
Incorrectly Generated RSA Keys

How To Recover Lost Plaintexts

Daniel Shumow

Microsoft Research, Redmond WA 98052, USA

Abstract. When generating primes p and q for an RSA key, the algo-
rithm specifies that they should be checked to see that p − 1 and q − 1
are relatively prime to the public exponent e, and regenerated if this
is not the case. If this is not done, then the calculation of the decrypt
exponent will fail. However, what if a software bug allows the generation
of public parameters N and e of an RSA key with this property and
then it is subsequently used for encryption? Though this may seem like
a purely academic question, a software bug in the RSA key generation
implementation in the CNG API of a preview release of the Windows 10
operating system makes this question of more than purely hypothetical
value. Without a well defined decrypt exponent, plaintexts encrypted
to such keys will be undecryptable thus potentially losing user data, a
serious software defect. Though the decrypt exponent is no longer well
defined, it is in fact possible to recover the plaintext, or a small number
of potential plaintexts if the prime factors p and q of the public modulus
N are known. This paper presents an analysis of what steps fail in the
RSA algorithm and use this to give a plaintext recovery algorithm. The
runtime of the algorithm scales linearly in the magnitude of the public
exponent, in practice this is manageable as there are only a few small
public exponents that are used. This algorithm has been implemented
in a publicly available python script. We further discuss the software
bug that lead to this and derive lessons that can be used while testing
randomized functions in cryptographic software. Specifically, we derive
an explicit formula that describes the trade off between number of itera-
tions of tests of a randomized cryptographic functions and the potential
number of users affected by a bug dependent on the random values.

Keywords: public key cryptography · cryptographic software · software
bugs.

1 Introduction

The RSA asymmetric cryptosystem [10] is the first and most widely used asym-
metric encryption algorithm. The algorithm is still widely used today despite
the rising popularity of elliptic curve cryptography (ECC). Even though ECC is
gaining in popularity, ECC provides only a key establishment algorithm Elliptic
Curve Diffie-Hellman (ECDH) and a digital signatures Elliptic Curve Digital Sig-
nature Algorithm (ECDSA) but no asymmetric encryption algorithm. As such,

2 D. Shumow

RSA remains the gold standard for asymmetric encryption and is ubiquitously
used as such.

RSA keys consist of a public key and private key. The private key is a pair
of primes p and q, to be kept secret. The public key is the product of the primes
N = pq and a public exponent e such that e shares no factors in common with
p−1 or q−1. In the language of elementary number theory, e is relatively prime
or coprime to p− 1 and q− 1. Encryption takes a a positive integer x such that
1 < x < N and computes a cipher text c = xe mod N . Decryption is computed
as follows, the decrypt exponent d is defined such that ed = 1 mod (p−1)(q−1).
That is that d is the multiplicative inverse of e modulo (p−1)(q−1) and is defined
provided that e is coprime to (p− 1)(q− 1). Decryption continues by computing
cd mod N which returns x. The proof of this is straight forward, simple and
elegant relying only on basic results from the field of elementary number the-
ory. This proof is omitted here for space but there is no shortage of literature
explaining this, such as the original paper [10].

The correctness of the RSA algorithm, as stated, relies on the fact that the
public exponent e is relatively prime to p−1 and q−1. As such, when an RSA key
is generated the public exponent e is selected first and as the primes p and q are
generated they are checked, by the extended euclidean division algorithm, that
p− 1 and q − 1 are coprime to e and regenerated until they are not. This leads
to the question, what will happen if this regeneration step is not performed?
As noted previously, the decrypt exponent will not be defined and decryption
can not be performed. However, note that the decrypt exponent is not needed
for encryption so the public parameters can be generated and used without it.
What happens if such an RSA key is generated and encrypts important data?
This may seem like purely academic exercise, however this situation actually
occurred in a prerelease build of the Windows 10 operating system.

This paper presents a solution to the problem of recovering data that has
been encrypted by an RSA key where the public exponent is not coprime to
p − 1 or q − 1. By a careful analysis of what exactly happens when encrypting
with such a key, the underlying mathematical structure of the problem can be
used to yield a solution. This solution runs in time O(e), which is exponential in
the length of e, but in actuality e is chosen to be relatively small for performance
purposes. Most often e is only 17bits long, which provides a search space that
is easily handled with modern computers. Mathematically speaking, the num-
ber of potential plaintexts is exactly e, however in practice valid plaintexts will
have some structure, and this can be used to aid in the plaintext search. Specif-
ically, the common RSA encryption padding schemes, used to map messages to
a positive integer modulo N can be used to greatly narrow down the number
of potential plaintexts to just a few, and in some cases uniquely to the correct
solution.

