
Cryptanalysis of the permutation based
algorithm SpoC

Liliya Kraleva, Raluca Posteuca, and Vincent Rijmen

imec-COSIC, KU Leuven, Leuven, Belgium

Abstract. In this paper we present an analysis of the SpoC cipher, a
second round candidate of the NIST Lightweight Crypto Standardiza-
tion process. First we present a differential analysis on the sLiSCP-light
permutation, a core element of SpoC. Then we propose a series of at-
tacks on both versions of SpoC, namely round-reduced differential tag
forgery and message recovery attacks, as well as a time-memory trade-
off key-recovery attack on the full round version of Spoc-64. Finally, we
present an observation regarding the constants used in the sLiSCP-light
permutation. To the best of our knowledge, this paper represents the
first third-party analysis on both SpoC cipher and the sLiSCP-light per-
mutation.

Keywords: SpoC · sLiSCP permutation · lightweight · differential crypt-
analysis · TMTO attack · NIST lightweight competition · lwc

1 Introduction

The majority of the current standards in symmetric cryptography were initially
designed for desktop and server environments. The increasing development of
technology in the area of constrained environments (RFID tags, industrial con-
trollers, sensor nodes, smart cards) requires the design of new, lightweight prim-
itives. For this reason, NIST organised a competition aiming at standardizing
a portfolio of lightweight algorithms, targeting authenticated encryption with
associated data (AEAD) ciphers and hash functions. Currently the competition
is at the second round with 32 out of 56 candidates left. The candidates of
the NIST Lightweight Competition [NIS19] need to satisfy certain criteria for
performance and have a level of security of at least 112 bits.

In order to contribute to the public research efforts in analysing the candi-
dates of the on-going second round, we focused on the SpoC cipher, a permuta-
tion based AEAD. In this paper we present the results of a security research on
both versions of SpoC, namely SpoC-64 and SpoC-128. We analyse the sLiSCP-
light permutation used in the algorithm, as well as the structural behaviours of
SpoC-64.

1.1 Our contribution

In this paper we present differential characteristics for round reduced versions
of both sLiSCP-light-[256] and sLiSCP-light-[192]. For the former a 6 out of

18 rounds characteristic is given with probability 2−106.14 and for the latter
a 7 round and 9 (out of 18) round characteristics with probabilities 2−108.2

and 2−110.84 respectively are presented. Based on the described characteristic,
we introduce selective tag forgery attacks for both versions of round-reduced
SpoC and a message recovery attack on 9-round SpoC-64. Additionally, a key-
recovery attack is introduced for the full round version of SpoC-64, based on
a time-memory trade-off approach. Table 1 summarizes our attacks and their
complexities.

Table 1: All attacks on SpoC. We underline that the data complexity of the
key-recovery attack corresponds to the success probability 2−15

Attack steps of π data time memory section

Tag forgery on SpoC-128 6 2106.14 2107.14∗ - 4.2

Tag forgery on SpoC-64 7 2108.2 2109.2∗ - 4.3

Message recovery on SpoC-64 9 2110.84 2109.84∗∗ - 4.4

Key recovery on SpoC-64 all 267 2110 2110∗∗∗ 5

∗ SBox computations, ∗∗ table look ups, ∗∗∗ table entries

The security claims of SpoC are not violated and there is no nonce misuse
in our attacks. The tag forgery attacks additionally assume related keys. To the
best of our knowledge, this is the first research that analyses the security of the
sLiSCP-light permutation and the first published results on SpoC.

1.2 Structure

The paper is structured as follows: In section 2 we briefly introduce the tools
used in our research, the SpoC cipher and the sLiSCP-light permutation. In
section 3 we present round-reduced differential characteristics of both versions
of the sLiSCP-light permutation. Section 4 introduces tag-forgery and message
recovery attacks on the SpoC cipher parameterized with round-reduced sLiSCP-
light permutations, while in section 5 is introduced a TMTO key-recovery attack
on full Spoc-64. Section 6 presents an observation regarding the generation al-
gorithm of the sLiSCP-light constants. Finally, the last section concludes the
paper.

2 Preliminaries

This section gives some essential aspects of differential cryptanalysis and how to
estimate the differential probability. Additionally, the algorithms of SpoC and
sLiSCP-light are presented.

2

2.1 Differential cryptanalysis

Differential cryptanalysis is one of the most powerful and used cryptanalysis
techniques against symmetric primitives. Proposed by Biham and Shamir [BS90],
this approach was introduced as the first attack that fully breaks the DES al-
gorithm [NIS79]. This attack has been largely analysed and further developed,
leading to attacks like Truncated differentials [Knu94], the Boomerang attack
[Wag99] or Impossible differentials [BBS99].

A differential characteristic over n rounds of an iterated cipher is defined
as the sequence of intermediate differences (a = a1, a2 . . . an = b), where each
(ai, ai+1) represents the input and output difference of one round. Assuming
that the rounds are independent and the keys are uniformly distributed, then
the Expected Differential Probability (EDP) of a characteristic is computed by
multiplying the single rounds’ probabilities.

EDP (a1, a2, . . . an) =

n∏
i

DP (ai−1, ai),

where DP represents the differential probability for one round. For simplicity, in
this paper we also use the notion of weight of a differential characteristic, instead
of probability, computed as the absolute value of the log2 of the probability.

In practice, only the input and output differences can be observed without
considering the intermediate differences. We define the set of all differential char-
acteristics with input difference a and output difference b as a differential (a, b).
The probability of a differential (a, b) is computed as the sum of the probabili-
ties of all differential characteristics contained by it and is thus a hard problem.
Therefore, the probability of the optimal characteristic serves as a lower bound
for the probability of the differential.

2.2 SAT solvers

Nowadays, the security against differential cryptanalysis of ARX ciphers is anal-
ysed using automated tools such as SAT (Booolean Satisfability) or MILP (Mixed
-Integer Linear Programming) solvers.

A SAT solver determines whether a boolean formula is satisfiable. Many op-
erations like modular addition, rotation and XOR can be written as simple equa-
tions and easily translated to boolean expressions. For ARX ciphers several auto-
matic search tools have been developed, see for example [Ste14, MP13, Ran17].
We chose to use the ARXpy tool [Ran17], because of its easy to use imple-
mentation, complete documentation and open-source code. We use an improved
version ARXpy0.2, which will be published soon.

