A preliminary version of this paper appears in Advances in Cryptology - ASTACRYPT 2020.
This is the full version.

Subvert KEM to Break DEM:
Practical Algorithm-Substitution Attacks on Public-Key
Encryption

Rongmao Chen * Xinyi Huang Moti Yung *

chromao@nudt.edu.cn xyhuang@f jnu.edu.cn moti@cs.columbia.edu

September 8, 2020

Abstract

Motivated by the currently widespread concern about mass surveillance of encrypted
communications, Bellare et al. introduced at CRYPTO 2014 the notion of Algorithm-
Substitution Attack (ASA) where the legitimate encryption algorithm is replaced by a sub-
verted one that aims to undetectably exfiltrate the secret key via ciphertexts. Practically
implementable ASAs on various cryptographic primitives (Bellare et al., CRYPTO'14 &
ACM CCS’15; Ateniese et al., ACM CCS’15; Berndt and Ligkiewicz, ACM CCS’17) have
been constructed and analyzed, leaking the secret key successfully. Nevertheless, in spite
of much progress, the practical impact of ASAs (formulated originally for symmetric key
cryptography) on public-key (PKE) encryption operations remains unclear, primarily since
the encryption operation of PKE does not involve the secret key, and also previously known
ASAs become relatively inefficient for leaking the plaintext due to the logarithmic upper
bound of exfiltration rate (Berndt and Liskiewicz, ACM CCS’17).

In this work, we formulate a practical ASA on PKE encryption algorithm which, perhaps
surprisingly, turns out to be much more efficient and robust than existing ones, showing that
ASAs on PKE schemes are far more effective and dangerous than previously believed. We
mainly target PKE of hybrid encryption which is the most prevalent way to employ PKE in
the literature and in practice. The main strategy of our ASA is to subvert the underlying key
encapsulation mechanism (KEM) so that the session key encapsulated could be efficiently
extracted, which, in turn, breaks the data encapsulation mechanism (DEM) enabling us to
learn the plaintext itself. Concretely, our non-black-box yet quite general attack enables
recovering the plaintext from only two successive ciphertexts and minimally depends on a
short state of previous internal randomness. A widely used class of KEMs is shown to be
subvertible by our powerful attack.

Our attack relies on a novel identification and formalization of certain properties that
yield practical ASAs on KEMs. More broadly, it points at and may shed some light on
exploring structural weaknesses of other “composed cryptographic primitives,” which may
make them susceptible to more dangerous ASAs with effectiveness that surpasses the known
logarithmic upper bound (i.e., reviewing composition as an attack enabler).

*National University of Defense Technology. Part of this work was done while visiting COSIC in KU Leuven.

tFujian Provincial Key Laboratory of Network Security and Cryptology, College of Mathematics and Infor-
matics, Fujian Normal University, China

fColumbia University & Google

Contents

1

Introduction 2
1.1 Algorithm-Substitution Attacks o oL 2
1.2 Our Results e e e 4
Preliminaries 7
2.1 Entropy Smoothing Hash Functions 7
2.2 Key Encapsulation Mechanism (KEM) 7
Asymmetric ASA Model for KEMs 8
3.1 Asymmetric ASAon KEMs 8
3.2 Session Key Recovery 9
3.3 Undetectability L 10
Mounting ASAs on KEMs 11
4.1 A Module-Level Syntax of KEM, 11
4.2 Our Non-Black-Box ASAon KEMs 12
4.3 Formal Analysis. L 14
Instantiations 19
5.1 KEMs from Hash Proof Systems 19
5.2 Concrete KEMs 0. o0 21
Discussions on Countermeasures 23
6.1 Abandoning Randomized Algorithms 23
6.2 Permitting Randomized Algorithms with Further Assumptions 24
Conclusions 25
Omitted Definitions, Proof and Instantiations 28
A.1 Hash Proof System 28
A.2 Proof of Theorem 4. e 28
A.3 Instantiating HPSs from Graded Rings, 29
Constructing Subversion-Resistant KEMs 30
B.1 Subversion-resistant KEMs in the Cliptographic Model 30
B.2 Further Discussions on other Approaches 34
ASA on Hybrid Encryption 36

1 Introduction

Provable security provides strong guarantees for deploying cryptographic tools in the real world
to achieve security goals. Nevertheless, it has been shown that even provably secure cryptosys-
tems might be problematic in practice. Such a security gap—between the ideal and the real
world—Ilies in the fact that the robustness of provable security closely depends on the adopted
adversarial model which, however, often makes idealized assumptions that are not always ful-
filled in actual implementations.

An implicit and common assumption—in typical adversarial models for provable security—
is that cryptographic algorithms should behave in the way specified by their specifications. In
the real world, unfortunately, such an assumption may turn out to be invalid due to a variety of
reasons such as software/hardware bugs and even malicious tampering attacks. In particular,
attackers (manufacturers and supply-chain intermediaries), in reality, may be able to modify
the algorithm implementation so that the subverted one remains indistinguishable—in black-
box testing—from the specification, while leaking private information (e.g., secret keys) during
its subsequent runs. The threat was originally identified as kleptography by Young and Yung
[35, 36] over two decades ago, while the Snowden revelations of actual deployments of such
attacks (in 2013) attracted renewed attention of the research community [7, 6, 3, 17, 5, 29, 18,
12, 20, 32, 9, 10, 28, 33, 34, 21, 4, 13].

1.1 Algorithm-Substitution Attacks

In Crypto 2014, Bellare, Paterson, and Rogaway [7] initiated the formal study of algorithm-
substitution attack (ASA), which was defined broadly, against symmetric encryption. In the
ASA model, the encryption algorithm is replaced by an altered version created by the adversary.
Such a substitution is said to be undetectable if the detector—who knows the secret key—
cannot differentiate subverted ciphertexts from legitimate ones. The subversion goal of an
ASA adversary is to gain the ability to recover the secret key from (sequential) subverted
ciphertexts. Concretely, [7] proposed actual substitution attacks against certain symmetric
encryption schemes.

Subsequently, Degabriele, Farshim and Poettering [17] further justified Bellare et al.’s ASA
model [7] from an increased practical perspective, and redefined the security notion by relax-
ing the assumption that any subverted ciphertext produced by the altered algorithm should
be decryptable. Bellare, Jaeger and Kane [6] strengthened the undetectability notion of [7] by
considering stronger detectors which are able to adaptively feed the encryption code with some
specified inputs and see all outputs written to memory, including the current state of the en-
cryption code. They then designed stateless ASAs against all randomized symmetric encryption
schemes. In [3], Ateniese, Magri and Venturi extended the ASA model and studied signature
schemes in the setting of fully-adaptive and continuous subversion. Berndt and Liskiewicz [9], in
turn, rigorously investigated the relationship between ASAs and steganography—a well-known
concept of hiding information in unsuspicious communication. By modeling encryption schemes
as steganographic channels, they showed that successful ASAs correspond to secure stegosys-
tems on the channels and vice versa. This indicates a general result that there exist universal
ASAs—work with no knowledge on the internal implementation of the underlying cryptographic
primitive—for any cryptographic algorithm with sufficiently large min-entropy, and in fact al-
most all known ASAs [7, 6, 3] are universal ASAs.

