
Automated Enumeration of Block Cipher Differentials: An Optimized Branch-and-Bound
GPU Framework

Wei-Zhu Yeoh, Je Sen Teh∗

School of Computer Sciences, Universiti Sains Malaysia

Jiageng Chen

School of Computer, Central China Normal University

Abstract

Block ciphers are prevalent in various security protocols used daily such as TLS, OpenPGP, and SSH. Their primary purpose is
the protection of user data, both in transit and at rest. One of the de facto methods to evaluate block cipher security is differential
cryptanalysis. Differential cryptanalysis observes the propagation of input patterns (input differences) through the cipher to produce
output patterns (output differences). This probabilistic propagation is known as a differential; the identification of which is a measure
of a block cipher’s security margins. This paper introduces an optimized GPU-based branch-and-bound framework for differential
search. We optimize search efficiency by parallelizing all branch-and-bound operations, completing the entire search on the GPU
without communicating with the CPU. The meet-in-the-middle (MITM) approach is also adopted for further performance gains.
We analyze the financial and computational costs of the proposed framework using Google Cloud VM to showcase its practicality.
When optimized for performance, we can attain up to 90x speedup while saving up to 47% of the running cost as compared to
a single CPU core. When optimized for cost, the proposed framework can save up to 83% of financial costs while retaining a
speedup of up to 40x. As a proof of concept, the proposed framework was then applied on 128-bit TRIFLE-BC, 64-bit PRESENT,
and 64-bit GIFT. Notably, we identified the best differentials for PRESENT (16 rounds) and 64-bit GIFT (13 rounds) to date, with
estimated probabilities of 2−61.7964 and 2−60.66 respectively. Although the differential results for TRIFLE-BC were incremental, the
proposed framework was able to construct differentials for 43 rounds that consisted of approximately 5.8x more individual trails
than previous work, making it one of the most efficient approaches for larger block ciphers.

Keywords: Automatic search, block cipher, branch-and-bound, cryptanalysis, differential, differential cryptanalysis, GPU

1. Introduction

Block ciphers are important symmetric-key primitives that
are used in various cryptographic applications such as Trans-
port Layer Security (TLS) [1], OpenPGP [2], and SSH Trans-
port Layer Protocol [3]. Due to the popularity of Internet of
Things (IoT) devices, interest in the design and cryptanalysis
of lightweight block ciphers is on the rise [4, 5]. In fact, the
NIST standardization effort for lightweight cryptography is in
its final round, with many submissions that are based on block
ciphers [6]. Even with the existence of quantum computers,
block ciphers are expected to remain secure with the selection
of larger key or block sizes [7]. Differential cryptanalysis [8] is
one of the foundations of symmetric-key security analysis that
underpins many modern cryptanalytic approaches today. It is a
powerful tool that exploits the propagation of input differences
to construct statistical distinguishers that can be used to extract
encryption keys. The resistance to differential cryptanalysis has
become a de facto requirement for any modern block cipher

∗Corresponding author
Email address: jesen_teh@usm.my (Je Sen Teh)

[9][10][11]. The success of differential cryptanalysis relies on
the identification of differential characteristics (trails) that occur
with sufficiently high probabilities.

A differential denoted by ∆X
r
−→ ∆Y is commonly con-

structed by propagating an input XOR difference, ∆X = M1 ⊕

M2 through r rounds of a block cipher to obtain the final out-
put difference, ∆Y = C1 ⊕ C2, where (Mi,Ci) represent distinct
plaintext-ciphertext pairs. This propagation is probabilistic in
nature due to the interactions between the secret key and inter-
nal nonlinear operations of the block cipher such as substitution
boxes (S-boxes). If ∆X

r
−→ ∆Y holds true with high probability,

it can be used as a statistical distinguisher for key-recovery at-
tacks. This probability is known as the differential probability
and is denoted as Pr(∆X

r
−→ ∆Y). The efficiency estimates for

key-recovery attacks can be improved by taking into consider-
ation the notion of differentials.

The propagation of an r-round differential can be repre-
sented by a string of intermediary differences, δi. Each unique
string of intermediary differences, starting from the same ∆X
and ending at the same ∆Y , corresponds to a distinct difference
propagation trail known as a differential characteristic. Thus,

Preprint submitted to Elsevier January 20, 2022

a differential can be seen as a cluster of individual differential
characteristics. For example, two 3-round differential charac-
teristics, ∆X → δ1 → δ2 → ∆Y and ∆X → δ3 → δ4 → ∆Y
can be clustered to form a differential because they both share
the same ∆X and ∆Y . For this example, the overall differential
probability can then be obtained by summing up the individ-
ual differential probabilities for each characteristic, Pr(∆X →
δ1 → δ2 → ∆Y)+ Pr(∆X → δ3 → δ4 → ∆Y). Every differ-
ential characteristic added to a differential improves upon the
differential’s probability of occurrence. This idea was first in-
troduced by Lai et al. based on the Markov cipher assump-
tion that the rounds of an iterated cipher are independent or
have independent round keys [12]. Despite this assumption,
the probability estimate of the most probable differential will
always exceed that of the most probable differential character-
istic [13]. The construction of large differential clusters is a
non-trivial process because the computational effort scales ex-
ponentially with respect to a cipher’s block size and the number
of rounds. Thus, if the process of enumerating characteristics
can be made more efficient, more differential characteristics can
be found in a shorter amount of time to improve the overall dif-
ferential probability.

GPUs are an integral part of the high-performance comput-
ing (HPC) cluster, as evidenced by their appearance in com-
puting clusters that make it into the Top 500 Supercomputer
rankings [14] based on computing power. As such, tapping into
readily available GPU computational power for efficiency gains
would greatly benefit cryptanalysts, especially for computation-
ally intensive applications such as the identification of differ-
entials. Although GPUs have already been utilized for other
cryptography-related efforts such as hash collision attacks [15],
accelerating asymmetric cryptography [16] and symmetric-key
cryptography [17], it is yet to be utilized efficiently for the dif-
ferential search problem. Even though a GPU approach has
been attempted in [18], the differential search for a large num-
ber of rounds sees a dramatic drop in performance due to mem-
ory limitations.

1.1. Related Work
Prior to the introduction of automated searching strategies,

finding even a single differential characteristic was a time-consuming
task. A cryptanalyst would have to trace the propagation of
each individual difference and perform calculations to identify
suitable differential characteristics for their attacks. Later, Mat-
sui proposed the first automated searching strategy based on
the branch-and-bound method (B&B) for differential and lin-
ear trails which was applied on the Data Encryption Standard
(DES) [19]. The cryptanalyst’s task is reduced to modeling
differential behavior of the cipher in code, and the algorithm
will automatically try and find the best differential characteris-
tics based on certain requirements. Various enhancements were
later made to the Matsui B&B algorithm, adapting it to various
block ciphers and using different pruning criteria. In [20], the
B&B searching algorithm was adapted for ARX block ciphers
by taking into account the differential property of addition op-
erations. The meet-in-the-middle (MITM) approach described
in [21] trades off data complexity for improvements in terms

of time complexity. It splits the search into two halves, storing
intermediary round information for the first half which is later
matched with the outputs of the second half of the search. The
searching strategy primarily uses the number of active S-boxes
to guide the pruning process of the B&B algorithm. However,
this approach does not scale well beyond a general 32-bit block
cipher or a 64-bit Feistel block cipher due to memory limita-
tions. In [18], a GPU-based B&B differential search framework
was proposed but had several shortcomings which include gen-
eralizability issues due to the specific choices of fixed param-
eters rather than variables for work assignments and the paral-
lelization of only three out of four operations of the B&B pro-
cess. There also exists a bottleneck due to memory bandwidth,
leading to a noticeable drop in performance when carrying out
the search for a larger number of rounds. More recently, a GPU-
based branch-and-bound was used compute the full differential
distribution for block size-reduced variants of PRESENT that
range from 8 to 28 bits [22]. However, a straightforward ap-
proach was adopted where each thread is merely assigned an
input difference to compute without accounting for other con-
siderations. Each thread computes the difference propagation
for one round and stores the result in an array whose size is
equivalent to the number of differences (2b for a b-bit block ci-
pher). Thus, this approach is infeasible for larger block sizes
due to memory limitations. In addition, the distribution of dif-
ferent branch sizes for different input differences reduces the
GPU efficiency due to branch divergence.

Alternatively, [23] showed that mixed-integer linear pro-
gramming (MILP) can be used to automate the search for differ-
ential characteristics. The proposed MILP approach identifies
the minimum number of active S-boxes for a particular block
cipher by solving relevant linear inequalities using an MILP
solver. The MILP method was later extended by [24] to enable
the enumeration of differential or linear characteristics satisfy-
ing certain properties, which can then be used to form a differ-
ential or linear hull. However, the authors note that the MILP
method is mostly applicable to lightweight ciphers as the so-
lution for a MILP model for larger ciphers would consist of
thousands of variables and constraints.

Similarly, SAT/SMT solvers have also been used to identify
optimal differential characteristics or to automate the construc-
tion of differentials. This was first introduced in [25] who used
a SAT solver to enumerate different characteristics for Salsa20.
They also showed that SAT solvers can be used to construct
differentials with multiple characteristics. SMT solvers have
been used to construct differentials for 64-bit block ciphers in
[13], requiring multiple hours on average depending on the tar-
get cipher. Recently, [26] showed that SAT solvers can identify
optimal (individual) differential characteristics within seconds
but note that the search can be inefficient for long trails or large
block/state sizes. The timing data provided clearly depicts that
SAT solvers outperform MILP for such a task. The capability of
their approach to cluster characteristics corresponding to a dif-
ferential was not discussed. Also, as SAT solvers are inherently
serial [13], they cannot leverage advances in massively parallel
architectures to obtain a speed-up.

General-purpose graphical processing unit (GPGPU) tech-

2

nology allows the use of GPU hardware to accelerate processes
unrelated to graphic manipulation tasks. There exists various
research work attempting to accelerate the B&B algorithm us-
ing GPUs [27, 28, 29]. In general, the GPU parallelization of
the B&B algorithm is complex due to its irregular nature in
terms of workload, control flow, and memory access [30, 31].
Previous work such as [27] and [28] only attempted to partially
parallelize the operation of B&B. Parallelizing all four opera-
tions of the B&B algorithm as described in [31] and [32] alle-
viate branch irregularity using an integer-vector-matrix (IVM)
structure. However, the IVM approach requires the intermedi-
ary solution to be coded in a square-like regular matrix structure
for which the differential cluster search problem does not have
an efficient representation.

1.2. Contribution

In this paper, we propose an optimized B&B GPU frame-
work1 for the automated search for block cipher differentials
that overcomes prior performance bottlenecks. The work pro-
posed in [18] suffers from a critical memory bottleneck that lim-
its its real-world application. We overcome this memory limita-
tion by leveraging upon the cooperative group feature, enabling
all the threads in the kernel to meet at a predefined segment of
the code execution. This feature allows the GPU threads to per-
form a deeply recursive search that requires only a fixed amount
of memory regardless of the number of branches for a particu-
lar level. This search is a hybrid of breadth-first and depth-first
approaches.

The GPU framework can be applied to various block ciphers
without sacrificing efficiency. When configured for optimal per-
formance, the proposed framework can achieve a speedup of up
to 90x while saving up to 47% of the running cost as compared
to a single CPU core. If cost-saving is the goal, the proposed
framework can be configured to save up to 83% of the run-
ning cost while retaining a speedup of up to 40x as compared
to a single CPU core. When comparing the GPU-accelerated
MITM approach to the traditional single-core CPU non-MITM
approach, a speedup of 2292x is achieved, which significantly
improves upon the results described in [18] where a speedup
of only 58x the original throughput was achieved due to the re-
liance on the active S-boxes count for an input difference, ∆X.