Incorrectly Generated RSA Keys 3

The discussion of this problem begins by analyzing why exactly RSA asym-
metric encryption fails when e is not coprime to (p − 1)(q − 1), beyond that
the decrypt exponent is not defined. Furthermore key generation is analyzed so
that the probability that a random key has e not coprime to p − 1 or q − 1
in certain instances. This mathematical analysis is used to derive a plaintext
search, which runs in time O(e), and by utilizing properties of padding algo-
rithms greatly narrows down the number of potential plaintexts. This algorithm
has been implemented in Python and is publicly available. There is a discussion
of the bug that caused this actual problem in Win10 which is provided along
with references to public forum posts identifying users who have actually hit it.
Finally, this issue is used to derive lessons for testing cryptographic functions.

2 Incorrectly Generated RSA Keys

In this paper incorrectly generated RSA keys refers to RSA keys where the multi-
plicative group order is not relatively prime to the public exponent and hence the
usual decrypt exponent is not well defined. More concretely, keys with modulus
N = p · q, with p and q prime, and public exponent e is incorrectly generated if e
is not relatively prime to ϕ(N) = (p− 1)(q− 1), where ϕ denotes Euler’s totient
function which is defined as the count of positive integers less than N that are
coprime to N . In this discussion, e is assumed to be prime. This is a weak and
uncontroversial assumption, as for practical cryptographic purposes one desires
a prime exponent. In practice the vast majority of RSA keys use the Fermat
prime F4 = 22

4

+ 1 = 65, 537, and most of the remaining public exponents are 3.
Any other public exponents are relatively uncommon. Furthermore, CNG, where
the incorrect RSA key generation bug occurs, uses F4 as the public exponent
in almost every case. For the sake of straight forward presentation, the analysis
will proceed with the further assumption that (p − 1)(q − 1) is not divisible
by any higher powers of e. This assumption will be justified by a subsequent
analysis of the likelihood of either of these respective cases. After addressing the
simpler case of prime e, we provide a short discussion of how to extend to cases
of composite e or when higher powers of e divide ϕ(N).

To see what goes wrong when using such incorrectly generated RSA keys,
consider the group of units of the integers modulo N , (Z/NZ)×. This is the
group in which the arithmetic of the RSA algorithm is implicitly performed. If
e|ϕ(N) let E be the subgroup of e order elements of (Z/NZ)×, then there is an
isomorphism

(Z/NZ)× ∼= G× E (1)

with |E| = e and |G| = (p − 1)(q − 1)/e, by the assumption that e is prime.
This isomorphism is given by decomposing any integer x ∈ (Z/NZ)× as x = g ·`.
where g ∈ G and ` ∈ E. So the exponentiation step of public key encryption
with N and e has the following effect:

y = xe ≡ (g · `)e ≡ ge · `e ≡ ge mod N. (2)

4 D. Shumow

So, public key encryption is not one-to-one, as the factor ` is lost, in an infor-
mation theoretic sense. Thus the set of possible preimages under public expo-
nentiation of y is

P = {g · `|` ∈ E} . (3)

So the set of possible plaintexts P has order e.

If the public exponent were drawn from the full set of possible exponents
it would be infeasible to enumerate this entire set. Luckily, as noted above the
most common e = 65537, which is only 17 bits long which is a trivial search
space for modern computational devices. This gives hope that the plaintext that
has been lost to this exponentiation can be recovered. Then the problem reduces
down to determining which is the correct plaintext from the set of possibilities
P , this is discussed in the following section.

One may speculate that the most likely way that an RSA key is incorrectly
generated is if the check that to ensure that ϕ(N) is coprime to e is simply
not performed during key generation. As such, it is worthwhile evaluating how
often this condition will occur for randomly generated RSA moduli by using the
common but heuristic notion of probability of divisibility. As RSA moduli are
the product of two primes p and q, the probability that ϕ(N) = (p − 1)(q − 1)
is divisible by e is the probability that p − 1 or q − 1 but not both is divisible
by e. The probability that a random integer is divisible by e is 1/e, and that is
not is (1− 1/e). So, the probability that one prime satisfies this congruence, but
not the other is (1/e)(1 − 1/e), and there are two primes so the probability p
or q satisfy this congruence is (2/e)(1− 1/e) or a little less than one in 32, 000.
Similarly, the probability that ϕ(N) is divisible by e2 is the probability that
both p− 1 and q − 1 are divisible by e and both are not divisible by e2 or that
only one of the values is divisible by e2 and the other is not divisible by e. This
leads to the more involved probability.

