Relaxed freshness in component authentication

Frank.Schuhmacher@segrids.com

2020-02-02

Abstract

We suggests a relaxed freshness paradigm for challenge-response-
authentication for each field of application where challenger and re-
sponder are tightly coupled and authentication takes place in a friendly
environment. Replay attacks are not feasable under this premise, and
freshness can be relaxed to relative freshness: no refresh is required
as long as all previously tested responders were authentic. One field
of application is anti-counterfeiting of electronic device components.
The main contribution is a formal security proof of an authentication
scheme with choked refresh. A practical implication is the lifetime in-
crease of stored challenge-response-pairs. This is a considerable advan-
tage for solutions based on hardware intrinsic security. For solutions
based on symmetric keys, it opens the possibility to use challenge-
response-pairs instead of secret keys by the challenger — a cheap way
to reduce the risk of key disclosure.
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1 Introduction

This article applies to challengers, such as mobile phones, banking terminals,
or ECUs, which need to authenticate responders, such as batteries, smart
cards, or sensors. Devices are always assumed authentic. Non-authentic
responders will be called bad for short.

A challenger performs tests to verify the authenticity of an attached re-
sponder. It sometimes needs to refresh its test configuration'. Freshness
shall improve the challenger’s capacity to detect bad responders. In litera-
ture, see [1] or the overview in [2], a test configuration is “fresh” if it has
never been applied to any responder. We need to refine the freshness def-
inition and call a test absolutely fresh if it has never been applied to any
responder before, releatively fresh if it has never been applied to a bad re-
sponder, faultless if it has never returned a fail, and faulty if it has already
returned a fail.

A bad responder might still pass authentication tests up to a certain
degree of freshness: If a bad authentication feature is chosen, a secret key
was disclosed, or a random number doesn’t do its job then a bad responder
might even pass an absolutely fresh test of a challenger. In this case the
authentication scheme is broken.

If the scheme is not broken, bad responders fail absolutely fresh tests
(bfaf). Bad responders still might pass relative fresh tests if bad respon-
ders can sniff the communication between a challenger and an authentic
responder and use the gained information in their own, or another bad re-
sponder’s authentication by the same challenger later on (replay attack).

If bad responders fail absolutely fresh tests and are unable to gain any
information about the communication between the challenger and authen-
tic responders then bad responders will fail relatively fresh test (bfrf) as
well. If this premise holds, a bad responder might still pass a faulty test:
If for example a so-called SIMPL (Simulation Possible but Laborious, [3])
authentication feature is chosen instead of a strong authentication feature
then a bad responder might fail in a first test but succeed in the same test
if repeated later.

Under the same premise, if a strong authentication feauture is chosen,

The term test configuration is used in a broad sense such that fully determines the
challenger actions in a test. A test configuration can include a session key and a nonce,
for example.



one might assume even that bad responders fail faulty tests (bffy). A
neccesary condition is that after receiving a challenger specific challenge a
bad responder or its agent will not be able to mimick the host in a connection
with an authentic responder in order to gain the authentic response. In this
case, freshness of a challenger is not required at all.

The main result of Section 2 is that bfrf is equivalent to ”bad fail fault-
less” bffl. Hence there are exactly the four listed cases. They correspond
to four formal assumtions:

1) —bfaf,

(

(2) bfaf & —bfrf,
(3) bfrf & —bffy,
(

4) bffy.

It is evident that in case —bfaf authentication is not possible. In case
bfaf & —bfrf, the challenger must always do a refresh operation before
each authentication test. In Section 3.1, we will formally prove security of
responder authentication with always refresh for this case.

This will only be a warm-up for the case bfrf & —bffy. This is the most
interesting case?, since it enables authentication with a relaxed freshness
paradigm and solutions, where the challengers use a stored list of challenge-
response-pairs, instead of generating reference responses in realtime. In
Section 3.2 we will specify an authentication scheme with choked refresh for
this case and formally prove its security.

In case bffy authentication only requires a fixed, challenger specific test
for each challenger, and that the challenger-to-test assignment is unpredi-
catable. It will not be further considered in this article.

