λw for w. The garbled table of each 2-input gate g with inputs
wires a, b and output c comprises of 4 rows (for the 4 input combinations). The
(α, β)th row of a NAND gate consists of n ciphertexts, where the ith ciphertext
encrypts the bthα,β output key from Pi’s contribution on wire c, namely kic,bα,β
where bα,β = NAND(λa ⊕ α, λb ⊕ β) ⊕ λc = [(λa ⊕ α)(̇λb ⊕ β) ⊕ 1] ⊕ λc. This
clever encoding enables evaluating the circuit in masked form where the actual
bits blinded with corresponding mask (λ) bits alone get published. Starting with
input bits blinded with their masks, these garbled tables enable to compute
blinded output bits. Specifically, the keys corresponding to the masked bits for
the input wires a, b of a gate are used to decrypt the relevant n keys for the
output wire, namely kic,δc , where δc denotes the masked bit on the output wire
c. Each Pi deduces the value of δc by comparing the key obtained from decryption
of ith ciphertext with its pair of keys (kic,0, k

i
c,1). For the output gates, the mask

value λ is given out as output translation table to recover the actual output.
Notably, the BMR encoding i.e. every ciphertext in the garbled tables repre-

sents a degree-3 monomial over parties’ random inputs. To compute the mono-
mials, [16] gives a 3-round protocol π3bitmult (building upon the 3-bit multiplica-
tion protocol of [15]) against “defensible” adversary (i.e. adversary volunteers a
defense or explanation of its actions so far, consisting of some inputs and ran-
domness at the end of Round 3). The protocol ends with every party having an
XOR-share of the encoding (every ciphertext of the garbled tables), XOR-share
of the output translation tables and the masked input bits. Now, to compile this
defensible protocol to a malicious one, 2-round witness indistinguishable proofs
(derived from ZAPs) are used whose “witness” would act as the “defense”. Once
all the actions upto Round 3 are verified via ZAPs, all parties broadcast their
respective shares in Round 4 to reconstruct the garbled tables, which can now
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be locally evaluated and decoded (using BMR decoding first and AMD decoding
subsequently) to obtain the output. Note that there is no proof of correctness
for Round 4, meaning that the adversary A can modify the output translation
tables, arbitrarily making the honest parties output the wrong answer. This is
tackled by taking additionally as input a MAC key, say Ki, from each party Pi,
and augmenting the output of the MPC to include the authentication of the
function output y under each of the parties’ keys. In more detail, {y, t1 . . . tn}
denotes the output received by each party at the end of the protocol where
ti = Mac(Ki, y) for i ∈ [n]. Now, an honest party Pi would accept the output
only if ti validates y as per its private MAC key Ki. The privacy of Ki for an
honest Pi, makes it hard for the adversary to change y and match it with a valid
ti.

Another technicality arises, as the ZAPs in [16] fall short of guarding against
an adversary that can lead to encryption of bit-strings in the garbled table
that are not entirely the relevant output wire keys, but rather mix of bits from
both keys. This would help the adversary learn some bits of the other key after
decoding. This leakage is controlled via a slight variant of BMR encoding where
the garbled tables encrypt random values unrelated to the actual keys for the
wires and the keys are given out in a blinded format using blinders derived from
the random values operated with pairwise independent hash functions. Now,
even if the adversary learns some bit of the other random value, the left-over
hash lemma ensures that the other blinder is still random, guarding the privacy
of the other key. This completes the high-level description of the protocol.

There are two ways the adversary can disrupt unanimity of [16], that stem
from the specifics of BMR encoding and decoding. To present these issues com-
prehensively, we abstract out the BMR encoding and decoding in Fig. 17 and
the backbone protocol of [16] in Fig. 18, stripping the ZAPs and other related
details. We describe the issues and elaborate the solutions below.

Issue I: Selective manipulation of the output and MAC. Though the MAC mech-
anism on the output y keeps the sanity of y, the dedicated and independent MAC
for every party Pi makes it easy for an adversary to selectively tweak some MACs
and create disagreement. A corrupt Pj , by broadcasting a modified share of the
output translation table λjw for an output wire w during Round 4, can make sure
that AMD-encoding of (y, t1, . . . , t

′
i, . . . , tn) is reconstructed, where t′i is the only

tampered MAC. Now an honest Pi output ⊥, while the rest output y leading to
a disagreeing honest population.

Unanimity in this case is enforced by making C output y that is authenti-
cated using the authentication with public verifiability introduced in Section 3.1.
Specifically, the additional private input to C on behalf of Pi is now the verifi-
cation information vi, which is a pair of uniformly-picked from F secret points
(Ki, yi) (see Definition 1). The output of C is a(x) where a(x) is the n-degree
MAC polynomial with a(0) = y and a(Ki) = yi for i ∈ [n]. An A trying to
change the output to the AMD-encoding of a∗(x) 6= a(x) would be detected by
each honest Pi except with negligible probability since vi is unknown to him.
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Lemma 8. When y is authenticated using the above form of authentication, all
the parties either output y or ⊥, except with probability at most n

|F|−1 .

Proof. Assuming H is the set of honest parties, the adversary can make the
honest parties disagree by guessing one of the keys K of the honest parties so
that it helps reconstruct a∗(x) 6= a(x) that verifies to only the honest party

holding the guessed K value. The probability of the above event is |H|
|F|−1 <

n
|F|−1 .

With F = GF (2κ), the above probability is negligible in κ. ut

Issue II: Selective manipulation of the garbled tables. Recall from the protocol
overview of [16] that each row of a garbled table consists of n ciphertexts, the ith
one decrypting to a key on the output wire contributed by Pi. During decoding,
this decrypted key enables Pi to deduce the masked bit on the output wire. An
A can break unanimity of the protocol of [16] by tweaking the ith ciphertext
alone in all the rows for a gate (say with output wire ‘c’) for some i so that

Pi’s decrypted key k
j

c from ith ciphertext does not match with either key of the
pair (kic,0, k

i
c,1). Now Pi cannot deduce the masked output bit δc, while all other

honest parties can. This does not disrupt unanimity for the case when c is not

an output wire of the circuit. Because the incorrect k
j

c received by all parties
would be used to unmask each of the n ciphertexts of the row corresponding
to the gate h where c is an input wire. The decryption would lead to arbitrary
values of keys corresponding to all parties for the output wire of h. Since these
arbitrary values would not match to the key pairs for all the parties, all honest
parties would abort; preserving unanimity.

However, this would be a problem in the case of output gates i.e. if c was an
output wire of the circuit. To handle this issue, every Pi is additionally made to
broadcast its respective pair of keys (kiw,0, k

i
w,1), as a part of output translation

table along with their share of mask bits λiw, just for the output wires in Round
4. While processing the output gate, an honest party Pi would not only compare
the key obtained upon decryption of the ith ciphertext with its pair of keys, but
checks all the keys corresponding to all the ciphertexts with the keys broadcast
in Round 4. Pi outputs non-⊥ only if all the keys are consistent with a common
δc. We point that there is no privacy breach since both keys of an honest party
is accessible to A only for the output wires. Finally, we also comment that a
rushing A who now knows the pair of output keys belonging to honest parties
can manipulate the ciphertext in such a manner that it decrypts to the flipped
value i.e. say ki

c,δc
instead of kic,δc for all i ∈ [n]. While this would lead to honest

parties deducing the wrong value of δc and thus potentially a wrong output, this
kind of manipulation of output is already taken care by authentication of the
output with public verifiability as detailed in the previous issue.

Lastly, we point that in order to preserve unanimity in scenarios where a
corrupt party Pi uses the correct witness in ZAPij but not in ZAPik; the hon-
est parties check all pairwise ZAP proofs (facilitated by public-coin property of
ZAPs) and abort if any of them fail.
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D.1.2 Recalling the protocol of [16]. We next present BMR Encoding,
Decoding and the back-bone protocol of [16] in Fig. 17-18.

BMR.Encode

Notations: A Boolean circuit C with W as the number of wires and G as the
number of NAND gates (w.l.o.g, assume C to consist of only NAND gates).
Let F be a pseudo-random function with 4κ-bit output size.

Input: Each party Pi chooses randomness Ri =
{λiw, kiw,0, kiw,1,mi

w,0,m
i
w,1, h

i
w,0, h

i
w,1}w∈[W ] where λiw is the bit contri-

bution of Pi for the mask of wire w, (kiw,0, k
i
w,1) is the κ-bit PRF key-pair

contributed by Pi for wire w, (mi
w,0,m

i
w,1) is the 4κ-bit mask-pair contributed

by Pi for the key-pair (kiw,0, k
i
w,1) of wire w, and hiw,b is a hash function from

a pairwise-independent family from 4κ to κ bits.
Output: The mask bit for a wire w is computed as: λw = λ1

w ⊕ · · · ⊕ λnw if w is
not an input wire, else λw = λjw where w is Pj ’s input wire. Following are the
outputs for j ∈ [n], w ∈ [W ], g ∈ [G] such that a, b and c are the input and
output wires respectively for gate g:

- Garbled tables: (Cg,jα,β)α,β∈{0,1} , with the ciphertext Cg,jα,β hiding the mask

mg,j
α,β corresponding to the correct output key kjw,bα,β , instead of the key

itself. mg,j
α,β and Cg,jα,β are computed as:

bgα,β = NAND(λa ⊕ α, λb ⊕ β)⊕ λc = [(λa ⊕ α)(̇λb ⊕ β)⊕ 1]⊕ λc
Cg,jαβ =

(⊕
i∈[n] Fika,α(g, j, α, β)

)
⊕
(⊕

i∈[n] Fki
b,β

(g, j, α, β)
)
⊕
(
mj
c,0 ⊕

bgα,β (̇mj
c,0⊕m

j
c,1)
)

(note that, this value is represented as degree-3 mono-

mial)
- Masked keys: (hjw,b, τ

j
w,b = hjw,b(m

j
w,b)⊕ k

j
w,b)b∈{0,1}

- Keys and masks for input wires w: δw = λw ⊕ xw, k1w,δw . . . k
n
w,δw

- Output translation table for output wires w: λw

BMR.Decode

Input: Garbled table C?,??,? , keys kjw,δw for every input wire w and output trans-
lation table λw.

Computation: For gate g (obtained according to topological ordering) with input
wires a, b and output wire c, each Pi computes for j ∈ [n]: mj

c = Cg,jδa,δb ⊕⊕
i∈[n]

(
Fki
a,δa

(g, j, δa, δb)⊕Fki
b,δb

(g, j, δa, δb)
)
. Let δc be the bit for which mi

c =

mi
c,δc . Set kjc,δc := τ jc,δc ⊕ h

j
c,δc

(mj
c).