In this work, we turn to another fundamental cryptographic primitives, i.e., public-key
encryption (PKE), aiming at better understanding the impact of ASAs on PKE systems. Indeed,
Bellare, Paterson and Rogaway mentioned in [7] that:

“...ome can consider subversion for public-key schemes or for other cryptographic goals,
like key exchange. There are possibilities for algorithms-substitution attacks (ASAs) in
all these settings...the extensions to cover additional schemes is an obvious and important
target for future research.”

At first glance, the general result by Berndt and Liskiewicz [9] has already illustrated the
feasibility of ASAs on randomized PKE algorithms, and, further, a concrete attack was indeed
exhibited on the CPA-secure PKE by Russell et al. [33] (where their main result was a concrete
architectural setting and construction to prevent such attacks). However, as we will explain
below, the impact of such univerisal ASAs on PKE encryption algorithm turns out to be much
weaker (i.e., much less efficient) than those on symmetric encryption [7, 6]. We concentrate in
this work on subverting the system via the content of its ciphertexts.

Limited efficiency and impact of previously known ASAs on PKE. It is proved that
the exfiltration rate of universal ASAs—the number of embedded bits per ciphertext—suffers
a logarithmic upper bound[9]. Concretely, for the case of encryption schemes, no universal and
consistent ASA is able to embed more than log(x) (k is the key length) bits of information into a
single ciphertext in the random oracle model. Although this upper bound is somewhat limited,
it does not significantly weaken the impact of universal ASAs on secret-key algorithms [7, 6, 3],
since given sufficient ciphertexts—or sufficient signatures in the case of signature schemes—the
adversary can extract the whole secret key, and afterwards can completely break the security
of these algorithms, as long as the underlying secret key remains unchanged. However, when it
comes to the case of PKE, the impact of universal ASAs turns out to be quite impractical as
the encryption procedure of PKE has only access to the public key, and thus it is impossible
to leak the secret key via subverting the PKE encryption algorithm itself (via the ciphertexts).
Hence, as we see it, the best possible goal for ASAs on PKE encryption procedure is to recover
plaintexts. For legitimate users, this seems somewhat positive as different from the (fixed)
secret key, the plaintext is usually much longer, and thus the adversary needs to collect much
more ciphertexts—due to the logarithmic upper bound of universal ASAs—to recover the whole
plaintext successfully. Note that although gaining one-bit information of plaintext suffices for
the adversary to win the indistinguishibility-based security game (e.g., IND-CPA), such a bit-
by-bit recovery of plaintext is rather inefficient and thus not desirable from the point of view of
the adversary, especially given the fact that plaintexts are usually fresh across various encryption
sessions in reality.

CONCRETE EXAMPLES. We apply Bellare et al.’s ASAs [7, 6] to PKE to give a more intuitive
picture. Precisely, the biased ciphertext attack [7]—using rejection sampling of randomness—
could be also mounted on PKE and it has been indeed proposed by Russell et al. [33] to leak the
plaintext bit from the subverted PKE ciphertext. However, such an attack could only leak one
bit of information per subverted ciphertext, and thus fully recovering a plaintext would (at least)
require as many ciphertexts as the length of a plaintext. This concretely shows that existing
ASAs are relatively inefficient on PKE. Moreover, such an attack is stateful with a large state,
as it needs to maintain a global counter that represents which bit(s) of the plaintext it is trying
to exfiltrate in each run. This weakens the robustness of attacks in practice as it depends on a
state related to a long system history, in order to successfully leak the whole plaintext of PKE
encryption. Note also that the strong ASA proposed in [6]—although being stateless—turns
out to be much less efficient on PKE due to the application of the coupon collector’s problem.

Our concrete question: efficient and robust ASAs on PKE? The aforementioned ob-
servations and the importance of better understanding of the impact of ASAs, motivated us to
consider the following question:

Are there ASAs that could be efficiently mounted on a wide range of PKE schemes and
only have much limited (i.e., constant length) dependency on the system history?

In particular, we mainly consider the possibility of practical ASAs on PKE that enable the
plaintext recovery with a constant number—independent of the plaintext length—of ciphertexts
while only depending on a short system history. Generally, a stateful attack is more robust
if its state depends on just a small history. For example, in the backdoored Dual EC DRBG
(Dual Elliptic Curve Deterministic Random Bit Generator)[11], an attack which apparently
was successfully employed, there is a dependency on prior public randomness and learning the
current seed. Nevertheless, it turned out to be deployed and the limited dependency does not
weaken its impacts on practical systems. This is mainly due to the fact that an implementation
of pseudo-random generators (PRGs), in fact, needs to maintain some states and the state
of generators always persists for a while at least in systems (hence, some limited dependency
on the past is natural, whereas long history dependency is not that typical and creates more
complicated state management).

REMARK: Young and Yung’s Kleptography 35, 36, 37]. In the line of kleptography, subversions
of PKE have been studied (primarily of key generation procedures of PKE) by Young and Yung
[35, 36, 37]. They introduced the notion of secretly embedded trapdoor with universal protection
(SETUP) mechanism, which enables the attacker to exclusively and efficiently recover the user
private information. Young and Yung showed how SETUP can be embedded in several concrete
cryptosystems including RSA, ElGamal key generation and Diffie-Hellman key exchange [35,
36, 37]. Our motivation may be viewed as a modern take on Young and Yung’s kleptographic
attacks on PKE key generation, but in the ASA model against the encryption operation itself,
and particularly we ask: to what extent their type of attacks may be extended to cover PKE
encryption algorithms (and composed methods like hybrid encryption) more generally?

1.2 Our Results

In this work, we provide an affirmative answer to the above question by proposing a practical
ASA that is generically applicable to a wide range of PKE schemes, demonstrating that ASAs
on PKE could be much more dangerous than previously thought. Our idea is initially inspired
by the observation that almost all primary PKE constructions adopt the hybrid encryption:
a public key cryptosystem (the key encapsulation mechanism or KEM) is used to encapsulate
the so-called session key which is subsequently used to encrypt the plaintext by a symmetric
encryption algorithm (the data encapsulation mechanism or DEM). Specifically, we turn to
consider the possibility of substituting the underlying KEM stealthily so that the attacker is
able to recover the session key to break the DEM (and thereafter recover the plaintext). The
idea behind such an attack strategy is somewhat intuitive as compared with the plaintext
that might be of arbitrary length, the session key is usually much shorter and thus easier to
recover. However, this does not immediately gain much efficiency improvement in subverting
PKE encryption, mainly due to the fact that the underlying KEM produces fresh session keys in
between various encryption invocations. Hence, we further explore the feasibility of efficient ASA
on KEMs that could successfully recover a session key from a constant number of ciphertexts.
Given the logarithmic upper bound of universal ASAs [9], we turn to study the possibility of
non-black-box yet still general ASAs.

