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Abstract. Side-channel attacks based on machine learning have re-
cently been introduced to recover the secret information from software
and hardware implementations of mathematically secure algorithms. Con-
volutional Neural Networks (CNNs) have proven to outperform the tem-
plate attacks due to their ability of handling misalignment in the sym-
metric algorithms leakage data traces. However, one of the limitations of
deep learning algorithms is the requirement of huge datasets for model
training. For evaluation scenarios, where limited leakage trace instances
are available, simple machine learning with the selection of proper feature
engineering, data splitting, and validation techniques, can be more effec-
tive. Moreover, limited analysis exists for public-key algorithms, espe-
cially on non-traditional implementations like those using Residue Num-
ber System (RNS). Template attacks are successful on RNS-based El-
liptic Curve Cryptography (ECC), only if the aligned portion is used
in templates. In this study, we present a systematic methodology for
the evaluation of ECC cryptosystems with and without countermeasures
against machine learning side-channel attacks using two attack models.
RNS-based ECC datasets have been evaluated using four machine learn-
ing classifiers and comparison is provided with existing state-of-the-art
template attacks. Moreover, we analyze the impact of raw features and
advanced hybrid feature engineering techniques, along with the effect of
splitting ratio. We discuss the metrics and procedures that can be used
for accurate classification on the imbalance datasets. The experimental
results demonstrate that, for ECC RNS datasets, the efficiency of simple
machine learning algorithms is better than the complex deep learning
techniques when such datasets are not so huge.

Keywords: Elliptic Curve cryptography, Side-Channel Attacks, Ma-
chine Learning, Feature Engineering



1 Introduction

Side-channel attacks (SCA) constitute an ever evolving technique of recover-
ing secret information from the exploitation of physical leakage that appears in
cryptographic implementations (e.g. power consumption, electromagnetic ema-
nations, timing, vibrations leakage (37; 19; 25)). From an information-theoretic
point of view, profiled template attacks are one of the most powerful SCAs.
The attacker in such attacks is assumed to have access not just to the target
device, but also to an open copy of it for the profiling phase. Having control
of the secret information, he creates a leakage profile that he can later use to
retrieve an unknown secret (not under his control) from its collected leakage
traces during a cryptographic operation (14). Recently, machine learning (ML)
based side-channel attacks have been proposed, as direct extension of template
attacks, extending the concept of leakage templates into trained ML models.
These models can be used for secret information predictions, thus providing an
interconnection between the SCA and ML research field (41; 27; 40). Further-
more, several researchers showed that machine learning and deep learning (DL)
techniques, like Convolutional Neural Networks (CNNs) outperform traditional
side-channel attacks since they are able to learn from misaligned data and, there-
fore, eliminate the need of pre-processing (12; 36). Picek et al. have evaluated the
impact of various feature engineering techniques on profiled side-channel attacks
on AES (46). Mukhtar et al. (43), have presented side-channel leakage evaluation
on protected and unprotected ECC Always-double-and-add algorithm using ma-
chine learning classifiers and proposed to use signal properties as features. Zaid
et al. in (53) have shown the insights for the selection of features while building
an efficient CNN architecture for side-channel attacks. However, while CNNs can
improve the performance and efficiency of the attacks, a huge amount of leakage
traces are required for training such a model. Therefore, it can be discouraging
for the attacker to use deep-learning techniques for SCA.

In the recent literature, there is a considerable amount of research works
focused on ML and DL SCAs for symmetric-key algorithms. However, only few
researchers have tumbled with the increased complexity and high number of
samples in traces that exist in public-key cryptosystems (36; 51; 13) identifying
the presence of a gap of attack analysis on public-key cryptographic algorithms.
The few ML/DL based evaluation analysis that exists for public-key cryptogra-
phy, do not yet consider the evaluation of cryptosystems under the presence of
strong SCA countermeasures.

According to the no-free lunch theorem, no two datasets will show the same
results for the same classifier (52). Thus, the ML analysis on SCAs provided for
some symmetric-key implementations and even public-key cryptographic imple-
mentations (e.g. RSA) won’t be of much use in other settings like ECC imple-
mentations. Additionally, the complexity of the ECC computations makes the
well known ML analysis concerns of under-fitting and over-fitting, occuring due
to bias and variance in data, very crucial. In fact, the machine might learn from
data so well or so poorly, that it is unable to generalize on the unseen data,
thus making the training accuracy deceiving. To cater these concerns, an opti-
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mal number of data traces need to be identified, proper data splitting strategy
must be chosen, and appropriate feature engineering techniques must be ad-
ministered. These activities, though, are hard to specify as the cryptographic
computations become more elaborate and include strong SCA countermeasures.
Thus, all the above issues highlight the need for a concrete methodology to ana-
lyze ECC implementation datasets for ML-based profiling SCAs especially when
such implementations have dedicated, strong, SCA countermeasures.

Elliptic curve cryptographic primitives have been widely studied for the effi-
ciency and SCA resistance. Therefore, many efficiency enhancement techniques
and SCA countermeasures have been devised. Among them, several researchers
have proposed using Residue Number System (RNS) arithmetic representation
as a way of decreasing scalar multiplication computation delay (30; 42) by trans-
forming all numbers to the RNS domain before performing finite field operations
(6). In addition, RNS can be used for producing strong SCA countermeasures
that can withstand simple and advanced SCAs (6) using the Leak Resistant
Arithmetic (LRA) technique. Recently, a comprehensive study on RNS ECC
implementations for Edwards Curves (44), using the Test Vector Leakage As-
sessment (TVLA) techniques (26), showed that the combination of traditional
SCA countermeasures like Base Point randomization, scalar randomization etc.
when combined with LRA based RNS countermeasures can considerably reduce
information leakage. Also in (44) it was proven that profiled template attacks on
RNS SCA protected implementation are partially successful (using location de-
pendent and data dependent leakage attacks) thus implying that more powerful
attacks may be able to compromise the RNS SCA countermeasures (44; 24).

In this paper, a concrete methodology for Machine Learning SCA resistance
of RNS-based ECC cryptosystems is proposed, realized in practise and analyzed
in depth using various ML model algorithms and feature engineering techniques
in order to achieve optimal results. This study could serve as a guideline for
RNS-based RSA implementations as well. The methodology is able to retrieve
attack vulnerabilities even against noisy RNS-based implementations that in-
clude RNS and traditional SCA countermeasures. More specifically, we focus
our evaluation plan on location dependent and data dependent leakage attacks
(both with and without countermeasures). Our analysis includes several restric-
tions like misaligned and imbalanced datasets, as well as restricted number of
traces. Furthermore, a comparison of attack models using four machine learn-
ing classifiers is made. We also discuss the criteria on the selection of optimized
hyperparameters for each of the classifier. Once the optimally tuned model pa-
rameters are selected, then further feature engineering techniques are applied to
analyze the attack performance with reduced number of features. In scenarios
with limited number of samples in the datasets, data splitting ratio can be one of
the attack performance affecting factors. Finally, we analyze the effect of three
data splitting ratios on the overall attack performance. Analytically, the paper
novelty is the following:

– A six stage methodology for launching a practical machine-learning based
side-channel attack is proposed. Our analysis is based on assessing the SCA
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resistance of an RNS-based ECC implementation with and without coun-
termeasures. For the first time in research literature, the effectiveness of a
combination of RNS and traditional SCA countermeasures on an RNS ECC
implementation against machine-learning based side-channel attacks is pre-
sented.