Efficiency is optimized through new work distribution and
acquisition strategies, implicit partitioning via numbered branches
indexing, and minimal communication among threads. More-
over, the framework utilizes a kernel grid-level synchronization
mechanism to achieve efficient communication among threads
and efficient GPU-based recursion. The proposed GPU frame-
work only requires the initial input differences, ∆X and ∆Y , and
can perform the search entirely in the GPU kernel. This leads to
an additional advantage whereby the CPU and GPU can inde-
pendently solve for different pairs of ∆X and ∆Y with minimal
communication apart from generating the required difference

1The source code of the framework is made publicly available
for use at the following URL: https://github.com/yeohweizhu/

gpu-differential-search-framework

pairs. Therefore, the proposed GPU framework opens up the
possibility of performing differential cluster search in heteroge-
neous CPU-GPU computing clusters which are quite prevalent.
Unlike mathematical solvers, the proposed approach is also nat-
urally scalable with respect to the available parallel computing
architecture.

As a proof of concept, the proposed framework is used to
search for improved differentials for multiple block ciphers which
include 128-bit TRIFLE-BC [33], 64-bit PRESENT [9], and
64-bit GIFT [11]. These block ciphers were selected to high-
light the capability of the framework to generalize across mul-
tiple block ciphers with different block sizes and designs. We
improve upon the best-known differential probability for 16-
round PRESENT from 2−62.13 to 2−61.7964. We also improved
upon the best-known differential probability for 13-round GIFT
from 2−61.3135 to 2−60.66 by constructing a differential with ap-
proximately one million characteristics. Although no signifi-
cant improvement to the differential probability for TRIFLE-
BC was obtained, we showed that the proposed framework can
efficiently enumerate a large number of characteristics even for
a block size of 128 bits. Differentials with over 3 × 106 char-
acteristics can be constructed for 43-round TRIFLE-BC, which
is approximately 5.8x more than in [18]. However, we wish
to note that these cryptanalytic findings are not the main focus
of the work, but serve to demonstrate the generalizability and
efficiency of the proposed framework.

1.3. Outline

The remainder of this paper is structured as follows: Section
II provides details on GPU architecture and NVIDIA GPGPU
technology, CUDA. In Section III, a baseline serialized B&B al-
gorithm for differential search is introduced. The GPU-accelerated
framework and its performance evaluation are detailed in Sec-
tion IV. In Section V, new differential results for selected block
ciphers are provided. Section VI concludes the paper.

2. Preliminaries

2.1. GPU

This subsection provides a basic introduction to graphics
processing units (GPUs) for the benefit of readers who are un-
familiar with the area. GPUs are computing hardware designed
for efficient graphical or image data processing in a parallelized
and multithreaded environment. It is based on the single in-
struction, multiple threads (SIMT) execution model where mul-
tiple threads that reside within each processing unit execute
common instructions in lock-step. In 2006, NVIDIA intro-
duced the Compute Unified Device Architecture (CUDA) pro-
gramming interface which enables the use of GPUs for general-
purpose computation unrelated to that of the graphical manip-
ulation tasks. Over the years, GPUs have gained traction as
hardware accelerators for specialized computation tasks such
as machine learning [34], protein sequence alignment [35], and
molecular dynamics simulation of thermal conductivities [36].

3

https://github.com/yeohweizhu/gpu-differential-search-framework
https://github.com/yeohweizhu/gpu-differential-search-framework

Similar to the aforementioned tasks (which are all computa-
tionally intensive), the differential search process of differen-
tial cryptanalysis could benefit immensely from the accelera-
tion provided by GPUs. An efficient GPU differential search
framework can identify differentials that have a higher probabil-
ity, which in turn leads to more efficient key-recovery attacks.

A host program residing in the CPU will assign tasks to
CUDA threads that run on a separate physical device (GPU).
We will be using the host and device terminology throughout
the remainder of this paper. The relationship between the host
and device code is illustrated in Figure1. From the figure, we
can see that the serial host code executes on the CPU whereas
the parallel device code executes on the GPU. In CUDA, a ker-
nel is a unit function that will be executed by different CUDA
threads in parallel. A kernel launch is composed of a single grid
that holds up to 231 − 1 blocks, whereas each block can contain
up to 210 threads.

Figure 1: Heterogeneous programming architecture of a typical GPU-
accelerated algorithm (Adapted from [37]).

Once a kernel is loaded into the GPU and launched, idle
streaming multiprocessors (SM) will be assigned a block to ex-
ecute. A group of 32 block threads known as a warp is then
executed simultaneously. Warp threads can only execute one
common instruction at a particular time. If threads within the
warp were to diverge in their instruction code due to the nature
of conditional branching, each branch will then be executed in
different warp cycles because of the distinct instruction code.
Therefore, we need to minimize the use of conditional branches
to maximize GPU performance. Also, the number of threads
per block should be a multiple of 32 due to the warp’s group
size.

Various types of memory are accessible by CUDA threads
during kernel execution. The GPU memory hierarchy is as
shown in Figure2. Each thread has its own local memory that
is inaccessible by other threads. Meanwhile, shared memory
space is available for each thread within the same block. A
simple barrier synchronization primitive for shared memory,

syncthreads() is provided for achieving synchronization among
thread blocks. Global memory, read-only constant memory, and

read-only texture memory are accessible by all threads within
the grid. Global memory has the slowest access speed and is ac-
cessed via 32-, 64-, or 128-byte memory transactions. Constant
memory is best suited for broadcasting whereby all threads of
the same warp need access to the same memory address. Tex-
ture memory is optimized for 2D spatial locality [38], yield-
ing maximum throughput when threads of the same warp read
or write to memory addresses that are adjacent to each other.
The global, constant, and texture memory spaces are persistent
across kernel launches by the same application. Therefore, the
re-initialization of these memory spaces may need to be car-
ried out as required by the program logic. As different memory
types are better suited for different tasks, the memory access
pattern of a CUDA program should be designed to take ad-
vantage of the different memory types in an effort to maximize
memory throughput. This in turn improves the overall program
efficiency.

Figure 2: GPU memory hierarchy (Adapted from [37]).

Host and device memory spaces are physically distinct and
are, by default, not synchronized by CUDA. As such, device
memory allocation and transfer have to be managed explic-
itly by the users during runtime. However, there exists a uni-
fied managed memory that provides a single coherent memory
space that alleviates the complexity of manual memory man-
agement. However, the proposed framework opts for manual
memory management for greater flexibility in memory usage.

The CUDA dynamic parallelism feature enables a parent
grid to launch its kernels (known as child grids) during its ex-
ecution which allows a CUDA-specific recursive solution to be
programmed. These nested kernel launches allow a CUDA pro-
gram to complete a series of tasks without relying on the CPU
to launch additional kernels. Through appropriate utilization of
dynamic parallelism, it is possible to reduce the frequency and
magnitude of memory transfers required by a CUDA program,
potentially overcoming memory bottlenecks. There is however
a hard limit on the recursion depth that may render some recur-
sive solutions infeasible.

In parallel computation, threads communicate with one an-
other either implicitly or explicitly to protect data integrity. This
thread collaboration requires some form of synchronization. His-
torically, CUDA provides block-level thread synchronization to
allow communication between threads within the same block.

4

Other ways to achieve synchronization include implicit device
synchronization by partitioning kernel launches or by utilizing
built-in atomic functions to protect data integrity. In CUDA
9, NVIDIA introduced cooperative groups whereby partial or
complete threads that reside within the same block or across
multiple blocks could synchronize with one another to facilitate
cooperation. Cooperative groups also have the ability to dictate
grid or kernel level synchronization while a CUDA program is
running. This feature allows a GPU kernel to compute B&B
recursively, overcoming the recursion depth limitation imposed
by dynamic parallelism. Hence, it is possible to model a slightly
more complex data-parallel program to be executed by a GPU
entirely but its performance will be difficult to optimize due
to memory access patterns and thread divergence issues. The
proposed framework opts for a grid-wise cooperative group to
model the recursive nature of the B&B algorithm because of its
flexibility to enforce grid-level, barrier-based synchronization.

2.2. Serialized Differential Search

This subsection introduces the base algorithm that will be
parallelized by the proposed GPU framework. It is a sequen-
tial algorithm based on an enhanced version of Matsui’s B&B
algorithm [19, 21]. This algorithm will be used as the baseline
algorithm to analyze performance gains and cost reduction of
the proposed GPU-based framework. Matsui’s algorithm uses
the best differential characteristic probability found so far, Bn

for a particular round n to prune branches and reduce the search
space. Bn is updated throughout the search. As Bn approaches
the best actual probability of the trail, Bn, the algorithm will
approach its most efficient state.

The B&B algorithm consists of four operations: selection,
branching, bounding, and pruning. Selection picks the next
available node from a list of pending nodes to perform branch-
ing. Branching proceeds to decompose a parent node into child
nodes whose costs are evaluated by the bounding operation.
Pruning then eliminates nodes that fail the bounding opera-
tion, essentially filtering nodes that are not expected to produce
desirable results. Thus, the search space can be reduced to a
manageable size for large problem instances depending on how
strict the bounding operation is.

A combination of the number of active S-boxes, AS BOUND

[39] and the differential probability threshold, PBOUND [20] are
used as the pruning rules in the proposed work. This specific
combination facilitates greater pruning flexibility during the search
while also effectively filters branches if configured correctly. In
short, the serialized differential search algorithm is based on
Matsui’s B&B algorithm with the Bn pruning criteria replaced
with AS BOUND and PBOUND. This algorithm is described in Al-
gorithm 1.

To construct differentials, the serialized searching algorithm
first identifies a set of individual differential characteristics. For
each of these differential characteristics, the new GPU-based
framework described in the following section is used to iden-
tify additional characteristics that correspond to the same in-
put and output differences, thus forming differentials with im-
proved probability. This process is referred to as clustering.

Algorithm 1 Serialized differential cluster searching algorithm
with constraints on the probability and number of active S-
boxes.

1: Input: Input difference ∆X and output difference ∆Y .
2: Output: Probability Prc of ∆X → ∆Y cluster.
3: Adjustable Parameters:

1. AS BOUND : Maximum number of active S-boxes for
∆Y .

2. PBOUND : Minimum probability of ∆X → ∆Y .
3. PAS : Estimated probability of a nibble ∆U → ∆V .

4: procedure cluster search round i (1 ≤ i < n)
5: for each candidate ∆Yi do
6: pi ← Pr(∆Xi,∆Yi)
7: AS i+1 ← Wnibble(∆Yi)
8: if AS i+1 ≤ AS BOUND then
9: pi+1 ← (PAS)AS i+1

10: pr ← (PAS)n−i−1

11: if [p1, ..., pi, pi+1, pr] ≥ PBOUND then
12: call CLUSTER SEARCH ROUND (i + 1)
13: end if
14: end if
15: end for
16: end procedure
17:
18: procedure cluster search round n
19: for each candidate ∆Yn do
20: if ∆Yn == ∆Y then
21: pn ← Pr(∆Xn,∆Yn)
22: Pc ← Pc + [p1, ..., pn]
23: end if
24: end for
25: end procedure

2.3. Meet-in-the-Middle Enhancement of the Matsui Search

The MITM approach described in [39] is an effective method
for improving the efficiency of the differential search. As the
search space grows exponentially when the number of rounds
increases, the search can be made more efficient by dividing it
into two connecting halves, each with α and β rounds. Search-
ing α and β separately has a lower computational cost as com-
pared to searching the entire (α + β) rounds. The MITM ap-
proach caches partial differential characteristics from one half
and matches them to partial differential characteristics obtained
from the other (which is computed in reverse/decryption). Thus,
the MITM approach trades memory space for performance gain
by partially eliminating redundant computation. A simple ex-
ample is provided in Figures 3 and 4 for a 4-round search, as-
suming a fixed branch number of 3. We can see that without
adopting a MITM approach, the number of branches will in-
crease exponentially with the number of rounds, which in this
example is 3r = 34 = 81. With MITM, the total number of
branches is reduced to 30.5r + 30.5r = 32 + 32 = 18.