2.3 Specifications of SpoC

SpoC, or Sponge with masked Capacity [AGH+19], is a permutation based mode
of operation for authenticated encryption. Since it is a sponge construction, its

3

b-bit state is divided into rate and capacity bits with r the size of the rate and
c = b−r the size of the capacity. The authors introduced a masked capacity part
with size r, representing the blocks in which the message and AD are added.

Two main versions are defined, namely SpoC-64 sLiSCP-light-[192] and SpoC-
128 sLiSCP-light-[256], where 64 and 128 represent the corresponding size of the
rate bits and sLiSCP-light-[] is the permutation used. Throughout this paper we
refer to each of the SpoC versions as SpoC-r, while the permutation is also de-
noted by π. The key and nonce sizes of both versions are 128 bits. The following
table describes the bit size of the parameters of both versions:

Instance state b rate r tag t SB size rounds u steps s

SpoC-64 sLiSCP-light-[192] 192 64 64 48 6 18

SpoC-128 sLiSCP-light-[256] 256 128 128 64 8 18

The state of SpoC is divided into 4 subblocks (S0||S1||S2||S3) with equal
length, where || defines the concatenation. The encryption process of SpoC con-
tains the Initialization, Associated Data Processing, Plaintext Processing and
Tag Processing phases and is shown in Figure 1.

load (K,N0) π

N1

π

A0

0010||0n−4

π

Aa−2

0010||0n−4

π

Aa−1

0010||0n−4

(0011||0n−4)

π

M0

M

C0

0100||0n−4

π

Mn−2

M

Cn−2

0100||0n−4

π

Mn−1

M

Cn−1

0100||0n−4

(0101||0n−4)

π

1000||0n−4

tag

c

r

Fig. 1: Schematic diagram of the different phases used in the SpoC cipher. The
shown initialization is for SpoC-64. Note that the state is divided in two parts,
the capacity (the upper part) and the rate (the lower part).

Initialization. This is the only step that is different for the two versions of
SpoC. For SpoC-128, this process consists only of loading the key K = K0||K1

4

and nonce N = N0||N1 to the state into the odd and even numbered subblocks
respectively. That is, S1[j]← K0[j], S3[j]← K1[j], S0[j]← N0[j], S2[j]← N1[j],
where 0 < j < 7 and X[j] represents the jth byte of the block X. All capacity
bits are considered as masked.

In SpoC-64 the state is smaller, while the sizes of the key and nonce are
unchanged. First, K and N0 are loaded to the state and then the permutation
sliSCP-light-[192] is applied. Finally, N1 is added to the masked capacity bits.
The rate part is represented by the first 4 bytes of subblocks S0 and S2 and is
where N0 is loaded, while the key is loaded to the rest of the state.

AD and Message processing. This two phases are very similar. The blocks
of AD, respectively message, are absorbed into the state and after each block
a control signal (also referred to as a constant) is added. Finally, π is applied
to the state. The added constant depends on both the phase and the length of
the block. For the AD processing phase, the added constant is 0010 for a full
block and 0011 for a partial (last) block. Respectively, for the message processing
phase, 0100 is added for a full block and 0101 for a partial block.

In both AD and message processing phases, in the case of an incomplete
last block, a padding function is applied. We denote this by padding(M) =
M ||1||0mc−n−1 for a block M of length n < mc, where mc is the length of a full
block (which is, in fact, the length of the masked capacity part).

Tag processing. The control signal in this phase is set to 1000 and is added
right after the control signal of the previous phase. Then π is applied and the
tag is extracted from S1 and S3 of the output state.

Note, that if there is null AD (respectively, null message), the corresponding
phase is entirely omitted. We denote with (AD,M) an associated data and
message pair and with ”” an empty instance of either of them. For example,
(””,M) denotes an input pair having null associated data.

2.4 Specifications of sLiSCP-light

sLiSCP-light-[b] is a permutation that operates on a b-bit state, where b equals
192 or 256, and is defined by repeating a step function s times. The state is
divided into four 2m-bit subblocks (Si

0||Si
1||Si

2||Si
3), with 0 < i < s − 1 the

step number and m being equal to 24 or 32. We denote a zero subblock as
02m or simply 0, where the number of zero bits is clear from the context. The
following 3 transformations are performed: SubstituteSubblocks(SSb), AddStep-
constants(ASc), and MixSubblocks(MSb). An ilustration is shown in Figure 2a.

The SSb transformation is a partial substitution layer, in which a non-linear
operation is applied to half of the state - in subblocks S1 and S3. The non-
linear operation, or the SBox, is represented by an u-round iterated unkeyed
Simeck-2m block cipher [YZS+15].

The Simeck SBox used in the description of the permutation is depicted in
Figure 2b. For an input (xi, yi) of the ith round, the output is

R(xi+1, yi+1) = (yi ⊕ f(xi)⊕ rc, xi),

5

S0 S1 S2 S3

SB SBrc0 rc1

sc0 sc1

S1
0 S1

1 S1
0 S1

0

(a)

xi yi

� 5

� 1
rc

xi+1 yi+1

(b)

Fig. 2: The sLiSCP-light step function is shown in (a). On top, the blue blocks
represent masked capacity bits and the green represent the rate bits for SpoC-64.
(b) represents one round of the Simeck cipher, used as SB.

where f(x) = (x � (x � 5) ⊕ (x � 1)) and rc represents a constant computed
using the sLiSCP-light’s round constants rci.

The ASc layer is also applied to half of the state as the step constants sci1
and sci2 are applied to subblocks Si

0 and Si
2 respectively. Table 2 lists all round

and step constants used in sLiSCP-light.