– Machine learning based side-channel attacks are presented for location and
data dependent leakage models using four machine learning classifiers. For
each classifier, hyperparameter tuning has been performed to extract the
best-trained model for the underlying problem. Results are presented using
standard machine-learning evaluation metrics. The implications of relying
on the classification accuracy alone, in case of imbalance data, are also dis-
cussed.

– Various state-of-the-art hybrid feature engineering techniques, which have
proven to offer performance improvement in other domains, are tested on
side-channel leakage traces from RNS-based ECC implementations. Three
hybrid feature engineering approaches are proposed in order to handle the
complexity of public-key cryptographic trace. The impact of dimensionality
reduction along with the filter and wrapper feature selection methods, is
observed.

– This work also investigates the effect of data splitting and validation folds
on the attack efficiency for RNS-ECC dataset.

– An RNS-based ECC implementation is one challenging dataset, due to the
RNS operation intrinsic parallelism. For RNS-based implementations, exist-
ing traditional template attacks are successful only if the aligned portion of
the traces is used for the attack. This limitation makes the attack difficult
to launch. However, in this study, quantitative analysis is performed to ana-
lyze the success of the machine learning-based attack by using the full trace
length and the aligned part for training the model.

The rest of the paper is organized as follows. Section 2 presents the classifiers
used for evaluation along with the algorithm under attack. Section 3 explains the
attack methodology along with other evaluation strategies and datasets used for
evaluation. Section 4 presents the results on RNS-based ECC leakage datasets.
Section 5 concludes the paper.

2 Preliminaries and Related Literature

2.1 Potentials of RNS as Side-Channel Attack Countermeasure

The Residue Number System (RNS) is a non-positional arithmetic represen-
tation, where a number X is represented by a set of individual n moduli xi
(X →RNS X : (x1, x2, ...xn)) of a given RNS basis B : (m1,m2, ...mn) as long
as 0 ≤ x < M , where M =

∏n
i=1mi is the RNS dynamic range and all mi

are pair-wise relatively prime. Each xi can be derived from x by calculating
xi = 〈x〉mi = x (mod mi). Since it can effectively represent elements of cyclic
groups or finite fields there is merit in adopting it in elliptic curve underlined
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finite field operations. RNS hardware implementations of Montgomery multipli-
cation for elliptic curves (4) and RSA (17) showed that RNS usage can increase
scalar multiplication efficiency. Furthermore, RNS can be used to design SCA
countermeasure as is observed in several research papers, for instance Bajard et
al. in (6; 5), Guillermin (30), Fournaris et al. (22; 23). RNS parallel processing
of finite field operations apart from speed offers also different representation of
the elliptic curve points, which may reduce SCA leakage. Also, RNS is a non
positional system (single bit change in an RNS number’s moduli can lead to
considerable changes in the binary representation of finite field element) which
intrinsically increases noise in the computational process (42). Furthermore, in
(6), the Leak Resistant Arithmetic (LRA) technique was proposed where it was
proven that by creating a big pool of RNS basis moduli (at least 2 × n), then
randomly choosing some of them to act as an RNS basis for representing finite
field elements and a specific computation flow, randomly permuting this RNS
basis, can be a potent SCA countermeasure. LRA has been applied to modular
exponentiation designs in two ways, either by choosing a new base permutation
once at the beginning of each scalar multiplication or by performing a random
bases permutation once in each scalar multiplication round (23). In this paper,
the second approach is adopted.

2.2 RNS-based ECC Scalar Multiplication

The ECC scalar multiplication algorithm evaluated in this paper is based on
a variation of Montgomery Power Ladder (MPL) for Elliptic Curves on GF (p)
(35). Algorithm 1 uses the LRA technique by choosing a random base γi permu-
tation and transforming all GF (p) elements in this permutation in each MPL
round i. After the end of the round the algorithm chooses a different base point
permutation for the next round. This RNS SCA countermeasure is enhanced
with the base point V randomization technique using an initial random point R
(24). All GF (p) multiplications used in EC point addition and doubling are done
using the RNS Montgomery multiplication (6). Apart from the above counter-
measures as proposed in (44), a RNS operation random sequence approach is
also followed i.e. the individual moduli operation for each RNS addition, subtrac-
tion or multiplication are executed in a random sequence. Furthermore, scalar
randomization is used as a countermeasure. This is based on the concept of com-
puting random multiples r of the order of the curve #E instead of computing
directly the scalar multiplication [e]P (i.e. one can compute the same point as
[e + r#E]P ). The bits of scalar e are masked using a different random value
r at each SM execution. In order to evaluate the potential of the above coun-
termeasures, four variants of the algorithm were implemented, with different
countermeasures activated each time.

2.3 Machine Learning Algorithms

In this paper, four different classifiers are used to create the trained ML-DL
model of a Device Under Test (DUT) leakage information, Support Vector Ma-
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Algorithm 1: LRA SCA-FA Blinded MPL (21)

Input: V , R ∈ E(GF(p)), e = (et−1, et−2, ...e0)
Output: e · V or random value (in case of faults)

1 Choose random initial base permutation γt. ;
2 Transform V, R to RNS format using γt permutation;
3 R0 = R, R1 = R+ V , R2 = −R ;

4 Convert R0,R1,R2 to Montgomery format

5 for i = t− 1 down to 0 do
6 R2 = 2R2, performed in permutation γt ;
7 Choose a random base permutation γi;
8 Random Base Permutation Transformation from γi+1 to γi for R0 and R1 ;
9 if ei = 1 then

10 R0 = R0 +R1 and R1 = 2R1 in permutation γi;
11 end
12 else
13 R1 = R0 +R1 and R0 = 2R0 in permutation γi;
14 end
15 Random Base Permutation Transformation from γi to γt for V ;

16 end
17 if (i, e not modified and R0 + V = R1) then
18 Random Base Permutation Transformation from γ0 to γt for R0;
19 return R0 +R2 in permutation γt ;

20 end
21 else
22 return random value
23 end

chine, Random Forest, Multi-Layer Perceptron and Convolutional Neural Net-
works. In this subsection, each classifier is described in brief, the parameters
that were identified as important for profiling SCAs are specified and the basic
classified benefits are presented.