5

Figure 3: Simplified 4-round difference branching.

Figure 4: Simplified 4-round difference branching with meet-in-the-middle.

3. GPU-Accelerated Framework for Differential Search

This section provides a generic framework for the differen-
tial search of block ciphers that leverages the parallel process-
ing power of GPUs. The MITM technique is incorporated into
the framework to further enhance search efficiency. We also
take other factors into consideration when designing the frame-
work such as the S-box dependency of differential distribution
tables (DDT) and CUDA hardware resources of different GPU
architectures. These considerations ensure that the proposed
framework is applicable to a wide range of block ciphers and
GPUs. In the following descriptions, ∆Un and ∆Vn denote the
nth nibble of ∆X and ∆Y respectively. The size of each nibble
is equivalent to the size of the S-box being used by the targeted
cipher. Other frequently used symbols and variables are sum-
marized in Table 1.

The general idea of the GPU-based search is as follows:
The necessary information about the underlying initial input
difference will be bootstrapped by the CPU portion and copied
to the GPU’s memory. Note that all subsequent data required
by the search will be computed inside the GPU without hav-
ing to rely on any further CPU computations. The proposed
framework will then start off the clustering process by perform-
ing a breadth-first search until the pre-assigned memory limit
is reached. The framework will suspend the search at the cur-
rent level and proceed to the next level in the search tree. This
process repeats until the bottom of the search tree is completely
enumerated before backtracking and resuming the search at the
previous level. This process repeats until the condition-based
enumeration has been completed. Finally, the resulting differ-
ential probability and the cluster size can be read off the GPU
memory.

Table 1: Notation Summary

∆X Input difference
∆Y Output difference
∆U Input difference of a 4-bit nibble
∆V Output difference of a 4-bit nibble
δ Intermediate difference
M Message
C Ciphertext
AS Active S-box
PBOUND Minimum probability of ∆X → ∆Y to be consid-

ered
PAS Estimated probability of ∆U → ∆V
Pc Probability of the differential cluster
Wnibble() Function for calculating number of active S-

boxes
NB Number of available branches for the difference
T Virtual thread
GT GPU thread
I Index for the branch of the difference
α Forward round in MITM
β Backward round in MITM
µ Subsection partition that constitutes the execu-

tion of one loop of the inner search
M Group that consists of multiple µ values

3.1. Framework Description

3.1.1. Parallelization Model
All four operations (selection, branching, bounding, and

pruning) involved in the B&B algorithm are fully parallelized
in the proposed model. Parallelization of both bounding and
pruning operations is achieved by processing the partial differ-
ential results obtained from the selection and branching oper-
ations within the same worker thread. The parallelization of
the selection operation and its subsequent branching operation
can be modeled to span across multiple input differences rather
than just one difference (which was previously performed in
[18]). Let NB∆X be the number of differential trail branches
for a particular input difference, ∆X. The bundling of multiple
∆X enables the parallelized selection and branching operations
to leverage upon the aggregated problem space constituted by
individual NB∆X . This in turn maximizes the data-parallel pro-
cessing capability of the GPU.

Let B(∆Xr
k), where r is the round-number and k is the index

position, denote the function that comprises of the branching,
bounding, and pruning operations of B&B that produces the
following round’s branched partial differential characteristics,

{∆Xr+1
(
∑k−1

l=1 NB∆Xr
l
)
,∆Xr+1

(
∑k−1

l=1 NB∆Xr
l
)+1
, . . . ,

∆Xr+1
(
∑k

l=1 NB∆Xr
l
)−1
,∆Xr+1

(
∑k

l=1 NB∆Xr
l
)
}.

(1)

Let Dn represent a set of differential characteristics after n rounds
and B(Dn) represents the branching operation performed on the
set. The complete set of branched differential characteristics, D
is defined as

6

D = {D0,D1,D2, . . . ,Dn},

D0 = {∆X0},

D1 = B(D0),

=
⋃

∀∆Xr
k∈D0

B(∆Xr
k),

D2 = B(D1),

=
⋃

∀∆Xr
k∈D1

B(∆Xr
k),

...

Dn = B(Dn−1).

(2)

Both work acquisition and distribution strategies factor in the
selection of appropriate differential characteristics, ∆Xr

k where
k is the kth differential characteristic in D after r rounds. Next,

Ti((I1, I2, . . . , IAS), k, r) =(
k−1∑
l=1

NB∆Xr
l
)

+

AS∑
j=1

(I j ×

j−1∏
n=0

NB∆Un [∆Xr
k]),

(3)

In =
Ti − (

∑k−1
l=1 NB∆Xr

l
)∏n−1

j=0 NB∆U j [∆Xr
k]

(mod NB∆Un [∆Xr
k]), (4)

where NB∆U0 = 1 and the index sequence (I1, I2, . . . , IAS), are
used to ensure that a thread, Ti is working on the correct branches
of ∆Xr

k, whereas NB∆Un [∆Xr
k] denotes the number of possible

partial branches, #∆Vn for ∆Un of the nth active S-box of ∆Xr
k.

Assuming that a GPU model has an infinite number of threads,
parallelization of the B&B algorithm is achieved by first dis-
tributing tasks by computing Eq. 3. Meanwhile, threads acquire
their tasks by computing the Eq. 4. Branching, bounding, and
pruning are then executed sequentially, and the full paralleliza-
tion of the algorithm is complete. The parallelization model
described here resembles a typical breadth-first search. In prac-
tice, however, these threads are essentially virtual, whereby GPU
threads are mapped to one or multiple virtual worker threads.
The mapping of these threads is discussed in the following sub-
section.

3.1.2. Meet-in-the-Middle Approach
For a block size of 32 bits (or equivalently, half the block

of a 64-bit Feistel cipher), it is possible to store all 232 possible
differences that can be represented as a 32-bit data block. This
amounts to ≈ 4GB worth of differential characteristic informa-
tion in 32-bit floating-point format which takes up to 4 × 8 =

32GB of memory space. For every additional bit of informa-
tion that needs to be stored, the memory requirement is dou-
bled. This memory requirement can exceed the capacity of
RAM storage and require that the MITM intermediary results
be written to secondary memory, i.e. hard disk drives. Never-
theless, storing 64 bits of information is infeasible for current
memory storage solutions as a permutation of 64 bits requires

approximately 18 exabytes. The latency for manipulating such
a tremendous amount of memory further exacerbates the issue.

In order to practically implement the MITM approach be-
yond 32 bits, we must reduce the storage requirement for dif-
ferential characteristics. To achieve this, intermediary charac-
teristics can be encoded using a cell-wise representation as

[Pos∆AVi ,∆AVi, Pos∆AVi+1 ,∆AVi+1, . . . , (5)
Pos∆AVi+n ,∆AVi+n],

where ∆AVi is the ith non-zero nibble, and Pos∆AVi represents
the position of the aforementioned nibble. An illustration of
Eq. 5 is given in Figure 5 for a differential characteristic with
only 4 nibbles (16 bits). The encoding method will capture all
possible permutations of an intermediate difference, ∆Yα where
0 ≤ AS ∆Yα ≤ ν, where ν is the limit to the number of active
S-boxes for differences being stored in memory. The primary
objective of this encoding method is to maximize ν with re-
spect to memory size. A visual memory space reference is pro-
vided in Figure6 which depicts the number of active S-boxes
and their corresponding number of permutations. Table 2 sum-
marizes the recommended number of active S-boxes with re-
spect to memory feasibility.

Figure 5: MITM encoding behaviour (Eq. 5) for 4 nibbles (16 bits).

Figure 6: MITM encoding reference based on Eq. 5.

MITM starts by diving the search process into two, namely
a forward (encryption) α-round search and a backward (decryp-
tion) β-round search. The α-round search is basically a standard
differential characteristic search. However, the original evalu-
ation of ∆Yα during the αth (final) round is replaced with the
cache accumulation of ∆Yα and its corresponding probability.
The cache is written to RAM using the encoding method de-
scribed in Eq. 5 and stored for matching purposes.

7

Table 2: Recommended AS ∆Yα configuration based on Eq. 5.

Block Cipher Size (bit) S-box Size (bit) AS ∆Yα

32 4 FULL

64 4 3/4

128 4 3

256 4 3

32 8 3

64 8 3

128 8 2

256 8 2

Meanwhile, the β-round backward search starts from the
output difference, ∆Y and works its way to the middle (meet-
ing point). In other words, if ∆X = ∆X0 and ∆Y = ∆Xn, then
∆Xα = ∆X0, ∆Xβ = ∆Xn, ∆X1

α = ∆X1 and ∆X1
β = ∆Xn−1.

The reverse search phase requires the use of an inverted DDT
and permutation based on the targeted block cipher’s design.
During the βth (final) round, ∆Yβ is encoded using the afore-
mentioned encoding method, then matched with intermediary
characteristics stored in the cache. All matched trails improve
the overall differential (cluster) probability, Pc. As the search
is divided into two halves, the PBOUND specified for MITM ap-
proach represents both the forward search probability bound,
PBOUNDα

and backward search probability bound, PBOUNDβ
.

3.1.3. Proposed GPU Framework
.
The proposed parallelization model assumes that there is

an infinite number of computing threads, Ts available to pro-
cess B(Dr) for a particular round of differential characteris-
tics, where |Ts| = |B(Dr)|. In practice, GPU hardware can
only accommodate a finite number of threads in a kernel grid.
The number of kernel grid threads can be defined as |GTgrid | =

#{GTi : GTi ∈ kernel grid}, which can be computed as |GTgrid | =

thread block×block num. In the situation where |GTgrid | < |Ts|,
GTgrid has to partition the round differential branching opera-
tion, B(Dr) into equally divided sections known as µ-sections
where µ = {µ1, µ2, . . . , µm} such that |GTgrid | × |µ| ≥ |Ts| and
|µ| is minimized. In the event where |GTgrid | > |Ts|, the un-
used threads will remain idle and wait for the rest of the grid
to reach the same state. Only then will the next set of opera-
tions continue. Let τ(GTi) be a function that allocates a subset
of virtual threads, Tr to each GTi. The thread emulation of
GTgrid = {GT1,GT2, . . . ,GTn} and its corresponding µ distribu-
tion can be defined as

τ(GTi) = {T(i−1)|µ|+1,T(i−1)|µ|+2, . . . ,T(i−1)|µ|+|µ|},

µ j =

n⋃
i=1

{T(i−1)|µ|+ j},
(6)

τ(GTi) = {Ti,Ti+n,Ti+2n, . . . ,Ti+(|µ|−1)n},

µ j =

n⋃
i=1

{T(j−1)n+i}.
(7)

where n = |GTgrid |. Eq. 6 exploits the spatial locality of ∆Xr
k re-

quired by individual threads to drastically reduce the number of
steps required to find ∆Xr

k for the remaining |µ|−1 steps. There-
fore, Eq. 6 is more preferable than Eq. 7 in this framework.