To the end, due to the successful dentification of a general structural weakness in existing
KEM constructions, we manage to mount a much more efficient ASA on KEMs that could
recover a session key from only two successive ciphertexts, which means that the state required
by the attack is much smaller than the generic one. In fact, the state relation (as we will discuss

below) in our proposed ASA is similar to that of the well-known Dual EC DRBG attack, and
thus it is similar to typical state cryptosystems keep in operation, which indicates that the
attack is very robust in actual systems.

Our proposed attack relies on the novel identification of non-black-box yet general enough
properties that yield practical ASAs on KEMs. Also, it is a fundamental property that turns out
to be conceptually easy to explain after we formulate the non-black-box assumption. However,
we remark that the exact formulations and analysis are challenging. In particular, we are
able to prove that the attack works only assuming that the underlying KEM satisfies some
special properties, and we formally define them, rigorously showing a wide range of KEMs
suffering from our ASA. This new finding explains why the attack was not considered before,
even though the rationale behind our attack (as briefly shown below) was implicitly informally
already hinted about if one considers the cases given in [35]. In fact, our attack could be regarded
as a general extension of Young and Yung’s kleptographic attacks in the ASA model against
the modern encryption procedures of PKE schemes. More broadly, our work may shed some
light on further exploring the non-black-box but quite general structural weaknesses of other
composed cryptographic primitives (which the KEM/ DEM paradigm is an example of), that
may make them susceptible to more efficient and effective ASAs that surpass the logarithmic
upper bound of universal ASAs [9].

Our contributions. To summarize, we make the following contributions.

1. We formalize an asymmetric ASA model for KEMs. Compared with previous works
that mainly studied symmetric ASAs [7, 6, 3, 17], in this work we consider a stronger
setting where revealing the hard-wired subversion key does not provide users with the
same cryptographic capabilities as the subverter.

2. We redefine the KEM syntax in a module level with two new properties—namely wuni-
versal decryptability and key-pseudo-randomness—that are vital to our proposed ASA.
We then introduce a generic ASA and rigorously prove its session-key-recoverability and
undetectability in our ASA model.

3. We show that our attack works on a wide range of KEMs including the generic construc-
tion from hash proof system [27, 23]; and concrete KEMs derived from popular PKE
schemes such as the Cramer-Shoup scheme [15], the Kurosawa-Desmedt scheme [27], and
the Hofheinz-Kiltz scheme [23].

Below we further elaborate on the results presented in this work.

ASYMMETRIC ASA MODEL. We start with briefly introducing the adopted ASA model in our
work. Current ASA models [7, 6, 3, 17, 9] are in the symmetric setting where the subversion key
hard-wired in the (subverted) algorithm is the same with the one used for secret key recovery.
Such a symmetric setting would enable anyone who reverse-engineers the subversion key from
the subverted algorithm to have the same cryptographic ability as the subverter. In this work,
we turn to the asymmetric ASA setting advocated by kleptograhic attacks [36], and we carefully
formalize an asymmetric ASA model specifically for KEMs. In our model, the subverted KEM
contains the public subversion key while the corresponding secret subversion key is only known
to the subverter. The session key recovery requires the secret subversion key and thus the
attacking ability is exclusive to the subverter (and is not acquired by reverse engineering the
subverted device). Also, we further enhance the notion of undetectability in the sense that the
detector is allowed to know the public subversion key in the detection game. We note that in
[7], an asymmetric ASA model is also discussed in the context of symmetric encryption, whereas

KEM.Enc KEM.Enc KEM.Enc

- B - A - A

r1 T2 r3 cee Ty — > Tit1

M Pl i
e | // | a |
KEM.Dec | KEM.Dec KEM.Dec |
- I - I e I
. | - | |
e 1 e l e 1
e A\ e A\ s v

r--" r- -1 r- - -1

(K1, C1) (K2, C2) (K3, C3) (Ki, C3) (Kiv1 1, Citr)

Figure 1: The sketch map of our ASA on (simplfied) KEMs. The dashed line at the top
represents that in the subverted encapsulation algorithm, r;4; is derived from r; (i starts with
“17) via running the legitimate algorithm KEM.Enc. The dashed diagonal line indicates that
the attacker recovers 741 (and K;11) from C; via running KEM.Dec.

all the proposed ASAs are symmetric. In fact, as we will show later, the asymmetric setting
essentially enables our proposed effective ASAs.

A SKETCH MAP OF OUR ASA (SIMPLIFIED VERSION). We now informally describe our identified
non-black-box structural weakness in existing KEM constructions and show how it enables our
efficient attack. We remark that here we only take the case of simplified KEM as an example to
illustrate our basic idea. For more details and formal analysis we refer the reader to Section 4.2
where we present our ASA on more general KEMs. We first roughly recall the syntax of
(simplified) KEM. Informally, a KEM is defined by a tuple of algorithms (KEM.Setup, KEM.Gen,
KEM.Enc, KEM.Dec). The key generation algorithm KEM.Gen generates the public/secret key
pair (pk, sk). The encapsulation algorithm KEM.Enc takes as input pk and output the session
key K with the key ciphertext C. The decapsulation algorithm KEM.Dec uses sk to decrypt
C for computing K. Our proposed ASA is essentially inspired by the observation that many
popular KEM constructions, in fact, produce “public-key-independent” ciphertexts which only
depend on the internal random coins generated by KEM.Enc while is independent of the public
key. Consequently, such kind of key ciphertexts are “decryptable” with any key pair honestly
generated by KEM.Gen (formalized as universal decryptability in our work). Relying on this
fact, we manage to mount a substitution attack on KEM.Enc via manipulating the internal
random coin. Specifically, the subverter runs the legitimate algorithm KEM.Gen—with the
public parameter—to generate the subversion key pair (psk, ssk) of which psk is hard-wired in
the subverted KEM.Enc (denoted by ASA.Enc in our ASA model), while ssk is exclusively held by
the subverter. Note that KEM.Enc would be run repeatedly in an ongoing encryption procedure
of PKE and let ; denote the random coin generated by KEM.Enc in its ¢-th invocation. Ideally, it
is expected that random coins from different invocations are generated independently. However,
in our designed ASA.Enc, as roughly depicted in Fig. 1, the random coin r;41 is actually derived
via KEM.Enc taking psk and r; (maintained as an internal state) as inputs. Consequently, due
to the universal decryptability of KEM, the subverter is able to recompute 7,11 (and thereafter
recover the session key Kj;11) by running KEM.Dec to decrypt C; using ssk. In this way, our
attack enables the subverter to recover the session key of a subverted ciphertext with the help
of the previous subverted ciphertext.