1

e2

(
1− 1

e

)2

+
2

e2

(
1− 1

e

)
.

For e = 65537, this evaluates out to less than one in 1.43 billion. These relative
probabilities justify the assumption that no higher powers of e divide ϕ(N). RSA
Key generation is relatively expensive and RSA keys are usually persisted once
they are generated, so there are relatively few RSA keys generated per user. The
following thought experiment is illustrative of these relative probabilities. The
population of the earth is over 7 billion people, if each person were to generate
only one 20 keys with this flawed generation method the expected number of
keys with ϕ(N) divisible by e2 would be about 100, but there would be over four
million keys with ϕ(N) divisible by e.

Incorrectly Generated RSA Keys 5

3 Recovering Plaintexts Encrypted with Incorrectly
Generated RSA Keys

This section presents an algorithm for recovering potential plaintexts encrypted
to an incorrectly generated RSA public key. The previous section shows that
there are e potential plaintexts that can encrypt to a ciphertext c with such keys.
If plaintexts had no additional structure, then it would be up to users to sift
through these potential plaintexts to find potentially valuable lost data. This is
not an insurmountable task, however in practice plaintexts will be padded before
encryption and this can be leveraged to greatly reduce the number of potentially
valid plaintexts. The two most popular asymmetric padding schemes for RSA are
PKCS1v1.5 and OAEP. The more modern OAEP has provable properties and
uses a hash function to generate the padding and this virtually ensures that only
the valid plaintext will be recovered. The older scheme, PKCS1v1.5 has enough
structure that it will greatly limit the number of potential plaintexts, though
there will often be more than one potentially valid plaintext that users will have
to evaluate to determine which one correct plaintext. First the overall algorithms
for solving for potential plaintexts are presented and briefly analyzed. Then there
is an evaluation of both padding schemes to determine the precise probabilities
that they will be satisfied by a random string, and this yields an estimate of
the number of candidate plaintexts. This algorithm has been implemented in
a python script and recovers potential plaintexts in seconds for 4096-bit keys.
This section also includes an interesting relationship between this problem and
zero-knowledge proofs.

3.1 Plaintext Candidate Recovery Algorithm

The analysis in the previous section shows that by enumerating over the sub-
group E of e-order elements in (Z/NZ)× will give all the potentially lost factors
of the plaintext. By the assumption that e is prime and that e2 does not divide
ϕ(N), the subgroup E will have exactly e elements. As a prime order group it
is cyclic, and to generate all elements of E it is necessary to find a generator for
this group. A consequence of elementary number theory is that for any prime
p the integers mod p have a primitive element, or multiplicative generator (see
chapter 8 in [3].) By our assumptions, e must necessarily divide only one of
p− 1 or q − 1. By the Chinese Remainder Theorem, we can consider (Z/NZ)×

as a product of (Z/pZ)× and (Z/qZ)×. And by the aforementioned divisibility
criteria, E reduces to a trivial subgroup modulo one of the primes and is iso-
morphic to a subgroup modulo the other prime. Without loss of generality, say
that e|p− 1, then the problem of finding a generator of the e-order subgroup of
(Z/pZ)×, reduces to finding an element g mod p such that g(p−1)/e 6≡ 1 mod p.
Such a g will necessarily be a primitive root of p and g̃ = g(p−1)/e mod p will
be a generator of the e-order subgroup of (Z/pZ)×. Then this element g̃ can be
mapped via the Chinese Remainder Theorem into (Z/NZ)× and will be a mul-
tiplicative generator gE of E. This algorithm is well known and used extensively

6 D. Shumow

in modern cryptography, and in practice runs very quickly. This is a very tech-
nical discussion of the approach to finding a generator of E, but serves to show
the correctness of the algorithm. In fact it is not necessary to determine exactly
which prime has an e-order multiplicative subgroup and map the generator into
the integers modulo N . Rather, all the work can simply be done modulo N .
Specifically, selecting candidate generators g modulo N and testing that

gE = g(p−1)(q−1)/e 6≡ 1 mod N

reduces to working modulo p and q and directly yields the generator gE of E. In
practice this algorithm will have to check only a handful of values g and can just
begin sequentially searching at g = 2. This is algorithm is explicitly specified
in Algorithm 1. For a proof of correctness and precise analysis of runtime see
Theorem 2.2.7 in [4].