Storing all computational results of B(Dr) for a large num-
ber of |B(Dr)| in GPU memory is infeasible. To address this is-
sue, we first partition the work units into µ subsections, {µi, µi+1,
. . . , µi+l} of B(Dr). These subsections are executed in groups,
Mk where Mk = {µi, µi+1, . . . , µi+l} and M = {M1,M2, . . . ,Mq},
where q is the number of recursion cycle needed by GTgrid to
completely emulate Ti in a particular round and l is obtained by
computing |Ts |

|GTgrid |
. This partitioning strategy allows the frame-

work to execute a specified number of µ subsections as a group
to reduce the overhead of recursion using the GPU’s coopera-
tive group feature. The search continues to operate recursively
whereby the process of B(Dr)→ (Dr+1) is repeated until B(Ds),
where s is the target round. The search then moves on to pro-
cess the next M group from the previous rounds. The relation-
ship between µ and M is illustrated in Figure7.

The aforementioned approach can be viewed as a hybridiza-
tion of breadth-first and depth-first search. The algorithm starts
off in a breadth-first search state which ends after processing
an |Mk | number of µ subsections. Then, the algorithm advances
one level (depth-first state transition) and continues its breadth-
first search strategy to process the first |Mk | number of µ subsec-
tions of the current round. The process is repeated until the sth

round, where entire µ subsections are computed back-to-back
before returning to the (s − 1)th-round. The entire process is
repeated in a recursive manner. The choice of |Mk | depends on
GPU memory availability. In general, maximizing |Mk | (and
consequently minimizing |M|) will maximize efficiency. Fig-
ure 8 illustrates the entire process.

Figure 7: Relationship between µ subsections and their corresponding groups
M based on Eq. 6.

Eq. 6 requires knowledge of |µ| in advance which can be
calculated from |B(Dr+1)|. For all ∆Xr+1

k , it is necessary to accu-
mulate NB∆Xr+1

k
during round r in order to calculate the relevant

|B(Dr+1)| for round r + 1. Since the recursive branching for the
next round is carried out for the Mr+1

k group of subsections, only
the |B(Mr+1

k)| group of subsections is required to be processed

8

Figure 8: Hybridized breadth and depth-first search example, where |Mk | = 2
and GTi = 2.

before advancing each level. For this purpose, all threads within
the same block utilize block-level shared memory to accumu-
late the branching number of ∆Xr+1

k using the built-in block syn-
chronization function atomic add(target, value). Then, results
accumulated from the block are assembled to form |B(Dr+1)|.

Identification of ∆Xr
k and its branches (I1, I2, . . . , IAS) dur-

ing B(Dr) is performed using a linear search strategy. The
search is further divided into three discrete levels, grid-level,
block-level, and thread level. The linear search is first executed
at the grid level to locate the targeted block, followed by the
targeted thread within the identified block, and finally ∆Xr

k at
the thread level. The GPU thread will omit pruned paths and
keep a valid ∆Xr+1

k counter to facilitate the linear search pro-
cess. We have also experimented with binary search as an al-
ternative to linear search but did not obtain significant perfor-
mance improvements.

The cooperative group feature is utilized for its ability to
enforce grid-wise synchronization as required by the kernel.
Specifically, a grid synchronization barrier is placed immedi-
ately after accumulating |B(∆Xblock)| to ensure that it is ready
to be referenced in the following round. The synchronization
point also ensures the global has operation is properly loaded
with the correct value, which is used to determine whether to
proceed to the next or return to the previous round.

When designing the proposed framework, the limitations
of GPU resources in terms of their shared memory capacity,
max register count, and max thread count have been taken into
consideration. High GPU utilization requires efficient planning
on resource utilization to maximize occupancy. Max register
count is reduced by optimizing the computation pattern or by
forcefully spilling register memory onto local memory using

launch bounds as provided by CUDA. Frequently accessed
data is stored in shared memory or constant memory to improve
the latency when accessing the data. However, this cannot be
done for larger datasets and needs to be addressed on a case-
by-case basis. Despite the increased memory latency caused by
the aforementioned techniques, the increase in the GPU occu-
pancy leads to better overall performance for the framework.
The simplified version of the complete GPU framework algo-
rithm along with the incorporation of the MITM technique is
given in Algorithms 2 and 3. A more detailed algorithm for the

Algorithm 2 Generalized GPU-accelerated B&B differential
search (CPU)

1: Input: Input difference ∆X and output difference ∆Y .
2: Output: Probability Pc of ∆X → ∆Y cluster.
3: procedure cluster search(∆X)
4: allocate device memory
5: setup device memory for round 1
6: call kernel CLUSTER SEARCH GPU α
7: reset device memory for round 1 and round 2
8: setup device memory for round 1
9: call kernel CLUSTER SEARCH GPU β

10: copy Pi from device to host
11: Pc ← (

∑Ttotal
i=1 Pi)

12: end procedure

GPU kernel can be found in Appendix A.

4. Performance evaluation

As a proof of concept, we apply the proposed framework
described in Section 3.1 on three block ciphers, the 128-bit
TRIFLE-BC, 64-bit PRESENT, and 64-bit GIFT. Efficiency and
cost comparisons between the GPU framework and its CPU
counterpart are performed based on the Google Cloud VM com-
puting environment.

We configure the proposed GPU framework to utilize 1-
dimensional blocks for the kernel. Since each block within a
grid contains its own block threads, each thread is assigned a
unique thread id based on its position in a given grid. This
thread id assignment facilitates the process of work distribution
and reduction. The number of threads per block (thread block)
is fixed at 128, SPACE THREAD, |Mk | is fixed at 64 and the
number of blocks is maximized. This configuration allows the
non-MITM variant of the GPU-accelerated algorithm to achieve
a 100% occupancy rate on the Tesla T4 GPU with 64 regis-
ters. Meanwhile, the MITM variant requires additional register
spilling to achieve 100% occupancy. The permutation table is
not loaded into shared memory as its size leads to occupancy
reduction.

For the experiments to analyze the financial feasibility of
the proposed GPU framework, we select the following parame-
ters:

• AS BOUND = 4

• PBOUNDo f f set = −21/ − 35

For all characteristics that form a differential, the minimum
probability bound used for the differential search can be cal-
culated as

min Pchar = 2log(Pcharbest)+PBOUNDo f f set , (8)

where Pcharbest represents the best probability of a differential
characteristic found so far by the serialized B&B algorithm for
a given ∆X

r
−→ ∆Y . The time taken for each device to finish

9

Algorithm 3 Simplified GPU-accelerated B&B differential
search (kernel)

1: Input: Input Difference ∆X.
2: Output: Probabilities of ∆Y that satisfy the searching con-

strained is accumulated in thread num amount of Pi.
3: procedure cluster search GPU (α/β)
4: while r >= 0 do
5: for 1 to |Mk | do
6: //Selection, find the correct ∆Xr

k
7: Select(thread id, iter count)
8: Branch, Bound, Prune (thread id, ∆Xr

k)
9: if r == last round then

10: if forward then
11: Save to MITM cache array
12: else
13: Match from MITM cache array
14: Save to final result array
15: end if
16: end if
17: end for
18: Update the state information
19: Decide : r ← r + 1, r ← r − 1 or r ← r
20: end while
21: end procedure

computing r rounds is recorded. The cost percentage is then
calculated as

Cost =
Costdevice

Core Equivalence × Costref
× 100%, (9)

Core Equivalence, CE = d
Timeref

Timedevice
e (10)

where Costref refers to the cost of running the search using a ref-
erence (benchmark) device, a 3.1 GHz Intel Xeon CascadeLake
processor core. For a fair cost comparison, the computational
power for both the CPU and GPU experiments should be equal
but this is not the case in reality. CPUs have fewer but more
powerful computing cores than GPUs which may have up to
hundreds of specialized cores. GPUs would then have higher
computational power for a specific task such as the differential
search as compared to CPUs. Thus, we adopt the notion of core
equivalence to compare the cost between CPU and GPU ver-
sions of the search. By core equivalence, we are referring to
the best-case scenario of running the parallelized CPU version
of the differential search but linearly scaling the performance
results so that it is as if we performed the experiment on a more
powerful CPU (or multiple CPUs) with equivalent computing
power as a GPU (albeit with no additional communication or
computational overheads taken into consideration).

In other words, experiments were performed using both the
proposed GPU framework and its CPU counterpart (described
in Section 2.2), then the performance results of the CPU search
were linearly scaled to match each GPU device’s results. This
then provides us with an approximation of the cost required
for the CPU search to achieve similar performance as the GPU

search. For example, in Table 3, when performing the search
for 5 rounds of TRIFLE-BC, Tesla T4 has a core equivalence
of 0.266

0.020 ≈ 14. To achieve a similar performance as the GPU
search, we would need to run the CPU search using 14 Xeon
CPUs, which has a cost of 38.09×14 = 533.26 USD. Thus, run-
ning the GPU search on a Tesla T4 would only require 255.50

533.26 ≈

48% of the overall cost. Although core equivalence provides
an idealistic performance of the CPU search, it implies that any
performance gain from the GPU is actually higher than what is
being reported. The benchmark experiments involve construct-
ing a differential for a given block cipher, for a specific itera-
tive differential characteristic where AS ∆X = 1, AS ∆X = 2, and
AS ∆X = 2. The same experiment is repeated for TRIFLE-BC,
PRESENT, and GIFT. The run-time information is captured by
averaging a total of 100 instances of clustering the same dif-
ferential. The run-time captured includes the entirety of the
algorithm (setup, running, and post-processing).

Note that the Google VM price structure is based on the
us-central1 (Iowa) region’s on-demand pricing in USD exclud-
ing any sustained use discounts2. The CascadeLake processors
(provided by the C2 machine type) are only available in sets
of 4 cores and 16GB memory. Thus, the cost is divided by
4 to obtain the equivalent price of a single CascadeLake pro-
cessor and 4GB memory. Experimental results for the GPU-
accelerated differential search without MITM are provided in
Table 3, specifically for TRIFLE-BC. Experimental results for
the complete GPU-accelerated differential search with MITM
are provided in Tables 4, 5, and 6 for TRIFLE-BC, PRESENT
and GIFT respectively. Note that RX in the tables refers to X
rounds of the block cipher.

Table 3: Cost comparison of the non-MITM search on TRIFLE-BC constrained
by AS BOUND = 4 and PBOUNDo f f set = −21.

Device Time(s) Cost/Month CE Cost%
Xeon CascadeLake 3.1GHz
- R5 0.266 38.09 1 100
- R10 19.271 38.09 1 100
- R15 151.117 38.09 1 100
- R20 916.963 38.09 1 100
Tesla T4
- R5 0.020 255.50 14 48
- R10 0.683 255.50 29 23
- R15 5.157 255.50 30 22
- R20 29.896 255.50 31 22
Tesla V100
- R5 0.005 1810.40 54 88
- R10 0.265 1810.40 73 65
- R15 2.084 1810.40 73 65
- R20 12.706 1810.40 73 65

In terms of cost, we observe that both the MITM and non-
MITM approaches have consistent results. A runtime cost re-
duction of up to 83% is observed for the GPU-accelerated B&B
algorithm with MITM when using a Tesla T4 GPU unit. On the

2Pricing: https://cloud.google.com/compute/all-pricing

10

https://cloud.google.com/compute/all-pricing

Table 4: Cost comparison of the MITM search on TRIFLE-BC constrained by
AS Bound = 4 and PBOUNDo f f set = −21.

Device Time(s) Cost/Month CE Cost%
Xeon CascadeLake 3.1GHz
- R10 1.61 38.09 1 100
- R20 30.588 38.09 1 100
- R30 197.938 38.09 1 100
- R40 1176.995 38.09 1 100
Tesla T4
- R10 0.045 255.50 36 19
- R20 0.948 255.50 33 20
- R30 6.400 255.50 31 22
- R40 37.912 255.50 31 22
Tesla V100
- R10 0.015 1810.40 107 44
- R20 0.400 1810.40 76 63
- R30 2.973 1810.40 67 71
- R40 18.295 1810.40 65 73

Table 5: Cost comparison of the MITM search on PRESENT constrained by
AS Bound = 4 and PBOUNDo f f set = −35.