Output: After obtaining δw for every output wire w, compute the output value
as δw ⊕ λw

Fig. 17: BMR Encoding and Decoding of [16]

D.1.3 Protocol achieving ua. We present the final protocol with unani-
mous abort in two steps. First, we modify the foundation protocol πbackbone.sa

to πbackbone.ua in Fig. 19 to reflect the changes needed to tackle the issues aris-
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Protocol πbackbone.sa

Inputs: Party Pi has xi for i ∈ [n].
Output: y = f(x1, . . . , xn) or ⊥
Primitives: AMD code (Encode,Decode), Information-theoretic MAC Mac
Subprotocol: 3-round protocol π3bitmult securely computing any degree-3 polyno-

mial against “defensible” adversary (i.e. adversary volunteers a defense (ex-
planation) of its actions until the end of Round 3)

Preprocessing in the start of Round 1: Each Pi does the following -

- Chooses a random Mac key Ki and sets x′i = Encode(xi,Ki).
- Choose randomness Ri for BMR encoding as per Fig. 17 for a circuit C defined

as follows. Let C′ be the circuit that takes input (xi,Ki) from every party Pi
and returns y = f(x1, . . . , xn) and MACs (t1 . . . tn) for y with respect to Ki
to every Pi. Then C is the AMD-transformed version of C′ that takes AMD-
encoding of the input of C′ and returns AMD-encoding of the output of C′.
Let Seti denote the set of 3-degree monomials to be computed as a part of
the BMR encoding. These monomials constitute the ciphertexts Cg,jα,β as per
Fig. 17.

Rounds 1-3:

- Run π3bitmult to obtain XOR shares of the monomials in Seti.
- Each Pi broadcasts δw = λw ⊕ xw where w is an input wire that belongs to Pi.

Note that for input wires, the party that owns the wire chooses the entire λw.

Round 4: Each party Pi broadcasts its part of the output of BMR.Encode in
Round 4 as follows:

- Share of Garbled tables: Pi’s share of cg,jα,β for all gate g ∈ [G], rows (α, β) ∈
{0, 1}2 and j ∈ [n].

- Masked key values for all its key contributions: {hiw,b, τ iw,b}b∈{0,1},w∈[W ]

- Keys for all its input wires w: kjw,δw
- Share of output translation table for output wires w: λiw

Output Computation: Pi computes the output as follows: reconstruct the gar-
bled table and output translation table by XORing the shares obtained in Round
4 and run BMR Decoding Algorithm (Fig. 17) to obtain AMD-encoded output
Y . Obtain the output (y, t1 . . . tn) after applying AMD decoding Decode on Y .
Output y if ti validates y as per key Ki, else ⊥.

Fig. 18: The back-bone [16] protocol

ing from BMR encoding and decoding. Next we attach the ZAPs and related
primitives as in [16].

The intuition for using the ZAPs in [16] is given below. We emphasize
that we retain these proofs in their original form and just recall from [16] for
comprehensiveness. The foundation of their actively secure protocol, namely
πbackbone.sa, is secure against a “defensible” adversary which uses a 3-bit multi-
plication protocol π3bitmult to compute BMR Encoded garbled tables. To keep
the attacks by malicious adversary in check, the following tools are used:
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Protocol πbackbone.ua

Inputs: Party Pi has xi for i ∈ [n].
Output: y = f(x1, . . . , xn) or ⊥
Primitives: AMD code (Encode,Decode), Authentication with Public Verifiability
Subprotocol: Same as in πbackbone.sa.

Preprocessing: Each Pi does the following:

- Chooses two random secret points Ki, yi and sets x′i = Encode(xi,Ki, yi).
- Choose randomness Ri for BMR encoding as per Fig. 17 for a circuit C defined

as follows: let C′ be the circuit that takes input (xi,Ki, yi) from every party
Pi and returns y = f(x1, . . . , xn) and n-degree MAC polynomial a(x) with
a(0) = y and a(Ki) = yi with respect to verification information (Ki, yi)
chosen by every Pi. Then C is the AMD-transformed version of C′ that takes
AMD-encoding of the input of C′ and returns AMD-encoding of the output
of C′.

Rounds 1-3: Same as πbackbone.sa.

Round 4: Same as πbackbone.sa. In addition, every Pi broadcasts (kiw,0, k
i
w,1) as a

share of output translation table for every output wire w.

Output Computation: Pi computes the output as follows: reconstruct the gar-
bled table and output translation table by XORing the shares obtained in Round
4 and run BMR Decoding Algorithm (Fig. 17) to obtain AMD-encoded output Y .
Obtain the output (y∗, a∗(x)) after applying AMD decoding Decode on Y . Each
Pi(i ∈ [n]) outputs ⊥ if any of the following is true:

- If a∗(Ki) 6= yi.
- If there exist pairs a, b ∈ [n] such that δaw 6= δbw, where δaw (similarly b) be the bit

for which the key obtained after decrypting (and subsequently unmasking) the
ath (similarly bth) ciphertext i.e. kaw matches with kaw,δaw (similarly kbw matches

with kbw,δbw
). This check is done for every output wire w.

Fig. 19: The back-bone protocol for MPC with ua

(1) A 3-round weak one-many non-malleable commitment scheme, nmcom =
(nmcom[1], nmcom[2], nmcom[3]) ([77]). This is used to commit to the parties’
inputs and randomness in πbackbone.sa. (2) A 2-round resettable reusable witness
indistinguishable proof, ZAP = (ZAP[1],ZAP[2]) ([78]). This is used to prove the
“correct behaviour” by parties in πbackbone.sa so that the attacks by a malicious
adversary can be essentially narrowed down to what a defensible adversary can
do. In more detail, the first set of ZAPs, ZAP1

ij is run between each party pair
(Pi and Pj) in the first two rounds to prove the correctness of the parties’ ac-
tions in Round 1 of πbackbone.sa; and the second set of ZAPs, ZAP2

ij is run to
prove that nmcom (run in Rounds 1-3) commits to a valid witness i.e. input
and randomness conforming to the parties’ actions in Rounds 1-3 of πbackbone.sa.
Once both the ZAP proofs verify for a particular party (which translates to the
adversay having given a valid “defense” at the end of Round 3 of πbackbone.sa), it
can send the shares of the BMR encoding, the masked input keys and the output
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translation tables in Round 4 to enable BMR decoding and hence, computation
of the output.

The modified protocol πua which provides security with ua uses πbackbone.ua as
the foundation protocol. The additional primitives of nmcom and ZAPs strapped
to πbackbone.sa in [16] to achieve security against malicious adversaries are ap-
pended to πbackbone.ua in the exact same way with one extra abort condition:
party Pj aborts in Round 3 if any pairwise ZAP ZAP1

jk or ZAP2
jk (j, k ∈ [n])

fails. The formal description of the modified protocol appears in Figure 20.

D.2 Boosting security of [17,34] to ua

We begin a high-level overview of the compiler presented in the work of [17]
which can be used for “compiling” any 3-round semi-malicious MPC protocol
(with first round being public-coin) into a 4-round MPC protocol achieving sa
against dishonest majority. The primary tools used in the compiler are a non-
interactive commitment NCom, three-message delayed-input distributional weak
zero-knowledge argument system WZK, three-message delayed-input extractable
commitment scheme Ecom, three-message trapdoor generation protocol TDGen,
three-message delayed-input witness-indistinguishable argument system WI, a
three round delayed-input witness-indistinguishable argument with non-adaptive
bounded rewinding security RWI and three-message non-malleable commitment
scheme NMCom.

The skeleton of the 4-round protocol πmal compiling the underlying 3-round
semi-malicious protocol, say πsm, is as follows: The rounds 1, 2 and 3 of πsm are
run during Rounds 1, 3 and 4 of πmal respectively. Each party Pi participates
in the 3-round subprotocols Ecom, NMCom and TDGen in Round 1 - 3 of πmal;
where Ecom and NMCom are used to compute commitments on (xi, ri) i.e. the
input and randomness used in the protocol and ⊥ respectively. In parallel, each
Pi computes a non-interactive commitment nci to value 1 using NCom and proves
via WZK run in Rounds 1 - 3 that nci is indeed a commitment to 1. Furthermore,
RWI, run in Rounds 1 - 3 between every pair of parties, is used by each Pi
(prover) to prove towards verifier Pj (j 6= i) that Round 2 message of πsm (sent
during Round 3 of πmal) was honestly computed based on (xi, ri) committed
in its instance of ECom and the Round 1 transcript of πsm. The alternative
statements for RWI that are used for simulation purpose include commitment
to valid trapdoor using NMCom and nc being a commitment to 0. Lastly, the
3-round WI, run in Rounds 1, 2 and 4 between every pair of parties, is used as
means for each Pi (prover) to prove towards verifier Pj (j 6= i) that Round 3
message of πsm (sent during Round 4 of πmal) was honestly computed based on
(xi, ri) committed in its instance of ECom and the Round 2 transcript of πsm. The
alternative statement for WI used for simulation includes commitment to valid
trapdoor using NMCom. This completes the high-level overview of the compiler
focusing on just the relevant details.

The above described 4-round protocol πmal achieves only security with se-
lective abort as the RWI,WI and WZK proofs are executed pairwise and allow
a corrupt party to selectively misbehave to a subset of honest parties; thereby
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Protocol πua

Inputs: Party Pi has xi for i ∈ [n].
Output: y = f(x1, . . . , xn) or ⊥
Primitives: 3-round non-malleable commitment scheme nmcom with round-wise

messages (nmcom[1], nmcom[2], nmcom[3]), 2-round resettable reusable witness
indistinguishable proof ZAP with round-wise messages (ZAP[1],ZAP[2]), AMD
code (Encode,Decode).

Subprotocol: πbackbone.ua (Fig. 19).

Preprocessing: Same as protocol πbackbone.ua.
Round 1: Each Pi (i ∈ [n]) does the following steps:

- Run Round 1 of πbackbone.ua.
- Engage in two instances of nmcom– nmcom0

ij and nmcom1
ij with every

other party Pj , committing to arbitrarily chosen values w0,i, w1,i. Let
nmcom0

ij [1], nmcom1
ij [1] denote the corresponding messages.

- Engage in an instance of ZAP– ZAP1
ij with every other party Pj by sending

ZAP1
ij [1].

Round 2: Each Pi (i ∈ [n]) does the following steps:

- Run Round 2 of πbackbone.ua.
- Send Round 2 messages of nmcom instances, namely nmcom0

ij [2], nmcom1
ij [2].

- Engage in an instance of ZAP– ZAP2
ij with every other party Pj by sending

ZAP2
ij [1].

- Send Round 2 messages of ZAP1
ij , namely ZAP1

ij [2] to prove correctness of
actions in Round 1 of π3bitmult.

Round 3: Each Pi (i ∈ [n]) does the following steps:

- Run Round 3 of πbackbone.ua.
- Send Round 3 messages of nmcom instances, namely nmcom0

ij [3], nmcom1
ij [3].

- Choose w̃0,i, w̃1,i such that w̃0,i + w0,i = w̃1,i + w1,i = witi where witi is the
witness corresponding to the proof of correctness of Pi’s actions during
π3bitmult with respect to all monomials in Seti and one instance of nmcom
(nmcom0

ij or nmcom1
ij for each j). Broadcast w̃0,i, w̃1,i.