Algorithm 1 Find multiplicative generator gE of the subgroup of e order ele-
ments E < (Z/NZ)×.

ϕ̃← (p− 1)(q − 1)/e
g ← 1
repeat

g ← g + 1
gE ← gϕ̃ mod N

until gE 6= 1
return gE

With a generator gE of E found by Algorithm 1, it is straight forward to
enumerate over all elements ` ∈ E. Algorithm 2 implements this plaintext search
algorithm, with an abstracted padding check, which will be discussed in more
depth in section 3.2.

The correctness of algorithm 2 is straightforward to see. By the results of
section 5 if x is the plaintext, then x = a · ` for a ∈ G and ` ∈ E. The ciphertext
is of the form

c = xe ≡ (a · `)e ≡ ae · `e ≡ ae mod N.

As ed ≡ 1 mod (p−1)(q−1)
e it follows that

cd ≡ (ae)
d ≡ aed ≡ a mod N,

because |G| = ϕ̃ = (p− 1)(q − 1)/e. So the algorithm correctly recovers the non

lost factor a of x and it is required to iterate over the lost factor `. At the ith

iteration of the loop, the value ` = giE , and as gE is a multiplicative generator
of E this will iterate over all elements ` ∈ E. Thus the value of the encrypted
plaintext x will be enumerated by this loop. Though the padding check is ab-
stracted away in this description of the algorithm, this check ensures that only
x with valid padding are added to the set of possible plaintexts P . Therefore, at

Incorrectly Generated RSA Keys 7

Algorithm 2 Find set of potential plaintexts that encrypt to ciphertext c with
incorrectly generated RSA key N = p · q and public exponent e, given prime
factor p and q.

ϕ̃← (p− 1)(q − 1)/e
d← e−1 mod ϕ̃
a← cd mod N
Use Algorithm 1 to find multiplicative generator gE of e-order elements of (Z/NZ)×.

P ← {}
ell← 1 mod N
for all i = 0 · · · e− 1 do

x← a · ` mod N
if x is a correctly padded plaintext. then

P ← P ∪ {x}
end if
`← ` · gE mod N

end for
return Set P of potential plaintexts.

the end of this algorithm the set P contains only potential plaintexts with valid
padding, including the original plaintext x. The details of evaluating padding
checks are investigated in section 3.2.

The complexity of Algorithm 2 is dominated by the loop enumerating the
elements of E. It is straightforward to see that the algorithm performs the equiva-
lent of two private key operations and exactly e padding checks and the algebraic
complexity is O(e) (Z/NZ) operations. Thus algorithm 2 has complexity of O(e),
ignoring the private key operations and scaling of underlying arithmetic. Ignor-
ing the operations that scale with key size serves to describe the complexity of
the search for lost plaintext itself.

A Brief Discussion of General Exponents It is also possible to relax the assump-
tions and show that even if e2|ϕ(N) or e is composite this approach can be
used to solve for lost plaintexts. First, note that if any higher powers of e divide
ϕ(N) then it is possible that both p − 1 and q − 1 are divisible by e, in which
case the subgroup E will not by cyclic, but will be generated by at most two
elements (corresponding to the subgroup modulo each prime.) This is similar to
how (Z/NZ)× will have 4 square roots of unity. In this case, iterating to find all
e order elements will require O(e2) steps and the enumeration process is slightly
more complicated though not much more. In the case that e is composite, then it
may not be the case that e|ϕ(N) but instead that they are not relatively prime.
In this case, then the issue comes down to enumerating the e′ = gcd(ϕ(N), e)
order elements. And the group E′ of e′ order elements may be more complicated
than just cyclic or the product of two cyclic groups of the same order. Enumer-
ating the element of this group is not insurmountable and is not significantly
more complicated than the algorithm here, but beyond the scope of this paper.

8 D. Shumow

3.2 Padding Schemes and Recovering Plaintexts

To actually solve for a lost plaintext in practice, it is necessary to look at the
padding schemes that are used to padded out plaintexts before they are en-
crypted with RSA. There are two commonly used standardized RSA plaintext
padding algorithms, PKCS1 v1.5 [7] and OAEP [8]. In fact, these are the only
two padding algorithms supported by the CNG API, where the software bug
occurred. Both of these padding schemes are evaluated here.