Table 2
Round and step constants for sLiSCP-light-[192]:

step i (rci0, rci1) (sci0, sci1)

0-5 (7,27), (4,34), (6,2e), (25,19), (17,35), (1c,f) (8, 29), (c, 1d), (a, 33), (2f, 2a), (38, 1f), (24, 10)

6-11 (12, 8), (3b, c), (26, a), (15, 2f), (3f, 38), (20, 24) (36, 18), (d, 14), (2b, 1e), (3e, 31), (1, 9), (21, 2d)

12-17 (30, 36), (28, d), (3c, 2b), (22, 3e), (13, 1), (1a, 21) (11, 1b), (39, 16), (5, 3d), (27, 3), (34, 2), (2e, 23)

Round and step constants for sLiSCP-light-[256]:
step i (rci0, rci1) (sci0, sci1)

0-5 (f, 47), (4, b2), (43, b5), (f1, 37), (44, 96), (73, ee) (8, 64), (86, 6b), (e2, 6f), (89, 2c), (e6, dd), (ca, 99)

6-11 (e5, 4c), (b, f5), (47, 7), (b2, 82), (b5, a1), (37, 78) (17, ea), (8e, 0f), (64, 04), (6b, 43), (6f, f1), (2c, 44)

12-17 (96, a2), (ee, b9), (4c, f2), (f5, 85), (7, 23), (82, d9) (dd, 73), (99, e5), (ea, 0b), (0f, 47), (04, b2), (43, b5)

The reader can refer to [AGH+19] or [ARH+18] for more details regarding
the description of SpoC and the sLiSCP-light permutation.

2.5 Security claims and the impact of our attacks

In the original paper, the authors of SpoC introduced the security claims in
different manners. In this paper, we refer to the security claims described in
Table 3.1 from [AGH+19], since we consider this to be the most restrictive. Our
interpretation of this table is that the best attack on either version of SpoC uses
at most 250 data encrypted under the same key and has a time complexity of at

6

most 2112. Furthermore, the attack, aiming at either breaking the confidentiality
or the integrity of the cipher, has a success probability of at least 2−16.

On the first sight, the data complexity of all the attacks presented in this
paper is higher than 250. However, in all of our differential-based attacks, we
consider that each plaintext is encrypted under a different key, respecting the
constraint that no more than 250 data encrypted under the same key is used.
In the online phase of the key-recovery attack the adversary intercepts messages
encrypted by an honest user, therefore the data limit is automatically satisfied.

The impact of our attacks. Since all of our differential-based attacks are
applied to round-reduced versions of SpoC, we consider that they do not have
an impact on the security of the SpoC cipher. Nonetheless, we consider this
work relevant because it presents an analysis on the SpoC cipher and on the
sLiSCP-light permutation that improves the knowledge about the security of
both.

Regarding our key-recovery attack, since we were able to apply a generic
Time-Memory Trade-Off on the full SpoC-64, we consider that there might be
some undesirable properties inducing vulnerabilities in the mode of operation of
SpoC.

3 Differential cryptanalysis on sLiSCP-light

In this section we present several characteristics for both versions of the sLiSCP-
light permutation. Our characteristics are constructed by imposing specific con-
straints on the input and output differences in order to be further used in a
series of attacks on SpoC. First, the details for our 6 round characteristic on
sLiSCP-light-[256] are presented, then 2 different characteristics over 7 and 9
rounds of sLiSCP-light-[192] are shown.

3.1 Characteristics on sLiSCP-light-[256]

In order to construct this 6 rounds characteristic of sLiSCP-light-[256] we impose
a constraint only on the output difference and thus we construct it backwards.
We fix the output difference in the first and third subblocks to ∆S6

0 = δ1 and
∆S6

2 = 0. In fact, those are the positions of the rate bits when applied to SpoC.
The purpose and value of δ1 is discussed in section 4. The output difference
in subblocks S6

1 and S6
3 is irrelevant for our attacks, thus can take any value.

However, in order to decrease the number of active Sboxes, we choose ∆S6
1 = δ2

and ∆S6
3 = δ1, where δ2 is a possible input difference for the Sbox that leads to

δ1. In this case, the characteristic has only one active Sbox in each of the last
two rounds and none in the 4th one.

As it can be seen in Figure 3, for 6 rounds of the permutation we have 6
active Sboxes with the following transitions:

δ5
SB−−→ δ6

SB−−→ δ3
SB−−→ δ2

SB−−→ δ1, δ4
SB−−→ δ3.

7

1

2

3

4

5

6

S0 S1 S2 S3

SB SB

δ4

δ3

δ5

δ6
δ3

0

δ3 δ6

δ6

0

SB SB

δ6

δ3
δ3

0

δ3 0

δ6

δ6

SB SB

δ6

δ3
δ3

0

δ3

SB SB

δ3

δ3

SB SB

δ3

δ2
δ2

δ2

0

SB SB

δ2

δ1
δ1

δ1

0
0

δ2

δ2

δ1 δ2 0 δ1

Fig. 3: The active SBoxes for 6 rounds of sLiSCP-[256] with the difference prop-
agation

The resulted characteristic has the input difference δ3||δ4||064||δ5 and the
output difference δ1||δ2||064||δ1, therefore, by fixing the input and the output
of the characteristic we actually fix the differences from δ1 to δ5. However, the
difference δ6 can take multiple values, as long as it is a valid output difference
for the input difference δ5 and is a valid input difference for the output difference
δ3. In the case of our characteristic we take δ6 = δ4.

To choose the differences δi we used the automatic search tool ArxPy [Ran17].
By fixing δ1 to one of the possible values described in section 4, we constructed a
tree of differences. The nodes of this tree represent all possible input differences
returned by ArxPy, having weight less than the optimal one plus 3.

After choosing the appropriate differences, the weight of each transition was
empirically verified using 230 data. In order to obtain the final weight of the
characteristic all weights of the SBox transitions were added up. Our best differ-
ential characteristics and their corresponding weights are listed in Table 3. The
best weight that we found for 6 rounds of the permutation is 106.14.

Note that the optimal characteristic over one SBox (8 rounds of Simeck) has
weight 18. This is proven in [LLW17] and verified by us with the ArxPy tool.
The empirical differential probability of 8 rounds of Simeck has slightly lower

8

or higher weight than the optimal characteristic, which is expected due to the
differential effect and the independency assumptions.

3.2 sLiSCP-light[192]

In this section we present 2 characteristics, one over 7 rounds and one over
9 rounds of sLiSCP-light-[192]. They are constructed in a similar way as the
characteristic described in the previous subsection. The requirements of the de-
sired differences in the input and output bit positions are different, since the
constraints imposed by our attack scenarios are different.

7-round characteristic. The constraints of our 7-round characteristic fix
the nonzero input difference to S0

1 and S0
3 , while the output difference is S7

0 = δ1
and S7

2 = 048. The difference in S7
1 and S7

3 is chosen for convenience, to reduce
the number of active SBoxes. Therefore, our characteristic has 7 active Sboxes, as
shown in Figure 4a. The described characteristic has input and output differences
(048||δ4||048||048 → δ1||048||048||δ1), with

δ4
SB−−→ δ3

SB−−→ δ2
SB−−→ δ1, δ2

SB−−→ δ3.