All formal proofs in this article were carried out by the tool E-prover [5].
The results are practically relevant for three fields of application:

a. Accessory Authentication: accessory and main device are tightly cou-
pled and always under control of a user. Assume that the user himself
is not a hacker. The attacker is a counterfeit accessory manufacturer,
here.

b. Embedded component authentication: this is similar to accessory au-
thentication, if the challenger is a trusted main device and the respon-
der is an embedded component directly wired with the main device.

2This case is the contrary of the Dolev—Yao model [4], where "the attacker carries the
message” .



A field of application is automotive, where the responder might be an
actor or sensor.

c. Goods authentication: The responder is a tag attached to a good and
the challenger is a dedicated reader. The attacker is the counterfeit
manufacturer or deliverer.

2 Formal first order authentication theory

2.1 Formal language I

Models in first order logic have a single data type. The data in our models
will be events. An event is related to a dedicated challenger. Test events
are also related to an attached responder.

We start with a formal language of only four 1-ary and two 2-ary rela-
tions: The 1-ary relations auth and bad indicate if an attached responder is
authentic or not. The 1-ary relations pass and fail indicate if an attached
responder passes or fails a test.

The 2-ary relation sametest indicates if a dedicated challenger has the
same test configuration at two given events.

The 2-ary relation chron shall define a chronological order on the event
set.

A full model is a history of events, and for each test event the indication
if the tested responder is authentic or not, and if the test result is pass or
fail.

2.2 Freshness

In this article, sentences are printed in a FOF syntax [6]. The characters !,
7, " are used for quantifiers V, 3 and the negation —. For readability and in
contrast to eprover syntax, we don’t use a closed form. For a translation to
eprover syntax, please add a forall quantifier over all free variables in front
of each formula.

Definition 1 introduces a 2-ary relation sync for synchronous events:

sync (X,Y) <=> (chron(X,Y) & chron(Y,X))
Axioms 1-2 shall state that chron is a weak order:
chron(X,Y) | chron(Y,X)

(chron(X,Y) & chron(Y,Z)) => chron(X,Z)

Axioms 3-5 state that sametest is an equivalence relation:



sametest (X,X)
(sametest (X,Y) & sametest (Y,Z)) => sametest (X,Z)

sametest (X,Y) => sametest (Y,X)

Definition 2 introduces a 2-ary relation testchron to indicate if the same
test is executed at two chronological events:

testchron (X,Y) <=> (sametest (X,Y) & chron(X,Y))

Now, eprover is able to prove the Lemmas 1-3:

testchron (X,X)
(testchron (X,Y) & testchron(Y,Z)) => testchron (X,Z2)

sametest (X,Y) => (testchron(X,Y) | testchron(Y,X))

Axiom 6 states that pass and fail are mutually exclusive:

fail (X) = “pass(X)

Axiom 7 states that auth and bad are mutually exclusive:

auth (X) = ~bad(X)

Axiom 8 states that authentic responders always pass:

auth (X) => pass(X)

Axiom 9 states that if a responder is present, the test result is either pass,
or fail:

(auth(X) | bad(X)) <=> (pass(X) | fail (X))

Definition 3 introduces the 1-ary relation test:

test (X) <= (auth(X) | bad(X))

In Section 2.5, test will be one out of four challenger operations whose

starting points are the events in consideration. Definition 4 introduces the
l-ary relation refresh. A refresh is the birth of a test configuration:

refresh (X) <= ![Y]:(sametest(X,Y) => chron(X,Y))
In Section 2.5, refresh will be one out of four challenger operations whose

starting points are the events in consideration. Definition 5 introduces a
predicate absfresh stating that the current test was never applied before:

absfresh (X) <= ![Y]:((sametest(X,Y) & test(Y)) => chron(X,Y))

Definition 6 introduces a predicate relfresh to state that the the current
test was not applied to a bad responder before:



relfresh (X) <= ![Y]:((sametest(X,Y) & bad(Y)) => chron(X,Y))