Support Vector Machine (SVM) Support vector machines (SVMs) are
one of the most popular algorithms used for classification problems in differ-
ent application domains, including side-channel analysis (54; 31; 18). In SVM,
n-dimensional data is separated using a hyperplane, by computing and adjust-
ing the coefficients to find the maximum-margin hyperlane, which best separates
the target classes. Often, real-world data is very complex and cannot be sepa-
rated with a linear hyperplane. For learning hyperplanes in complex problems,
the training instances or the support vectors are transformed into another di-
mension using kernels. There are three widely used SVM kernels; linear, radial
and polynomial. To tune the kernels, hyperparameters like ’gamma’ and cost ’C’
play a vital role. Parameter ’C’ acts as a regularization parameter in SVM and
helps in adjusting the margin distance from the hyperplane. Thus, it controls the
cost of misclassification. Parameter ’gamma’ controls the spread of the Gaussian
curve. Low values of ’C’ reflect more variance and lower bias; however, higher
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values of ’C’ show lower variance and higher bias. However, higher gamma leads
to better accuracy but results in a biased model. To find an optimum value of
’C’ and ’gamma’, gridsearch or other optimization methods are applied.

Random Forest (RF) In Random forest (RF), data forest is formed by ag-
gregating the collection of decision trees (11). The results of individual decision
trees are combined together to predict the final class value. RF uses unpruned
trees, avoids over-fitting by design, and reduces the bias error. Efficiently mod-
eling using random forests, highly depends on the number of trees in the forest
and the depth of each tree. These two parameters have been tuned for an efficient
model in this study.

Multi-Layer Perceptron (MLP) Multi-Layer Perceptron (MLP) is a basic
feed-forward artificial neural network that uses back-propagation for learning
and consists of three layers: input layer, hidden layer, and a output layer (49).
Input layer connects to the input feature variables and output layers returns
back the predicted class value. To learn the patterns from the non-linear data,
non-linear activation function is used. Due to the non-linear nature of side-
channel leakages, MLP appears to be the best choice, in order to recover secret
information from learning patterns of the signals.

Convolutional Neural Network(CNN) Convolutional Neural Network (CNN)
is a type of neural network which consists of convolutional layers, activation lay-
ers, flatten layer, and pooling layer. Convolutional layer performs convolution on
the input features, using filters, to recognize the patterns in the data (39). The
pooling layer is a non-linear layer, and its functionality is to reduce the spatial
size and hence the parameters. Fully connected layers combine the features back,
just like in MLP. There are certain hyperparameters related to each layer, which
can be optimized for an efficient trained model. These parameters include learn-
ing rate, batch size, epochs, optimizers, activation functions, etc. In addition to
these, there are a few model hyperparameters which can be used to design an
efficient architecture. It should be noted that the purpose of this study is not to
propose the architecture design of the convolutional neural network (CNN) but
to analyze and test the existing proposed CNN design on the RNS-based ECC
dataset. Therefore, the focus is on tuning the optimized hyperparameters rather
than model hyperparameters.

2.4 Feature Engineering Techniques

Features play a key role in accurate machine learning analysis. Sample values
in a trace T represent the features. It is evident from previous research that
more is not better when it comes to features in the training dataset. Feature
reduction/extraction techniques have a distinct effect on the machine learning
algorithms. Redundant features can give rise to over-fitting and hence result in an
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inaccurate analysis. To eliminate unnecessary data features, feature engineering
techniques are used (10). There are three main benefits of performing feature
engineering to select the most contributing features. It eliminates over-fitting
problem, gives simple accurate model and improves computational efficiency.

Generally, machine learning model can be represented with the eq. 1, where F
represents the feature matrix and w represents the weights learnt during learning
steps that are used for predicting the class on unseen values.

yi = w0 +

Fn∑
j=1

Fijwj (1)

The massive set of features can confuse the model during the learning process.
In this paper, our goal is to reduce the large number of features and create an
efficient, effective and accurate machine learning model for RNS ECC data. In
all cases, number of features Fm are selected from a pool of features Fn, where
inequality (2) holds.

Fm < Fn (2)

Feature Extraction In feature extraction techniques, a new feature dataset is
formed based on the existing feature dataset. More precisely, the dimensional-
ity of data is reduced. Based on the transformation method being used, feature
extraction can be categorized into linear transformation and nonlinear transfor-
mation. Two of the well-known techniques for feature extraction are Principal
Component Analysis (PCA) and Linear Discriminant Analysis (LDA). Principal
Component Analysis is a statistical procedure to reduce the dimensionality of
the data using orthogonal transformation, while retaining the maximum variance
and internal structure of the sample (34). However, the subspace vectors in low
dimensional space might not be optimal as PCA does not involve sample classes.
LDA is a supervised learning dimensionality reduction technique, in which dis-
tance between mean of each class is maximized by projecting the input data to
a linear subspace (8; 50). It helps in reducing the overlap between the target
classes. PCA has been used for traditional side-channel leakage analysis and has
also been used as a feature extraction in machine learning analysis (7; 28). How-
ever, the effect of dimensionality reduction on RNS-based ECC implementation
datasets has not been analyzed.

Feature Selection In feature selection techniques, a new feature dataset is
formed by selecting most contributing features from the existing features set.
There are three main approaches for feature selection: filter, wrapper and em-
bedded methods. In this study, feature datasets are formed using filter methods,
wrapper methods and a hybrid approach based on both methods. In filter meth-
ods, intrinsic properties of the features are selected, based on the relevance,
using uni-variate statistical analysis (33). Filter methods used in this study are
Chi-Square Test (Chi2), Pearson’s Correlation Coefficient (PCorr), Mutual In-
formation (MI), F-test, and T-test. In wrapper methods, classifiers are used
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to measure the usefulness of the features using cross-validation. In this feature
selection technique, optimal features are selected based on the algorithm per-
formance by iteratively using a search algorithm (38). In this study, Recursive
Feature Elimination using Random Forest (RFE-RF) and sequential Feature
Selection using Random Forest (RF-Imp) are used.