- Send Round 2 message of ZAP2
ij , namely ZAP2

ij [2] to prove that at least one of
nmcom0

i,j or nmcom1
i,j is a valid commitment to a valid witness. Namely,

for some b ∈ {0, 1}, nmcomb
i,j is a valid commitment to wb,i such that

wb,i + w̃b,i is a valid witness proving correctness of actions of Pi.
- Abort if any pairwise ZAP fails. Public verifiability of the ZAPs enables ev-

eryone to agree on this.

Round 4: Each Pi (i ∈ [n]) does the following steps:

- Run Round 4 of πbackbone.ua.

Output Computation: Same as πbackbone.ua.

Fig. 20: Modified Protocol of [16]

keeping them on different pages. To boost its security to ua, we propose the
following modifications: First, if an honest party acting as a verifier in WZK or
RWI detects that any of the proofs have failed at the end of Round 3, she broad-
casts abort in Round 4. If any of the parties broadcast abort, all honest parties
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simply output ⊥. This tweak would ensure that even private misbehaviour by
an adversary upto Round 3 is made public to all by Round 4, enabling unanim-
ity. Finally, in order to maintain unanimity at the end of Round 4, we make all
parties check each of the public-coin pairwise witness-indistinguishable instances
(WI) (instantiated with [79]) completing in Round 4 and abort if any of them
failed (as opposed to only the pairwise WI instances where the party acts as
verifier). Thus, the above mentioned modifications incorporated in the protocol
of [17] produces a 4-round protocol achieving ua in dishonest majority.

Boosting security to identifiable abort. We observe that the security of the
(modified) protocol of [17] can be boosted to identifiable abort upon apply-
ing the following tweaks: First, as described above, the actions of the parties
are made publicly verifiable by making all parties check each of the pairwise
public-coin witness-indistinguishable proofs (as opposed to only the ones where
the party acts as verifier). Next, the private misbehavior in the 3-round weak
zero-knowledge (WZK) can be made public by allowing the verifier of the WZK
to publish the randomness used in the WZK in the last round (after the WZK
instance has been completed).

Lastly, we point that the techniques of boosting security of [17] to ua, namely
making private misbehaviour upto Round 3 public by broadcasting abort in
Round 4 and making all the parties check each of the pairwise WI proofs (com-
pleting in Round 4) can be used to boost the security of [34] to ua as well.

E Upper Bounds for (god|ua)-BoBW MPC with Setup

E.1 3-round (god|ua)-BoBW MPC Protocol πbw.god.sm in
semi-malicious setting

The formal description of the protocol πbw.god.sm is presented in Fig 21.

E.1.1 Proof of correctness of πbw.god.sm (Theorem 7) We claim that if
an honest party outputs y 6= ⊥, y must be the correct output on the ‘committed’
inputs of parties. Here, ‘committed’ refers to the actual inputs for honest parties,
inputs written on witness tape at the end of Round 2 for the semi-malicious
alive parties and default input for the non-alive parties (who abort in either
Round 1 or 2). We first argue that if the reconstruction of an input label is
successful, it must correspond to the appropriate public value of flag. This is
evident in the honest majority case, as the (s + 1) shares contributed by the
honest parties would ensure that the reconstruction of the s-shared input label
is correct. In the dishonest majority case, we argue that the share (if any) sent
by semi-malicious Pj in Round 3 for reconstruction must indeed correspond to
the original message (share) encrypted in the ciphertext broadcast in Round 2
using pkj . This follows from the correctness of the public-key encryption scheme
as the semi-malicious Pj will not be able to justify an incorrect share as being a
valid decryption of the ciphertext, except with negligible probability. It is now
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Protocol πbw.god.sm

Inputs: Party Pi has input xi and randomness ri for i ∈ [n].
Common Inputs: 2- round semi-malicious protocol πua.sm in the broadcast-

only model with b`i denoting the message broadcast by Pi in Round `
(` ∈ [2]). The messages of πua.sm can be expressed as b1i ← π1

ua.sm,i(xi, ri) and
b2i ← π2

ua.sm,i(xi, ri, T
1), where T 1 denotes the transcript of Round 1, namely

(b11, . . . b
1
n) and π1

ua.sm,i, π
2
ua.sm,i denote the next-message function for Round 1

and Round 2 respectively of Pi in πua.sm. Finally, let transcript T 2 at the end
of Round 2 be defined as ({b1i , b2i }i∈[n]) and the output computation function
of Pi is denoted as y = πoua.sm,i(xi, ri, T

2).
Primitives: Adaptive Garbling Scheme (Gb,En,Ev,De) (Section B.3) which is

projective (assume side-information θ(C) leaks topology of C), Public-key en-
cryption Scheme (Gen,Enc,Dec)

Round 1: Each party Pi initializes flagj = 1, ∀j ∈ [n], computes (pki, ski) ←
Gen(1λ) and b1i ← π1

ua.sm,i(xi, ri) and broadcasts (pki, b
1
i ). Let T 1 = {b11, . . . b1n}.

Round 2: Let Ci(flag1, . . . flagn) be a circuit that has (xi, ri, T
1) and default input

and randomness of all parties hardcoded and takes as input n bits {flagj}j∈[n].
Ci acts as follows:

– if flagj = 0, then recompute b1j in T 1 as per π1
ua.sm,j based on default input

randomness of Pj , for j ∈ [n];
– compute b2i ← π2

ua.sm,i(xi, ri, T
1) and output b2i .

Pi does the following:
– Run (Ci, ei, di)← Gb(1λ, Ci) and broadcast (Ci, di).
– Let {ek,bi }k∈[n],b∈{0,1} denote the set of input labels as per ei. Compute

s-sharing of ek,bi for all k ∈ [n] and b ∈ {0, 1} and broadcast ck,bi,j =

Enc(pkj , e
k,b
i,j ) where ek,bi,j denotes Pj ’s share of ek,bi . For all j ∈ [n], b ∈

{0, 1}, k ∈ [n], compute ek,bj,i ← Dec(ski, c
k,b
j,i ).

– Set flagj = 0 if Pj (j ∈ [n]) aborts in Round 1 or Round 2. If flagj = 0,

then recompute b1j in T 1 based on default input and randomness of Pj .
Round 3: For each Cj obtained in Round 2, Pi participates in the reconstruction

of {ek,flagk
j }k∈[n] by broadcasting share {ek,flagk

j,i }k∈[n].
Output Computation: Each Pi does the following:

– For each (Cj , dj) received in Round 2, reconstruct the input labels

{ek,flagk
j }k∈[n] using the shares broadcast in Round 3. Output ⊥ if any

reconstruction fails. Else, compute b2j ← De(Ev(Cj , {ek,flagk
j }k∈[n]), dj).

– Corresponding to Pj where flagj = 0, compute b2j ← π2
ua.sm,j(xj , rj , T

1)
using default (xj , rj).

– Finally, compute and output y = πoua.sm,i(xi, ri, T
2) with T 2 =

({b1i , b2i }i∈[n]).

Fig. 21: 3-round semi-malicious (god|ua)-BoBW MPC protocol πbw.god.sm from
2-round semi-malicious MPC πua.sm

easy to check that the correctness of the adaptive garbling scheme ensures that
the garbled circuit evaluated on the appropriate public values of flag would yield
the Round 2 message based on the ‘committed’ inputs; leading to each honest
party computing T 2 accordingly. Finally, it follows directly from the correctness
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of the underlying protocol πua.sm that the output computed using T 2 by each
honest party must be correct.

E.1.2 Proof of Security of πbw.god.sm (Theorem 8) We prove the theorem
by demonstrating that the 3-round protocol πbw.god.sm (Figure 21) obtained by
compiling a 2-round semi-malicious protocol πua.sm satisfies the security guar-
antees of (god|ua)-BoBW. We give the description of two simulators, namely
Sdm

bw.god.sm and Shm
bw.god.sm that simulates the view of the real-world adversary

A in case of s semi-malicious corruptions and t semi-malicious corruptions re-
spectively. Both Sdm

bw.god.sm,Shm
bw.god.sm internally use the simulator of the semi-

malicious protocol πua.sm, say Sua.sm. The simulator of the adaptive garbling
scheme Sad is also invoked (Refer Section B.3 for details).

The simulator Sdm
bw.god.sm is described in Figure 22-23. We argue that

idealFua,Sdm
bw.god.sm

c
≈ realπbw.god.sm,A when the semi-malicious adversary A cor-

rupts s < n parties. The views are shown to be indistinguishable via a series of
intermediate hybrids.

Simulator Sdm
bw.god.sm

Round 1. Sdm
bw.god.sm does the following-

- Interaction with Sua.sm to receive Round 1 of πua.sm: Execute the simulator
Sua.sm(1κ) to obtain {b1i }i∈H.

- On behalf of each i ∈ H, setup (pki, ski)← Gen(1κ) and broadcast (pki, b
1
i ).

- Receive {pkj , b
1
j} broadcast by Pj where j ∈ C along with its “witness”

(x1j , r
1
j ) from its witness tape.

Round 2. Sdm
bw.god.sm does the following-

- For each i ∈ H: run (C̃i, d̃i)← Sad(1λ, θ(Ci), 0), where θ is the side informa-

tion known about Ci i.e. the topology of the circuit and broadcast (C̃i, d̃i)
on behalf of Pi.

- On behalf of each Pi (i ∈ H): For each b ∈ {0, 1}, k ∈ [n], j ∈ C, sample ek,bi,j
at random. For j ∈ C broadcast ck,bi,j = Enc(pkj , e

k,b
i,j ). For j /∈ C, broadcast

ck,bi,j as encryption of a dummy message.

- For each j ∈ C: Receive Cj and {ck,bj,i }k∈[n],b∈{0,1},i∈[n] along with its

“witness” (x2j , r
2
j ) from its witness tape. For i ∈ H, compute ek,bj,i =

Dec(ski, c
k,b
j,i )

Fig. 22: Description of Simulator Sdm
bw.god.sm (Part 1)

- hyb0: Same as realπbw.god.sm,A.

- hyb1: Same as hyb0, except that for i, j ∈ H, the ciphertext ck,bi,j (for all
k ∈ [n], b ∈ {0, 1}) broadcast in Round 2 is an encryption of dummy message.

- hyb2: Same as hyb1, except that for i ∈ H, (Ci, {ek,flagk
i }k∈[n], di) is com-

puted as (Ci, di)← Sad(1λ, θ(Ci), 0) and ({ek,flagk
i }k∈[n])← Sad(b2i , 1).
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Simulator Sdm
bw.god.sm

Round 3. Sdm
bw.god.sm does the following-

- Interaction with Sua.sm to send Round 1 of πua.sm: For j ∈ C, if Pj did not
abort in Round 1 or Round 2 of πbw.god.sm, use the “witness” (x2j , r

2
j ) of

the corrupt Pj from its witness tape and forward the witness and b1j to
Sua.sm as the Round 1 message from Pj . Set (x∗j , r

∗
j ) = (x2j , r

2
j ) and flagj =

1. Else, forward the default values (x′j , r
′
j) and b′1j computed using the

default values to Sua.sm as the Round 1 message from Pj . In this case, set
(x∗j , r

∗
j ) = (x′j , r

′
j) and flagj = 0.