Device Time(s) Cost/Month CE Cost%
Xeon CascadeLake 3.1GHz
- R4 0.001 38.09 1 100
- R8 0.195 38.09 1 100
- R16 242.964 38.09 1 100
Tesla T4
- R4 0.006 255.50 1 671
- R8 0.014 255.50 14 48
- R16 6.161 255.50 40 17
Tesla V100
- R4 0.003 1810.40 1 4753
- R8 0.005 1810.40 39 122
- R16 3.140 1810.40 78 61

Table 6: Cost comparison of the MITM search on GIFT constrained by
AS Bound = 4 and PBOUNDo f f set = −35.

Device Time(s) Cost/Month CE Cost%
Xeon CascadeLake 3.1GHz
- R4 0.003 38.09 1 100
- R8 0.349 38.09 1 100
- R16 5898.510 38.09 1 100
Tesla T4
- R4 0.007 255.50 1 671
- R8 0.020 255.50 18 37
- R16 156.113 255.50 38 18
Tesla V100
- R4 0.003 1810.40 1 4753
- R8 0.007 1810.40 50 95
- R16 65.994 1810.40 90 53

other hand, the cost reduction when using the more powerful
(albeit less cost-effective) Tesla V100 GPU achieves a cost re-
duction of up to 47%. The cost analysis suggests that the GPU

framework is more financially feasible for cloud-based imple-
mentations as compared to a regular CPU search. The costs
saved from using the proposed GPU framework can be chan-
neled towards more computing resources to conduct a larger
scale differential search under a fixed budget.

In terms of performance, a speedup of 2292x is achieved for
20 rounds of TRIFLE-BC using the MITM GPU-accelerated
method as compared to the non-MITM CPU method. This is
a significant improvement over the previously proposed GPU
approach described in [18] which only achieved a speedup of
approximately 58x for 20 rounds of TRIFLE-BC when using a
MITM GPU-accelerated method. As such, the current proposed
GPU framework is approximately 4000% more efficient. When
comparing the CPU and GPU implementations of the proposed
framework with MITM, the GPU kernel can achieve a speedup
of 90x on a high-performance Tesla V100 GPU while still de-
livering up to 40x on a lower-end Tesla T4 GPU. A similar per-
formance boost can be observed in the non-MITM variant of
the GPU framework as well. The performance boost obtained
by using the proposed GPU framework leads to more efficient
construction of larger differentials, leading to improved differ-
ential probability.

The results indicate that the proposed framework can achieve
high throughput while being cost-effective, making it useful for
cryptanalysts who wish to construct large differentials for sta-
tistical attacks. However, the proposed framework is ineffective
when used to analyze fewer rounds (such as 4 rounds) because
there are too few branches to fully leverage upon the parallel
processing power of the GPU. With that said, differential crypt-
analysis is typically performed for a large number of rounds,
for which the proposed GPU framework is useful. The GPU-
accelerated MITM approach is also more computationally fea-
sible for 128-bit or larger block ciphers with a large number
of rounds as compared to existing approaches such as MILP or
SAT solvers.

4.1. New differential results for existing block ciphers

We use the proposed framework to search for improved dif-
ferentials for TRIFLE-BC, PRESENT, and GIFT, which are
summarized in Tables 7, 8, and 9 respectively. AS BOUND is set
to 4 for all experiments to ensure that the search can complete
within a practical amount of time. PBOUNDα

and PBOUNDβ
are

varied for different block ciphers to account for their distinct
differential characteristic distributions. Values for PBOUNDo f f set

fall in the range of [2, 27].
A differential for 13-round GIFT with a probability of 2−60.66

has been identified, which is an improvement over the 2−61.3135

found in [40]. For 16-round PRESENT, the search has iden-
tified a differential with the probability of 2−61.7964 which is
also an improvement over the 2−62.13 differential in [41] and
the 2−62.27 differential in [21]. Thus, the proposed approach
has identified the best differentials to date for 13-round GIFT
and 16-round PRESENT. However, differentials for 43-round
TRIFLE-BC could not be improved upon despite using more
lenient searching bounds as compared to the 2−126.931 obtained
in [18]. Note that the differentials constructed using the pro-

11

Table 7: Differential for 43-round TRIFLE-BC bounded by AS BOUND = 4, PBOUNDα = −87 and PBOUNDβ = −84.

∆X ∆Y Pc # of Trails
000000000000b000
0000000000000000

0000000000100000
0010000000000000

2−126.931 3.381 × 106

0000000000000000
b000000000000000

0000000200000002
0000000000000000

2−126.931 3.325 × 106

0000000000000000
0007000000000000

0020000000200000
0000000000000000

2−126.931 3.346 × 106

0000000000000000
00000b0000000000

0000000000000000
0000040000000400

2−126.995 2.501 × 106

Table 8: Differential for 16-round PRESENT bounded by AS BOUND = 4, PBOUNDα = −62 and PBOUNDβ = −62.

∆X ∆Y Pc # of Trails
000f00000000000f 0000050000000500 2−61.7964 4.00 × 1010

0000000000001001 0404040400000000 2−62.1757 4.98 × 1010

0007000000000007 0000050000000500 2−62.2031 4.62 × 1010

0f00000000000f00 0000050000000500 2−62.5550 3.50 × 1010

Table 9: Differential for 13-round GIFT bounded by AS BOUND = 4, PBOUNDα = −75 and PBOUNDβ = −75.

∆X ∆Y Pc # of Trails
0f0000000c000000 1010808040402020 2−60.6600 1.26 × 105

0c000000e0000000 2020101080805050 2−60.9556 2.31 × 105

0e0000000e000000 0202010108080404 2−61.0341 2.32 × 105

0e00000060000000 4040202010108080 2−61.2720 4.27 × 105

Figure 9: Differential characteristics distribution of the best differential found
for 43-Round TRIFLE.

posed framework consists of hundreds of thousands (GIFT) to
billions (PRESENT) of individual characteristics.

Unfortunately, due to the inherent structure of MITM, it is
infeasible to keep track of the exact partial characteristic prob-
abilities and consequently the final characteristic probabilities
that are required to assemble a complete differential character-
istic distribution. In other words, the full differential distribu-
tion cannot be generated due to how the partial α character-
istics are condensed into an intermediary array. On the other
hand, collecting data about the differential distribution via the

Figure 10: Differential characteristics distribution of the best differential found
for 16-Round PRESENT.

non-MITM method cannot be completed within a reasonable
amount of time. Instead, a partial differential distribution can
be constructed based solely on differential characteristics that
have been matched during the reverse MITM matching phase.
By adopting this approach, we generate the differential distri-
butions of the best differentials for all three ciphers in Figs. 9,
10, and 11. Based on the Figure9 and Figure10, we can ob-
serve that the best differentials for both TRIFLE and PRESENT
have an approximately normal distribution of differential char-
acteristics. However, the peak of the distribution for TRIFLE is

12

Figure 11: Differential characteristics distribution of the best differential found
for 13-Round GIFT.

skewed towards the right, implying that most of the individual
differential characteristics have smaller probabilities. This ex-
plains why the proposed framework was unable to significantly
improve upon existing differential probabilities. Meanwhile,
the best differential for GIFT seems to follow a more erratic
distribution. This implies that the differential characteristics for
GIFT are not as evenly distributed as PRESENT, leading to a
bigger improvement in terms of differential probability when a
larger differential is constructed.

4.2. Efficiency analysis

In the previous subsection, we pushed the differential search
algorithm to its limit to construct the largest differential cluster
possible within a practical amount of time. This produced the
best differentials for PRESENT and GIFT to date. Next, we in-
vestigate the trade-off between efficiency and differential prob-
ability, focusing only on the clustering phase. After identify-
ing an optimal differential characteristic, we experimented with
various probability and S-box bounds while observing their ef-
fect on the overall differential probability, the number of trails,
and execution time. Experimental results are illustrated in Fig-
ures 12a and 12b as well as Tables 10, 11 and 12.

Figure 12a shows the improvements in execution time when
the probability bounds were tightened. When the probability
bounds for both the first half, PBOUNDα

and the second half,
PBOUNDα

of the MITM search went beyond the 2−50 mark, the
search completed within 1 second for all three ciphers. As ex-
pected, the decrease in execution time corresponds to a decrease
in the number of trails within a differential cluster as shown
in Figure 12b. We note that after the 2−65 mark, no differen-
tial cluster could be constructed for TRIFLE-BC as the bounds
were too strict. With a probability bound of 2−40, the cluster
sizes for PRESENT and GIFT were approximately 81000 and
12 respectively.

Finally, efficiency analysis results with respect to the overall
differential probability, PC are tabulated in Tables 10, 11 and 12
for TRIFLE-BC, PRESENT and GIFT respectively. For both
PRESENT and GIFT, we were still able to obtain differentials
with higher probability than previous work in 14ms and 9ms
respectively when PBOUND = 2−40 and AS BOUND = 3. For
TRIFLE-BC, we found that using an S-box limit of AS BOUND =

3 rather than 4 would produce the same results in approximately
31s as opposed to 79s.

Based on these findings, we provide the following recom-
mendations for future researchers who want to utilize the pro-
posed algorithm in their cryptanalysis efforts:

• The use of AS BOUND = 3 and tighter PBOUND is sufficient
to produce usable findings within a matter of seconds.
These settings can be used for preliminary experiments
or rapid assessment of block cipher security.

• The use of AS BOUND = 4 and relaxed PBOUND can be
used to push the limits of the differential search after first
identifying an optimal differential characteristic for clus-
tering. These settings can be used when searching or con-
structing the best differential possible for key-recovery
purposes.

(a) Execution time vs probability bound

(b) Number of trails vs probability bound

Figure 12: Execution time, trail size and probability bound analysis

13

5. Conclusion

In this paper, we proposed a new GPU-accelerated branch-
and-bound framework for differential search. It is a highly ef-
ficient, automated approach for block cipher security evalua-
tion. The proposed framework was optimized for GPU paral-
lel processing to achieve a substantial speedup when construct-
ing large differentials (differentials that consist of a large num-
ber of individual characteristics). Compared to existing GPU
approaches, the proposed framework is more practical adapt-
able to different GPUs and block ciphers. When compared to
the original CPU-based non-MITM search, the proposed frame-
work achieves a speedup of approximately 2292x. We demon-
strate its practicality by applying the proposed framework on
three different block ciphers, 128-bit TRIFLE-BC, 64-bit PRESENT,
and 64-bit GIFT. Experimental results indicate that the pro-
posed GPU-accelerated algorithm can achieve up to a 90x speedup
as compared to an equivalent single-core CPU algorithm. In
terms of financial cost evaluated using Google Cloud VM, the
proposed framework achieves savings of up to 83% when com-
pared to a CPU setup with equivalent throughput. Therefore,
the proposed GPU framework is both faster and cheaper than
its CPU counterpart. The proposed framework can be used
to effectively identify large differentials with higher differential
probabilities, which can then be used in statistical-based attacks
against existing block ciphers. In theory, the proposed frame-
work also allows the utilization of existing CPU-GPU heteroge-
neous computing clusters as the entire search can be performed
entirely on the GPU. Thus, a separate differential search can be
conducted on the CPU without interference. As additional con-
tributions, we have also identified the best differentials to date
for 16-round PRESENT and 13-round GIFT, with differential
probabilities of 2−61.7964 and 2−60.66 respectively. We also show
that the proposed GPU search is practical for 128-bit block ci-
phers with a large number of rounds by constructing large dif-
ferentials for 43 rounds of 128-bit TRIFLE-BC.