On the robustness of our stateful attacks. As pointed out by Bellare et al. [6], stateful
ASAs may become detectable upon the system reboot (e.g., resetting the state). However,
we argue below that the state in our attack is practically acceptable, and our attack could
still be very robust and meaningful in cryptographic implementation practices nowadays. The

state relation (i.e., only the previous randomness) in our proposed ASA is similar to that of
Dual EC DRBG, and is much more limited than the stateful ASA on symmetric encryption
[7], which needs to maintain a global counter that represents which bit(s) of the secret is
trying to exfiltrate in each run. More broadly, modern cryptosystems in the cloud services are
implemented typically in secure hardware modules that are rented to cloud customers. This
has become a popular configuration in recent years. It is inconceivable that such service cannot
be temporarily non-volatile and stateful. Even if it happens or all relevant tools are reinitiated
at system initiation, our attack persists since we do not really need a state depending on the
entire system history, but only the randomness generated in the previous session. Therefore,
we categorically see no practical weakness with our configuration, primarily in view of modern
secure hardware modules as cryptographic implementations, and the successful large scale attack
on Dual EC DRBG [11].

2 Preliminaries

Notations. For any randomized algorithm F, y := F(z;7) denotes the output of F on the
fixed randomness 7 and y <s F () denotes the random output of . We write A°102 (2,5,)
to indicate that A is an algorithm with inputs z,y, - and access to oracle 01,0, --. Let
z + AP1O2 (g y, - ..) denote the outputs of running A with inputs (z,y,---) and access to
oracles 01,0y, - -.

2.1 Entropy Smoothing Hash Functions

Let H = {H}};cx (K is the key space) be a family of keyed hash functions, where every function
H;, maps an element of group X to another element of group Y. Let D be a PPT algorithm that

takes as input an element of I@, and an element from Y, and outputs a bit. The ES-advantage
of D is defined as

AV p(n) = | Pr|D(k, Hy(2)) = 1k <K, s X | = Pr [D(k,y) = 1k s K,y sV | |

We say H is €es(n)-entropy smoothing if for any PPT algorithm D, Advj; p(n) < €es(n). It
has been shown in [19] that the CBC-MAC, HMAC and Merkle-Damgard constructions meet
the above definition on certain conditions.

2.2 Key Encapsulation Mechanism (KEM)

Syntax. A key encapsulation mechanism KEM consists of algorithms (KEM.Setup, KEM.Gen,
KEM.Enc, KEM.Dec) which are formally defined as below.

e KEM.Setup(1™). Takes as input the security parameter n € N and outputs the public
parameter pp. We assume pp is taken by all other algorithms as input (except of KEM.Gen
where it is explicitly given).

e KEM.Gen(pp). Takes as input pp, and outputs the key pair (pk, sk).

e KEM.Enc(pk). Takes as input the public key pk, and outputs (K, 1)) where K is the session
key and v is the ciphertext.

e KEM.Dec(sk,). Takes as input the secret key sk and the ciphertext v, and outputs the
session key K or L.

Correctness. Let KEM = (KEM.Setup, KEM.Gen, KEM.Enc, KEM.Dec) be a KEM. We say
KEM satisfies correctness if for any n € N, for any pp <—s KEM.Setup(1™), for any (pk, sk) <
KEM.Gen(pp), we have KEM.Dec(sk,) = K where (K, 1) <—s KEM.Enc(pk).

Security. Let CEM = (KEM.Setup, KEM.Gen, KEM.Enc, KEM.Dec) be a KEM. We say KXEM
is IND-CCA-secure if for any PPT adversary A,

pp <—s KEM.Setup(1™)
(pk, sk) <—s KEM.Gen(pp)
Advign 4(n) = |Pr |b=1b": (Kg,1*) +sKEM.Enc(pk) | —
K <3 Kyem, b<s{0,1}
Y — A%<0) (pk, Ky, 0*)

< negl(n),

where Kyem is the key space of KEM, and Opec is a decryption oracle that on input any
ciphertext v, returns K := KEM.Dec(sk,) on the condition that ¢ # 1*. As a weak security
definition, we say KXEM is IND-CPA-secure if in the above definition, the adversary is restricted
not to query Opec.

3 Asymmetric ASA Model for KEMs

In this section, we extend the notion of ASA model by Bellare et al. [7] to the asymmetric
setting for KEMs. We remark that we mainly consider substitution attacks against the en-
capsulation algorithm while assuming that the key generation and decapsulation algorithm are
not subverted. It is worth noting that via subverting the decapsulation algorithm it is possi-
ble to exfiltrate decapsulation key. Particularly, in a recent work [1], Armour and Poettering
demonstrated the feasibility of exfiltrating secret keys by subverting the decryption algorithm
of AEAD.

3.1 Asymmetric ASA on KEMs

An ASA on KEM is that in the real-world implementation, the attacker replaces the legitimate
algorithm KEM.Enc by a subverted one denoted by ASA.Enc, which hard-wires some auxiliary
information chosen by the subverter. The goal of subverter is to break the security of the
subverted KEM. The algorithm ASA.Enc could be arbitrary. Particularly, the randomness space
in ASA.Enc could be different from that of KEM.Enc, and the subverted ciphertext space is not
necessarily equal to the valid ciphertext space of KEM.Enc'. Also, ASA.Enc may be stateful by
maintaining some internal state, even in the case that KEM.Enc is not.

Syntax. Let KEM = (KEM.Setup, KEM.Gen, KEM.Enc, KEM.Dec) be a KEM which generates
pp <—s KEM.Setup(1™) and (pk, sk) <—s KEM.Gen(pp). An asymmetric ASA on KEM is denoted
by ASA = (ASA.Gen, ASA.Enc, ASA.Rec).

o (psk,ssk) <—sASA.Gen(pp). The subversion key generation algorithm takes as input pp,
and outputs the subversion key pair (psk, ssk). This algorithm is run by the subverter.
The public subversion key psk is hard-wired in the subverted algorithm while the secret
subversion key ssk is hold by the attacker.

!For example, the subverted algorithm ASA.Enc may directly output the key as its ciphertext.

e (K,1) «sASA.Enc(pk,psk,T). The subverted encapsulation algorithm takes as input pk,
psk, and the (possible) internal state 7, outputs (K, 1) and updates the state 7 (if exists).
This algorithm is created by the subverter and run by the legitimate user. The state T is
never revealed to the outside.

o K <—sASA.Rec(pk, ssk,1, ®,). The key recovery algorithm takes as input pk, ssk, 1) and
an associated ciphertext set ®,, and outputs K or L. This algorithm is run by the
subverter to recover the session key K encapsulated in).

REMARK. The algorithm ASA.Rec is run by the subverter to “decrypt” the subverted cipher-
text ¥p—output by ASA.Enc—using the secret subversion key ssk that is associated with psk
hard-wired in ASA.Enc. However, due to the information-theoretic reasons, it might be impos-
sible for the subverter to recover the key given the subverted ciphertext only. Therefore, we
generally assume that the subverter needs some associated ciphertexts (e.g., a tuple of previous
ciphertexts) to successfully run ASA.Rec. More details are provided in Section 4.2.

Below we define the notion of decryptability which says that the subverted ciphertext—
produced by ASA.Enc—is still decryptable to the legitimate receiver. In fact, decryptability
could be viewed as the basic form of undetectability notion defined in Section 3.3.