Note that in contrast to absfresh, this is is meta-property which cannot
be verified by the challenger itself. The following Lemma 4 indicates an
equivalent definition:

relfresh (X) <= ![Y]:((sametest(X,Y) & bad(Y)) => testchron(X,Y))
Definition 7 introduces the predicate faultless to indicate that the cur-
rent test has never returned a fail:

faultless (X) <=> ![Y]:((sametest(X,Y) & fail(Y)) => chron(X,Y))
Faultless is again a property the challenger itself is aware of. The following
Lemma 5 indicates an equivalent definition:

faultless (X) <=> ![Y]:((sametest(X,Y) & fail(Y)) => testchron(X,Y))
Eprover is able to prove as Lemmas 6-8 three implications between
absfresh, relfresh, and faultless:

refresh (X) => absfresh (X)
absfresh (X) => relfresh (X)

relfresh (X) => faultless (X)

Definition 8 introduces the central “bad fail absolutely fresh” assumtion
bfaf:

bfaf <=> ![X]:((bad(X) & absfresh (X)) = fail (X))

Definition 9 introduces the “bad fail relatively fresh” assumption bfrf:
bfrf <=> ![X]:((bad(X) & relfresh (X)) = fail (X))

Definition 10 introduces the “bad fail faultless” assumption bff1l.

bffl <=> ![X]:((bad(X) & faultless (X)) => fail (X))

Eprover is able to prove Lemmas 9-10:

bfrf = bfaf

bffl => bfrf

Axiom 10 states the existence of the time where the current test configu-
ration was created by a refresh:

?7[X]: (sametest (X,Y) & refresh (X))

Axiom 11 states once a given test was absolutely fresh:

test (Y) = 7[X]:(sametest(X,Y) & absfresh(X) & test (X))



Axiom 12 states that for a test of a bad responder, once the same test was
applied to a bad responder but never to a bad responder before:

bad(Y) => ?[X]:(sametest (X,Y) & relfresh (X) & bad (X))
Lemma 11 states that this time was in the past:

bad(Y) => 7[X]:(testchron(X,Y) & relfresh (X) & bad(X))

2.3 Main theorem

We derive as first formal theorem that bfrf and bffl are equivalent. To en-
able this derivation on a small laptop, we needed to derive first, the following
sequence of Lemmas 12-18:

relfresh (Y) | ?[X]:(sametest(X,Y) & bad(X) & relfresh (X))
relfresh (Y) | ?[X]:(testchron(X,Y) & bad(X) & relfresh (X))

(bad(Y) & faultless(Y)) => ((bad(Y) & relfresh(Y)) |
?7[X]:(testchron (X,Y) & bad(X) & relfresh (X)))

(bad(Y) & faultless(Y)) =
?7[X]:(testchron (X,Y) & bad(X) & relfresh (X))

(bad(Y) & faultless(Y) & bfrf) = ?7[X]:(testchron(X,Y) & fail (X))

(bad(Y) & faultless(Y) & bfrf) =
(fail (Y) | ?7[X]:(XI=Y & testchron(X,Y) & fail (X)))

bfrf = bffl

Theorem 1. It can be formally derived from Axioms 1-22 that:

bfrf <= bffl
It will turn out in Section 3.2 that the theorem is practically very useful.

2.4 Formal language II

Definition of an authentication procedure is mainly the specification of the
challenger behaviour: a challenger is most time in sleep mode and woken up
from time to time by some external event to verify the authenticity of an
attached responder by tests. Sometimes the challenger performs a refresh of
its test configuration. If a responder passes all tests, the host executes a go
function. If the responder fails a test, the challenger goes back to sleep.



Extend the formal language defined in Section 2.1 as follows: The 2-ary
relation samechall indicates if the same challenger is involved in two given
events.

The 1-ary relations sleep and go define two more challenger operations
(in addition to the operations test and refresh that were introduced in
Definitions 3 and 4).

The 1-ary function previous maps an event to the previous event of the
same challenger.

Note that it is suitable to build models in such a way that, for each
challenger, an initial sleep event is a fix point of the previous function.