RSA OAEP The RSA-OAEP scheme is the most modern RSA padding scheme
and it is built on a theoretical foundation[1] and is provably Ind-CCA2 in the
random oracle model [9]. This property limits the malleability of decrypted plain-
texts and as a direct consequence when RSA-OAEP is used will uniquely identify
the correct plaintext with very high probability algorithm 2. The following de-
scription of RSA-OAEP shows how the construction limits the probability of
false positives in the plaintext search.

RSA-OAEP padding takes a message M of length m, an optional label L
which may be the empty string, and a hash function H. Let n be the length
of the modulus N in bytes, and h be the digest length of H. The function also
defines a mask generation function MGF (s, k) that takes a variable length seed
s and utilizes H to generate a k byte string, to be XORed as a mask similar
to a stream cipher. The MGF which will not be described in detail here, works
by iterating H applied to the seed and a counter, and concatenating digests to
generate a sufficient number of bytes. The length of the message must satisfy
m ≤ n− 2h− 2. First, the message is padded out to an n− h− 1 byte string by
concatenating values:

D = H(L)‖PS‖0x01‖M (4)

where PS is a string of n−m− 2 ∗h− 2 zero bytes. Then a random h byte seed
S is generated and input to MGF and XORed with D to produce:

D′ = MGF (S, n− h− 1)⊕D. (5)

Now D′ is passed as a seed to the MGF to mask out the seed S as

S′ = MGF (D′, h)⊕ S (6)

and the plaintext is the concatenation:

x = 0x00‖S′‖D′. (7)

This is interpreted as a big-endian integer and encrypted in the usual way as
c = xe mod N .

The probability that a random n byte candidate x passes the OAEP padding
validation is determined by evaluating the the probability that each padding step
is satisfied in reverse order. The first thing checked is that as in equation 7 the

Incorrectly Generated RSA Keys 9

most significant byte of x is 0x00, which will occur with probability 256−1. As
mentioned before, the details of the construction of MGF are omitted, and the
output of MGF is assumed to be indistinguishable from a random string. The
candidate value D is recovered by parsing out S′ and D′ values and combing
equations 6 and 5 at once, by calculating:

D = MGF (MGF (D′, h)⊕ S′, n− h− 1)⊕D′.

The probability that D is accepted as a properly padded string is the probability
that the first h bytes of D equalH(L), which is simply 256−h. The rest of the
string D is properly formatted if it is all 0x00 bytes at the beginning followed
by a single 0x01 byte. There are n− 2h− 1 bytes in the rest of D and there are
256n−2h−1−k byte strings with a k byte prefix of the form 0x00 · · · 0x00 ‖ 0x01
and summing this from 1 ≤ k < n−2h−1 gives (256n−2h−1−1)/(256−1) total
valid strings out of 256n−2h−1 total possible strings. Combining this with the
other probabilities shows that the probability of any random string satisfying
this is

1

256
· 1

256h
· 256n−2h−1 − 1

255 · 256n−2h−1
=

256n−2h−1 − 1

256h+1 · 255 · 256n−2h−1
≈ 1

256h+1 · 255
.

So the expected number of false positives in a set of size e, such as iterating over
E is e/256h+2, and for e = F4 this is approximately 256−h which is essentially
none. Thus when using OAEP Algorithm 2 is expected to find a unique solution.

PKCS1 v1.5 The RSA PCKS1 v1.5 scheme predates OAEP and its design was
more adhoc and does not have the same desirable provable properties as OAEP.
In particular the plaintext that is output from decryption is more malleable
than OAEP. Indeed, this malleability historically made this scheme suscepti-
ble to timing attacks [2] and programmers implementing PKCS1 v1.5 need to
be careful to avoid serious security bugs related to this. In the case of trying
to recover plaintexts lost to incorrectly generated RSA keys this malleability
makes it more likely that there are false positives. In fact, it is so much more
likely that we expect that we will frequently see at least one false positive. How-
ever, the expected number of plaintexts is small and easily reviewed by a human.

Compared to the scheme for OAEP, the PCKS1 v1.5 padding scheme is quite
simple. To pad a PKCS1 v1.5 for an n byte public key, the padding algorithm
takes a message M of m bytes where m ≤ n − 11. First generate n − m − 3
padding string PS of random nonzero bytes, note that the length requirement
on M ensures that PS is at least 8 bytes. Then the padded bytes to encrypt are

x = 0x00‖0x02‖PS‖0x00‖M (8)

interpreted as a big-endian integer and encrypted with RSA as usual.