- Invoking the ideal functionality Fua: Invoke Fua computing f with the set of
values {x∗j}j∈C on behalf of A and obtain the output y. This is provided to
Sua.sm as the response from its ideal functionality when invoked by Sua.sm.

- Interaction with Sua.sm to receive Round 2 of πua.sm: Invoke Sua.sm to obtain
{b2i }i∈H.

- Set flagi = 1 for all i ∈ H. For each i ∈ H: Run ({ek,flagk
i }k∈[n])← Sad(b2i , 1).

For each k ∈ [n], interpolate a degree-s polynomial Mk
i (x) satisfying

Mk
i (0) = e

k,flagk
i and Mk

i (j) = e
k,flagk
i,j for j ∈ C (chosen in Round 2),

where |C| ≤ s. For j ∈ H, set e
k,flagk
i,j = Mk

i (j).

- For each i ∈ [n]: For j ∈ H, broadcast e
k,flagk
i,j . For j ∈ C, receive e

k,flagk
i,j .

- Interaction with Sua.sm to send Round 2 of πua.sm: For j ∈ C such that flagj = 1,
use the shares broadcast in Round 3 to reconstruct the labels associated with
Cj . If the reconstruction of all labels is successful, proceed to evaluation of
Cj and obtain b2j as per the protocol. Send witness (x∗j , r

∗
j ) and b2j as Round

2 message to Sua.sm from Pj . Else, abort Pj . For j ∈ C such that flagj = 0,

compute default b2j as per the protocol and send the default witness (x′j , r
′
j)

and b2j as Round 2 message to Sua.sm from Pj .
Output to honest parties: Let C′ ⊂ C denote the set of parties controlled by
A who do not abort throughout πbw.god.sm. If |C′| + |H| ≥ s + 1, Sbw.god.sm

invokes Fua computing f with continue on behalf of A. Output y on behalf of
the honest parties. Else Sbw.god.sm invokes Fua with abort on behalf of A and
output ⊥ on behalf of the honest parties.

Fig. 23: Description of Simulator Sdm
bw.god.sm (Part 2)

- hyb3: Same as hyb2 except that {b1i , b2i }i∈H is generated via the simulator
Sua.sm of the underlying semi-malicious protocol πua.sm.

- hyb4: Same as hyb3 except that honest parties output ⊥ if |C′| + |H| <
s + 1, where C′ ⊂ C is the set of parties controlled by A that do not abort
throughout πbw.god.sm.

Since hyb4 := idealFua,Sdm
bw.god.sm

, we show that every two consecutive hybrids

are computationally indistinguishable which completes the proof for the case of
s corruptions.

hyb0
c
≈ hyb1: The difference between the hybrids is that the ciphertext ck,bi,j

(for k ∈ [n], b ∈ {0, 1}) broadcast in Round 2 using key pkj for i, j ∈ H, is the

encryption of Pj ’s share of the encoded input ek,bi i.e. ek,bi,j in hyb0 while it is
the encryption of a dummy message in hyb1. The messages in Round 3 by Pi
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(i ∈ H) remain the same. The indistinguishability follows via reduction to the
security of the public-key encryption scheme (A has no information about skj).

hyb1
c
≈ hyb2: The difference in the hybrids is the way (Ci, {ek,flagk

i }k∈[n], di) is

computed for i ∈ H. In hyb1, it is computed as (Ci, ei, di) ← Gb(1λ, Ci) and

then as {ek,flagk
i ← En(ei, flagk)}k∈[n]. On the other hand, in hyb2, it is computed

as (Ci, di) ← Sad(1λ, θ(Ci), 0) and ({ek,flagk
i }k∈[n]) ← Sad(b2i , 1). The indistin-

guishability follows via reduction to the adaptive privacy of the garbling scheme.

hyb2
c
≈ hyb3: The difference between the hybrids is that the values {b1i , b2i }

for i ∈ H are generated using honest parties’ inputs in hyb2 but generated via
the simulator Sua.sm in hyb3. The indistinguishability follows directly from the
semi-malicious security of the protocol πua.sm.

hyb3
c
≈ hyb4: The difference between the hybrids is that while the honest parties

output ⊥ in hyb3 if any reconstruction fails, they do so in hyb4 if |C′|+|H| < s+
1, where C′ ⊂ C is the set of parties controlled by A that do not abort throughout
πbw.god.sm. It is easy to check that the difference occurs only when some party in C,
say Pj , does not abort in Round 3, but sends an incorrect share, say s′ leading
to problems in the reconstruction. However, note that the semi-malicious Pj
needs to be consistent with the transcript of Round 2 comprising of ciphertexts
encrypting the correct share, say s, with his public key pkj . Thus, the share s′

sent by Pj in Round 3 must be a valid decryption of the ciphertext broadcast
in Round 2. It now follows from the correctness of the public-key encryption
scheme that both s, s′ cannot be valid decryptions of the same ciphertext.

This completes the proof of security for the case of s < n corruptions.
The simulator Shm

bw.god.sm for the case of t < n/2 corruptions is described

in Figure 24. The steps are almost same as that of Sdm
bw.god.sm, and only dif-

fers in terms of output computation of the honest parties. We argue that

idealFgod,Shm
bw.god.sm

c
≈ realπbw.god.sm,A when the semi-malicious adversary A cor-

rupts t < n/2 parties. The views are shown to be indistinguishable via a series
of intermediate hybrids.

- hyb0: Same as realπbw.god.sm,A.
- hyb1,hyb2,hyb3: Same as hyb1,hyb2,hyb3 described previously corre-

sponding to Sdm
bw.god.sm

- hyb4: Same as hyb3 except that honest parties do not output ⊥.

Since hyb4 := idealFgod,Shm
bw.god.sm

, we show that every two consecutive hybrids

are computationally indistinguishable. The argument for hyb3
c
≈ hyb4 suffices

to complete the proof for the case of t corruptions as the indistinguishability of

hyb0
c
≈ hyb3 has been described previously in the context of Sdm

bw.god.sm.

hyb3
c
≈ hyb4: The difference between the hybrids is that in hyb3, honest parties

output ⊥ if any reconstruction fails, but in hyb4, honest parties do not output
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Simulator Shm
bw.god.sm

Round 1. Same as Round 1 of Sdm
bw.god.sm (Figure 22).

Round 2. Same as Round 2 of Sdm
bw.god.sm (Figure 22).

Round 3. Similar to Round 3 of Sdm
bw.god.sm (Figure 23) except the following:

- The ideal functionality Fgod is invoked on behalf of A instead of Fua.
- Additional step: For each Pj (j ∈ C), such that flagj = 1: For each k ∈ [n],

use {ek,flagk
j,i }i∈H to reconstruct e

k,flagk
j (recall that |H| = s+ 1). Evaluate

Cj using {ek,flagk
j }k∈[n] to obtain b2j .

- Interaction with Sua.sm to send Round 2 message of πua.sm: For j ∈ C such that
flagj = 1, send witness (x∗j , r

∗
j ) and b2j as Round 2 message to Sua.sm from Pj .

For j ∈ C such that flagj = 0, compute default b2j as per the protocol and send

the default witness (x′j , r
′
j) and b2j as Round 2 message to Sua.sm from Pj .

Output of honest parties: Output y on behalf of all honest parties.

Fig. 24: Description of Simulator Shm
bw.god.sm

⊥. The indistinguishability follows as in hyb3, the (n − t) = (s + 1) honest
parties would broadcast their correct shares in Round 3 which would suffice for
the purpose of successful reconstruction of the s-shared value. Also, as argued
earlier, the shares broadcast by non-aborting semi-malicious parties in Round 3
must also be correct. This holds since the semi-malicious parties must remain
consistent with the Round 2 message that includes ciphertexts encrypting the
correct shares (follows from the correctness of the public-key encryption scheme).

This completes the proof of Theorem 8.

E.2 2-round (god|ua)-BoBW MPC in semi-malicious setting

We describe an interesting extension of the compiler (Fig 21). This can be used to
build a 2-round semi-malicious (god|ua)-BoBW MPC assuming pair-wise chan-
nels or alternately, PKI.

2-round semi-malicious (god|ua)-BoBW MPC using both broadcast and
pairwise-private channels. We observe that the compiler of Section 5.1.1 can be
modified such that it transforms the 2-round broadcast-only semi-malicious pro-
tocol πua.sm (achieving security with ua) into a 2-round semi-malicious (god|ua)-
BoBW MPC protocol φbw.god.sm using both point-to-point and broadcast chan-
nel. The 2-round protocol φbw.god.sm is similar to the 3-round broadcast-only
protocol πbw.god.sm (Figure 21), except for the following differences: The actions
of Round 1 and Round 2 of πbw.god.sm are carried out in Round 1 of φbw.god.sm.
In more detail, Round 1 of φbw.god.sm proceeds as follows - In addition to send-
ing the Round 1 message as per πua.sm, the parties also prepare and send the
adaptive garbled circuits meant to compute their Round 2 message of πua.sm in
Round 1 itself. Since the next-message function computing the Round 2 mes-
sage takes as input the transcript of Round 1, this garbled circuit (being sent in
Round 1) will need to take additionally as input the transcript of Round 1 apart
from the list of alive (non-aborting) parties (unlike πbw.god.sm where the garbled
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circuit was sent in Round 2 and thereby only needed to take the list of alive
parties as input). Each party s-shares all the input labels of its garbled circuit
in Round 1. This step would involve using point-to-point channels to commu-
nicate the shares (unlike πbw.god.sm where it was done via broadcast channels
in Round 2). Next, in Round 2 of φbw.god.sm, similar to Round 3 of πbw.god.sm,
the reconstruction of the appropriate input labels occur. Note that this can be
done as all the values of input wires of the garbled circuit, including the set of
alive parties and the transcript of Round 1 are public (πua.sm is a broadcast-only
protocol). This completes the description of φbw.god.sm and it is easy to check
that its security can be proved similar to the security of πbw.god.sm. This con-
struction is based on [11]. Instantiating πua.sm with the 2-round broadcast-only
semi-malicious protocol of [30,31], the compiler described above would yield a
2-round (god|ua)-BoBW protocol φbw.god.sm in the semi-malicious setting using
both pairwise-private and broadcast channels.

2-round semi-malicious (god|ua)-BoBW MPC using PKI. In the presence of
PKI, the protocol φbw.god.sm can be easily transformed to a broadcast-only pro-
tocol ψbw.god.sm. Elaborating on this, the private messages in φbw.god.sm via the
pairwise channel can be emulated in ψbw.god.sm by broadcasting the encryption
of the private message with the public-key of the intended recipient. This leads
to a 2-round broadcast-only (god|ua)-BoBW MPC ψbw.god.sm in semi-malicious
setting assuming PKI. Both protocols φbw.god.sm and ψbw.god.sm are tight upper
bounds, in light of the known impossibility of 1-round MPC protocols for any
meaningful security notion ([32]).