From Figure 4a we can see that the iterative transition δ3
SB−−→ δ2 happens

4 times, while δ2
SB−−→ δ3 appears only once. The exact values are chosen to

minimize the weight of δ3
SB−−→ δ2. Our best probability of 2−108.2 happens for

δ1 = 0x700000000000, δ2 = 0x500001800000,
δ3 = 0x100000200000, δ4 = 0x100001100000.

with weights

δ4
17−→ δ3

11,3−−→ δ2
23.1−−→ δ1, δ2

22.9−−→ δ3.

Note that the optimal characteristic over one SBox (6 rounds of Simeck) has
weight 12, as verified with the ArxPy tool.

Table 3: The best characteristics we found for sLiSCP-[256] are shown in this
table. For simplicity the 64-bit differences are presented in hexadecimal and
separated in two halves and the ”..” denote 3 zero bytes. The values above the
arrows represent the weight of each transition’s differential.

δ5 δ4 = δ6 δ3 δ2 δ1 w

1..0, 1..0
17.69−−−→ 1..1, 0..0

17.69−−−→ 1..0, 0..0
17.69−−−→ 1..1, 0..0

17.69−−−→ 1..0, 0..0 106.14

1..0, 0..0
17.69−−−→ 1..1, 0..0

17.69−−−→ 1..0, 0..0
17.69−−−→ 1..1, 0..0

17.69−−−→ 1..0, 0..0 106.14

1..0, 0..2
18.69−−−→ 1..1, 0..0

17.69−−−→ 1..0, 0..0
17.69−−−→ 1..1, 0..0

17.69−−−→ 1..0, 0..0 107.14

0..0, 2..0
18.30−−−→ 0..0, 2..2

18.30−−−→ 0..0, 2..0
18.30−−−→ 0..0, 2..2

18.90−−−→ 6..0, 0..0 110.4

9

S0 S1 S2 S3

SB SB

δ4

δ3
δ3

δ3

01

2

3

4

5

6

7

SB SB

δ3

δ2
0

δ3

δ3 δ2

δ2

0

SB SB

δ2

δ3

δ3

δ2
δ3

δ3

0 δ2

0

δ2

SB SB

δ3

δ2
0

δ3

δ3 δ2

0

δ2

SB SB
δ2

δ2

δ3

δ2

SB SB

δ2

δ2

SB SB

δ2

δ1
δ1

δ1

0
0

0

0

δ1 0 0 δ1

(a)

S0 S1 S2 S3

SB SB

δ4

δ3
δ3

0

δ3 0

δ4

δ4

SB SB

δ4

δ3
δ3

0

δ3

SB SB
0

δ3

δ3

1

2

3

4

5

6

7

8

9

SB SB

δ3

δ4
δ4

δ4

0

SB SB

δ4

δ3
δ3

δ3

0
0

δ4

δ4

SB SB

δ4

δ3

δ3

δ4
δ3

0

δ3 δ4

δ4

0

SB SB
δ4

0

δ4 0

δ4

δ4

δ4

δ3

SB SB

δ4

δ3
δ3

0

δ3

SB SB

δ3

δ3

0 0 0 δ3

(b)

Fig. 4: Differential characteristics of a) 7 rounds and b) 9 rounds of sLiSCP-light-
[192]

10

9 round characteristic. For this characteristic we fix the non-zero output
difference to S9

1 and S9
3 . More precisely, in the first 4 bytes of the subblocks,

which correspond to the masked capacity bits in SpoC.

In order to design this characteristic we used an iterative transition δ3
SB−−→

δ4
SB−−→ δ3. The input and output differences of our characteristic are (δ3||δ4||δ4||048)

and (048||048||048||δ3), respectively.

As seen in Figure 4b, the characteristic has 8 active SBoxes with δ3
SB−−→ δ4

appearing 6 times and δ4
SB−−→ δ3 two times. Our best probability of 2−108.5 holds

for the differences δ3 = 0x000a00000400 and δ4 = 0x000a00001000 with weights

δ3
22.34−−−→ δ4

10.65−−−→ δ3.

4 Differential attacks on SpoC-128 and SpoC-64

In this section we present a series of attacks based on the differential char-
acteristics introduced in the previous section. More precisely, we design tag-
forgery attacks based on the 6-round characteristic of sLiSCP-light-[256] and
the 7-round characteristic of sLiSCP-light-[192]. The 9-round characteristic of
sLiSCP-light[192] is used to design a message-recovery attack.

4.1 Tag forgery attacks

As stated in Section 2.3, in order to distinguish between different phases of the
encryption process, the authors of SpoC used a 4-bit control signal. The values
of these 4 bits depend on the current phase, but also on whether the inputs
(associated data or plaintext) are padded or not. Moreover, if the associated
data or the plaintext is null, the corresponding phase is disregarded.

Our approach is based on identifying and exploiting scenarios in which dif-
ferent types of inputs lead to similar internal states.

Take, for example, the scenario where one uses SpoC-64 or SpoC-128 to
encrypt two one-block plaintexts: an incomplete block M and a complete block
M∗ = padding(M), using, in both cases, the same associated data and the same
(key, nonce) pair. Take into account that, at the end of the plaintext addition
phase, just before generating the tag, the difference between the corresponding
internal states is given by the difference between the corresponding 4-bit control
signals, i.e. 0001||0n−4. In the plaintext processing phase of the first case, the
0101 control signal is used, while in the second case 0100 is used. The difference
between the used constants we denote by δ1 and it represents the convenient
difference that we can cancel locally.

The difference δ1. Depending on the scenario, we identified three possible
values for the control signals’ difference δ1, as follows:

1. δ1 = 0001||0n−4 = 0100||0n−4 ⊕ 0101||0n−4
This value can be obtained in the case when we encrypt the plaintexts M
and M∗ described above, using the same (key, nonce) pair and the same AD.

11

2. δ1 = 0110||0n−4 = 0100||0n−4 ⊕ 0010||0n−4
This value can be obtained when we encrypt (””,M) and (M, ””). More pre-
cisely, in the first case we use a null AD, while in the second case we use a
null plaintext. The former encryption consist of initialization, message pro-
cessing phase and finalization, whereas the latter has AD processing phase
instead of message processing. It will produce no ciphertext, however the
tags of the two would be the same. Hence we can forge the verification of
associated data.