Due to the simplicity of the PKCS1 v1.5 scheme, there are far fewer opportu-
nities to detect invalid plaintexts. The first and most likely way to detect invalid

10 D. Shumow

plaintexts is if the most significant two bytes are not 0x00‖0x02, the probability
that a random plaintext candidate satisfies this is 256−2. The only other way
to catch an invalid PKCS1 v1.5 padded plaintext is if one of the first 8 padding
bytes is zero. First observer that are 2567 strings with a zero at each first 8 bytes,
so there are 8 ·2567 = 259 possible invalid values for the first 8 bytes. Thus there
are 264 − 259 = 259(25 − 1) possible valid values for the first 8 bytes. Therefore
the probability that a given random string has a valid value for the first 8 bytes
of the padding string is

259(25 − 1)

264
=

25 − 1

25
=

31

32
.

Combing the two probabilities gives

1

216
· 31

32
=

31

221
.

The expected number of plaintexts that satisfy this is 31e/221 and when e = F4 =
216+1, the expected number of plaintexts is 31(216+1)/221 = 31/32+31/221 ≈
0.968. Thus most plaintext searches will yield at least one false positive.

3.3 Software Implementation of Plaintext Recovery Algorithm

A python script implementing this algorithm has been made available under the
MIT license on GitHub at https://github.com/danshumow-msft/FixBadRsaEncryption.
This python script is fully self contained and has no external dependencies other
than a Python interpreter version 3.4 or greater. For an incorrectly generated
RSA key with a 4096-bit modulus and e = 65537, this script runs in under 30
seconds on a Laptop with a Intel Core i7 2.6Ghz processor and 16GB of RAM.

3.4 Connection to Zero Knowledge Proofs.

The algorithm for recovering plaintexts has an interesting connection to a zero
knowledge proof of quadratic reciprocity. Specifically, this approach to recovering
plaintexts is similar to, and in some ways a generalization of, a zero knowledge
protocol for proving the ability to compute quadratic residues from [5]. To ex-
plain this connection the protocol is presented briefly here.

Suppose that N is an RSA modulus, and that Alice knows the factors p and
q. Then Alice can compute square roots modulo N and may prove this to Bob
as follows:

1. Bob picks x mod N and sends r = x2 mod N to Alice.
2. Alice picks a random y mod N and sends a = y2 mod N to Bob.
3. Bob picks a random b ∈ {0, 1} and sends b to Alice.
4. Alice sets c = y if b = 0 or computes x from r and sets c = x · r mod N if
b = 1, and sends c to Bob.

https://github.com/danshumow-msft/FixBadRsaEncryption

Incorrectly Generated RSA Keys 11

5. Bob checks that a ≡ c2 mod N if b = 0 or that c2 ≡ a · r mod N .

If Alice cannot compute quadratic residues, then Bob will catch her with
at least one-half probability. Implicit in this protocol is the fact that Alice can
compute square roots modulo N . The e root finding algorithm performed in the
plaintext search is a generalization of square root finding to any prime e|ϕ(N).
Furthermore, in an informal sense if Alice can recover a plaintext that has been
encrypted to an incorrectly generated RSA key similarly can be used to create
a zero knowledge proof that she can compute e-roots.

4 A Software Bug That Incorrectly Generates RSA Keys

The bug that CNG was incorrectly generating RSA keys was publicly reported in
a prerelease version of Windows 10 on April 24, 2019 [6]. The bug reporter found
that with Windows 10 version 1803 - OS Build 17134.706 that RSA keys were
being incorrectly generated. By generating up to one hundred thousand 2048bit
RSA keys a “bad” (incorrectly generated) RSA key was found. Furthermore, the
discloser debugged down and determined that the the public exponent was not
invertible modulo ϕ(N) and determined that for this key the public exponent
divided q − 1, correctly identifying that this is an invalid RSA key.

This public disclosure of the bug shows that this potentially serious issue
was found by and was affecting Windows 10 users. Also, the occurrence preva-
lence of the bug shows that this is likely caused by some manner of incorrect
or skipped check that the public exponent e is invertible modulo ϕ(N). It is
worth noting that this occurred after SymCrypt was used as the implementa-
tion of asymmetric cryptography, including RSA Key Generation, in CNG [13].
Though SymCrypt was not released on GitHub until after the Windows 10 1803
release with the reported issue. Reviewing the relevant code in the SymCrypt
library, which occurs in rsakey.c for RSA key generation and primes.c for prime
generation, shows that this code does not contain any obvious defects that would
cause this. The conclusion would be that this bug was introduced in SymCrypt
when CNG switched to using it for RSA Key Generation, but fixed before it was
published on GitHub.