Definition 3.1 (Decryptability). Let ASA = (ASA.Gen, ASA.Enc, ASA.Rec) be an ASA on
KEM = (KEM.Setup, KEM.Gen, KEM.Enc, KEM.Dec). We say ASA preserves decryptability
for KEM if for any n € N, any pp <—s KEM.Setup(1™), and any (pk, sk) <sKEM.Gen(pp), for
any (psk, ssk) <—s ASA.Gen(pp), and all state 7 € {0,1}*,

Pr[Dec(sk,v) # K : (K,v) <—s ASA.Enc(pk, psk,7)] < negl(n),

where the probability is taken over the randomness of algorithm ASA.Enc.

3.2 Session Key Recovery

Generally, the goal of the subverter is to gain some advantages in attacking the scheme. In
the ASA model for symmetric encryption and signature schemes, the notion of key recovery is
defined as a strong goal [6, 3]. However, for KEMs, the encapsulation algorithm has no access
to the secret (decapsulation) key and thus it is impossible to exfiltrate the long-term secret of
a subverted encapsulation algorithm. Alternatively, we define another notion which captures
the ability of the subverter—who has the secret subversion key ssk—to recover the session key
from the subverted ciphertext. In the following definition, we let I" denote the internal state
space of ASA.

Definition 3.2 (Session-Key-Recoverability). Let ASA = (ASA.Gen, ASA.Enc, ASA.Rec) be
an ASA on KEM = (KEM.Setup, KEM.Gen, KEM.Enc, KEM.Dec). We say that ASA is
session-key-recoverable if for any n € N, any pp<+s KEM.Setup(1™), and any (pk,sk)
<s KEM.Gen(pp), for any (psk, ssk) <sASA.Gen(pp), and any 7 € T,

Pr[ASA.Rec(pk, ssk, 1), ®y) # K : (K, 1) <—s ASA.Enc(pk, psk, T)] < negl(n).

Here we implicitly assume that for every state 7 € I, the subverted ciphertext ¢ and the
associated ciphertext set @, exist, i.e., @y # 0.

3.3 Undetectability

The notion of undetectability denotes the inability of ordinary users to tell whether the cipher-
text is produced by a subverted encapsulation algorithm ASA.Enc or the legitimate encapsula-
tion algorithm KEM.Enc. Different from conventional security games, here the challenger is the
subverter who aims to subvert the encapsulation algorithm without being detected, while the
detector (denoted by i) is the legitimate user who aims to detect the subversion via a black-box
access to the algorithm.

Note that our undetectability notion does not cover all possible detection strategies in the
real world, such as comparing the (possibly subverted) code execution time with that of a
legitimate code. In fact, as argued by Bellare et al. [6], it is impossible for an ASA to evade all
forms of detection and there is usually a tradeoff between detection effort and attack success.

Definition 3.3 (Secret Undetectability). Let ASA = (ASA.Gen, ASA.Enc, ASA.Rec) be an ASA
on LEM = (KEM.Setup, KEM.Gen, KEM.Enc, KEM.Dec). For a user U, we define the advantage
function

pp <—s KEM.Setup(1™)

{(pke, ske)}y—y s KEM.Gen(pp)
AdviSSi(n) == [Pr |b=1b": (psk, ssk) s ASA.Gen(pp) -5/
T:=2¢,b<s{0,1}

b = U ({(pke, ske) Yy , k)

where Ogpc is an encapsulation oracle that for each query of input pke(¢ € [1,u]) by user U,
returns (K, 1) which are generated depending on the bit b:

o ifb=1, (K,) ts KEM.Enc(pky):
o if b =0, (K,1) <=sASA.Enc(pky, psk, 7).

We say ASA is secretly (u, g, €)-undetectable w.r.t. KEM if for all PPT users U that make
g € N queries with v € N key pairs, Adv¥;dst (n) <e.

asa,U

Alternatively, we say ASA is publicly (u,q,€)-undetectable w.r.t. KEM if in the above
definition of advantage function, user U/ is only provided with pk but not sk. Such an unde-
tectability notion may still make sense in the real world as when the user is the encryptor, it
may only know the public key. Nevertheless, since that secret undetectability clearly implies
public undetectability, we only consider secret undetectability for ASAs on KEMs in this work.

Strong undetectability. The notion of strong undetectability was introduced by Bellare et al.
[6] for the case of subverting symmetric encryption. In the definition of strong undetectability,
the challenger also returns the state to the user. This mainly considers a strong detection where
the detector may be able to see all outputs written to the memory of the machine when the
subverted code is running. Meeting such a strong notion naturally limits the ASA to be stateless
otherwise it would be detectable to the user. We remark that our proposed ASA on KEM in
this work is stateful and thus does not satisfy strong undetectability. However, in contrast
to the stateful ASAs [7] which need a global counter indicating what happens in each round,
the state in our attack is much more limited. Particularly, similar to the case of stateful Dual
ECJ[11]—also most PRGs—our attack only depends on the previous randomness. Therefore, we
insist that the state we need is practically acceptable, and our attack is robust and meaningful.

10

KEM.Gen(pp) KEM.Enc(pk) KEM.Dec(sk,) = (C,))
(ek,dk) <—s KEM.Ek(pp) r <s KEM.Rg(pp) K' = KEM.Kd(dk, C)
hok) CAKEM Tk(pp) | K = KEMKg(ek) | (= KEMLVA(ok)
phi=(ehth) O = KEM.Ca(r) =7 then K = K|
e oRewT] | (ko
Return (pk, sk) Return (K,¢ = (C, 7)) Return K

Figure 2: Module-level Syntax of KEM. The boxed algorithms are optional.

Multi-user undetectability. Here we only consider the case of a single user in Definition 3.3
for simplicity. One could extend our notion to the more general setting of multi-user. Precisely,
in the undetectability definition for the multi-user setting, user U also receives multiple key
pairs from the challenger and is allowed to make polynomially many queries to v identical
encapsulation oracles independently and adaptively (v denotes the user number).

REMARK. Compared with the undetectability notion [7, 6, 3], the challenger in our definition
additionally provides the user with the subversion key hard-wired in the subverted algorithm.
From this aspect, our notion is stronger than the symmetric ASA where the hard-wired subver-
sion key is not allowed to be revealed to the user. In fact, any ASA meeting our undetectability
notion implicitly implies that revealing the hard-wired subversion key does not provide users
with the same cryptographic capabilities as the subverter.

4 Mounting ASAs on KEMs

We present an ASA on KEMs that enables the subverter to recover the session key efficiently
while the attack is undetectable to the user. We first revisit the KEM syntax in the module
level so that it has some notational advantages in describing our proposed ASA. New properties
with respect to the module-level KEM are then explicitly defined for the formal analysis of the
proposed attack.

4.1 A Module-Level Syntax of KEM

The module-level KEM syntax is mainly depicted in Fig. 2.

e pp + KEM.Setup(1™). Takes as input the security parameter n € N and outputs the
public parameter pp which includes the descriptions of the session key space Kyem and the
randomness space Ryem-

o (pk = (ek,tk),sk = (dk,vk)) < KEM.Gen(pp). Takes as input the public parameter and
runs the following sub-algorithms.

— (ek,dk) < KEM.Ek(pp). The encapsulation key generation algorithm generates the
key pair (ek, dk) for key encapsulation and decapsulation.