3 Machine Learning based Evaluation Methodology for
ECC RNS Scalar Multiplication

For an Elliptic Curve Cryptography(ECC)-based cryptosystem, the main tar-
get of SCAs is the scalar multiplication (SM), and more precisely in our case
the scalar multiplication in Montgomery Powering Ladder (MPL). The RNS ap-
proach introduces significant differences in the finite field computation approach
followed in each point operation (48) that impacts the side channel trace. En-
hancing this approach, with traditional and RNS SCA countermeasures, makes
possible SCA attacks as well as SCA assessment hard to implement. Based on
the work of (44) profiling attacks are the only SCAs that can only partially com-
promise an SCA resistant RNS ECC SM implementation (using data-dependent
and location-dependent template attacks). However, there is no indication if
such RNS implementations (protected or unprotected) can withstand potent
ML-based profiled SCAs. Thus, in this paper, the template attack approaches
have been extended to utilize the pattern learning capability of the machine
learning algorithms, in order to evaluate the amount of secret information that
can be recovered. For recovering the secret key bit, the ML-based attack formula-
tion leads to the binary classification problem. The need for a solid tailor-made
methodology to access RNS ECC SM implementation stems from the unique
characteristics of the SM under attack combined with the fact that ML models
are adapted to the problem at hand. In this paper, such a concrete ML-based pro-
filing SCA methodology is proposed and analyzed in detail. Initially, we collect
leakage traces following specific attack scenarios that match possible leakage of
the RNS ECC SM implementation. Then the collected raw data are aligned and
cleared from noise using pre-processing and then are split into separate train-
ing and testing datasets. Both datasets are separately processed using feature
engineering techniques. The reduced feature training dataset is used to train
the machine learning model, and a reduced feature testing dataset is used to
test the trained model for the recovery of the scalar key bits by predicting the
key bit class. An overview of the complete methodology is given in Fig. 1. The
methodology is split into the following six distinct stages:

1. Attack Scenario Specification: This constitutes the first stage of the
methodology plan. In this stage the possible targets on the ECC RNS SM
algorithm are identified. More specifically, as in all SM MPL variations, the
most evident information leakage can be observed from the scalar bit de-
pended sample difference when updating R0 or R1 storage areas and/or the
scalar bit depended trace difference when point doubling operation is exe-
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cuted on R0 or R1. Following the approach, carried in (44), two attack sce-
narios can be identified for ML SCAs: data-dependent attacks and location-
dependent attacks. It should be pointed out that the RNS structure of all
involved numbers (each number is split in several independent moduli) makes
the power or EM variations due to different memory storage, more complex
since the point coordinates are no longer single numbers to be handled by a
big number software library (that may lead to R0 or R1 storage in contigu-
ous memory blocks) but, on the contrary, small numbers that may be stored
independently in memory.

2. Raw Trace Preprocessing Mechanism: The fact that RNS operations
are performed as individual, autonomous moduli operations, thus triggering
execution optimizations (parallel processing, pipelining etc.) along with the
fact that the algorithm 1 RNS ECC SM implementation has several powerful
SCA countermeasures and the fact that software implementations lead to
noisy and misaligned traces, highlight the need for a trace preprocessing
stage before using them for ML model training and profile attacking.

3. Data Splitting: At this stage, the preprocessed collected raw data are split
into separate training and testing datasets. In side-channel data analysis, the
available leakage data traces might be limited. Splitting data with 50-50 ratio
might produce a very small training dataset. Insufficient training data traces
might result in over-fitted or under-fitted model. On the other hand, having
too little testing dataset might not evaluate the trained model correctly. A
trade-off value is required to train and test the model. To cater for this
real-world side-channel analysis limitation, at this state, the appropriate
data splitting is studied and the impact of different data splitting ratios for
training and testing data and deduce the best data split ratio is determined.

4. Feature Selection and Processing: Another important aspect of ma-
chine learning analysis is the features. Redundant features can lead to over-
fitting and curse of dimensionality, which ultimately results in an inaccurate
model. At this stage, appropriate feature engineering techniques and feature
processing combination models are proposed in order to choose the optimal
features for ML model training. Also, a combination of feature processing
models and designed experiments are proposed in order to test the proposed
feature processing combination models.

5. ML Classification model training: At this stage, the ML classifier mod-
els are trained using an optimal set of parameters. The machine-learning
algorithms, described in Sect. 2.3, are used at this stage i.e Support Vector
Machines (SVM), Random Forest (RF), Multiplayer Perceptron (MLP) and
Convolutional Neural Networks (CNN). The algorithms have been tuned to
achieve the best performance.

6. Key Prediction: The final stage of the overall methodology is devoted to
the usage of the ML trained models on the trace testing set in order to
evaluate the SCA resistance of the RNS ECC SM implementation against
ML profiling attacks.
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Fig. 1: Machine Learning based Evaluation Methodology for RNS-ECC

In the following subsections, the methodology stages are described in more
detail. Also, we propose how each stage should be used in order to analyze and
assess the ML-SCA resistance of algorithm 1 with and without the presence of
countermeasures. The parameter settings used for the algorithm under study are
mentioned in each stage.

3.1 Trace Collection Experimental Setup

All trace Datasets for the following analysis are collected by executing algorithm
1 RNS-based ECC SM implementation (in two variants) on a BeagleBone Black
that use an ARM Cortex A8 processor operating at 1GHz. Samples were col-
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lected using EMV Langer probe LF B-1, H Field (100KHz- 50MHz), and Lecroy
Waverunner 8404M-MS with 2.5GS/sec sampling rate.

The ECC RNS SM algorithm 1 implementation was taken from a public
repository (21) and was customized according to the requirement for data col-
lection and attack scenario determined in the proposed methodology stages.
For data collection and formatting, Matlab R2019 and Inspector 4.12 provided
by Riscure was used (1). For machine learning analysis, a Python environment
with Keras and Scikit learn libraries has been used (16). All features selec-
tion/extraction methods have been taken from Scikit learn (45) except T-test
which was implemented in-house.

To meet computation extensive needs of machine learning algorithms, NCI
(National Computational Infrastructure) Australia high-performance supercom-
puting server has been used (2).

3.2 Attack Scenarios Specification

Machine Learning based Data-dependent Leakage Analysis (MLDA)
In data-dependent attack scenario, the adversary can monitor the power or elec-
tromagnetic emission (EM) fluctuations due to the processing of a different value
of the i−th scalar bit ei. This is reflected in processor instructions corresponding
to line 9 of the ECC scalar multiplication algorithm (Alg. 1), where performed
operations depend on the value of secret key bit ei resulting in registers R0

and R1 updated differently. R0 contains the addition result and R1 contains the
doubling result if the scalar secret key bit ei = 1 and in reverse order if ei = 0
(R1: addition, R0: doubling). Since the data determine the register that is used
and therefore causes the leakage, we refer to this analysis as “data-dependent
leakage”. Such data leakages should also be observable using protected scalar
bit countermeasures if the scalar bits under attack are retrieved from a memory
location in a clear view.

For the purpose of analysis, we have collected the leakages traces of the first
few algorithm 1 rounds for a 233− bit scalar. As explained, data leakage LD is
labeled as ‘1’ if the scalar ei =‘1’ and is labeled ‘0’ otherwise in round i. Only
one instruction was observed and 50k traces, each of 700 samples, were collected;
out of which around 3k-7k were utilized after alignment in the other stages of
the proposed methodology.