2.5 Device behaviour

The following Axioms 13-15 state that the challenger actions are exactly
sleep, refresh, test, and go:

sleep (X) <=> "(refresh (X) | test(X) | go(X))

refresh (X) <= 7“(sleep (X) | test(X) | go(X))

test (X) <=> "(sleep(X) | refresh(X) | go(X))

Lemma 19 is an immediate consequence:

go(X) <= 7 (sleep (X) | refresh(X) | test (X))

Axioms 16-18 state that samechall is an equivalence relation:
samechall (X,X)

(samechall (X,Y) & samechall (Y,Z)) => samechall (X,Z)

samechall (X,Y) => samechall (Y,X)

Axiom 19 is the requirement that test must be challenger specific:

sametest (X,Y) => samechall (X,Y)

Definition 11 introduces a 2-ary relation challchron to indicate if the
same challenger is involved in two chronological events:

challchron (X,Y) <=> (samechall(X,Y) & chron(X,Y))

Now, we can prove Lemmas 20-23:
testchron (X,Y) => challchron (X,Y)

challchron (X,X)

(challchron (X,Y) & challchron(Y,Z)) => challchron (X,Z)



samechall (X,Y) => (challchron (X,Y) | challchron(Y,X))

Axiom 20 requires a single event per challenger at a time:

(sync(X,Y) & samechall (X,Y)) = X=Y

Axiom 21 is the requirement that there is no re-incanation of a test con-
figuration:

(challchron (X,Y) & chron(Y,Z) & sametest(X,Z2)) =
sametest (X,Y)

We need two axioms on the previous function. Axiom 22 states that pre-
vious maps an event to a former event of the same challenger:

challchron (previous (X) ,X)

Axiom 23 states that previous means previous:

challchron (X,Y) <=> (X=Y | challchron (X, previous(Y)))

We can prove the following Lemmas 24-32:

challchron (X,Y) => challchron (previous(X),previous(Y))

Note that the converse of the latter is false. Take as a counter example an
event with X!=Y, challchron(Y,X), and previous(X)=previous(Y)=Y.
(challchron (X,Y) & X!=Y) => challchron (X, previous (Y))

(challchron (previous (X),Y) & previous (X)!=Y) =
challchron (X,Y)

(testchron(X,Y) & X!=Y) => challchron (X, previous (Y))

(testchron (previous (X),Y) & previous (X)!=Y & sametest (X,Y))
=> testchron (X,Y)

(sametest (X, previous (X)) & absfresh(previous (X)) &
“test (previous(X))) => absfresh (X)

Note that the latter requires the no-reincarnation axiom.

refresh (X) | sametest (X, previous (X))

If the challenger was absolutely fresh at the previous event, and this was

not a test, then it’s still absolutely fresh:

(absfresh (previous (X)) & “test(previous(X))) => absfresh (X)

refresh (previous (X)) => (absfresh(previous(X)) &
“test (previous(X)))

If the previous operation was a refresh, the challenger is absolutely fresh:
refresh (previous (X)) => absfresh (X)
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Figure 1: Authentication with always refresh

3 Provable secure authentication

3.1 Authentication with always refresh

Consider an authentication with ”always refresh” as depicted in Figure 1.
A challenger is most time in sleep mode. If woken up by some external
event, first, it does a refresh, then it tests an attched responder, and starts
its standard go function if the result is pass. If the test fails, the challenger
goes back to sleep. After each go, the challenger goes back to sleep.

Definition 12 formalizes the security relevant aspect of this challenger
specification as ”authentication with always refresh” assumption awar:
awar <=> ![X]:(go(X) =

(pass(previous (X)) & refresh (previous(previous(X)))))

We now prove the Security of authentication with always refresh, required
that bfaf (bad fail absolutely fresh) is true, see Section 1.

Derive from {Axioml...23} U {awar} U {bfaf} the Lemmas 33-36:

refresh (previous (previous (X))) => absfresh(previous (X))

(bad(previous (X)) & absfresh (previous(X))) => fail (previous (X))

10



(pass(previous (X)) & absfresh (previous(X))) => auth(previous (X))

(pass(previous (X)) & refresh (previous(previous(X)))) =
auth (previous (X))

Now, eprover is able to prove the security of the authentication scheme with
always refresh:

Theorem 2. It can be formally derived from {Axioml...23} U {awar} U
{bfaf} that:

go(X) => auth(previous (X))

3.2 Authentication with choked refresh

The authentication scheme of the previous section required an unlimited
source of freshness. In this section, we optimize things to save freshness.
This optimization is admitted if one can safely assume that bfrf (bad fail
relative fresh) is true, see Secion 1. Recall that this assumption is reason-
able if bfaf is true, and a bad responder will not be able to capture any
information exchange between the challenger and an authentic responder
and reuse the gained information in their own authentication later on.