Acknowledgment

This work is supported in part by the Ministry of Higher
Education Malaysia through the Fundamental Research Grant
Scheme with Project Code: FRGS/1/2019/ICT05/USM/02/1.
It is also partially supported by the National Natural Science
Foundation of China under Grant No. 61702212 and the Fun-
damental Research Funds for the Central Universities under
Grant No. CCNU19TS017. The final authenticated version
of the manuscript has been published in the Journal of Infor-
mation Security and Applications and is available at https:
//doi.org/10.1016/j.jisa.2021.103087.

References

[1] E. Rescorla, The Transport Layer Security (TLS) Protocol Version 1.3,
Tech. Rep. RFC8446 (Aug. 2018). doi:10.17487/RFC8446.
URL https://www.rfc-editor.org/info/rfc8446

[2] D. Shaw, The Camellia Cipher in OpenPGP, Tech. Rep. RFC5581 (Jun.
2009). doi:10.17487/rfc5581.
URL https://www.rfc-editor.org/info/rfc5581

[3] T. Ylonen, C. Lonvick, The Secure Shell (SSH) Transport Layer Protocol,
Tech. Rep. RFC4253 (Jan. 2006). doi:10.17487/rfc4253.
URL https://www.rfc-editor.org/info/rfc4253

[4] B. J. Mohd, T. Hayajneh, A. V. Vasilakos, A survey on lightweight block
ciphers for low-resource devices: Comparative study and open issues,
Journal of Network and Computer Applications 58 (2015) 73–93. doi:

10.1016/j.jnca.2015.09.001.
[5] J. H. Kong, L.-M. Ang, K. P. Seng, A comprehensive survey of mod-

ern symmetric cryptographic solutions for resource constrained environ-
ments, Journal of Network and Computer Applications 49 (2015) 15–50.
doi:10.1016/j.jnca.2014.09.006.

[6] NIST, Submission Requirements and Evaluation Criteria for the
Lightweight Cryptography Standardization Process (Aug. 2018).
URL https://csrc.nist.gov/projects/

lightweight-cryptography

[7] D. J. Bernstein, J. Buchmann, E. Dahmen (Eds.), Post-Quantum
Cryptography, Springer Berlin Heidelberg, 2009. doi:10.1007/

978-3-540-88702-7.
[8] E. Biham, A. Shamir, Differential cryptanalysis of DES-like cryp-

tosystems, Journal of Cryptology 4 (1) (1991) 3–72. doi:10.1007/

BF00630563.
URL http://link.springer.com/10.1007/BF00630563

[9] A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann,
M. J. B. Robshaw, Y. Seurin, C. Vikkelsoe, PRESENT: An Ultra-
Lightweight Block Cipher, in: P. Paillier, I. Verbauwhede (Eds.),
Cryptographic Hardware and Embedded Systems - CHES 2007, Vol.
4727, Springer Berlin Heidelberg, Berlin, Heidelberg, 2007, pp. 450–
466. doi:10.1007/978-3-540-74735-2_31.
URL http://link.springer.com/10.1007/

978-3-540-74735-2_31

[10] J. Guo, T. Peyrin, A. Poschmann, M. Robshaw, The LED Block Cipher,
Cryptographic Hardware and Embedded Systems – CHES 2011 (2011)
326–341.

[11] S. Banik, S. K. Pandey, T. Peyrin, Y. Sasaki, S. M. Sim, Y. Todo,
GIFT: A Small Present, in: W. Fischer, N. Homma (Eds.), Cryp-
tographic Hardware and Embedded Systems – CHES 2017, Vol.
10529, Springer International Publishing, Cham, 2017, pp. 321–345.
doi:10.1007/978-3-319-66787-4_16.
URL http://link.springer.com/10.1007/

978-3-319-66787-4_16

[12] X. Lai, J. L. Massey, S. Murphy, Markov Ciphers and Differential Crypt-
analysis, in: D. W. Davies (Ed.), Advances in Cryptology — EURO-
CRYPT ’91, Vol. 547, Springer Berlin Heidelberg, Berlin, Heidelberg,
1991, pp. 17–38. doi:10.1007/3-540-46416-6_2.
URL http://link.springer.com/10.1007/3-540-46416-6_2

[13] R. Ankele, S. Kölbl, Mind the gap - a closer look at the security of block
ciphers against differential cryptanalysis, in: C. Cid, M. J. Jacobson Jr.
(Eds.), Selected Areas in Cryptography – SAC 2018, Springer Interna-
tional Publishing, Cham, 2019, pp. 163–190.

[14] S. Erich, D. Jack, S. Horst, M. Martin, November 19 | Top 500 Super-
computer (Nov. 2019).
URL https://www.top500.org/lists/2019/11/

[15] M. Stevens, P. Karpman, T. Peyrin, Freestart Collision for Full SHA-1, in:
M. Fischlin, J.-S. Coron (Eds.), Advances in Cryptology – EUROCRYPT
2016, Vol. 9665, Springer Berlin Heidelberg, Berlin, Heidelberg, 2016,
pp. 459–483. doi:10.1007/978-3-662-49890-3_18.
URL http://link.springer.com/10.1007/

978-3-662-49890-3_18

[16] R. Szerwinski, T. Güneysu, Exploiting the Power of GPUs for
Asymmetric Cryptography, in: E. Oswald, P. Rohatgi (Eds.), Crypto-
graphic Hardware and Embedded Systems – CHES 2008, Vol. 5154,
Springer Berlin Heidelberg, Berlin, Heidelberg, 2008, pp. 79–99.
doi:10.1007/978-3-540-85053-3_6.
URL http://link.springer.com/10.1007/

978-3-540-85053-3_6

[17] S. A. Manavski, CUDA Compatible GPU as an Efficient Hardware Ac-
celerator for AES Cryptography, in: 2007 IEEE International Conference
on Signal Processing and Communications, IEEE, Dubai, United Arab
Emirates, 2007, pp. 65–68. doi:10.1109/ICSPC.2007.4728256.
URL http://ieeexplore.ieee.org/document/4728256/

[18] W.-Z. Yeoh, J. S. Teh, J. Chen, Automated Search for Block Cipher

14

https://doi.org/10.1016/j.jisa.2021.103087
https://doi.org/10.1016/j.jisa.2021.103087
https://www.rfc-editor.org/info/rfc8446
https://doi.org/10.17487/RFC8446
https://www.rfc-editor.org/info/rfc8446
https://www.rfc-editor.org/info/rfc5581
https://doi.org/10.17487/rfc5581
https://www.rfc-editor.org/info/rfc5581
https://www.rfc-editor.org/info/rfc4253
https://doi.org/10.17487/rfc4253
https://www.rfc-editor.org/info/rfc4253
https://doi.org/10.1016/j.jnca.2015.09.001
https://doi.org/10.1016/j.jnca.2015.09.001
https://doi.org/10.1016/j.jnca.2014.09.006
https://csrc.nist.gov/projects/lightweight-cryptography
https://csrc.nist.gov/projects/lightweight-cryptography
https://csrc.nist.gov/projects/lightweight-cryptography
https://csrc.nist.gov/projects/lightweight-cryptography
https://doi.org/10.1007/978-3-540-88702-7
https://doi.org/10.1007/978-3-540-88702-7
http://link.springer.com/10.1007/BF00630563
http://link.springer.com/10.1007/BF00630563
https://doi.org/10.1007/BF00630563
https://doi.org/10.1007/BF00630563
http://link.springer.com/10.1007/BF00630563
http://link.springer.com/10.1007/978-3-540-74735-2_31
http://link.springer.com/10.1007/978-3-540-74735-2_31
https://doi.org/10.1007/978-3-540-74735-2_31
http://link.springer.com/10.1007/978-3-540-74735-2_31
http://link.springer.com/10.1007/978-3-540-74735-2_31
http://link.springer.com/10.1007/978-3-319-66787-4_16
https://doi.org/10.1007/978-3-319-66787-4_16
http://link.springer.com/10.1007/978-3-319-66787-4_16
http://link.springer.com/10.1007/978-3-319-66787-4_16
http://link.springer.com/10.1007/3-540-46416-6_2
http://link.springer.com/10.1007/3-540-46416-6_2
https://doi.org/10.1007/3-540-46416-6_2
http://link.springer.com/10.1007/3-540-46416-6_2
https://www.top500.org/lists/2019/11/
https://www.top500.org/lists/2019/11/
https://www.top500.org/lists/2019/11/
http://link.springer.com/10.1007/978-3-662-49890-3_18
https://doi.org/10.1007/978-3-662-49890-3_18
http://link.springer.com/10.1007/978-3-662-49890-3_18
http://link.springer.com/10.1007/978-3-662-49890-3_18
http://link.springer.com/10.1007/978-3-540-85053-3_6
http://link.springer.com/10.1007/978-3-540-85053-3_6
https://doi.org/10.1007/978-3-540-85053-3_6
http://link.springer.com/10.1007/978-3-540-85053-3_6
http://link.springer.com/10.1007/978-3-540-85053-3_6
http://ieeexplore.ieee.org/document/4728256/
http://ieeexplore.ieee.org/document/4728256/
https://doi.org/10.1109/ICSPC.2007.4728256
http://ieeexplore.ieee.org/document/4728256/
http://link.springer.com/10.1007/978-3-030-55304-3_9

Differentials: A GPU-Accelerated Branch-and-Bound Algorithm,
in: J. K. Liu, H. Cui (Eds.), Information Security and Privacy, Vol.
12248, Springer International Publishing, Cham, 2020, pp. 160–179.
doi:10.1007/978-3-030-55304-3_9.
URL http://link.springer.com/10.1007/

978-3-030-55304-3_9

[19] M. Matsui, On correlation between the order of S-boxes and the strength
of DES, in: G. Goos, J. Hartmanis, J. van Leeuwen, A. De Santis (Eds.),
Advances in Cryptology — EUROCRYPT’94, Vol. 950, Springer Berlin
Heidelberg, Berlin, Heidelberg, 1995, pp. 366–375. doi:10.1007/

BFb0053451.
URL http://link.springer.com/10.1007/BFb0053451

[20] A. Biryukov, V. Velichkov, Automatic Search for Differential Trails in
ARX Ciphers, in: D. Hutchison, T. Kanade, J. Kittler, J. M. Kleinberg,
F. Mattern, J. C. Mitchell, M. Naor, O. Nierstrasz, C. Pandu Ran-
gan, B. Steffen, M. Sudan, D. Terzopoulos, D. Tygar, M. Y. Vardi,
G. Weikum, J. Benaloh (Eds.), Topics in Cryptology – CT-RSA 2014,
Vol. 8366, Springer International Publishing, Cham, 2014, pp. 227–250.
doi:10.1007/978-3-319-04852-9_12.
URL http://link.springer.com/10.1007/

978-3-319-04852-9_12

[21] J. Chen, J. Teh, Z. Liu, C. Su, A. Samsudin, Y. Xiang, Towards Accu-
rate Statistical Analysis of Security Margins: New Searching Strategies
for Differential Attacks, IEEE Transactions on Computers 66 (10) (2017)
1763–1777. doi:10.1109/TC.2017.2699190.
URL http://ieeexplore.ieee.org/document/7914659/

[22] Z. Chen, J. Chen, W. Meng, J. S. Teh, P. Li, B. Ren, Analysis of differ-
ential distribution of lightweight block cipher based on parallel process-
ing on GPU, Journal of Information Security and Applications 55 (2020)
102565. doi:10.1016/j.jisa.2020.102565.