— (tk,vk) < KEM.Tk(pp). The tag key generation algorithm generates the key pair
(tk,vk) for tag generation and verification. This algorithm is usually required only
for KEM of strong security, e.g., IND-CCA security.

o (K,v=(C,m)) < KEM.Enc(pk). Takes as input the public key and runs the following
sub-algorithms.

11

r <= KEM.Rg(pp). The randomness generation algorithm picks r <—s Ryem.

K < KEM.Kg(ek,r). The encapsulated key generation algorithm takes as input ek
and randomness r, and outputs key K.

C + KEM.Cg(r). The key ciphertext generation algorithm takes as input randomness
r, and outputs key ciphertext C.

m < KEM.Tg(tk,r). The tag generation algorithm takes as input tk and r, and
outputs the ciphertext tag .

e K/l < KEM.Dec (sk,1 = (C,7)). Takes as input the secret key and the ciphertext, and
runs the following sub-algorithms.

e K + KEM.Kd(dk, (). The ciphertext decapsulation algorithm takes as input dk and
C, and outputs key K.

o '« KEM.Vf(vk,C) . The tag re-generation algorithm takes as input vk and C, and
outputs tag 7.

The key K is finally output if 7/ = 7. Otherwise, L is output.

REMARK. Our syntax mainly covers KEMs of the following features. First, the generation
of key ciphertext (KEM.Cg) is independent of the public key. Although this is quite general
for most KEM constructions, it fails to cover KEMs that require public key for ciphertext
generation. For example, the lattice-based KEM in [30] produces ciphertexts depending on the
encapsulation key and thus it is not captured by our framework. Second, the separation of
ciphertext and tag clearly indicates explicit-rejection KEMs, i.e., all inconsistent ciphertexts
get immediately rejected by the decapsulation algorithm. Although explicit-rejection variants
are generally popular, some special setting requires implicit-rejection KEMs, where inconsistent
ciphertexts yield one uniform key and hence will be rejected by the authentication module of
the encryption scheme. Concrete examples could be found in [23]. Nevertheless, in Section
5.2, we show that our defined KEM framework already covers many known KEM constructions
derived from popular schemes, such as the Cramer-Shoup scheme[15], the Kurosawa-Desmedt
scheme[27], and the Hotheinz-Kiltz scheme[23].

4.2 Our Non-Black-Box ASA on KEMs

Following the above module-level syntax, we first identify and formalize two new non-black-box
properties for KEMs, which essentially enable our extremely efficient ASA against KEMs.

Non-black-box properties formulations. Our notions, namely universal decryptability and
key-pseudo-randomness, are actually met by all known KEMs that could be interpreted using
our module-level syntax. Here we explicitly define them as they are vital to our proposed ASA.

The first non-black-box assumption, i.e., universal decryptability, says that any key cipher-
text C output by KEM.Cg is decryptable via KEM.Kd with any dk output by KEM.Ek.

Definition 4.1 (Universal Decryptability). Let KEM = (KEM.Setup, KEM.Gen, KEM.Enc,
KEM.Dec) be a KEM defined in Fig. 2. We say KEM is universally decryptable if for any
n € N, pp <—s KEM.Setup(1™), for any r +s KEM.Rg(pp) and C' := KEM.Cg(r), we have

KEM.Kd(dk,C') = KEM.Kg(ek,)

holds for any (ek, dk) <—s KEM.Ek(pp).

12

The second notion, i.e., key-pseudo-randomness, indicates that the key produced by KEM.Kg
is computationally indistinguishable from a random key.

Definition 4.2 (Key-Pseudo-Randomness). Let KEM = (KEM.Setup, KEM.Gen, KEM.Enc,
KEM.Dec) be a KEM as defined in Fig. 2. We say KEM is ey-key-pseudo-random if for
any PPT adversary A, we have

pp <—s KEM.Setup(1™)
r s KEM.Rg(pp)

C := KEM.Cg(r)
AdVPE ((n) = |Pr [b=V: (ck,dk) s KEM.Ek(pp) | — 5| < cpric
b<s{0,1}, Ko < Kyem
K, = KEM.Kg(ek,)
b+ Alek, Ky, C)

REMARK. One may note that for those KEMs that are only IND-CPA-secure (i.e., no tag
generation/verification is involved in key encapsulation/decapsulation), our formalized notions
of universal decryptability and key-pseudo-randomness are actually the typical properties of
“perfect correctness” and “IND-CPA security” respectively for KEMs that follows the above
module-level syntax. Here we explicitly redefine them for generality consideration since we are
also interested in exploring effective ASAs on IND-CCA-secure KEMs.

The proposed attack. We now describe our proposed (asymmetric) ASA. Let LKEM =
(KEM.Setup, KEM.Gen, KEM.Enc, KEM.Dec) be a KEM. Consider a sequential execution of
KEM.Enc. Suppose pp <—s KEM.Setup(1™) and

(pk = (ek, tk), sk = (dk,vk)) +sKEM.Gen(pp).

Let (K;,; = (C;, m;)) denote the output of the i-th execution of KEM.Enc, for which the internal
randomness is denoted as r; «—s KEM.Rg(pp). That is, K; := KEM.Kg(ek, r;), C; .= KEM.Cg(r;),
and m; = KEM.Tg(tk,r;).

Our ASA on KEM is depicted in Fig. 3. Below are more details.

Subversion Key Generation (ASA.Gen). The subversion key generation algorithm runs (psk, ssk)
+sKEM.Ek(pp). Note that psk is hard-wired in the subverted key encapsulation algorithm
ASA .Enc while ssk is kept by the subverter. Our ASA also makes use of a family of keyed hash
function H = {ch}fcelé’ where each H; maps Kiem t0 Ryem (both Kiem and Ryem are defined by

pp). Therefore, the hash function key k is also hard-wired in the subverted algorithm ASA.Enc.

Subverted Encapsulation (ASA.Enc). As depicted in the right of Fig. 3, the subverted encapsu-
lation algorithm ASA.Enc takes the public key pk, the hard-wired key psk and the internal state
7 as input. The initial value of 7 is set as 7 := €. Then for the i-th execution (i > 1), ASA.Enc
executes the same as KEM.Enc does except of:

e For algorithm KEM.Enc, the randomness r; is generated via running KEM.Rg to sample
75 3% Riem uniformly.

e For algorithm ASA.Enc, if 7 = ¢, the randomness r; is generated via running KEM.Rg;
otherwise, r; is generated via firstly running ¢t := KEM.Kg(psk,7) and then computing
T = Hk,(t) The internal state 7 is then updated to r;.

13

ASA.Gen(pp) ASA .Enc(pk, psk, 1) /*i-th execution*/
(psk, ssk) <—s KEM.Ek(pp) If 7 =€ then
Return (psk, ssk) r; +—s KEM.Rg(pp)
Else
t := KEM.Kg(psk, 7)
ASA . Rec(pk, ssk,C;, C;.1) /¥ > 1%/ r; = Hy (%)
t = KEM.Kd(ssk, Cy_1) K; = KEM.Kg(ek, ;)
ri = H(t) C; = KEM.Cg(r;)
K, = KEM.Kg(ek, ;) m; = KEM. Tg(tk, ;)
Return K; T =T
Return (K, ¢; = (Ci, m;))

Figure 3: The generic ASA on KEMs. The grey background highlights the difference between
ASA.Enc and KEM.Enc.