Machine Learning based Location-dependent Leakage Analysis (MLLA)
In location-dependent attack scenario, key-dependent instruction leakages are
exploited, utilizing the storage structure information. More precisely, it is as-
sumed that based on the storage content, the leakages for a particular operation
will be distinguishable. It can be observed that in each round i of algorithm 1
only two operations have key-dependent instruction; that is, addition and dou-
bling. Both operations are performed in the same order, irrespective of the value
of the scalar key bit ei. However, the storage content differs according to the
scalar bit value. The storage register R0 is doubled when the scalar key bit is
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‘0’, otherwise R1 is doubled. Based on the fact that there is no memory address
randomization, we can exploit the vulnerability by collecting the leakage data
for doubling operation. The data will be labeled and classified based on the con-
tent of storage registers R0 and R1. Such memory access leakage has also been
exploited for RNS-based RSA in (29). Papachristodoulou et al. in (44), have ex-
ploited a similar vulnerability for ECC SM by utilizing a small sample window
of 451 samples (out of 3k samples per trace) for training and classification for
template profiling SCAs. Identifying the specific samples for training purposes
requires more in-depth knowledge of the underlying system and requires a lot of
signal processing, which might be discouraging for the attacker. The work of An-
drikos et al. performed location-based attacks using machine/deep learning but
those were focused on accessing different SRAM locations and are not algorithm-
specific (3). In our work, we have used the ML approach to classify the scalar
key bit ei, exploiting the doubling operation leakage, by using the whole trace
rather than the small sample portion of 451 samples. We have achieved similar
results, which proves that the machine learning attack is realistic and practical
from an attacker point of view. For the location-based analysis, we have labeled
leakage data LD as ‘0’ if R0 is doubled and labeled LD as ‘1’ if R1 is doubled.
We collected 50k traces (each of 3k samples long), out of which 14k traces are
used after stage 2 (preprocessing) of the proposed methodology

Datasets For a detailed evaluation of an RNS ECC SM approach against the
above two ML-based attack scenarios, all potential countermeasures that can
be applied on the implementation should be evaluated using the proposed RNS
ECC SM evaluation methodology. To achieve that, two implementation variants
of the algorithm 1 SM can be identified for each ML attack scenario, one with
all SCA countermeasures enabled (protected version) and one with all SCA
countermeasures disabled (unprotected version). In line with the above rationale,
for the evaluation of algorithm 1 the trace datasets of Table 1 can be identified,
denoted and collected.

Table 1: Trace Dataset Categories
Name Countermeasures Notation

Protected Data Dependent
Leakages

RNS LRA technique, base point randomization,
scalar randomization countermeasure and random
RNS operation sequence

DDP

Unprotected Data Depen-
dent Leakages

no countermeasure DDUP

Protected Location Depen-
dent Leakages

RNS LRA technique, base point randomization,
scalar randomization countermeasure and random
RNS operation sequence

DLP

Unprotected Location De-
pendent Leakages

no countermeasure DLUP
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3.3 Raw Trace dataset Pre-processing

Trace Alignment Alignment plays an important role while using machine
learning techniques especially on raw leakage samples. In raw leakage samples or
row instances, each data point in a particular sample will be treated as a feature
and then the feature columns are used to train the model. Having misaligned fea-
tures might scatter the useful feature information all across the columns, hence
making it difficult for the ML classifier to learn from the scattered haphazard
data. Misalignment generally occurs due to the noise of the neighboring com-
ponents in the device. However, in some cases, noise is intentionally induced to
the system as a countermeasure to increase side-channel attack resistance. Exe-
cuting a software implementation in an embedded system operating system (as
is used in this paper experimental setup) will result in trace collection of noise
that is unexpectedly added from the other processes of the operating system.
Common signal processing technique can be used in order to reduce the noise
like low pass or band pass filter. In the collected traces, the application of a
low pass filter approach was chosen. Initially, the dominant frequencies are mea-
sured using Fast Fourier Transform (FFT), as shown in Fig. 2 and it is observed
that the maximum energy lies between 0-300MHz, with the highest frequency
at 1GHz. Based on the observation, a low-pass filter is applied and the resulting
clear patterns are used for alignment.

Fig. 2: Fast Fourier (FFT) of the leakage samples

Skewed or Imbalanced Datasets For a good performing trained model, it
is imperative to have a balanced dataset. Skewed or imbalance dataset is the
one in which the traces for one class label are more than the other. The trained
model will be biased due to the dominating class and will not be able to classify
the unseen data accurately. To emulate the problem of imbalance and observe its
impact in the experimental process of the ECC RNS SM assessment, after traces
where collected and aligned, we produced both balanced and unbalanced dataset
outcomes. Datasets DDP , DDUP and DLP were almost balanced, having ap-
proximately 1050, 1500, and 3800 traces (for both 1’s and 0’s), respectively.
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These three datasets had ideal balanced data for modeling. However, dataset
DLUP traces were collected to be highly skewed. i.e. the number of traces for
class key bit ‘0’ was higher compared to class key bit ‘1’ (10150 and 42 traces
respectively). To handle the skewness and minimize its impact, Synthetic Mi-
nority Oversampling Technique (SMOTE) was used as it outperformed for other
cryptographic datasets (47). SMOTE synthesizes new instances for the minority
class traces and balances the data (15).

3.4 Data Splitting and Validation Strategy

Machine learning-based side-channel attacks are based on the template attack
approach. In template attacks, two datasets are used; template and test datasets.
The template dataset (pre-defined examples) is used to train the system, and
then the test (unknown) dataset is used to evaluate the attack (14). Similarly, in
ML SCAs, the leakage data set LD is divided into the training dataset, DTrain,
which is used to train the machine learning model and the test DTest dataset.
Unlike, template attacks, though, another dataset is introduced in ML analysis
known as Validation DV al dataset. In this stage of the methodology, the above
described dataset splitting and its role is analyzed below:

– DTrain dataset is used during the model fitting process and helps model
learn the patterns from data.

– During the evaluation, DV al is used to fine-tune the model using model
hyperparameters. The model never directly learns from the validation data,
but it can occasionally see the data during the learning process. Hence it
provides biased evaluation and changes the model structure based on the
validation data results.

– DTest dataset is completely unknown to the system and is never used in the
training process. DTest provides an unbiased evaluation of the model.

One of the important aspects in machine learning is to decide the dividing
ratio of the training, validation, and testing sets. The bigger the dataset, the
better the trained model will be. It becomes a huge problem, especially with the
datasets having a small number of instances (traces). To evaluate the effect of
data division on secret information recovery, in this paper, three proportions are
tested. The ratios used for training and testing datasets are 90-10%, 80-20%,
and 50-50%. Datasets are shuffled before splitting for spreading the instances in
the space.

At this methodology stage analysis, we suggest in this paper, the use of k-fold
cross-validation which is a resampling procedure used for evaluation of machine
learning trained model. After the initial dataset split into two sets, i.e. training
and testing, the training dataset is further split using k-fold validation scheme
into training and validation. In this validation procedure, data samples are split
into k groups. One group is a holdout or validation dataset and rest of the data
is used for training the model. Model is fitted on the training group set and
evaluated on the holdout/validation set. This ensures that the whole dataset
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undergoes a proper validation process. For the k-fold validation, 5 and 10 folds
are the most recommended values as they neither give high variance nor high
bias in the resulting validation error estimate (32). However, high number of
validation folds can lead to increased training time. This processing time can be
reduced by using an optimal number of folds, yet still achieving a reliable trained
model. For our analysis, we have used three validation folds that is 3,5 and 10
to infer the best performance validation folds for RNS-ECC SM datasets.