[23] N. Mouha, Q. Wang, D. Gu, B. Preneel, Differential and Linear Crypt-
analysis Using Mixed-Integer Linear Programming, in: C.-K. Wu,
M. Yung, D. Lin (Eds.), Information Security and Cryptology, Vol.
7537, Springer Berlin Heidelberg, Berlin, Heidelberg, 2012, pp. 57–76.
doi:10.1007/978-3-642-34704-7_5.
URL http://link.springer.com/10.1007/

978-3-642-34704-7_5

[24] S. Siwei, H. Lei, W. Meiqin, W. Peng, Q. Kexin, M. Xiaoshuang, S. Dan-
ping, S. Ling, F. Kai, Towards Finding the Best Characteristics of Some
Bit-oriented Block Ciphers and Automatic Enumeration of (Related-key)
Differential and Linear Characteristics with Predefined Properties, Cryp-
tology ePrint Archive, Report 2014/747 (2014).

[25] M. Nicky, P. Bart, Towards Finding Optimal Differential Characteris-
tics for ARX: Application to Salsa20, Cryptology ePrint Archive, Report
2013/328 (2013).
URL https://eprint.iacr.org/2013/328

[26] L. Sun, W. Wang, M. Wang, Accelerating the search of differential and
linear characteristics with the sat method, IACR Transactions on Symmet-
ric Cryptology 1 (2021) 269–315, https://eprint.iacr.org/2021/
213. doi:10.46586/tosc.v2021.i1.269-315.

[27] A. Borisenko, M. Haidl, S. Gorlatch, A GPU parallelization of
branch-and-bound for multiproduct batch plants optimization, The Jour-
nal of Supercomputing 73 (2) (2017) 639–651. doi:10.1007/

s11227-016-1784-x.
URL http://link.springer.com/10.1007/s11227-016-1784-x

[28] N. Melab, I. Chakroun, M. Mezmaz, D. Tuyttens, A GPU-accelerated
Branch-and-Bound Algorithm for the Flow-Shop Scheduling Problem,
in: 2012 IEEE International Conference on Cluster Computing, IEEE,
Beijing, China, 2012, pp. 10–17. doi:10.1109/CLUSTER.2012.18.
URL http://ieeexplore.ieee.org/document/6337851/

[29] M. E. Lalami, D. El-Baz, GPU Implementation of the Branch and Bound
Method for Knapsack Problems, in: 2012 IEEE 26th International Par-
allel and Distributed Processing Symposium Workshops & PhD Forum,
IEEE, Shanghai, China, 2012, pp. 1769–1777. doi:10.1109/IPDPSW.
2012.219.
URL http://ieeexplore.ieee.org/document/6270853/

[30] B. Gendron, T. G. Crainic, Parallel Branch-and-Branch Algorithms:
Survey and Synthesis, Operations Research 42 (6) (1994) 1042–1066.
doi:10.1287/opre.42.6.1042.
URL http://pubsonline.informs.org/doi/abs/10.1287/

opre.42.6.1042

[31] J. Gmys, M. Mezmaz, N. Melab, D. Tuyttens, A GPU-based
Branch-and-Bound algorithm using Integer–Vector–Matrix data
structure, Parallel Computing 59 (2016) 119–139. doi:

10.1016/j.parco.2016.01.008.
URL https://linkinghub.elsevier.com/retrieve/pii/

S0167819116000387

[32] J. Gmys, M. Mezmaz, N. Melab, D. Tuyttens, IVM-Based Work
Stealing for Parallel Branch-and-Bound on GPU, in: R. Wyrzykowski,
E. Deelman, J. Dongarra, K. Karczewski, J. Kitowski, K. Wiatr
(Eds.), Parallel Processing and Applied Mathematics, Vol. 9573,
Springer International Publishing, Cham, 2016, pp. 548–558.
doi:10.1007/978-3-319-32149-3_51.
URL http://link.springer.com/10.1007/

978-3-319-32149-3_51

[33] D. Nilanjan, G. Ashrujit, M. Debdeep, P. Sikhar, P. Stjepan, S. Rajat,
TRIFLE (Mar. 2019).
URL https://csrc.nist.gov/CSRC/media/Projects/

Lightweight-Cryptography/documents/round-1/spec-doc/

trifle-spec.pdf

[34] D. Steinkraus, I. Buck, P. Simard, Using GPUs for machine learning al-
gorithms, in: Eighth International Conference on Document Analysis and
Recognition (ICDAR’05), IEEE, Seoul, South Korea, 2005, pp. 1115–
1120 Vol. 2. doi:10.1109/ICDAR.2005.251.
URL http://ieeexplore.ieee.org/document/1575717/

[35] P. D. Vouzis, N. V. Sahinidis, GPU-BLAST: using graphics processors
to accelerate protein sequence alignment, Bioinformatics 27 (2) (2011)
182–188. doi:10.1093/bioinformatics/btq644.
URL https://academic.oup.com/bioinformatics/

article-lookup/doi/10.1093/bioinformatics/btq644

[36] J. Yang, Y. Wang, Y. Chen, GPU accelerated molecular dynamics
simulation of thermal conductivities, Journal of Computational Physics
221 (2) (2007) 799–804. doi:10.1016/j.jcp.2006.06.039.
URL https://linkinghub.elsevier.com/retrieve/pii/

S0021999106003172

[37] NVIDIA, CUDA C Programming Guide Version 9.0 (Oct. 2019).
URL https://docs.nvidia.com/cuda/

cuda-c-programming-guide/

[38] D. Padua (Ed.), Encyclopedia of Parallel Computing, Springer US,
Boston, MA, 2011. doi:10.1007/978-0-387-09766-4.
URL http://link.springer.com/10.1007/978-0-387-09766-4

[39] J. Chen, A. Miyaji, C. Su, J. Teh, Improved Differential Characteristic
Searching Methods, in: 2015 IEEE 2nd International Conference on Cy-
ber Security and Cloud Computing, IEEE, New York, NY, USA, 2015,
pp. 500–508. doi:10.1109/CSCloud.2015.42.
URL http://ieeexplore.ieee.org/document/7371529/

[40] H. Chen, R. Zong, X. Dong, Improved Differential Attacks on GIFT-64,
in: J. Zhou, X. Luo, Q. Shen, Z. Xu (Eds.), Information and Communi-
cations Security, Vol. 11999, Springer International Publishing, Cham,
2020, pp. 447–462. doi:10.1007/978-3-030-41579-2_26.
URL http://link.springer.com/10.1007/

978-3-030-41579-2_26

[41] M. Wang, Y. Sun, E. Tischhauser, B. Preneel, A Model for Structure At-
tacks, with Applications to PRESENT and Serpent, in: A. Canteaut (Ed.),
Fast Software Encryption, Vol. 7549, Springer Berlin Heidelberg, Berlin,
Heidelberg, 2012, pp. 49–68. doi:10.1007/978-3-642-34047-5_4.
URL http://link.springer.com/10.1007/

978-3-642-34047-5_4

15

http://link.springer.com/10.1007/978-3-030-55304-3_9
https://doi.org/10.1007/978-3-030-55304-3_9
http://link.springer.com/10.1007/978-3-030-55304-3_9
http://link.springer.com/10.1007/978-3-030-55304-3_9
http://link.springer.com/10.1007/BFb0053451
http://link.springer.com/10.1007/BFb0053451
https://doi.org/10.1007/BFb0053451
https://doi.org/10.1007/BFb0053451
http://link.springer.com/10.1007/BFb0053451
http://link.springer.com/10.1007/978-3-319-04852-9_12
http://link.springer.com/10.1007/978-3-319-04852-9_12
https://doi.org/10.1007/978-3-319-04852-9_12
http://link.springer.com/10.1007/978-3-319-04852-9_12
http://link.springer.com/10.1007/978-3-319-04852-9_12
http://ieeexplore.ieee.org/document/7914659/
http://ieeexplore.ieee.org/document/7914659/
http://ieeexplore.ieee.org/document/7914659/
https://doi.org/10.1109/TC.2017.2699190
http://ieeexplore.ieee.org/document/7914659/
https://doi.org/10.1016/j.jisa.2020.102565
http://link.springer.com/10.1007/978-3-642-34704-7_5
http://link.springer.com/10.1007/978-3-642-34704-7_5
https://doi.org/10.1007/978-3-642-34704-7_5
http://link.springer.com/10.1007/978-3-642-34704-7_5
http://link.springer.com/10.1007/978-3-642-34704-7_5
https://eprint.iacr.org/2013/328
https://eprint.iacr.org/2013/328
https://eprint.iacr.org/2013/328
https://eprint.iacr.org/2021/213
https://eprint.iacr.org/2021/213
https://doi.org/10.46586/tosc.v2021.i1.269-315
http://link.springer.com/10.1007/s11227-016-1784-x
http://link.springer.com/10.1007/s11227-016-1784-x
https://doi.org/10.1007/s11227-016-1784-x
https://doi.org/10.1007/s11227-016-1784-x
http://link.springer.com/10.1007/s11227-016-1784-x
http://ieeexplore.ieee.org/document/6337851/
http://ieeexplore.ieee.org/document/6337851/
https://doi.org/10.1109/CLUSTER.2012.18
http://ieeexplore.ieee.org/document/6337851/
http://ieeexplore.ieee.org/document/6270853/
http://ieeexplore.ieee.org/document/6270853/
https://doi.org/10.1109/IPDPSW.2012.219
https://doi.org/10.1109/IPDPSW.2012.219
http://ieeexplore.ieee.org/document/6270853/
http://pubsonline.informs.org/doi/abs/10.1287/opre.42.6.1042
http://pubsonline.informs.org/doi/abs/10.1287/opre.42.6.1042
https://doi.org/10.1287/opre.42.6.1042
http://pubsonline.informs.org/doi/abs/10.1287/opre.42.6.1042
http://pubsonline.informs.org/doi/abs/10.1287/opre.42.6.1042
https://linkinghub.elsevier.com/retrieve/pii/S0167819116000387
https://linkinghub.elsevier.com/retrieve/pii/S0167819116000387
https://linkinghub.elsevier.com/retrieve/pii/S0167819116000387
https://doi.org/10.1016/j.parco.2016.01.008
https://doi.org/10.1016/j.parco.2016.01.008
https://linkinghub.elsevier.com/retrieve/pii/S0167819116000387
https://linkinghub.elsevier.com/retrieve/pii/S0167819116000387
http://link.springer.com/10.1007/978-3-319-32149-3_51
http://link.springer.com/10.1007/978-3-319-32149-3_51
https://doi.org/10.1007/978-3-319-32149-3_51
http://link.springer.com/10.1007/978-3-319-32149-3_51
http://link.springer.com/10.1007/978-3-319-32149-3_51
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/trifle-spec.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/trifle-spec.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/trifle-spec.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/trifle-spec.pdf
http://ieeexplore.ieee.org/document/1575717/
http://ieeexplore.ieee.org/document/1575717/
https://doi.org/10.1109/ICDAR.2005.251
http://ieeexplore.ieee.org/document/1575717/
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btq644
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btq644
https://doi.org/10.1093/bioinformatics/btq644
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btq644
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btq644
https://linkinghub.elsevier.com/retrieve/pii/S0021999106003172
https://linkinghub.elsevier.com/retrieve/pii/S0021999106003172
https://doi.org/10.1016/j.jcp.2006.06.039
https://linkinghub.elsevier.com/retrieve/pii/S0021999106003172
https://linkinghub.elsevier.com/retrieve/pii/S0021999106003172
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
http://link.springer.com/10.1007/978-0-387-09766-4
https://doi.org/10.1007/978-0-387-09766-4
http://link.springer.com/10.1007/978-0-387-09766-4
http://ieeexplore.ieee.org/document/7371529/
http://ieeexplore.ieee.org/document/7371529/
https://doi.org/10.1109/CSCloud.2015.42
http://ieeexplore.ieee.org/document/7371529/
http://link.springer.com/10.1007/978-3-030-41579-2_26
https://doi.org/10.1007/978-3-030-41579-2_26
http://link.springer.com/10.1007/978-3-030-41579-2_26
http://link.springer.com/10.1007/978-3-030-41579-2_26
http://link.springer.com/10.1007/978-3-642-34047-5_4
http://link.springer.com/10.1007/978-3-642-34047-5_4
https://doi.org/10.1007/978-3-642-34047-5_4
http://link.springer.com/10.1007/978-3-642-34047-5_4
http://link.springer.com/10.1007/978-3-642-34047-5_4

Appendix A - GPU Kernel Algorithm

Algorithm 4 GPU Kernel.
1: Input: Input Difference ∆X.
2: Output: Probabilities of ∆Y that satisfy the searching constrained

is accumulated in thread num amount of Pi.
3: Adjustable Parameters:

1. AS BOUND : Maximum of number of active s-boxes for ∆Y .
2. PBOUND : Maximum probability of ∆X → ∆Y .
3. PAS : Estimated probability of a nibble ∆U → ∆V .