There have been other high profile issues with SymCrypt. Such as such as
a bug in modular reduction, which would allow a carefully crafted DSA mod-
ulus to create a infinite loop [11]. This bug was caused because error returns
were not properly checked while performing Montgomery multiplication. It is
worth noting that a similar issue could cause this issue with RSA Key genera-
tion, such as if error returns were ignored while computing the decrypt exponent.

The original bug disclosure thread ends with a post confirming that the issue
is no longer present in Windows 10 1903. However, Windows 10 1803 will be
supported until 2021, due to the coronavirus pandemic. So any users running

12 D. Shumow

into this issue with lost data may fix the issue with the scripts referenced in
section 3.3.

5 A Lesson For Testing Randomized Cryptographic
Functions

This bug that causes incorrectly generated RSA keys underscores the importance
of detecting and fixing even seemly rare bugs in randomized cryptographic func-
tions. This section presents another example of a similar bug in a randomized
cryptographic function, specifically RSA PKCS1 v1.5 encryption padding. These
two bugs are infrequent enough that they will not be found by typical developer
unit tests which may exercise functions a few times to assert basic correctness
However, they are frequent enough that they would affect a large number of
users. This gap between what a developer may see and what users will see when
software is released motivates an analysis of how many test iterations are re-
quired to detect bugs and limit the expected number of users affected by bugs.

The incorrect RSA key generation bug is reminiscent of a bug that the author
once saw while developing the first version of the CNG cryptographic API in
Windows Vista. This bug, which occurred in the RSA PKCS1 v1.5 encryption
padding, had a similar failure rate occurring with a probability at least 2−13.
As described in section 3.2, during public key encryption with PKCS1 padding,
there are at least 8 bytes of nonzero padding. The bug was that this padding
was first filled with a Cryptographic PRNG, and then a loop went through each
byte of padding and if there was a zero byte a new byte was generated and used
instead of the zero byte. The bug was that this zero check should be performed
in a loop until a nonzero byte was generated, not if a zero byte was generated.
If two zero bytes were generated in a row for that index, which occurs with
probability 2−16 the padding check would return a plaintext of the wrong size
including all padding after the first zero byte along with the plaintext. There
are at least 8 padding bytes in PKCS1 v1.5 padding, so this bug will occur in
at least one in every 213 encryption operations using this padding scheme.

Considering the incorrect RSA key generation bug and the incorrect padding
bug shows that a bug that may seem rare to a developer will be rapidly mag-
nified once software is released and affect a potentially large number of users.
Suppose that a cryptographic function is directly or indirectly used by n users,
and called on average c times per user. Then if a bug in a randomized crypto-
graphic function has probability ε of occurring then the expected of times this
bug will occur is ncε. A bug with probability ε is expected to occur with high
probability after 1/ε iterations. In other words, if a randomized function is run
through t iterations of tests with fresh randomness then with high probability
the test will expose bugs that have probability greater than 1/t. So, this gives
an upper bound on the probability that a bug will occur. Thus the number of

Incorrectly Generated RSA Keys 13

test iterations run bounds the expected number of users affected by a bug to nc/t.

This analysis is easily applied to the bug causing incorrectly generated keys,
simply assume that every user generates at least one RSA Key (in actuality this
number will be much higher.) Microsoft claims that there are over one billion
Windows 10 devices, and as argued in sections and 4 the probability of this bug
occurring is for one in every 32K keys. This yields that this bug threatened to
affect over at least 32 thousand users.

This shows the importance of investigating thoroughly and fixing even seemly
rare cryptographic bugs. Even though RSA key generation is relatively infrequent
compared to other cryptographic functions a one in 32 thousand failure effects
tens of thousands of users, and likely much more. Using the analysis in this sec-
tion can give cryptographic developers an idea of how much testing is needed
for randomized functions to catch bugs caused by randomness.