We state the formal theorems below whose proofs follow similar to proof of
Theorem 8 described in Section E.1.2.

Theorem 11. Let (n, s, t) be such that s+t < n. Let πua.sm realises Fua for upto
n−1 semi-malicious corruption. Then there exists a protocol φbw.god.sm that uses
both broadcast and pairwise-private channel which realises– (i) Fgod (Fig 9) when
at most t < n/2 parties are corrupt and (ii) Fua (Fig 7) when at most s < n
parties are corrupt, semi-maliciously in both cases. It takes 2 rounds, assuming
that πua.sm takes 2 rounds.

Theorem 12. Let (n, s, t) be such that s+t < n. Let πua.sm realises Fua for upto
n−1 semi-malicious corruption. Then there exists a protocol ψbw.god.sm, assuming
PKI which realises– (i) Fgod (Fig 9) when at most t < n/2 parties are corrupt
and (ii) Fua (Fig 7) when at most s < n parties are corrupt, semi-maliciously
in both cases. It takes 2 rounds, given that πua.sm takes 2 rounds.

E.3 The maliciously-secure upper bounds with public and private
setup

Recall that the compiler of [51] when applied on the 3-round broadcast-only
semi-malicious protocol πbw.god.sm in the CRS model and the 2-round broadcast-
only protocol φbw.god.sm in the CRS and PKI model, yield our tight maliciously-
secure upper bound constructions. The idea is to compile these semi-malicious
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(god|ua)-BoBW protocols in the CRS model to one that gives the same (god|ua)-
BoBW security guarantees in the fully malicious setting by using the compiler
of [51], which does not add any rounds and uses non-interactive zero-knowledge
proofs (NIZKs). However, while this works to compile πbw.god.sm and ψbw.god.sm,
the compiler of [51] cannot be applied to φbw.god.sm which uses private channels.
This holds since if private channels are used, then a party may need to prove
different statements to different parties to prove its ‘honest behavior’ via zero-
knowledge. The issue in this approach is that the honest parties at the end of each
round will not have consistent view of which parties have aborted / identified
to be corrupt. This is crucial as the next round message would depend on it. To
bring them to the same page will consume extra rounds which will compromise
on the desirable round-preserving property of the compiler of [51]. Thus, we
obtain round-optimal protocols by applying the compiler on our broadcast-only
protocols i.e. πbw.god.sm and ψbw.god.sm. The former yields a 3-round malicious
(god|ua)-BoBW protocol in the CRS model which is a tight upper bound as
proven by our lower bound (Theorem 6). The latter yields a 2-round (god|ua)-
BoBW protocol in the CRS and PKI model which is also round-optimal, as
1-round MPC protocols are known to be impossible for any meaningful security
notion ([32]). Notably, the latter demonstrates that our lower bound of Theorem
6 can be circumvented in the presence of PKI.

E.3.1 Maliciously-Secure 3-round (god|ua)-BoBW MPC protocol
πbw.god We present the complete description of the 3-round (god|ua)-BoBW
MPC protocol πbw.god in the CRS model and prove its security below (Upper
bound in the CRS and PKI setting and corresponding proof follows similarly).
This is obtained by applying the round-preserving compiler of [51] on our 3-round
broadcast-only semi-malicious (god|ua)-BoBW protocol πbw.god.sm (instantiating
πua.sm of Theorem 8 with the 2-round semi-malicious protocol of [30,31]; de-
scription in Fig 21). At a high-level, to ensure that the malicious parties indeed
follow the description of the protocol, as per the compiler of [51], each party
has to prove in zero-knowledge that the message it has produced is consistent
with the transcript of the protocol so far. In our compiled protocol πbw.god, if the
zero-knowledge proof of a malicious party, say Pi, fails in a particular Round `;
then its message in Round ` is interpreted as ⊥. This scenario is analogous to
semi-malicious Pi aborting in the underlying semi-malicious protocol πbw.god.sm

during Round `. The BoBW guarantees of πbw.god thereby follow directly from
the BoBW guarantees of πbw.god.sm (as πbw.god.sm achieves GOD even if upto t
parties abort, details appear in the proof below). We present the formal descrip-
tion of πbw.god in the Fzk-hybrid model in Fig 25. In the CRS model, Fzk (ideal
functionality realizing zero-knowledge, App. B.5) can be realized using NIZKs
to obtain the 3-round maliciously secure (god|ua)-BoBW MPC protocol.

E.3.2 Proof of Theorem 9. We prove the theorem by claiming that the
protocol πbw.god achieves god against t < n/2 malicious corruptions and security
with ua against s < n malicious corruptions in the Fzk-hybrid model. For con-

60



Protocol πbw.god()

Inputs: Party Pi has xi, ri as input and random input respectively for i ∈ [n].
Output: y = f(x1 . . . xn) or ⊥
Common Input: The 3-round broadcast-only semi-malicious protocol

πbw.god.sm which is parsed as {NextMsgk` (xk; rk;m1 . . .m`−1)}`∈[3],k∈[n]
where NextMsgk` (xk; rk;m1 . . .m`−1) denote the next message function of
Pk in Round `, given the messages m1, . . . ,m`−1 broadcast so far i.e. in
Rounds 1 to ` − 1. The output computation function of Pk is denoted as
y = Outk(xk, rk,m1,m2,m3). Let Rk,` be the relation that gets as input
x = (m1, ...,m`−1,m

k
` ) and a witness w = (xk, rk), and returns 1 if and only

if NextMsgk` (xk; rk;m1 . . .m`−1) = mk
`

Model: Fzk-hybrid model
Protocol steps. For each round ` from ` = 1 to 3:

- Let m`−1 = m1
`−1 . . .m

n
`−1 be the concatenation of messages broadcast by

the parties in Round (`− 1). (assume m0 = ∅).
- Each Pk does the following: Compute mk

` = NextMsgk` (xk; rk;m1 . . .m`−1).
Broadcast mk

` .

- For all k′ ∈ [n], invoke the F
Rk′,`
zk ideal functionality corresponding to the

relation Rk′,` on common input (m1 . . .m`−1,m
k′
` ). In addition, for k = k′,

Pk acts as prover and inserts its private input w = (xk, rk). If F
Rk′,`
zk

returns 0, set mk′
` = ⊥

Output. Let m3 = m1
3 . . .m

n
3 . Each Pk outputs Outk(xk; rk;m1,m2,m3).

Fig. 25: Protocol πbw.god()

tradiction, assume a malicious adversary Ahm
bw.god controlling a subset of t < n/2

parties, say C, that breaches security of πbw.god. We build a semi-malicious ad-
versary Ahm

bw.god.sm corrupting the same set of parties C for the 3-round semi-

malicious BoBW MPC protocol πbw.god.sm as follows. Ahm
bw.god.sm internally uses

Ahm
bw.god and interacts with the honest parties in an execution of πbw.god.sm as

follows:

- In each round ` (` ∈ [3]), Ahm
bw.god.sm forwards the messages received in the

execution of πbw.god.sm from the honest parties to Ahm
bw.god. Receive mi

` from

each Pi(i ∈ C) sent by Ahm
bw.god in the execution of πbw.god.

- Simulate the Fzk functionality for each Round ` (` ∈ [3]) as follows:
When an honest party should be the prover, just check that the adver-
sary sends the correct statement and return 1 as the response of Fzk. In
case where a corrupted party Pi(i ∈ C) is the prover, check that indeed
NextMsgi`(xi; ri;m1 . . .m`−1) = mi

`, where (xi, ri) is Pi’s witness received
by Fzk. Incase this holds, return 1 to Ahm

bw.god, update the witness tape of

Ahm
bw.god.sm to include (xi, ri) and send mi

` on behalf of Pi to honest parties
in the execution of πbw.god.sm. Incase of failure, abort the party Pi.

- Ahm
bw.god.sm outputs whatever Ahm

bw.god outputs.

Similarly, using the simulator Shm
bw.god.sm for πbw.god.sm (refer Theorem 8), we

can build a simulator Shm
bw.god for πbw.god for the honest majority case. Since
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Ahm
bw.god.sm behaves the same way as Ahm

bw.god, any attack by Ahm
bw.god controlling

t < n/2 parties that breaks the security of πbw.god is translated to an attack by
Ahm

bw.god.sm controlling t < n/2 parties to break security of πbw.god.sm. This leads
to a contradiction as πbw.god.sm achieves god incase of t < n/2 semi-malicious
corruptions as proved in Theorem 8. Similarly, a malicious adversary Adm

bw.god

for πbw.god controlling a subset of s < n parties, can be used to build a semi-
malicious adversary Adm

bw.god.sm corrupting s < n parties that breaks security of
πbw.god.sm which is a contradiction. This completes the proof of our claim that
πbw.god gives the necessary BoBW security guarantees stated in Theorem 9 in the
Fzk-hybrid model. In the CRS model, Fzk can be realized using NIZKs; thereby
completing the proof of Theorem 9.

F 5-Round (god|ua)-BoBW MPC in the plain model

In this section, we assume the necessary constraint of t+s < n. First, we present
the argument of why 3-round protocol πbw.god.sm (Figure 21) satisfies the stronger
notion of delayed-semi-malicious security (Section A.1). Then we elaborate on
the ideas of [31] and [52] upon which our construction is built upon. We then
prove the security of our 5-round (god|ua)-BoBW protocol πbw.god.plain. Lastly,
we present the sketch of a 4-round (god|ua)-BoBW protocol, built upon the 4-
round protocol of [53] based on sub-exponentially secure trapdoor permutations
and ZAPs.

F.1 Proof of Delayed-semi-malicious Security

In this section, we claim that the 3-round protocol πbw.god.sm (Figure 21, Ap-
pendix E.1) satisfies the stronger notion of delayed-semi-malicious security (Sec-
tion A.1). Recall that the delayed-semi-malicious adversary is similar to semi-
malicious adversary, except that it is required to provide a witness only in the
second-last round. We argue that πbw.god.sm achieves the desired BoBW secu-
rity guarantees even against such an adversary due to the following: First, we
note that the simulators Sdm

bw.god.sm and Shm
bw.god.sm (Fig. 22-24) do not require the

adversary’s witness at the end of Round 1 to simulate Round 2 and use only
the witness (x2j , r

2
j ) output by a corrupt Pj at the end of Round 2 for simu-

lation. Thus, the simulation can proceed identical to Sdm
bw.god.sm and Shm

bw.god.sm

in case of a delayed-semi-malicious adversary who provides witness only during
Round 2 (second-last round). Next, we observe that arbitrary malicious behav-
ior in Round 1 by a delayed-semi-malicious adversary does not affect simulation
of Round 2 as it involves communication of only adaptive garbled circuits and
ciphertexts corresponding to shares of labels of the garbled circuit (encrypted
with the appropriate public-key of the share’s recipient). It is easy to check from
description of the simulators (in Fig. 22-24) that the simulation of adaptive
garbled-circuits requires only the circuit topology which is independent of the
adversary’s potentially malicious Round 1 message. Lastly, a malformed public-
key sent by an adversary in Round 1 does not affect the simulation as the shares
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of honest parties are encrypted with their respective well-formed public keys.
This misbehavior would only affect the ciphertexts comprising of adversary’s
share which are simulated identical to the real-world. We point that since the
ciphertext is decrypted only in Round 3 after the delayed-semi-malicious adver-
sary provides a witness justifying the well-formedness of its public key, there
is no scope of breach in security even if adversary misbehaves in Round 1. We
can thus conclude that the simulators Sdm

bw.god.sm and Shm
bw.god.sm maintain that the

adversary’s view in the ideal and real-world is indistinguishable even in the face
of a delayed-semi-malicious adversary.