Consider an authentication with “choked refresh” as depicted in Figure 2.
A challenger is most time in sleep mode. If woken up by some external
event, first, it tests the attached responder with an old test configuation. If
the test fails, the challenger implicitly changes its state from “faultless” to
“faulty”, if it was faultless before, and goes back to sleep. This state change
is not depicted in the diagram, and needs to be implemented savely, refer
to Section 3.3 below. If the test passes, and the old test configuration was
still faultless, the challenger starts its standard go function. If the old test
configuration was not faultless, the challenger does a refresh and tests the
attached responder again. If the test fails, the challenger implicitely updates
its state as noted and goes back to sleep. If the test passes, the challenger
starts its standard go function. After the go, the challenger goes back to
sleep.

Definition 13 formalizes the security relevant aspect of this challenger
specification as “authentication with choked refresh” assumption awcr:
awer <=> [X]:( go(X) =

((pass(previous (X)) & faultless (previous(X))) |

(pass(previous (X)) & refresh (previous(previous(X))))))

11
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Figure 2: Authentication process with choked challenger update
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We now prove the Security of authentication with choked refresh, required
that bfrf is true. Derive from {Axiom 1...23} U {awcr} U {bfrf} the fol-
lowing Lemmas 37-38:

(bad (previous (X)) & faultless (previous(X))) => fail (previous (X))
(pass(previous (X)) & faultless (previous(X))) => auth(previous (X))
Finally, we derive the following theorem:

Theorem 3. It can be formally derived from {Axiom1...23} U {awcr} U
{bfrf} that:

go(X) => auth(previous (X))

3.3 Tear down attack

We need to consider a challenger implementation in order to ensure the
flow depicted in Figure 2 if tear-down attacks are a realistic threat: Assume
that the responder is a the challenger’s battery. Then, a bad responder
might be able to first gain test information beeing tested itself, but stop
the challenger before it update its ”faultless flag” in non-volatile memory.
This attack can be countered in a standard manner: Before each test, the
challenger must first load its faultless flag in a volatile variable, clear the
non-volatile “faultless flag” if it is set, and only overwrite the non-volatile
flag by the volatile variable if the test passes.

3.4 Offline CRP update

Assume that the challenger implements a stack of fresh challenge-respose-
pairs and that a refresh is a pop of a CRP from the stack. If the stack is
low, the challenger might need to push fresh CRPs onto the stack. If the
challenger has no connectivity to a CRP provider but is already connected to
an authentic responder, it could randomly generate a challenge, misuse the
authentic responder as response provider, and push this challenge-response-
paironto the stack. The new challenge-response pair is not absolutely fresh
but only relatively fresh. The formal security proof of the scheme in Sec-
tion 3.2 needs to be slightly modified to cover this offline CRP update. This
is work in progress.

References

[1] M. Burrows, M. Abadi, and R. Needham, “A logic of authentication,”
DEC System Research Center, Research Report 39, 1990.

13



2]

G. M. Kgien, “A brief survey of nonces and nonce usage,” SECURWARE
2015 : The Ninth International Conference on Emerging Security Infor-
mation, Systems and Technologies, 2015.

U. Rithrmair, “SIMPL systems as a keyless cryptographic security prim-
itive,” Cryptography and Security, 2011.

A. C. Dolev, D.; Yao, “On the security of public key protocols,” IEEE
Transactions on Information Theory, IT-29 (2): 198-208, 1983.

S. Schulz, “E 2.4 wuser manual,” 2019. http://wwwlehre.
dhbw-stuttgart.de/~sschulz/WORK/E_DOWNLOAD/V_2.4/eprover.
pdf.

G. Sutcliffe, “The TPTP Problem Library and Associated Infrastructure.
The FOF and CNF Parts, v3.5.0,” Journal of Automated Reasoning,
vol. 43, no. 4, pp. 337-362, 20009.

14