3. δ1 = 0111|0n−4 = 0101||0n−4 ⊕ 0010||0n−4
This value can be obtained when we encrypt the pairs (””,M) and (AD, ””),
where the length of M is less than the length of a full block and AD =
padding(M).

In order to achieve a tag forgery, we designed differential characteristics such
that, after the plaintext processing phase, the difference between the correspond-
ing control signals is cancelled by the output difference of the characteristic. Since
this results in the same internal states, the corresponding tags will collide.

We underline the fact that the control signal bits are influencing the differ-
ence on the rate part of the internal state. The target characteristic might also
have active bits in the capacity part, these being canceled through a difference
between the two plaintexts. Therefore, we aim at finding characteristics having
the output difference of the form (δ, λ, 0, γ), where δ is the difference between
the constants, while the differences λ and γ can be cancelled through the plain-
text block difference. In our experiments, in order to optimize the number of
active Sboxes, we imposed the additional constraint that δ = γ. In section 3
we presented the best characteristics that we found, suitable for our approach,
on 6-round sLiSCP-256 and on 7-round sLiSCP-192. Using these characteristics
and the approach presented above, we designed tag forgery attack on reduced
versions of both Spoc-64 and Spoc-128.

Since the complexity of our round-reduced characteristics are close to the se-
curity bound, we chose the input parameters such that the difference propagates
through only one permutation.

4.2 Tag forgery attack on SpoC-128

After we have fixed our characteristic, we can proceed to the attack. Note that, in
the case of SpoC-128, the initialization phase is represented only by the loading
of the (key, nonce) pair into the internal state. Since there is only one sLiSCP-
light application before the ciphertext generation, our tag forgery attack on
SpoC-128 follows the related-key related-nonce scenario. According to our 6-
round characteristic, we use inputs such that the key difference is (δ3||0), while
the nonce difference is (δ4||δ5). Moreover, since our best characteristic uses δ1 =
0x1||0124, the setup of this attack assumes the use of null associated data, a
plaintext M = M1||M2 having the size less than 128 bits and a plaintext M∗ =
padding(M)⊕δ2||δ1 = M∗1 ||M∗2 encrypted under related-key related-nonce pairs.
As we mentioned before, by injecting a difference in the plaintexts we cancel the

12

capacity difference after the permutation. The encryption processes are described
in Figure 5.

load (K,N) π π tag

M

M ||8||0123−m

M

0101||0n−4

C

1000||0n−4

padding

c

r

load (K ⊕ δ3||0,

N ⊕ δ4||δ5)
π π tag

M ||8||0123−m ⊕ δ2||δ1

M ||8||0123−m ⊕ δ2||δ1

M∗

0100||0n−4

C∗

1000||0n−4

padding

c

r

Fig. 5: The encryption of an incomplete and a full block of plaintexts, using
related-key related-nonce inputs and null associated data

Note that, if our differential characteristic holds, then the following equations
also hold with probability 1:

M∗1 = M1 ⊕ δ2,
S6∗
0 = S6

0 ⊕ δ1,
S6∗
2 = S6

2 ,

C∗ = M∗1 ⊕ S6∗
0 ||M∗2 ⊕ S6∗

2 .

Therefore, C∗ = (C1||C2)⊕ (δ2 ⊕ δ1||δ1).
More precisely, the ciphertext-tag pair (C∗, τ) would then be valid under (K⊕

∆K , N⊕∆N) = (K⊕δ4||δ5, N⊕δ3||0) with the probability of the characteristic.
The pseudocode of this attack is presented in Algorithm 1.

Since the rate part of the internal state is used for the encryption, by knowing
both the plaintext and the ciphertext we can recover the rate part of each internal
state used in the plaintext processing phase. In the case of our approach we use
this observation to decrease the data complexity of our attack, by filtering the
ciphertexts obtained in the first step.

The data complexity of this attack, computed as the number of encryptions
and decryptions required, is (PR6 + 1) ·PR1→R5 = (217.69 + 1) · 288.45 = 2106.14 +
288.45, where Ri represents the ith sLiSCP step. The time complexity, computed
as the number of offline SBox computations, is 2 · PR6

· PR1→R5
= 2107.14.

Improved attack. We can improve the complexity of the attack by using
multiple differential characteristics that have the same output difference, i.e.
equal δ1s and δ2s. Suppose that we have d differential characteristics such that

13

Algorithm 1: The tag forgery attack on Spoc-128

Encryption Obtain (C = C1C2, τ), the encryption of (””,M) under arbitrary
(K,N);

Compute S6
0S

6
2 = padding(M)⊕ C;

if SB−1(S6
0)⊕ SB−1(S6

0 ⊕ δ1) == δ2 then
Decryption Ask for P , the decryption of (C1 ⊕ δ2 ⊕ δ1||C2 ⊕ δ1, τ) under
(K ⊕ δ4||δ5, N ⊕ δ3||0);

if P 6=⊥ then
P = (””,M∗);

else
go to Encryption;

end

else
go to Encryption;

end

δi3

→

δi3

→

δi3

→

δi3

→

0

→

0

→

δ1
δi4 δi4 δi4 0 0 δ2 δ2
0 δi4 0 0 0 δ2 0

δi5 0 0 0 δi3 0 δ1

,

where each characteristic has the probability pi, i = 1, . . . , d.

The attack follows the lines of Algorithm 1, where instead of asking for the
decryption under a fixed (key, nonce) pair, we use every (K ⊕ ∆i

K , N ⊕ ∆i
N)

pair. For our improved attack the time and data complexities can improve with
at most a factor of log2d, when all the characteristics have the same probability.

By using 10 different characteristics that we found that have δ1 = 1..0, 0..0
and δ2 = 1..1, 0..0, the complexity is improved by a factor of 21.82, the time
complexity being around 2105.32, while the data complexity decreases to approx-
imately 2104.32 + 286.63.

Time-Memory trade-off. The time complexity of our attack can be im-
proved by using a time-memory trade-off approach. In this case the attack will
also imply an offline phase, as follows: for all possible values of S6

0 we verify if
SB−1(S6

0) ⊕ SB−1(S6
0 ⊕ δ1) == δ2. If the condition holds, we store the corre-

sponding value of S6
0 in the sorted list listS6

0
.