F.2 Recall of [31] and [52]

To facilitate better understanding of our 5-Round (god|ua)-BoBW MPC
πbw.god.plain, we recall relevant details of [31] and [52] below.

F.2.1 Compiler of [31]. The compiler of [31] transforms a (k − 1)-round
delayed-semi-malicious protocol to a k-round malicious protocol for any k ≥ 5.
The tools used in the compiler of [31] are discussed in Fig 4. Since the case
of k = 5 is relevant to our final goal of a 5-round BoBW protocol in the plain
model, we give the description of the compiler with k = 5 i.e. a 5-round compiled
malicious protocol π built from a 4-round delayed-semi-malicious protocol φdsm

in Fig 26.

F.2.2 Recalling [52]. We begin with a quick overview of the 4-round Zero-
knowledge argument of [52] that compiles 3-round sigma protocols of the follow-
ing special form: The prover simply relies on commitments to generate its first
round message and decommits to some subset of the commitments depending
on the challenge provided by the verifier. Additionally, special soundness guar-
antee is needed (for details refer to [52]). To amplify soundness of this 3-round
zero-knowledge argument system, the entire protocol can be repeated in parallel,
where the verifier commits to all the parallel challenges in a first round of the
protocol while decommitting in the third round. To avoid malleability attacks by
corrupt prover (who can use the verifier’s commitment in first round to change
it to another commitment that can be open to a valid accepting response de-
pending on the decommitment provided by the verifier in the third round), an
approach used is to ask the prover to prove “knowledge” of the messages in its
commitment before the verifier decommits its challenge. This can be achieved
via extractable commitment schemes which is a commitment scheme with ‘proof
of knowledge’ property. To design a 4-round ZK argument system, [52] follow
a cut-and-choose paradigm. Their protocol comprises of N parallel instances of
the basic 4-round protocol. In Round 3, the verifier chooses a random S ⊂ [N ] of
some size T and decommits to the challenges made in those indices while provid-
ing a challenge for the extractable commitment for repetitions outside S. Then
in Round 4, the prover will complete the zero-knowledge protocol for the parallel
executions with indexes in S and respond to the proof-of-knowledge challenge
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5-round Malicious Protocol π from 4-round delayed-semi-malicious
protocol φdsm

Each party Pi, i ∈ [n] runs the following sub-components with every Pj , j ∈ [n]\{i}:

- Delayed-semi-malicious protocol φdsm: The 4 messages of φdsm are sent in
rounds (1, 2, 4, 5) of π i.e. round 3 of π is skipped in which no messages of φdsm

are sent.
- Commitment Com: Pi commits to his input and randomness (xi, ri) using the

commitment protocol Com to Pj . Let the commitment be denoted by ci→j .
The two messages of Com are run in the first two rounds of π.

- Trapdoor generation Trap: The 3-round trapdoor generation protocol Trap
is run in rounds 1 − 3 between Pj as the sender and Pi as the receiver. Let
Trapj→i be the produced transcript and vkj→i be the verification key that Pj
sends to Pi.

- Non-Malleable Commitment NMCom: Pi commits to a random string s0i→j
to Pj using NMCom in rounds 1 − 4. Let NMComi→j denote the produced
commitment.

- Pi sends another random string s1i→j in the clear to Pj in round 4.
- First proof of correctness WI1: Pi initiates an instance of witness indistin-

guishable proofs, say WI1i→j in rounds 1−4 to prove to Pj that he has generated
the first 3 messages of φdsm correctly using the input and randomness com-
mitted in ci→j . In detail, let WI1i→j denote the proof generated by Pi to Pj to
prove correctness of one of the following statements:
◦ Honest Statement: Pi has correctly generated the first 3 messages of φdsm

using the input and randomness committed in ci→j .
◦ Cheating Statement: XOR of the share s0i→j committed to in NMComi→j

and the share s1i→j is a valid trapdoor w.r.t. verification key vkj→i.
Each party Pi verifies all pairwise proofs {WI1i→j}i,j∈[N ] (proofs are publicly
verifiable). If any proof is not accepting, Pi aborts and outputs ⊥.

- Second proof of correctness WI2: Pi intiates an instance of witness indis-
tinguishable proofs, say WI2i→j in rounds 2 − 5 to prove to Pj that he has
generated all messages of φdsm correctly. In detail, let WI2i→j denote the proof
generated by Pi to Pj to prove correctness of one of the following statements:
◦ Honest Statement: Pi has correctly generated all messages of φdsm using the

input and randomness committed in ci→j .
◦ Cheating Statement: XOR of the share s0i→j committed to in NMComi→j

and the share s1i→j is a valid trapdoor w.r.t. verification key vkj→i.
- Output Computation: Pi verifies all proofs i.e.{WI2i→j}i,j∈[N ]. If any proof is

not accepting, it aborts and outputs ⊥. Else, it computes the output according
to the underlying delayed-semi-malicious φdsm.

Fig. 26: Compiler of [31] for k = 5

for the extractable commitment for the remaining indexes. This completes the
skeleton of the protocol.

We now elaborate on the simulation technicality relevant to us. To prove
zero-knowledge, a simple strategy for the simulator is to obtain the challenge,
i.e. “trapdoor” for the indexes in S, rewind and setup the prover messages in
such a way that will allow for it to cheat in all instances corresponding to indices
in S. Now, the simulator can conclude with an accepting transcript if the verifier
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opens the same set S. However, the verifier can choose to reveal different subsets
in different “rewindings”. However, in any rewinding, either the simulator has
succeeded in cheating in all the indexes of the subset revealed by the verifier
or has learned a new trapdoor. The natural simulation strategy is as above
i.e. the simulator tries to extract trapdoors and outputs the “first” accepting
transcript when it has managed to cheat in all indexes in the revealed subset.
This simple idea however has a subtle flaw. The issue is that one can come up
with a strategy for a malicious verifier where the distribution of the views output
by the simulator is not indistinguishable from the real view. Roughly speaking,
the distribution of the subset S in the transcript output by the simulator will
be biased towards indexes revealed earlier in the rewindings. The main technical
contribution of [52] is to determine the “stopping” condition for the simulator
that will result in the right distribution. Let Si denote the subset output by
adversary in iteration i. The work of [52] proves that the following simulation
strategy achieves the goal of maintaining indistinguishability between the view
output by the simulator and the real-world view. In any iteration j, if Sj ⊆
S1 ∪ S2 . . . Sj−1, then halt if Sj * S1 ∪ Sj−2; else proceed to the next iteration.

Next, we give a brief insight into the proof of indistinguishability between
the real and simulated view as in [52]. Let Szk define the simulator following
the simulation strategy outlined above. The following intermediate hybrids are
defined:

H1: In this experiment, the view of the verifier when it interacts with the honest
prover with witness ω is considered.

H2: In this experiment, a simulator S1zk is defined that proceeds with the rewind-
ing strategy as simulator Szk does, with the exception that the prover’s
messages are generated according to the honest prover’s strategy. The view
output by S1zk is considered here.

H3: The ideal-world view output by simulator Szk.

Indistinguishability among each pair of hybrids is proven in [52] to complete the
indistinguishability argument.

In the context of simulation of our 5-Round (god|ua)-BoBW MPC construc-
tion πbw.god.plain, we face a similar scenario as [52] during Stage 2 and Stage 4
rewinds. The set of indices S is analogous to the set of corrupt parties that are
alive. We therefore incorporate the halting condition of [52] in our simulation
strategy.

F.3 Security Proof (Theorem 10)

Next, we discuss our simulator for the dishonest-majority setting, Sdm
bw.god.plain in

Fig 27 - 30. Note that Sdm
bw.god.sm (Fig 22 - 23) is the underlying semi-malicious

simulator which is invoked in the dishonest majority case. The simulator for
honest majority Shm

bw.god.plain is same as Sdm
bw.god.plain except that s is replaced by

t (in the number of iterations in Stage 2,4 of simulation) and the underlying
semi-malicious simulator invoked is Shm

bw.god.sm (Fig 24). The major differences in
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our simulator as compared to the simulator of [31] are in Stage 2 and Stage 4 to
tackle the challenges that arise due to the required BoBW guarantees.

Sdm
bw.god.plain (Part 1)

Let C ⊂ [n] and H = [n]\C denote the set of indices of s corrupt parties and the indices
of honest parties respectively. The simulation proceeds in stages as follows:
Stage 1: This stage simulates Rounds 1, 2 and 3 of the main thread as follows:

- Invoke Sdm
bw.god.sm to simulate honest parties’ messages corresponding to Round 1 of

πbw.god.sm (sent in Round 1 of πbw.god.plain). Note that Round 1-3 of πbw.god.plain involves
only first round of πbw.god.sm, to simulate which Sdm

bw.god.sm doesn’t need any witness.
- Commitment ci→j is simulated as follows: If Pi is honest, commit to 0 in ci→j , and

if Pj is honest, emulate the receiver of Com honestly.
- Act as the honest receiver of Trap: Upon receiving verification key vkj→i, send a

random challenge message on behalf each honest Pi and receive the corrresponding
signature from Pj . Act as honest sender wrt Trapi→j

- Commit in the first three messages of NMComi→j to a random share s0i→j .
- Act according to the protocol in the first three messages of WI1i→j (on behalf of

honest Pi as prover), WI1j→i (on behalf of honest Pi as verifier) and similarly, first
two messages of WI2i→j , WI2j→i.

Stage 2: This stage involves rewinding Rounds 2 and 3 to extract trapdoors. Let
Tc, c ∈ C be a set that contains at most two tuples where each tuple is a set of
message-signature pairs for each honest party i.e. (mh→c, σc→h)h∈H valid with respect
to vkc→h. Initialize Tc = ∅. Let T be the set of corrupt parties {Pi} for which the
trapdoor has been obtained i.e. |Ti| = 2.

Let the set of corrupt parties alive after Stage 1 of Sbw.god.plain be A1 and A0 = ∅. For
each Pc ∈ A1, add one tuple to Tc as follows: Tc = Tc ∪ {(mh→c, σc→h)h∈H} where
mh→c is Round 2 message sent by simulator and σc→h is Round 3 message received
by simulator on behalf of each honest party Ph, h ∈ H during Stage 1.

Let the set of corrupt parties alive across ith rewind (iteration) be Ai+1. For iterations
` = 1 to s+ 1, the simulator proceeds as follows:

- For both Rounds 2 and 3, on behalf of each honest party in H, simulate all the
components Com,Trap,NMCom,WI1,WI2 exactly as in Stage 1.