3.5 Feature Processing and Engineering: Proposed Hybrid
Approaches

In the ECC RNS SM evaluation methodology, the feature engineering techniques
for feature selection and processing described in subsection 2.4 are adopted. In
this stage, we propose an analysis approach to deduce the impact of feature
selection/extraction techniques on the machine learning model for RNS-based
ECC data classification in three different experimental setups. In the first exper-
imental setup, feature engineering techniques are applied on raw data samples to
reduce the number of features, and then the machine learning model is trained.
In the second experiment, one of the filter methods is applied to get the highly
ranked features, and then PCA is applied to transform the data dimensions.

Considering that the prominent characteristics of two or more feature ex-
traction/selection techniques can be combined together to improve the learning
performance and efficiency, at this stage of the evaluation analysis, we expand
the previous paragraph feature engineering to propose a hybrid feature approach
that can help in recognizing better features that contribute the most towards the
accuracy in less time. In this research work, we propose and test the following
three approaches for the experimental ECC RNS SM evaluation of algorithm 1.

– Approach A: In the first approach, features dataset is processed using the
feature selection and extraction methods of subsection 2.4. Filter methods
used for analysis are Ftest, T-test, Chi2, MI, P Corr, PCA, Recursive Feature
Elimination using Random Forest (RFE-RF), and Feature selection using
Random Forest (RF-Imp). There are Fn total features for location-dependent
leakages (MLLA) and data-dependent leakages (MLDA). Out of Fn, Fm

features are selected. The selected output features are directly given as input
to the machine learning models for training.

– Approach B: In the second approach, features datasets are processed (Tier
1) using filter methods (Ftest, T-Test, Chi2, MI, P Corr), and the output
features are further reduced (Tier 2) using PCA and LDA dimensionality
reduction techniques. For Tier 1 feature selection, Fm features are selected
from Fn pool of features, for both MLLA and MLDA. However, for Tier 2,
Fo PCA components (features) are selected from Fm features dataset. For
binary classification, LDA projects Fm features onto one dimension.

– Approach C: In the third approach, features processed through filter meth-
ods are further reduced using recursive feature selection methods. Filter
methods rank the features according to the relevance and then features are
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further selected based on the classifier algorithm performance. For Tier 1,
filter methods are applied to reduce features to Fm from Fn for both MLLA
and MLDA. For Tier 2, features Fm are further injected to wrapper RFE-
RF and RF-Imp to select a subset of features containing Fo features. The
RFE-RF and RF-Imp methods recursively eliminate the redundant features
which do not contribute towards classification.

Fig. 3: Hybrid Feature Engineering Approaches

Our proposed approaches help in tackling the drawbacks of filter methods and
wrapper methods. In filter methods, the target response class is not involved in
the selection process. To involve the target class, the relevant uncorrelated fea-
tures are selected using filter methods and are further reduced by recursively
searching through the feature pool. In the experimental analysis, recursively se-
lecting features out of 3k or 700 features is highly computationally expensive and
involves redundant processing as most of the features do not contribute towards
accuracy at all. This approach helps in eliminating the least correlated redun-
dant feature and thus reducing the time required for recursive feature selection.
The graphical description of the proposed approaches is presented in Fig. 3.

3.6 ML Model Training: Parameter Tuning

At this stage of the ECC RNS SM evaluation methodology, the ML models are
trained using the features selected from the hybrid feature extraction process.
The four classification algorithms described in Sect. 2 are used to evaluate the
effectiveness of the location-dependent and data-dependent attacks and also to
evaluate the performance of the features subset, i.e. Support Vector Machines
(SVM), Random Forest (RF), Multi-Layer Perceptron (MLP) and Convolutional
neural network (CNN). There are certain parameters in each classifier algorithm,
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as mentioned in 2.3, that needs tuning. For the systematic evaluation of RNS-
ECC SM, the hyperparameters are tuned using gridsearch to obtain the best
possible trained model. The tuned hyperparameters are shown in the Table 2.

Table 2: Parameter tuning for SVM, RF, MLP and CNN
Classifier Parameter Value Range

C [0.1, 0.01, 0.5, 1.0 ]
SVM gamma [1,10,30,40,50]

kernel [Poly, Sigmoid, RBF]

Learning Rate [0.001,0.0001]
MLP Solver [adam, sgd]

Batch Size [32]
Activation Function [tanh,relu,identity,logistic]

Epochs [200]

RF Trees Depth [5,10,20,30]
Number of Trees [10,50,100,200]

Learning Rate [0.001,0.01,0.1, 0.5]
Epochs [300]

CNN Activation function [relu,selu,elu]
Optimizer [Adam, Nadam, RMSprop,Adamax]
Init Mode [uniform, normal]
Batch Size [32, 100, 400]

4 Results and Discussions

Manifesting the proposed methodology for the experimental process described in
Sect. 3.1 for the ECC RNS SM implementation of algorithm 1 as described in the
previous section, the performance of our proposed approach and its outcomes-
results can be evaluated and analyzed. There are various evaluation metrics
which can be used to evaluate the performance of machine learning models in-
cluding Accuracy (Acc), Precision (specificity), Recall (sensitivity), F1 score,
Receiver Operating Characteristics (ROC), and Area Under Curve (AUC). For
binary classification problems on balanced dataset (as is our case), accuracy is
sufficient evaluation metric. Accuracy is the ratio of correct predictions to the
total number of predictions. Hence, it exhibits the reliability of the model in a
practical real-world scenario on unseen data.

As described in Sect. 3.2, four datasets of protected and unprotected leakage
traces are evaluated using four machine learning classifiers. It should be noted
that the parameter settings used for experimental setup is also given in the end of
each stage description in methodology (Sect. 3). In this section, the experimen-
tal results are presented for the proposed hybrid feature engineering techniques.
The results are presented in four sections, for better understanding. Sect. 4.1
presents the classifier’s performance on raw features, without applying any fea-
ture engineering, Sect. 4.2 presents results after applying feature engineering
techniques as explained in Sect. 3.5 approach A, Sect. 4.3 exhibits comparison
results for Sect. 3.5 approach A, B and C, and Sect. 4.4 depicts the affect of
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reduced validation folds and data splitting size. For the sets of experiments con-
ducted in Sec. 4.1-4.3, the models are trained with the raw traces using four
classifiers, for all four datasets. For comparative analysis with existing studies,
analysis is divided into two sub-cases. In case a, machine learning analysis has
been performed on the full length traces that is, all the trace samples (trace
length 0-699 and 0-2999 for MLDA and MLLA, respectively) are used as fea-
tures for training the model. However, in the case b, features dataset is reduced
and only the aligned part of the traces (precisely, 550-900 for DDP , 1150-1950
for DDUP , 80-250 for DLP , 190-250 for DLUP ,) is used for training the models.