4: Assumption:

1. Non-active nibble (s-boxes) will have a difference value of
zero. Thus, an attempt to differentially substitute it will
yield 0→ 0 with a probability of 1.

5: procedure CLUSTER SEARCH GPU (α/β)
6: global memory: init α/β permutation table
7: shared memory: init α/β DDT, branch size table
8: thread id default← (GTi − 1) . GTgrid − 1
9: r ← 0

10: dx ptr← 0
11: cur iter← −1
12: MAX PATH ROUND← |GTgrid | × |Mk |

13: while r ≥ 0 do
14: if cur iter == -1 then
15: cur iter← d |B(Dr)|

|GTgrid |
e . |µ|

16: //Ti pointer
17: cur thread id← thread id default × cur iter
18: end if
19: has operation← False
20: //Valid ∆Xr+1 is saved at the front
21: thread dx num← 0
22: thread ptr← b dx ptr

|Mk |
c

23: block ptr← grid thread ptr
T HREAD BLOCK

24: loop limit← (cur iter < |Mk | ? cur iter : |Mk |)
25: for cur loop← 1 to loop limit do
26: //Selection, find the correct ∆Xr

dx ptr+1
27: if dx ptr < MAX PATH ROUND then
28: nb temp← (

∑dx ptr
v=0 |B(∆Xv)|)

29: if cur thread id < nb temp then
30: //Skip if dx ptr does not need to change
31: goto Branch Bound Pruning
32: end if
33: //Find the correct block
34: bsum←

∑block ptr−1
v=0 |B(∆Xblockv)|

35: init block ptr← block ptr
36: v← block ptr
37: for v < BLOCK NUM do
38: bsum += |B(∆Xblockv)|
39: cond1← cur thread id < bsum

40: cond2← |B(∆Xblockv)| , 0
41: if cond1 ∧ cond2 then
42: bsum -= |B(∆Xblockv)|
43: break
44: end if
45: v← v+1
46: end for
47: block ptr← v
48: bsum t←

∑thread ptr−1
v=0 |B(∆Xthreadv)|

49: t temp← block ptr × THREAD BLOCK
50: if block ptr == BLOCK NUM then
51: dx ptr←MAX PATH ROUND
52: else
53: //Find the correct thread
54: if init block ptr == block ptr then
55: bsum← bsum t
56: else
57: //bsum remained unchanged
58: thread ptr← t temp
59: end if
60: init thread ptr← thread ptr
61: v← thread ptr
62: while True do . Guaranteed to find
63: bsum += |B(∆Xthreadv)|
64: cond1← cur thread id < bsum)
65: cond2← |B(∆Xthreadv)| , 0
66: if cond1 ∧ cond2 then
67: bsum -= |B(∆Xblockv)|
68: break
69: end if
70: v← v + 1
71: end while
72: thread ptr← v
73: //Find ∆Xr

k
74: if init thread ptr == thread ptr then
75: bsum←

∑dx ptr−1
v=0 |B(∆Xv)|

76: else
77: //bsum remained unchanged
78: dx ptr← thread ptr × |Mk |

79: end if
80: v← dx ptr
81: while True do . Guaranteed to find
82: bsum += |B(∆Xv)|
83: if (cur thread id< bsum) then
84: bsum -= |B(∆Xblockv)|
85: break
86: end if
87: v← v + 1
88: end while
89: dx ptr← v
90: end if
91: end if
92: //Selection of B&B done

16

93: //Branch, Bound and Pruning
94: if dx ptr < MAX PATH ROUND then
95: has operation← True
96: pi ← Pr(∆X0 → ∆Xr

dx ptr)

97: vl← cur thread id -
∑dx ptr−1

v=0 |B(∆Xv)|
98: div vl← 1
99: //Branch to predetermined child node
100: for each ∆AUi from ∆Xr

dx ptr do
101: Ii ← bvl/div vlc mod NBi

102: ∆AVi ← sorted DDT[∆AUi][Ii]
103: update pi

104: div vl← div vl × NBi

105: end for
106: not last round← r , LAST ROUND - 1
107: if α SEARCH ∨ not last round then
108: Permutate ∆Xr

dx ptr into ∆Xr+1

109: end if
110: if r , LAST ROUND - 1 then
111: //Bounding and pruning
112: AS ∆Xr+1 ← Wnibble(∆Xr+1)
113: if AS ∆Xr+1 ≤ AS BOUND then
114: //Est. Pr(∆Xr+1)
115: p∆Xr+1 ← (PAS)AS

∆Xr+1

116: //Est. Remaining Pr(∆X)
117: pr ← (PAS)LAST ROUND−r−2

118: pest ← [p∆Xr , p∆Xr+1 , pr]
119: if pest ≥ PBOUND then
120: temp← thread ptr × |Mk |

121: loc← temp + thread dx num
122: ∆Xr+1

loc ← Xr+1

123: inc(thread dx num)
124: end if
125: end if
126: //Invalid ∆Xr+1 is ignored
127: else
128: if AS ∆Xr+1 ≤ AS MIT M then
129: if α SEARCH then
130: atomic add pi to PMIT M

131: else
132: //BACKWARD SEARCH
133: Pi ← Pi + PMIT M × pi

134: end if
135: end if
136: end if
137: end if
138: cur thread id← cur thread id + 1
139: end for
140: cur thread id← cur thread id - 1
141: cur iter← cur iter - loop limit
142: //Prepare relevant information
143: if thread id default == 0 then
144: global has operation← has operation
145: end if

146: if r , LAST ROUND -1 then
147: sum up thread’s branch as thread bsum
148: |B(∆XthreadblockIdx.x

theadIdx.x
)|r ← thread bsum

149: //atomic add the following
150: |B(∆XblockblockIdx.x)|r ← thread bsum
151: syncthreads()
152: if threadIdx.x == 0 then
153: //atomic add the following
154: |B(∆Xblock)|r ← |B(∆XblockblockIdx.x)|
155: end if
156: end if
157: //Prepare to advance,return, or terminate the round
158: is last r← r == LAST ROUND-1
159: cond1← is last r ∧ cur iter == 0
160: cond2← ¬ global has operation
161: if ¬ is last r ∧ global has operation then
162: //Advance a round
163: iter storer ← cur iter
164: dx ptr storer ← dx ptr
165: thread id storer ← cur thread id
166: r ← r + 1
167: dx ptr← 0
168: cur iter← −1 . Indicate need initialization
169: //Reset atomic add value ”Next” round
170: |B(∆XthreadblockIdx.x

theadIdx.x
)|r ← 0

171: |B(∆XblockblockIdx.x)|r ← 0
172: |B(∆Xblock)|r ← 0
173: else if cond1 ∨ cond2 then
174: //Return to previous round
175: while cur iter == 0 do
176: r ← r − 1
177: if r < 0 then
178: break
179: end if
180: cur iter← iter storer

181: dx ptr← dx ptr storer
182: cur thread id← thread id storer

183: //Reset atomic add value ”Next” round
184: |B(∆XthreadblockIdx.x

theadIdx.x
)|r ← 0

185: |B(∆XblockblockIdx.x)|r ← 0
186: |B(∆Xblock)|r ← 0
187: end while
188: else
189: //Repeat last round if cur iter , 0
190: cur thread id← cur thread id + 1
191: end if
192: end while
193: end procedure

17

Table
10:E

ffi
ciency

analysis
forT

R
IFL

E
-B

C

A
S

=
4

R
esults

P
B

O
U

N
D
α
/β

(log
2)

-85
-80

-75
-70

-65
-60

-55
-50

-45
-40

Tim
e

(m
s)

79846
13574

2295
483

107
79

14
12

10
10

P
c

(log
2)

-126.931
-126.932

-126.934
-126.966

-127
-

-
-

-
-

A
S

=
3

R
esults

P
B

O
U

N
D
α
/β

(log
2)

-85
-80

-75
-70

-65
-60

-55
-50

-45
-40

Tim
e

(m
s)

3123
714

194
51

20
15

13
12

10
9

P
c

(log
2)

-126.931
-126.932

-126.934
-126.966

-127
-

-
-

-
-

Table
11:E

ffi
ciency

analysis
forPR

E
SE

N
T

A
S

=
4

R
esults

P
B

O
U

N
D
α
/β

(log
2)

-85
-80

-75
-70

-65
-60

-55
-50

-45
-40

Tim
e

(m
s)

961342
961365

594222
260503

77544
18176

4276
1013

302
63

P
c

(log
2)

-61.7964
-61.7964

-61.7964
-61.7964

-61.7964
-61.7965

-61.7967
-61.7989

-61.8176
-61.9574

A
S

=
3

R
esults

P
B

O
U

N
D
α
/β

(log
2)

-85
-80

-75
-70

-65
-60

-55
-50

-45
-40

Tim
e

(m
s)

208
208

207
207

205
205

151
66

27
14

P
c

(log
2)

-61.8147
-61.8147

-61.8147
-61.8147

-61.8147
-61.8147

-61.8147
-61.8157

-61.828
-61.959

Table
12:E

ffi
ciency

analysis
forG

IFT

A
S

=
4

R
esults

P
B

O
U

N
D
α
/β

(log
2)

-85
-80

-75
-70

-65
-60

-55
-50

-45
-40

Tim
e

(m
s)

7355
7341

7352
7349

7337
5929

435
213

72
29

P
c

(log
2)

-60.66
-60.66

-60.66
-60.66

-60.66
-60.66

-60.66
-60.66

-60.6601
-60.6601

A
S

=
3

R
esults

P
B

O
U

N
D
α
/β

(log
2)

-85
-80

-75
-70

-65
-60

-55
-50

-45
-40

Tim
e

(m
s)

9
9

9
9

9
9

9
9

9
9

P
c

(log
2)

-60.6601
-60.6601

-60.6601
-60.6601

-60.6601
-60.6601

-60.6601
-60.6601

-60.6601
-60.6601

18

	Introduction
	Related Work
	Contribution
	Outline

	Preliminaries
	GPU
	Serialized Differential Search
	Meet-in-the-Middle Enhancement of the Matsui Search

	GPU-Accelerated Framework for Differential Search
	Framework Description
	Parallelization Model
	Meet-in-the-Middle Approach
	Proposed GPU Framework

	Performance evaluation
	New differential results for existing block ciphers
	Efficiency analysis

	Conclusion