The complexity of this phase is 264 SBox computations. In this case, instead
of verifying the specified condition, it will be verified if S6

0 ∈ listS6
0
. The time

complexity of each query will be log2(#listS6
0
) operations, while the memory

complexity will be less than 264 (negligible compared to the data complexity).

4.3 Tag forgery attack on SpoC-64

The main idea of the attack is similar to the one presented in subsection 4.2,
some modifications being imposed due to the different loading phase of SpoC-64.

14

This attack is based on the 7-round characteristic presented in subsection 3.2.
Since our characteristic covers only one permutation, in this scenario we have
one more constraint on the input differences. More precisely, the setup of our
attack assumes the use of related N1s, while the key and the nonce N0 are equal.
The input difference is given by the difference between the corresponding N1s,
while the output difference respects the constraints from subsection 4.2. Since
N1 is added to the masked capacity bits, note that the difference needs to have
active bits only in the masked capacity part.

Moreover, for the 7-round characteristic on sLiSCP-light-192 we used δ1 =
0111||0n−4, therefore the setup of our attack is the one presented in Figure 6.

load (K,N0) π

N1

π π tag

M

M

0100||0n−4

(0101||0n−4)

C

1000||0n−4

c

r

c

r

load (K,N0) π

N1

π π tag

AD = padded(M)⊕ 0||δ1

0010||0n−41000||0n−4

c

r

c

r

Fig. 6: The two processes of SpoC-64 used by our approach. Note that the second
XORed constant is imposed by the beginning of the tag generation phase.

We state that, while the encryption of the message (””,M) will return a (ci-
phertext, tag) pair, the encryption of the pair (AD, ””) results in a null ciphertext
and a tag. Therefore, assuming the 7-round characteristic holds, the ciphertext-
tag pair (””, τ) is valid under (K,N0||(N1 ⊕∆N)) = (K,N0||(N1 ⊕ δ4||0)) with
probability 1.

The tag forgery attack on SpoC-64 is very similar to the one described in
Algorithm 1. The distinction is given by the input difference of the characteristic
which impacts the decryption (key, nonce) pair. More precisely, only the nonce
N1 is different.

The data complexity of this attack, computed as the number of encryptions
and decryptions required, is (PR7 +1)·PR1→R6 = (223.1+1)·285.1 = 2108.2+285.1.
The time complexity, computed as the number of offline Sbox computations, is
2 · PR7

· PR1→R6
= 2109.2.

Even though the required amount of data is higher than the size of the tag
space, we consider that our attack is meaningful since the authors of SpoC claim
security of 112 bits for both confidentiality and integrity.

Time-Memory trade-off. By following the same time-memory trade-off
approach presented in subsection 4.2, we can improve the time complexity of
our attack. The complexity of the offline phase is also 264 SBox computations.
Thus, the time complexity of each query will be log2(#listS7

0
) operations, while

15

the memory complexity will be less than 264 (negligible compared to the data
complexity).

4.4 Message recovery attack on SpoC-64

In this section we present a message recovery attack on Spoc-64 based on a differ-
ential cryptanalysis approach. This attack exploits the fact that the initialization
phase is not a bijective function, since the input is 256 bits and the internal state
is 192 bits. The analysis aims at constructing (key, nonce) pairs that lead to the
same internal state after the initialization. Thus, we designed the 9-round differ-
ential characteristic on sLiSCP-light-[192] presented in section 3. More precisely,
the constraint of our characteristic is that the output difference only affects the
capacity part, this difference being canceled by a difference between the corre-
sponding N1’s. Therefore our approach uses a key-related nonce-related scenario.

By using our 9-round characteristic on a round-reduced scenario, the inter-
nal states after the initialization collide. Therefore, the encryption of the same
plaintext under different (key, nonce) pairs lead to identical ciphertexts and
tags. Moreover, if we encrypt two messages with the same l first blocks, the
corresponding l ciphertext blocks will also be the same.

We used this approach to design a related-key related-nonce attack on SpoC-
64. The attack works as follows:

1. With a key-nonce pair (K,N) we ask for the encryption of an arbitrary, un-
known plaintext M , using the associated data AD; we obtain the ciphertext-
tag pair (C, τ);

2. We ask for the decryption of (C, τ) under (K ⊕∆K , N ⊕∆N) and using the
initial AD;

3. If the tag verification holds, we obtain the plaintext M ′. If M ′ is a readable
text, then M ′ = M and the message is recovered.

We specify M ′ being readable, since there is always a probability that tags
collide. As stated in section 3, the probability of our 9-round characteristic is
2−109.84. Since the data complexity defines the number of encryptions and de-
cryptions, in our case the data complexity is 2110.84, while the time complexity
is bounded by the data complexity.

The existence of related-key related-nonce pairs that lead to a collision on the
internal state can be compared to the case of the nonce misuse scenario. In both
cases, the same internal state, obtained after the initialization phase, is used more
than once. Therefore, there is no distinction, with respect to the ciphertext and
tag, between encrypting twice with the same (key, nonce) pair and encrypting
with related-key related-nonce pairs that collide after the initialization phase.

5 Key-recovery attack on SpoC-64

In this section we generalise the approach described in subsection 4.4, by defining
the notion of class-equivalence over the space of all (key, nonce) pairs. We then

16

present a time-memory trade-off attack based on the class-equivalence that leads
to the recovery of the secret key K.

Equivalence in the set of (key, nonce) pairs.

Definition 1. The (key, nonce) pairs (K1, N1) and (K2, N2) are said to be in
the same equivalence class (or simply equivalent) if the corresponding internal
states, after the initialization phase, are equal.

The number of equivalence classes is given by the number of all possible
internal states of SpoC-64, namely 2192. For each fixed internal state, one can
consider all values of N1 and can compute the associated (K,N0) pairs by apply-
ing the inverse of the permutation. Therefore, each equivalence class is formed
by 264 (key, nonce) pairs.

Note that the encryption of the same message under equivalent (key, nonce)
pairs results in equal ciphertexts and tags. Moreover, the decryption and tag
verification of a (ciphertext, tag) pair can successfully be performed under any
(key, nonce) pair belonging to the same equivalence class.