4.1 Classifier’s Performance on Raw features

Fig. 4a and 4b show the accuracy of the trained classifiers for the case a and
case b, respectively. The plotted accuracy is achieved by tuning the hyperpa-
rameters as given in Table 2. Best selected parameters are also given in Table 3.
It can be observed that for location-dependent attacks (MLLA) in case a, the
secret can be recovered with 94-100% accuracy for protected and unprotected
implementations. However, for data-dependent attacks (MLDA), the best accu-
racy, approximately 54%, is achieved with RF. It should be noted that SMOTE
is applied before applying machine learning classifiers, to balance the datasets
in some cases. In addition to accuracy, recall, precision, and F1 score has been
closely monitored as well, which is less than 0.5 in case of CNN, but greater than
0.9 for other classifiers.

(a) Trace Dataset with all samples (b) Trace Dataset with aligned reduced
samples

Fig. 4: Accuracy of classifiers without feature processing

It has also been observed that the complex deep learning model (CNN) did
not perform well for all the datasets, which was the expectation because datasets
have a small number of traces. It is expected that with a huge dataset, the
performance, using complex networks like CNN might improve, but the collection
of the huge dataset and high computational cost, might be highly discouraging
for the attacker. Scope of this study is to analyze the affect of limited size datasets
with computationally efficient classifiers. It has also been noticed that a simple
neural network like MLP gives good accuracy if complete trace length is used,
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however, it cannot classify the target key bit (accuracy around 53%) with the
reduced trace length, in case b. This shows that an amount of useful information
is contained in the unaligned portion of the trace as well.

Due to the inherent design capability of dealing with redundant features,
in both SVM and RF, reducing the features per trace does not affect the clas-
sification accuracy. RF, by design, constructs unpruned trees and removes the
unnecessary redundant features during the training process, hence produces an
efficient model without using any feature engineering technique. In SVM, Ra-
dial Bias Function (RBF) kernel transforms the data and creates new features
that are separable in high dimensional space so by design it retains the most
contributing features and eliminates unnecessary ones. It appears that the RNS-
ECC SM location-based leakage is linearly separable in higher dimension space.
However, this is not the case with RNS-ECC SM data-dependent leakages.

To analyze the possibility of under-fitting and over-fitting, training, valida-
tion and testing accuracy, all are closely monitored in all cases. For SVM with
RBF, it is observed that lower values of parameter ’C’ and higher values of
parameter ’gamma’ provide the best results. The validation curve for gamma
parameter tuning is given in Fig. 5. For RF, 50 and 100, trees along with vary-
ing tree depth of 5-20 present good results. For MLP, batch size 32, activation
function ’relu’ and optimizer ’adam’ give the best results for MLLA analysis.
However, for MLDA analysis, activation function ’tanh’ and optimizer ’sgd’ and
’adam’ provide the best results for protected and unprotected leakage datasets,
respectively.

Fig. 5: Gamma Parameter Tuning

20



Table 3: Best parameters for SVM, RF, MLP and CNN
DataSet Classifier Feature No Parameters

SVM All C: 1.0, gamma: 40, kernel: rbf

MLP All activation: relu, batch_size: 32, solver:adam

RF All max_depth: 20, n estimators: 100

CNN All Act: Relu, Optimizer: Adam, Learning_Rate:0.001

DLP SVM Reduced C: 0.1, gamma: 40, kernel: poly

MLP Reduced activation: relu, ’batch_size: 32, solver: adam

RF Reduced max_depth: 30, n_estimators: 50

CNN Reduced Act: Relu, Optimizer: Adam, Learning Rate:0.001

SVM All C: 0.1, gamma: 1, kernel: rbf

MLP All activation: relu, batch_size: 32, solver: adam

RF All max_depth: 5, n estimators: 50

CNN All Act: Relu, Optimizer: Adam, Learning Rate:0.001

DLUP SVM Reduced C: 0.01, gamma: 10, kernel: poly

MLP Reduced activation:relu, batch_size: 32, solver: adam

RF Reduced max_depth: 5, n_estimators: 10

CNN Reduced Act: Relu, Optimizer: Adam, Learning Rate:0.001

SVM All C: 0.5, gamma: 50, kernel: rbf

MLP All activation: logistic, batch_size: 32, solver: sgd

RF All max_depth: 20, n estimators: 100

CNN All Act: Relu, Optimizer: Adam, Learning_Rate:0.001

DDP SVM Reduced C: 0.5, gamma: 10, kernel: rbf

MLP Reduced activation: tanh, batch_size: 32, solver: adam

RF Reduced max_depth: 20, n_estimators: 10

CNN Reduced Act: Relu, Optimizer: Adam, Learning Rate:0.001

SVM All C: 0.5, gamma: 1, kernel: sigmoid

MLP All activation: tanh, batch_size: 32, solver: sgd

RF All max_depth: 20, n estimators: 100

CNN All Act: Relu, Optimizer: Adam, Learning Rate:0.001

DDUP SVM Reduced C: 0.5, gamma: 1, kernel: rbf

MLP Reduced activation: logistic, batch_size: 32, solver: adam

RF Reduced max_depth: 10, n_estimators: 10

CNN Reduced Act: Relu, Optimizer: Adam, Learning Rate:0.001

Given the above results, a comparison between ML analysis and the state-
of-the-art template attack results (based on the perceived information (PI)) on
ECC RNS SM implementation, can be made. For template attacks, PI utilizes
practical leakages to estimate the Probability Density Function (PDF) of the al-
gorithm 1 implementation. Steps explained in (20), are followed to estimate the
PI of RNS implementation leakages from BeagleBone. First profiling traces are
collected to estimate the leakage model and then PI is estimated for the actual
test leakages from the chip. The leakage model is estimated based on profiling
traces and then PI is estimated for the collected test traces. The estimation and
assumption errors are calculated to evaluate the attacking model. It is observed
that machine learning performs better than the template profiling attacks on the
ECC RNS SM implementation datasets. For template attacks, the classification
success rate for the location-based attacks is 87-99% for unprotected implemen-
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tation and for implementations with one countermeasures activated. When a
combination of countermeasures is used, then this percentage falls to 70-83%.
For machine learning analysis the classification accuracy is 95% and 99.5% for
protected (DLP ) and unprotected (DLUP ) RNS-ECC SM implementations, re-
spectively. In (44), template attack on RNS-ECC implementation is successful
only if the specific sample window from each trace is selected for training. How-
ever, in machine learning-based side-channel attack, the model trained with the
complete trace length gives equal or better results. Isolating and selecting the
aligned part only for the training phase, might not be an easy task for an attacker
thus making the template attack difficult. However, it is more convenient to train
with the complete raw trace, which implies that machine learning attacks are
less complex from an attacker perspective.