The generation of ciphertext C; and the session key K; still follow the legitimate procedure,
i.e., by running algorithm KEM.Cg and KEM.Kg respectively.

Session Key Recovery (ASA.Rec). The left down part of Fig. 3 depicts the encapsulated key
recovery algorithm ASA.Rec run by the subverter. To recover the session key encapsulated in
the subverted ciphertext C; (i > 1), the subverter first uses ssk to decrypt the ciphertext C;
to recover ¢t and then computes r;, based on which the key K;—encapsulated in C;—could be
trivially computed. It is worth noting that the subverted ciphertext C; is in fact not used in the
running of ASA.Rec to recover the underlying key K;. The core idea of the session key recovery
is to recover the randomness r; by using ssk to decapsulate C;1 which is actually the associated
ciphertext of C;.

4.3 Formal Analysis

Let KEM = (KEM.Setup, KEM.Gen, KEM.Enc, KEM.Dec) be a KEM and ASA = (ASA.Gen,
ASA.Enc, ASA.Rec) be an ASA on KEM described in Fig. 3. Then we have the following results.

Theorem 4.1. The ASA depicted in Fig. 3 preserves the decryptability of KEM.

Proof. This clearly holds as ASA.Enc is the same as the original algorithm KEM.Enc except of the
internal randomness generation. Particularly, the generation of ciphertext and key essentially
remain unchanged in ASA.Enc. O

Theorem 4.2. The ASA depicted in Fig. 3 is session-key-recoverable if KEM is universally
decryptable.

Proof. Note that the notion of session-key-recoverability is defined for the subverted cipher-
text ¢ which has the associated ciphertexts ®, i.e., ®; # (. That is, here we consider
the session-key-recoverability for all subverted ciphertext C; where ¢ > 2. By the fact that
KEM is universally decryptable, we have that KEM.Kd(ssk,C;.1) = KEM.Kg(psk,r;1) holds
for all ;.1 € Riem (i > 2) and Cj.; := KEM.Cg(r;1), and for all (psk, ssk) <—s KEM.Ek. Note
that the randomness recovered in ASA.Rec equals to that from ASA.Enc. Therefore, we have

14

GAME Gy(n)
pp <s KEM.Setup(1™)
{(pke, ske)},—, <sKEM.Gen(pp), (psk, ssk) <—s KEM.Ek(pp)
Ti=c¢, b+s{0,1}, b + A%< ({(pke, ske)}y_, , pSk)
Return (b =10")
Oknc (pke = (eky, thy))
If (b= 1) then
(K,) <—s KEM.Enc(pky)

Else
If 7 = ¢ then
r <s KEM.Rg(pp)
Else
t := KEM.Kg(psk,)
ri= Hi(t)

K = KEM.Kg(eky,), C .= KEM.Cg(r), m := KEM.Tg(tke,7)
Ti=r, = (C,m)
Return (K,)

Figure 4: Games Gy in the proof of Theorem 4.3

ASA Rec(pk, ssk,C;,Ci1) = K; for any (pk, sk) <sKEM.Gen and any (K;,v¢; = (Cj,m;)) <=
ASA.Enc(pk, psk,ri1). O

Theorem 4.3. Assume KEM is ep(n)-key-pseudo-random and H is ees(n)-entropy smoothing,
then our ASA depicted in Fig. 3 satisfies (u,q, €)-undetectability where q is the query number
by the adversary in the detection game and

€< (q— 1)(€prk(n) + €es(n)).

Proof. We prove this theorem via a sequence of games. Suppose that the adversary A makes
q queries in total to the oracle Og, in the security game. We define a game sequence:
{Go, G171, GLQ, G271, G272, ey Gq_171, G’q_LQ}. GO is the real game and depicted in Fig. 4 while
{Gl,la G’LQ, GQJ, G272, ce 7Gq-1,1a Gq_LQ} are described in Flg 5. Note that in the fOHOWng
illustrations, we also let Go 2 denote the game Gg for the consideration of notational consis-
tency. Let Adv, be the advantage function with respect to A in Game G,. Below we provide
more details of Go, Gj_1,1 and Gj_12 for all j € [2,q]. Note that in all games G;_11 and
G;_12 (J € [2,q]), an internal counter 7 (initialized to 0) is set for the encapsulation oracle and
increments upon each query by the adversary.

e GAME Gy (i.e., Goz2): This game is the real game and thus we have

Advdet (n) = Advy.

asa,U

15

GAME Gj—l,l(n)7 rGj-172(n)1‘ (] S [27qD

|
Lo - - -

pp <s KEM.Setup(1™)
{(pke, ske)},_, <sKEM.Gen(pp)
(psk, ssk) «+s KEM.Ek(pp),7 :=¢, 1:=0
b<s{0,1}, b+ A%< ({(pke, ske)}y_, » psk)
Return (b =)
Oknc (ke = (eke, thy))
1=+ 1
If (b=1) then
(K,) s KEM.Enc(pk)
Else

If ¢ < j then
r <s KEM.Rg(pp)
Else
If = j then
t <= Kyem, 7= Hj (1)

t = KEM.Kg(psk,), r == H;(t)
K = KEM.Kg(ek¢,r), C = KEM.Cg(r), m := KEM.Tg(tke,r)
rim = ()
Return (K,)

Figure 5: Games G1,1,G12,G2,1,G22, -+ ,Gg1,1, Gg1,2 in the proof of Theorem 4.3. Game
G .12 contains the corresponding boxed statements, but game G.1 1 does not.

e GAME Gj.11 is identical to Gj.22 except that for the case of b = 0, to generate the
response for the j-th query of A, the challenger picks t <—sKyem instead of computing
t == KEM.Kg(psk,7). We claim that from the view of A, Gj.i; is indistinguishable
from Gj.op if KEM is key-pseudo-random. That is, |Advjp2 — Advj.1 1| < €pk(n). See
Lemma 4.4 for more details.

e GAME Gj.12 is identical to Gj.1,;1 except that for the case of b = 0, to generate the
response for the j-th query of A,r is derived by r <—s KEM.Rg(pp) (i.e., r <= Rkem) instead
of r = H;(t). We claim that from the view of A, Gj.12 is indistinguishable from Gj.1
if H is entropy smoothing. That is, |Adv;.12 —Adv,.1 1| < €es(n). See Lemma 4.5 for more
details.

Lemma 4.4 (Gj.1,1 ~c Gja2). For all j € [2,q] and all PPT adversary A,

|Adv;22 — Adv;11] < €prk(n).