The key-recovery attack. Our attack consists of two phases: an offline and
an online phase. In the offline phase, the adversary generates a table containing
2110 entries. Each entry contains a (K,N0||N1) pair and the ciphertexts and
tag obtained by applying SpoC-64 on a well chosen plaintext M , under the
(K,N0||N1) pair and a null AD.

The (key, nonce) pairs are generated such that they belong to different equiv-
alence classes. More precisely, 2110 different internal states are generated by the
adversary. For each state an arbitrary N1 is chosen and, by XORing it to the
internal state and by applying the inverse of the permutation, the (K,N0) pair is
computed. Using each (K,N0||N1) pair, the adversary encrypts, using SpoC-64,
a common short message M . Note that, in practice, depending on the nature
of a correspondence, messages usually start with the same words or letters. For
example, e-mails normally start with ”Dear (*name*),” or ”Hello (*name*),”.
By making this assumption, we choose a plaintext M to be a regularly used word
or phrase of length l blocks. In our research we make the assumption that the
full 18-round sLiSCP-light behaves as a random permutation, thus no particu-
lar properties can be observed. Therefore, we claim that l = 3 is the number of
blocks of ciphertext that uniquely defines the equivalence class of the (K,N0||N1)
pairs.

We consider the encryption function of SpoC-64, defined using a fixed plain-
text and considering as the input state the result of the initialization phase. On
one hand, in order to have uniqueness, this function has to be injective. There-
fore, since the length of the internal state is 192 bits and the length of one block
of ciphertext is 64 bits, the minimum value of l is 3. On the other hand, by
writing the system of bit-level equations of the targeted function, for l blocks
of ciphertext we obtain 64× l equations using 192 variables. If this system does
not have an unique solution for l = 3, it means that the resulted equations are
not independent, thus there are some particular properties of the sLiSCP-light
permutations that could be further extended to an attack.

The pseudocode of the offline phase is presented in Algorithm 2.

17

Algorithm 2: Offline phase

list = null ;
choose M ;
while list.length < 2110 do

sample internal state;
sample N1;
compute (K,N0) = π−1(internal state⊕N1) ;
encrypt (C, τ) = SpoC-64(K,N0||N1, ””,M) ;
list.Add(K,N0||N1, C)

end
Result: list populated with 2110 entries

Note that π−1 denotes the inverse of the full sLiSCP-light-[192] permuta-
tion. The resulted list is sorted with respect to the ciphertexts, using a hash
table. The memory complexity of this phase is 2110 table entries, while the time
complexity is 2110 SpoC-64 encryptions. Note that the steps of an encryption
are not performed sequentially. Since the first step is to sample the internal
state, the encryption can be performed without the initialization phase, while
the initialization phase is performed backwards, by computing a (key, nonce)
pair corresponding to a fixed internal state. Thus, by assuming that the per-
mutation function and the inverse of the permutation function are equivalent
time-wise, the time complexity of our offline phase is 2110 encryptions.

In the online phase the adversary intercepts the (ciphertext, tag) pairs en-
crypted by a valid user. For simplicity, we assume that the valid user used null
associated data. We discuss in a paragraph below the case where the associated
data is not null. For every intercepted ciphertext, the adversary verifies if the
first l blocks belong to the table computed in the offline phase. Since a string
of l blocks uniquely defines the equivalence class, a match means that the valid
user encrypted the plaintext under a (key, nonce) pair that is in the same equiv-
alence class with the pair (K,N0||N1) extracted from the precomputed table.
Moreover, the adversary can easily compute the internal state obtained after the
initialization phase, using the (K,N0||N1). Since the nonce N1 is public, it can
XOR N1 to the internal state and, by applying the reverse of the permutation,
the adversary can compute the user’s key.

In the case where the valid user chooses a non-empty value for the associated
data, the key-recovery works as follows:

1. The adversary verifies if the first l blocks of the ciphertext belongs to the
table;

2. When a match is found, the adversary reverse the associated data addition
phase; this action is allowed, since AD is a public value;

3. On the obtained internal state, the adversary XOR the N1 and apply the
inverse of the permutation.

Therefore, the adversary gains full control over the encryption of the valid
user, being able to decrypt all the past and future communication in which the

18

valid user used the recovered key. Moreover, the adversary gains the ability of
impersonating the valid user, being able to generate (ciphertext, tag) pairs using
the secret key of the valid user.

Since the adversary can control 2110 equivalence classes, through the precom-
puted table, the probability that an intercepted message belongs to the precom-
puted table is 2110−192 = 2−82. Thus, if the adversary intercepts 267 (ciphertext,
tag) pairs, the success probability of this attack is 2−15, twice the probability
claimed by the authors of SpoC. By increasing the amount of intercepted data,
the success probability of the attack also increases. For example, if the adversary
intercepts 282 messages, the success probability of the attack is 1.

The data complexity of the online phase is represented by the number of
required online encryptions. So, for a success probability of 2−15, the data com-
plexity of the online phase is 267. Since the precomputed table is a sorted hash
table, the search of a ciphertext has a time complexity of O(1). Thus, the time
complexity of the online phase is 267 table lookups. For comparison, an exhaus-
tive search attack with the same success probability of 215 would require 2113

data. Note that even though the online phase of the attack can be performed
many times (e.g. the attack targets two or more valid users), the offline phase
of the attack is only performed once. Thus, the time complexity of the offline
phase can be overlooked in any application of the attack, except for the first one.
Therefore, every other instance of the attack has a total time complexity of 267.

We emphasize that the setup of our attack respects the constraints imposed
in the security claims made by the authors. Even if the data intercepted has a
size larger than 250, the plaintexts were computed by an honest party, respecting
the author’s constraints (for example, using different (key, nonce) pairs on every
encryption). Note that our attack recovers only one of the secret keys used by
the valid user.

6 Other observations

While analyzing the sLiSCP-light-256 permutation we noticed a particular prop-
erty of both the round and the step constants. More precisely, using the notations
introduced in [AGH+19], we noticed that

rci0 = rci+8
1 ,∀i ∈ {0, ...10}

and

sci0 = sci+8
1 ,∀i ∈ {0, ...10}

The design rationale behind the generation of these constants is described in
[ARH+17]. The constants are computed using an LFSR with length 7 and the
primitive polynomial x7 +x+1. The initial state of the LFSR is filled with seven
bits of 1.

For the computation of the round constants, the LFSR runs continuously for
18× 2× 8 steps. The first 16 bits of the returning string are: 1111111000000100.