- Let the set of corrupt parties alive upto Round 3 in this iteration be A′. For
each alive party Pc i.e. Pc ∈ A′, if |Tc| < 2, update Tc as follows: Tc =
Tc ∪ {(mh→c, σc→h)h∈H} where mh→c is Round 2 message sent by simulator and
σc→h is Round 3 message received by simulator on behalf of each honest party
Ph, h ∈ H. If |Tc| = 2,T = T ∪ {Pc}.

Fig. 27: Description of simulator Sdm
bw.god.plain (Part 1)

We argue that idealFua,Sdm
bw.god.plain

c
≈ realπbw.god.plain,A when the malicious ad-

versary A corrupts s < n parties. We also need to prove that the simulator
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Sdm
bw.god.plain (Part 2 )

Stage 2: Consider the exhaustive cases:

Case a. A′ * A1∪· · ·∪A`: This implies that a party became alive for the first time in
this iteration and the simulator does not have his trapdoor required to proceed to
the next stage. The simulator sets A`+1 = A′ and continues to the next iteration.
Note that every iteration results in adding a tuple to Tc for some c such that
Pc /∈ T. Hence, at the end of s iterations |Tc| ≥ 1 for each c ∈ C must hold.
Therefore, the number of iterations is bounded by (s + 1) since in that iteration,
the simulator will definitely be able to obtain trapdoor wrt all corrupt parties that
are alive (by combining the tuple in Tc with the tuple it obtains in the last iteration
before halting).

Case b. A′ ⊆ A1 ∪ · · · ∪ A` and A′ ⊆ A1 ∪ · · · ∪ A`−1: Ignore this case and rewind
again i.e. go to Step 1. Note that the simulator has enough trapdoors to proceed
to the next stage but this case is still ignored to handle the situation where the
adversary can choose the set of alive parties such that the views in the real and
the simulated world become distinguishable.

Case c. A′ ⊆ A1 ∪ · · · ∪ A` and A′ * A1 ∪ · · · ∪ A`−1: This is the halting condition,
when the set of alive parties seen is covered by the set of alive parties seen in the
previous ` iterations but is not covered by the set of alive parties seen in the first
`− 1 iterations. The simulator sets A`+1 = A′ and proceeds to the next stage.

Stage 3: This stage involves simulation of Round 4 of the main thread using trapdoors
as follows:

- Invoke Sdm
bw.god.sm to simulate honest parties’ messages corresponding to Round 2 of

πbw.god.sm (sent in Round 4 of πbw.god.plain)
- Simulate Round 3 messages of WI2i→j and WI2j→i (where Pi is prover and verifier

respectively) honestly as per the protocol.
- Simulate Round 4 of WI1j→i (on behalf of Pi as verifier) honestly.
- In instances WI1i→j where Pi is an honest prover, do the following: (a) Commit in

the last message of NMComi→j to the random share s0i→j tossed in Stage 1. (b)
Send the other share s1i→j = s0i→j ⊕ tdj→i on clear, where tdj→i comprises of the
two message-signature pairs wrt vkj→i obtained from Tj wrt honest Pi (c) Prove
in the last message of WI1i→j the fake statement that NMComi→j commits to s0i→j
such that, tdj→i = s1i→j ⊕ s0i→j is a valid trapdoor w.r.t. vkj→i.

Fig. 28: Description of Sdm
bw.god.plain (Part 2 )

runs in expected polynomial time. Consider the following series of intermediate
hybrids, most of which are similar to the series of hybrids in [31]. While most
of the security arguments follow from [31] and [52], the crux of our proof lies in
Claim 20. This claim argues that inspite of our modification in Stage 4 simu-
lation where we re-run Stage 2 onwards in some cases, the simulator continues
to run in expected polynomial time as the number of re-runs occur only a fixed
constant number of times in the worst case.
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Sdm
bw.god.plain (Part 3)

Stage 4 This stage involves rewinding Rounds 3 and 4 to extract input of corrupt
parties from WI1. Let sets Tc, c ∈ C and T be defined as in Stage 2. Let the set of
corrupt parties alive after Stage 3 of Sbw.god.plain be C1 and C0 = ∅. Let the set of
corrupt parties alive upto Round 4 of the ith rewind (iteration) be Ci+1. For iteration
` = 1 to s+ 1, the simulator proceeds as follows:

1. For Round 3, simulate components Trap,NMCom,WI1,WI2 on behalf of each honest
party in H as done in main thread.

2. Let the set of corrupt parties alive in Round 3 be denoted by B. Consider the cases:
Case a. B ⊆ T: This corresponds to the case when the trapdoors collected so far

are sufficient to continue with this iteration. The simulator proceeds to step 3.
Case b. B * T: This corresponds to the case when there exists at least one ad-

ditional party (say Pc) that became alive in this iteration for which the sim-
ulator does not have the trapdoor. For each such Pc, update Tc as follows:
Tc = Tc ∪ {(mh→c, σc→h)h∈H} where mh→c is round 2 message sent by sim-
ulator and σc→h is round 3 message received by simulator on behalf of each
honest party Ph, h ∈ H. If |Tc| = 2,T = T ∪ {Pc}. Consider two sub-cases:
Sub-case b1. B ⊆ T: This corresponds to the case when for each Pc, Tc

already contained one message-signature pair and the other message-
signature pair collected in this iteration yields trapdoor of Pc i.e. T now
includes Pc. Proceed to step 3.

Sub-case b2. B * T: This corresponds to the case when this was the first
time Pc was alive in Round 3 i.e. Tc was initially empty. Hence, the one
message-signature pair obtained in this iteration is not enough to compute
the trapdoor and proceed. Re-run Stage 2 and Stage 3.

3. For Round 4, replay honest parties’ message of πbw.god.sm (obtained via Sdm
bw.god.sm in

Stage 3) and simulate the third message of WI2 as in the main thread. Note that
we arrive at this step after making sure that we possess the trapdoors for all the
alive parties. Simulate the fourth round of NMCom and WI1 using the trapdoors
in T.

4. Let the set of corrupt parties alive be C′. Consider the exhaustive cases:
Case a. C′ * C1 ∪ · · · ∪ C`: This implies that a party became alive for the first

time and the simulator can’t extract that party’s witness in this iteration. The
simulator sets C`+1 = C′ and continues to the next iteration.

Case b. C′ ⊆ C1 ∪ · · · ∪C` and C′ ⊆ C1 ∪ · · · ∪C`−1: Ignore this case and rewind
again i.e. go to step 1. Note that the simulator had enough executions to
extract the witness to proceed to the next stage but this case is still ignored
to handle the issue where the adversary can choose the set of alive parties in a
manner that views in the real and the simulated world become distinguishable.

Fig. 29: Description of Sdm
bw.god.plain (Part 3)

- hyb0: Same as realπbw.god.plain,A.

- hyb1: Same as hyb0, except that after generating the first 3 messages, Round
2 and 3 are rewound for extraction of trapdoors according to the Stage 2
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Sdm
bw.god.plain (Part 4)

Stage 4 (Contd.) Case c. C′ ⊆ C1 ∪ · · · ∪ C` and C′ * C1 ∪ · · · ∪ C`−1: This is
the halting condition, when the set of alive parties seen is covered by the set of
alive parties seen in the previous ` iterations but is not covered by the set of alive
parties seen in the first ` − 1 iterations. The simulator sets C`+1 = C′. For each
corrupt Pj ∈ C`+1, let k < ` be the iteration in which Pj was alive i.e. Pj ∈ Ck+1.
Use iterations k and ` to extract the input, randomness (xj , rj) as done in [31] i.e.
from the two accepting transcripts in iterations k, ` that share the same first two
messages of WI1j→i with Pj as prover and Pi as honest verifier. Proceed to next
stage.

Stage 5. Using the corrupted parties’ inputs and random tapes {xj , rj} extracted
(corresponding to Pj ∈ C′ i.e. corrupt parties who have been alive upto Round 4
in the final iteration of Stage 4), simulate honest parties’ messages in Round 5 as
follows:
- Feed Sdm

bw.god.sm the witness {xj , rj} for Pj ∈ C′ and default values (x′j , r
′
j) for

Pj ∈ C \ C′. Use Sdm
bw.god.sm to simulate the honest parties’ message in the last

round.
- In instances WI2i→j where Pi is an honest prover, prove in the last message

of WI2i→j the fake statement that NMComi→j commits to s0i→j such that,
tdj→i = s1i→j ⊕ s0i→j is a valid trapdoor w.r.t. vkj→i. Simulate WI2j→i with Pi
as verifier honestly.

- For each Pj ∈ C′ such that all proofs WI2j→k are accepting for k ∈ [n], send

Round 3 message of πbw.god.sm on behalf of Pj to Sdm
bw.god.sm. If Sdm

bw.god.sm invokes
its ideal functionality with abort (resp., continue), Sbw.god.plain invokes its ideal
functionality Fua with abort (resp., continue).

Fig. 30: Description of Sdm
bw.god.plain (Part 4)

simulation strategy in Fig 27- 28 (with the difference that the components
Com,NMCom,WI1,WI2 are done on honest inputs).

- hyb2: Same as hyb1 except that in Round 4 of the main thread, for every
honest party Ph and every alive corrupt party Pc, share s1h→c is set to s0h→c⊕
tdc→h where tdc→h is the trapdoor w.r.t. vkc→h.

- hyb3: Same as hyb2 except that in WI1 and WI2 of the main thread, for every
honest party Ph as a prover and every alive corrupt party Pc as verifier, Ph
proves the cheating statement that NMComh→c commits to s0h→c such that
s0h→c ⊕ s1h→c = tdc→h which is a valid trapdoor w.r.t. vkc→h.

- hyb4: Same as hyb3 except that after generating Round 4 message, Round
3 and 4 are rewound for extraction of witness from WI1 according to the
Stage 4 simulation strategy in Fig 29-30 (with the difference that the Com
and messages of the underlying delayed semi-malicious protocol are done on
honest inputs and randomness).

- hyb5: Same as hyb4 except that every honest party Ph commits to 0 in ch→i
(i 6= h).

- hyb6: Same as hyb5 except that the messages of underlying delayed-semi-
malicious protocol πbw.god.sm are simulated using Sdm

bw.god.sm.
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Note that hyb6 := idealFua,Sdm
bw.god.plain

. To complete the proof for s corrup-

tions, we prove two things for each hybrid: a) it runs in expected polynomial
time b) it is indistinguishable from the previous hybrid in the sequence. Proving
a) for the last hybrid implies that the simulator also runs in expected polynomial
time.

Claim 13 hyb0
c
≈ hyb1

Proof. First, we note that the components of the compiler are run in an identical
manner in both hyb0 and hyb1. To argue indistinguishability, we need to prove
the following: the distribution on the set of corrupt parties that are alive in the
view output by the simulation strategy of Stage 2 when run with honest inputs, is
identical to the same distribution in the real-world execution of the protocol. The
argument follows similar to Claim 3.2 of [52] (which proves indistinguishability
of H1 and H2 as defined in Section F.2.2). ut

Claim 14 hyb1 runs in expected polynomial time.