6 Conclusion

This paper analyzes the problem of recovering plaintexts encrypted to incorrectly
generated RSA keys. This analysis reveals that if there are not proper checks
that e is coprime to φ(N) then the probability of an incorrectly generated RSA
key is approximately 2/e, and for the most popular choice of e = 65537, this
probability is slightly less than 1/32000. The problem is analyzed for its mathe-
matical structure and this is used to develop an algorithm to search for potential
plaintexts that encrypt to a given ciphertext. This algorithm runs in time O(e)
which is tractable on current computers, due to the short public exponent that
are typically used. Mathematically speaking, the problem has e solutions, but
padding algorithms impose structure that can be used to greatly reduce the po-
tential valid plaintexts. In the case of OAEP with virtual certainty we can expect
only the correct plaintext. Though with PKCS1 v1.5 we may expect that there
is almost always a false positive along with the correct answer, but the correct
answer should be easily identifiable from this. This provides a useful solution
to the problem, which actually occurred in a prerelease version of the Win10
operating system, as evidenced by public forum posts. Code implementing this
algorithm is publicly available and runs in seconds for even large key sizes. The
problem of recovering plaintexts encrypted to incorrectly generated RSA keys
was also compared to a similar Zero Knowledge protocol for Quadratic Residues.
Finally, this issue is used to derive a lesson for deriving the number of test itera-
tions to run against a randomized cryptographic function relating to the number
of users, and potentially affected users.

Acknowledgments The author would like to thank Erlend Graff, Greg Zaverucha
and Brian LaMacchia for their help in the investigation of this issue and de-
velopment of the plaintext recovery algorithm. Erlend Graff for his detailed in-
vestigation and bug report of this issue in Microsoft forums. Greg Zaverucha

14 D. Shumow

for his work on the original investigation of the incorrectly generated RSA key
and verifying that this approach works. Brian LaMacchia for helping turn this
into an award winning CRYPTO ’19 rump session talk. The author would also
like to thank Dan Boneh for pointing out the connection between the plaintext
recovery algorithm and zero knowledge proofs of quadratic residues.

References

1. Bellare M., Rogaway P.: Optimal Asymmetric Encryption – How to encrypt with
RSA. In De Santis, A. (ed.) Eurocrypt 1994, pp. 92–111. LNCS, Vol. 950, Springer-
Verlag (1995)

2. Bleichenbacher D.:Chosen ciphertext attacks against protocols based on the RSA
encryption standard PKCS #1. In Krawczyk H. (ed.) Advances in Cryptology –
CRYPTO 1998, pp. 1–12 LNCS, Vol 1462, Springer, Berlin, Heidelberg (1998)

3. Burton, D.M.: Elementary Number Theory. 4th edn. International Series in Pure
and Applied Mathematics. McGraw-Hill, USA (1998)

4. Crandall, R., Pomerance, C.: Prime Numbers A Computational Perspective. 2nd
Ed. Springer, New York (2000)

5. Goldwasser, S., Micali, S., Rackoff, C.: The Knowledge Complexity of Interactive
Proof Systems. SIAM J. Comput., 18(1), 186–208 (1989)

6. Graff, E.: Bug in CNG RSA key generation?
https://social.msdn.microsoft.com/Forums/windowsdesktop/en-US/3d581bdb-
ccaa-43c7-bbaa-ae22fce06b32/bug-in-cng-rsa-key-generation Last Accessed 29 Aug
2020

7. Kaliski, B.: PKCS #1: RSA Encryption Version 1.5. RFC 2313. Mar. 1998.
8. Kaliski, B., Staddon, J.:PKCS #1: RSA Cryptography Specifications Version 2.0.

RFC 2437. Oct. 1998.
9. Fujisaki, E., Okamoto, T., Pointcheval, D., and Stern, J.: RSA-OAEP is secure

under the RSA assumption. In Kilian, (J.) (ed.) Advances in Cryptology–CRYPTO
2001, pp. 260-274. LNCS, vol. 2139, Springer, Berlin, Heidelberg (2001)

10. Rivest, R., Shamir A., Adleman, L.: A method for obtaining digital signatures and
public key signatures. Comm. ACM, 2(2), Feb. 1978.

11. 1804 - cryptoapi: SymCrypt modular inverse algorithm - Project Zero
https://bugs.chromium.org/p/project-zero/issues/detail?id=1804 Last Accessed 30
Aug 2020

12. Microsoft by the Numbers, https://news.microsoft.com/bythenumbers/en/windowsdevices
Last Accessed 29 Aug 2020

13. microsoft/SymCrypt: Cryptographic Library, https://github.com/Microsoft/SymCrypt
Last Accessed 29 Aug 2020

	Incorrectly Generated RSA Keys