19

The constants rc00 and rc01 are computed by 2-decimation. More precisely, the
bits of rc00 are the bits in odd positions of the string above while the bits of rc01
are the bits from the even positions, both of them being read in an little-endian
manner. Thus, rc00 = 00001111 = 0xF and rc01 = 01000111 = 0x47.

Since the primitive polynomial has degree 7, it’s period is 27 − 1 = 127.
Therefore, the 127 +nth bit will be equal to the nth generated bit. In particular,
the bits of rc8+n

1 are equal to the bits of rcn0 .
A similar approach is used for the computation of the step constants. In this

case, after loading the initial state of the LFSR with seven bits of 1, 14 steps are
performed (discarding the outputed bits). Then the same procedure is applied,
thus, the same observation is also valid for the step constants.

The round and step constants of the sLiSCP-light-192 permutation are com-
puted by a similar manner. But since both the constants and the LFSR length
is 6, the 2-decimation does not influence the distribution of the bits through the
constants.

Note that the authors of the sLiSCP permutation claim that each 8-bit con-
stant is different.

7 Conclusion and future work

Our work analyzes the SpoC cipher, a second round candidate of NIST Lightweight
competition, and the permutation sLiSCP-light which represents one core com-
ponent of the SpoC cipher. For both versions of SpoC, namely SpoC-128 and
SpoC-64, we propose characteristics covering round-reduced versions of the per-
mutation. We then use these characteristics to design tag-forgery and message-
recovery attacks on SpoC parameterized with round-reduced versions of the
sLiSCP-light permutation. Furthermore, by using an TMTO approach, we de-
signed a key-recovery attack on SpoC-64. A summary of our results is depicted
in Table 1. To the best of our knowledge this is the first paper analysing both
the SpoC algorithm and the sLiSCP-light permutation.

The work we presented can be extended in several directions. For example,
it would be interesting to analyse both the SpoC cipher and the sLiSCP-light
permutation using other techniques. It also remains to be investigated if or how
our observations regarding the round and step constants can be exploited. Fur-
ther research should also consider investigating the impact of our characteristics
to other ciphers based on the sLiSCP-light permutation.

20

Bibliography

[AGH+19] Riham AlTawy, Guang Gong, Morgan He, Ashwin Jha, Ka-
likinkar Mandal, Mridul Nandi, and Raghvendra Rohit.
SpoC:An Authenticated Cipher Submission to the NIST LWC
Competition. 2019. https://csrc.nist.gov/CSRC/media/

Projects/lightweight-cryptography/documents/round-2/

spec-doc-rnd2/spoc-spec-round2.pdf.
[ARH+17] Riham AlTawy, Raghvendra Rohit, Morgan He, Kalikinkar Mandal,

Gangqiang Yang, and Guang Gong. sLiSCP: Simeck-Based Permu-
tations for Lightweight Sponge Cryptographic Primitives. In Selected
Areas in Cryptography - SAC 2017 - 24th International Conference,
Ottawa, ON, Canada, August 16-18, 2017, Revised Selected Papers,
volume 10719 of Lecture Notes in Computer Science, pages 129–150.
Springer, 2017.

[ARH+18] Riham AlTawy, Raghvendra Rohit, Morgan He, Kalikinkar Mandal,
Gangqiang Yang, and Guang Gong. SLISCP-light: Towards Hard-
ware Optimized Sponge-specific Cryptographic Permutations. ACM
Trans. Embedded Comput. Syst., 17(4):81:1–81:26, 2018.

[BBS99] Eli Biham, Alex Biryukov, and Adi Shamir. Cryptanalysis of Skip-
jack Reduced to 31 Rounds Using Impossible Differentials. In EURO-
CRYPT, volume 1592 of Lecture Notes in Computer Science, pages
12–23. Springer, 1999.

[BS90] Eli Biham and Adi Shamir. Differential Cryptanalysis of DES-like
Cryptosystems. In Advances in Cryptology - CRYPTO ’90, 10th An-
nual International Cryptology Conference, Santa Barbara, Califor-
nia, USA, August 11-15, 1990, Proceedings, volume 537 of Lecture
Notes in Computer Science, pages 2–21. Springer, 1990.

[Knu94] Lars R. Knudsen. Truncated and Higher Order Differentials. In FSE,
volume 1008 of Lecture Notes in Computer Science, pages 196–211.
Springer, 1994.

[LLW17] Zhengbin Liu, Yongqiang Li, and Mingsheng Wang. Optimal Differ-
ential Trails in SIMON-like Ciphers. IACR Trans. Symmetric Cryp-
tol., 2017(1):358–379, 2017.

[MP13] Nicky Mouha and Bart Preneel. Towards finding optimal differential
characteristics for ARX: Application to Salsa20. Cryptology ePrint
Archive, Report 2013/328, 2013. https://eprint.iacr.org/2013/
328.

[NIS79] NIST. FIPS-46: Data Encryption Standard (DES). 1979. http:

//csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf.
[NIS19] NIST. Lightweight Cryptography Competition, 2019. https://

csrc.nist.gov/projects/lightweight-cryptography.
[Ran17] Adrián Ranea. An easy to use tool for Rotational-XOR Cryptanalysis

of ARX Block Ciphers, 2017. https://github.com/ranea/ArxPy.

https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/spoc-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/spoc-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/spoc-spec-round2.pdf
https://eprint.iacr.org/2013/328
https://eprint.iacr.org/2013/328
http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf
http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf
https://csrc.nist.gov/projects/lightweight-cryptography
https://csrc.nist.gov/projects/lightweight-cryptography
https://github.com/ranea/ArxPy

[Ste14] Stefan Kölbl. CryptoSMT: An easy to use tool for cryptanal-
ysis of symmetric primitives, 2014. https://github.com/kste/

cryptosmt.
[Wag99] David A. Wagner. The Boomerang Attack. In FSE, volume 1636 of

Lecture Notes in Computer Science, pages 156–170. Springer, 1999.
[YZS+15] Gangqiang Yang, Bo Zhu, Valentin Suder, Mark D. Aagaard, and

Guang Gong. The Simeck Family of Lightweight Block Ciphers.
IACR Cryptology ePrint Archive, 2015:612, 2015.

22

https://github.com/kste/cryptosmt
https://github.com/kste/cryptosmt

	Cryptanalysis of the permutation based algorithm SpoC