4.2 Impact of Feature Engineering

In this section of experimental analysis, advance feature engineering techniques,
based on wrapper and filter methods as explained in Sect. 3.5 approach A, are
applied to analyze the impact of feature reduction on the trained model perfor-
mance. Fn = 50 features have been selected from the full length (having features
Fm = 3k and Fm = 700 respectively) and reduced length (having varying num-
bers of features depending upon the aligned portion) traces, except T-test. For
T-test threshold is set to 0.5 and the resultant 1299 features are selected for fur-
ther analysis. Results for SVM trained model on RNS-ECC protected datasets
(MLLA) are shown in Fig. 6.

(a) Trace Dataset with all samples (b) Trace Dataset with aligned reduced
samples

Fig. 6: Performance comparison for MLLA using SVM with feature extrac-
tion/selection techniques

The purpose of applying feature engineering techniques is to find the optimal
numbers of features for the bias-variance tradeoff. Variance in machine learning
is the type of error that occurs due to the model’s sensitivity to small fluctu-
ations in the training dataset. High variance leads to over-fitting as the model
might learn from the noise in the data. Bias, on the other hand, is the type of
error that occurs due to erroneous assumptions in the learning algorithm. High
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bias leads to under-fitting as a model might miss relevant information between
features and the target key class. Both the errors are inter-linked, minimizing
one error will increase the other one. Neural nets (high capacity models) can
lead to high variance problems as they might learn from the noise in the data.
Regularization, early stopping, and drop-out has been used to avoid the problem
in our evaluation. For RF, pruning deals with the above issues, so feature engi-
neering is not required. However, for SVM finding an optimal number of features
will improve the model’s accuracy.

In the case of RNS-ECC datasets, there is a higher bias than a variance.
When PCA is applied, the variance is increased thus bias is reduced. Usually,
the variance is increased to a level so that the model doesn’t overfit. The suit-
able variance threshold (with classification accuracy 100%) is achieved when a
number of features are selected to be Fm = 50 for PCA. For case a, model per-
formance stays same or has improved by using Ttest, RF-Imp, PCA and LDA.
For case b, improvement is observed for RF-Imp and PCA. However, perfor-
mance decreases when analysis is performed after reducing features using LDA.
LDA uses classifier and fails to extract the relevant features as some of the in-
formation, required to identify the relationship between the target class and the
feature dataset, is lost while the traces are trimmed during alignment process.

4.3 Hybrid Feature Selection Techniques

In this section, comparative analysis is performed, based on the evaluation results
of the hybrid approaches of the proposed methodology on MLLA, as explained
in Sect. 3.5 approach B and C. For all hybrid methods, feature selection filter
methods have been applied to reduce the bias in the input data by selecting the
independent fn = 300 features from the complete pool of the features fm = 3k
(MLLA) and fm = 700 (MLDA) and then only fo = 50 features are selected
from the reduced pool of features using extraction techniques, for both case a
and case b.

For case a ( Fig. 7a), T-test gives best results using approach A and B.
Generally, the trend is seen that the combination of feature selection using filter
method with the recursive feature elimination, reduces the model accuracy. One
of the reasons could be that features are highly correlated with each other rather
than with the target class. Approach 2 with PCA returns the accuracy greater
than 80%. For Ftest, MI, and Chi2, there is an increase of 13-30% in the resultant
accuracy using hybrid approach C. For case b, some of hybrid methods have
shown improvement in accuracy as compared to the Fig. 4b.

4.4 Impact of Data Splitting Size

In this analysis phase, we have performed quantitative analysis, as described in
Sect. 3.4. For analysis, out of the best performing feature selection techniques
(having accuracy greater than 95%), we have chosen one randomly (i.e. PCA
on protected dataset DDP ) to further investigate the impact of varying data
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(a) Trace Dataset with all samples (b) Trace Dataset with aligned reduced
samples

Fig. 7: Performance comparison of hybrid feature processing approaches

splitting ratios for RNS ECC Dataset. It can be seen that the best results are
obtained with data splitting ratio of 90:10 for training and testing data.

(a) Trace Dataset with all samples (b) Trace Dataset with aligned samples
only

Fig. 8: Impact of Data Splitting Size on Model Accuracy

In (9), for symmetric ciphers, in total 60,000 instances are used for train-
ing and testing, out of which 50,000 are for training and 10,000 are for testing.
Expectantly, the huge set of traces is ideal for training with deep learning algo-
rithms like CNN. However, the required training time in this case will be high
too. In this study, we have evaluated the effect of having a small number of traces
useful of key retrieval. We have seen that location dependent attack is successful
in recovering the key with few traces in less time using validation folds as low
as 3.

5 Conclusion

In this paper, we have presented the evaluation methodology of machine learning-
based side-channel attacks on an elliptic curve RNS-based scalar multiplier im-
plementation with and without RNS and traditional SCA countermeasures. Each
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stage of the methodology was described along with a practical experimental re-
alization. A detailed analysis of the ECC RNS SM implementation proposed
methodology results was also provided in four different phases of analysis. Com-
parison has been provided with the state-of-the-art template attacks on the
RNS-ECC balanced and imbalanced datasets. It can be concluded that the ma-
chine learning-based side-channel attacks require less prepossessing and give bet-
ter performance results for location-based profiling attacks, hence, leading to a
time-efficient realistic attack scenario. The secret key can be recovered from un-
protected and protected RNS ECC SM implementations, using location-based
attack, with 99% and 95% accuracy, respectively.

The impact of advance feature engineering techniques has been analyzed
using feature extraction and feature selection methods. Moreover, several hybrid
approaches were also evaluated. It has been observed that PCA, LDA, T-test,
RF-based feature selection provides improved accuracy results.

We have also evaluated the effect of training the model with the small dataset,
that is dataset containing reduced aligned samples only, to classify RNS-ECC key
bits using machine-learning based side-channel attacks. We have observed that
for location based attacks, SVM and RF can successfully distinguish the scalar
key bit with more than 95% accuracy for both full length and reduced length
aligned trace datasets. Trace sample window does not affect the classification
results using SVM and RF, due to their inherent characteristics of eliminating
redundant features during the training process. However, MLP can distinguish
and classify the scalar key bit correctly only if the full trace length dataset is
used. If the reduced trace, based on the aligned part, is used for training an
MLP network, then some useful information is lost during alignment process
and the model fails to classify the scalar key bit. This reduces the complexity
of the attack and increase the attack success rate in real world scenario. RNS-
ECC implementations showed resistance against Machine-learning based data
dependent attacks.

Machine-learning based side-channel attacks on PKC provide a realistic effi-
cient attack scenario to recover the secret information as they require less pre-
processing compared to template attacks on RNS ECC implementations.
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