Proof. To argue that hyb1 runs in polynomial time, we need to prove that
the simulation strategy of Stage 2 (run with honest inputs) is such that the
expected running time of the iterations / rewinds (that are executed till the
halting condition is satisfied) is polynomial. The proof follows from the argument
of Claim 3.4 of [52] (which argues that the expected running time of S1zk as
defined in Section F.2.2 is polynomial).

ut

Claim 15 hyb1
c
≈ hyb2

Proof. The argument follows directly from the proof of Claim 10.11 in [31] (via
reduction to hiding of NMCom). ut

Claim 16 hyb2 runs in expected polynomial time.

Proof. Same as proof of Claim 10.10 in [31]. ut

Claim 17 hyb2
c
≈ hyb3

Proof. The argument follows directly from the proof of Claim 10.14 in [31] (via
reduction to witness indistinguishability property of the WI proofs). ut

Claim 18 hyb3 runs in expected polynomial time.

Proof. Same as proof of Claim 10.13 in [31]. ut

Claim 19 hyb3
c
≈ hyb4
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Proof. The difference between hyb3 and hyb4 is that hyb4 has an additional
set of rewinds according to the simulator’s strategy in Stage 4 (except that it is
run with honest inputs). The proof of this claim is similar to argument in Claim
13. The only difference is that the rewinds in Stage 4 may involve reverting
to Stage 2 rewinds in certain cases. However, this does not interfere with the
indistinguishability argument as it suffices to argue that the final view output by
the simulation strategy in Stage 4 (after possibly reverting and restarting from
Stage 2 until a point when Stage 4 is simulated without any callbacks to Stage
2) is indistinguishable to the view in hyb3. ut

Claim 20 hyb4 runs in expected polynomial time.

Proof. Firstly, we note that Stage 4 rewinds in hyb4 have additional possible
calls to Stage 2 rewinds. Barring those calls, the Stage 4 rewinds are similar
to Stage 2; hence they take expected polynomial time as argued in Claim 14.
Also, individually each additional Stage 2 call takes expected polynomial time
as discussed in the run-time of hyb1. We can thus conclude that if the number
of possible Stage 2 calls is bounded by a constant (predefined parameter of the
protocol), then Claim 20 is automatically implied. We analyze the number of
calls to Stage 2 below.

Recall that Stage 2 rewinds can be called internally from an iteration of
Stage 4 in the following condition con: a party (say Pi) whose trapdoor is not
known i.e. Pi /∈ T becomes alive in Round 3 of that iteration. The simulator
first adds the pair (mi, σi) obtained w.r.t. Pi to Ti. He still could be at most
one pair away from obtaining his trapdoor which is the case when the Stage 2
rewinds are actually called. Observe that the Stage 2 rewinds are never called
again w.r.t Pi because the mere occurrence of condition con is sufficient to serve
another (mi, σi) pair to the simulator and 2 such pairs are enough to compose
the trapdoor of Pi. Hence, the upper bound on the number of additional Stage
2 calls per corrupt party is 1. Since there are at most s corrupt parties, this
bounds the number of additional calls to s; hence completing the proof. ut

Claim 21 hyb4
c
≈ hyb5

Proof. The difference between hyb4 and hyb5 is that while Com with honest
party as committer is run with respect to honest party’s input (and randomness)
in the former, the latter involves commitment to 0 in the main thread and
all the rewinds. The claim can be proven similar to Claim 3.6 of [52] (that
argues indistinguishability between H2 and H3 as defined in Section F.2.2) - Let
there exist a polynomial p(n) such that for infinitely many n′s, hyb4 and hyb5

can be distinguished with probability 1
p(n) . Consider the truncated experiments

hyb4 and hyb5 which proceed exactly as hyb4 and hyb5 respectively with the
exception that the simulation is aborted if it runs more than np(n)t(n) steps
where t(n) is the polynomial that bounds the expected run-time of hyb4. By an
averaging argument (similar to [52]), it is possible to distinguish hyb4 and hyb5

with probability at least 1
2p(n) .
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Similar to [52], we consider a series of intermediate hybrids hyb0
4, . . . ,hyb

s
4

where in each hybrid hyb`4, the strategy of hyb5 (i.e. commit to 0 in Com) is
followed in first ` iterations of the Stage 2 rewinds and the strategy of hyb4 (i.e.
commit to honest input and randomness in Com) is followed in the remaining

iterations. Also if hyb`4 runs over np(n)t(n) steps, the simulator outputs ⊥. Note

that hyb0
4 = hyb4 and hybs4 = hyb5. If hyb4 and hyb5 are distinguishable by

probability 1
2p(n) , then there exists an index i such that hybi4 and hybi+1

4 are

distinguishable by probability 1
2np(n) (taking upper bound on s to be n). Now,

the distinguisher used to distinguish between hybi4 and hybi+1
4 can be used to

break the hiding property of Com (argument similar to Claim 10.20 in [31]). ut

Claim 22 hyb5 runs in expected polynomial time.

Proof. The only difference between hyb4 and hyb5 is in the value committed
in Com, which does not change the run-time. Hence the proof follows from the
claim discussing the run-time of hyb4. ut

Claim 23 hyb5
c
≈ hyb6

Proof. The argument for the claim follows similar to the argument in Claim 21.
We consider a similar series of sub-hybrids and argue that indistinguishability
of hyb5 and hyb6 boils down to the indistinguishability between a consecu-
tive pair of sub-hybrids. Now, the indistinguishability of a consecutive pair of
sub-hybrids follows from the security of the delayed semi-malicious simulator
Sdm

bw.god.sm (similar to Claim 10.23 in [31]).
ut

Claim 24 hyb6 runs in expected polynomial time.

Proof. The only difference between hyb5 and hyb6 is in the way the messages
of πbw.god.sm are generated. Hence the proof follows from the claim discussing the
run-time of hyb5 and the knowledge that Sdm

bw.god.sm runs in expected polynomial
time. ut

F.4 Towards obtaining a 4-round (god|ua)-BoBW protocol

In this section, we present the sketch of a 4-round (god|ua)-BoBW protocol based
on sub-exponentially secure trapdoor permutations and ZAPs. We believe that
these preliminary ideas are promising to either prove the impossibility or build
a construction of a 4-round (god|ua)-BoBW protocol in the plain model under
polynomial-time assumptions.

Firstly, we note that in order to compile our delayed-semi-maliciously secure
(god|ua)-BoBW to the malicious setting, the honest parties must unanimously
agree on the identity of the parties who have misbehaved till the penultimate
round. To achieve the optimal round complexity of 4, this would demand a
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3-round publicly verifiable proof that would prove correctness of the actions
upto the penultimate round. Thus, the absence of a 3-round zero-knowledge
(ZK) proof seems to constitute the primary bottleneck in building a 4-round
maliciously-secure (god|ua)-BoBW in the plain model. Since the existing com-
pilers achieving security with abort within 4 rounds based on polynomial-time
assumptions such as [17,34] (which rely on weakened notion of zero-knowledge,
namely promise ZK) do not have the feature of public verifiability at the end of
Round 3, we build upon the compiler of [53] based on sub-exponentially secure
trapdoor permutations and ZAPs, which offers this property.

The structure of the compiler of [53] that compiles a 3-round delayed semi-
malicious protocol, say πdsm to a 4-round malicious protocol, say πmal is as
follows: Each party commits to her input in Round 1 of πmal using a non-
interactive commitment scheme. The 3 rounds of πdsm are executed in Rounds
2- 4 of πmal. To prove correctness of first two rounds of πdsm, the parties com-
mit to their randomness and input (which represent a defence for πdsm) using
a special non-malleable commitment scheme (satisfying additional properties
of honest-extractable, delayed-input, reusable decommitment information and
last-message psuedorandomness; refer [53] for details), and prove via ZAP (in
Rounds 2 - 3) that this commitment actually contains a valid defence. Next,
the parties engage in a 4-round delayed-input Non-Malleable Zero-Knowledge
(NMZK) argument to prove correctness of Round 3 of πdsm (wrt the defence
committed in the non-malleable commitment scheme and the non-interactive
commitment). There are two additional components to aid the simulator– First,
a 3-round witness-indistinguishable proof of knowledge (WIPoK) between ev-
ery pair of parties where each party proves to the other the knowledge of a
secret information (specifically knowledge of a value y such that f(y) = Y0 or
f(y) = Y1, given that f is a one-way permutation where (Y0, Y1) is chosen by
the prover). Second, another special non-malleable commitment of a random
string. To be more specific, simulator acting on behalf of honest Pi extracts the
trapdoor (the preimage y of the OWP) from the WIPoK instance with corrupt
Pj as the prover. Next, the simulator commits to this trapdoor using the special
non-malleable commitment scheme, which will be used as witness for the ZAP
(with Pi as prover and corrupt Pj as verifier). This completes the high-level
description of the protocol.

To construct the 4-round (god|ua)-BoBW in the plain model, we plug in our
3-round delayed semi-malicious BoBW protocol in the above compiler. Simi-
lar to our modifications over the compiler of [31], parties are made to set the
boolean indicators flagi to 0 if malicious behavior of Pi is detected in the first
three rounds. It is easy to check that all parties agree on the flag values as the
components of the compiler upto Round 3 including the ZAP are publicly veri-
fiable. With the above change, the BoBW guarantees of the underlying delayed
semi-malicious protocols are translated to the malicious setting as well. To avoid
rewinding of messages in the underlying delayed semi-malicious protocol, we run
the 3-rounds of our delayed semi-malicious protocol in Round 1, 2 and 4 of the
4-round compiled maliciously secure protocol. This completes the sketch of the
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4-round (god|ua)-BoBW protocol in the plain model relying on the assumptions
of the compiler of [53], namely sub-exponentially secure trapdoor permutations
and ZAPs.

Before concluding this section, we give the sketch of the simulation. As per
the simulator of [53], the simulator extracts the trapdoor by rewinding the adver-
sary from the third to the second round (referred to as look-ahead threads). This
means that before the rewinds the simulator needs to use a valid witness for the
ZAP without knowing the trapdoor. For this purpose, the simulator during the
look-ahead rewinding threads uses a valid defence for πdsm with a random input.
After the extraction, the simulator rewinds up to the second round, commits to
the trapdoor, uses the simulator of the underlying πdsm protocol and completes
the ZAP proof using the knowledge of the trapdoor. We use the same simula-
tion strategy for our BoBW protocol as well except for the following change:
Unlike the simulator of [53], the simulator of our BoBW protocol cannot halt
incase a corrupt party aborts (in order to achieve god in honest majority set-
ting). We thereby follow the simulation strategy as described for our 5-round
protocol πbw.god.plain - The simulator proceeds to rewinds and extracts trapdoors
and inputs of corrupt parties who are alive (have not aborted upto Round 3).
The halting condition of the simulator and the security argument is similar to
that of πbw.god.plain. This completes the proof sketch.
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