16

Bj—l(pp*v ek*7K*5 O*)

pp = pp*, psk = ek*, 7 :=¢,i =0, {(pky, ske)},_, <sKEM.Gen(pp)

b+<s{0,1}, b < A% ({(pke, ske)}y_, , psk)
Return (b =)

Osm (pkg = (ekg,tkg))

Enc

1=1+1
If (b =1) then
(K,) <—s KEM.Enc(pky)
Else
If i =(j — 1) then
C = C*, K := KEM.Kd(dk¢, C*)
m = KEM.VF(C*, vk), v == (C,)
Else
If i < (j — 1) then
r <s KEM.Rg(pp)

Else
If ¢ = j then
t:=K* r:=H(t)
Else

t := KEM.Kg(psk, 7),r == H;(t)
K = KEM.Kg(eke,r), C := KEM.Cg(r), 7 := KEM.Tg(tk,r)
T:=r, 9= (C,7)
Return (K,)

Figure 6: Adversary B attacking the key-pseudo-randomness of XEM in the proof of Lemma, 4.4.

Proof. To prove this transition, we construct an adversary B;.; attacking the property of key-
pseudo-randomness of KEM. Suppose that B receives (pp*, ek*, K*,C*) from the challenger
in the game defined in Definition 4.2. Its goal is to tell whether K™ is the key encapsulated in
C* or a random value.

Bj.1 then simulates the detection game to interact with A via the procedure depicted in
Fig. 6. Bj.1 first sets psk = ek™ as the public subversion key and simulates the encapsulation
oracle (denoted by Ofm) for A. Precisely, if b = 0, for each query with input pk, = (eky, tky),

SE':‘C performs depending on the internal counter ¢ as follows.

e CASE 1: i = (j —1). Bj sets C = C*, computes K = KEM.Kd(dk;, C*) and 7 =
KEM.Vf(C*, vk), and returns (K, C,).

e CASE 2: i < (j-1). Bj.1 runs the algorithm KEM.Enc, i.e., KEM.Rg, KEM.Cg and KEM.Tg
sequentially, updates 7 and returns the output.

e CasE 3: i = j. Bjysetst = K*, computes r = Hy(t), K = KEM.Kg(eky,r), C =

17

Dj1(k,y")
pp <s KEM.Setup(1"™)
{(pke, ske)},—_, <sKEM.Gen(pp), (psk, ssk) <s KEM.Ek(pp)
Ti=e,i=0,bs{0,1}, b «— A% ({(pke, ske) Yo, , psk)
Return (b =1')

OFm (pky = (eky, thy))

Enc

t=1+1
If (b =1) then
(K,v¢) <—s KEM.Enc(pky)
Else
If ¢ < j then
r +s KEM.Rg(pp)
Else
If i = j then
ri=y
Else
t := KEM.Kg(psk, 7), r == H(t)
K = KEM.Kg(ekg,r), C := KEM.Cg(r), 7 :== KEM.Tg(tke,r)
T=r = (Cm)
Return (K,)

Figure 7: Adversary D attacking the entropy smoothing hash function Hj in the proof of
Lemma 4.5.

KEM.Cg(r) and m := KEM.Tg(tke,r), updates 7 and returns (K, C,).

o CASE 4: i > j. Bj sets t = KEM.Kg(psk,7), computes r := H;(t), runs K =
KEM.Kg(eky,r), C := KEM.Cg(r) and 7 := KEM.Tg(tky, r), updates 7 and returns (K, C, 7).

Finally, Bj.1 outputs 1 if A outputs b’ = b otherwise outputs 0.

One could note that if K* is the key encapsulated in C*, then the game simulated by B;_;
is exactly the game Gj.22 from the view of A. Otherwise, the simulated game is Gj.; 1 from
the view of A. Therefore, we have |Advj.22 — Advj.1 1| < €prk(n). O

Lemma 4.5 (Gj.12 ~c Gj.1,1). For all j € [2,q] and all PPT adversary A,
|AdV]’_171 — Ade_172| S ees(n).

Proof. To prove this transition, we construct an adversary Dj.; attacking the entropy smoothing
hash function Hj : Kyem — Rkem. Suppose that Dj.; receives (k,y*) from the challenger. Its
goal is to tell whether y* = Hk(a:) where x <—s Kyem, or ¥ <5 Riem-

Dj.; then simulates the detection game to interact with A via the procedure depicted in
Fig. 7. Dj;.1 simulates the encapsulation oracle (denoted by O™) for A. Precisely, if b = 0, for

Enc

18

each query with input pk, = (eky, tky), SE';“C performs depending on the internal counter ¢ as
follows.

e CASE 1: i < j. Djq runs the algorithm KEM.Enc, i.e., runs KEM.Rg, KEM.Cg and
KEM.Tg sequentially, updates 7 and returns the output.

e CASE 2: i = j. Dj sets r := y*, runs K = KEM.Kg(ek;,r), C = KEM.Cg(r) and
7 = KEM.Tg(tke, r), updates 7 and returns (K, C, 7).

e CASE 3: i > j. Djy sets t = KEM.Kg(psk,7), computes r = H;(t), runs K =
KEM.Kg(eky,r), C':= KEM.Cg(r) and 7 := KEM.Tg(tks,), updates 7 and returns (K, C,).

Finally, Dj.; outputs 1 if A outputs b’ = b otherwise outputs 0.

One could note that from the view of A, if y* = Hk(x) where x < Kyem, then the game
simulated by Dj.; is exactly the game Gj.1,;. Otherwise, the simulated game is Gj.12. Hence,
we have |Ade_1’2 — Ade—l,l‘ S ees(n). O

Summary. Note that in GAME Gyg.1 2, for all queries to Ognc, the challenger always runs the
algorithm KEM.Enc to generate the response and thus the view of the detector A actually does
not depend on the chosen bit . Therefore,

Advg12 < negl(n).
Putting all the above together, we have
AdvidSi(n) = Advg
= |AdV0 — AdVLl + AdV171 — AdVLQ + AdVLQ — AdVQ,]_ + -

—|—Aqu_272 — AdVQ-Ll + Advq_171 — Aqu_LQ + Advq_l,gl
|AdV0 — AdV171| + |AdV1’1 — Advl’g‘ + ‘AdVLQ — AdV271| + .-

IN

+‘Advq_272 — Aqu_171| + |Advq_171 — Aqu_172| + Advq_1,2|
< (g = 1)(eprk(n) + €es(n)).

This completes the proof of Theorem 4.3. O

5 Instantiations

In this section, we describe some popular KEM constructions that are subvertible to our pro-
posed subversion.

5.1 KEMs from Hash Proof Systems

The notion of hash proof systems (HPS) [15] was firstly introduced by Cramer and Shoup to
generalize their PKE schemes [14].

Syntax of HPS. Let X,Y be sets and £L C X be a language. Let App : X — Y be a
hash function indexed with hk € HK where HK is a set. We say a hash function Ay is
projective if there exists a projection ¢ : HK — HP such that, (1) for every x € L, the
value of Apg(z) is uniquely determined by ¢(hk) and z; and (2) for any x € X \ L, it is
infeasible to compute Api(z) from ¢(hk) and x. Formally, a hash proof system HPS consists
of (HPS.Setup, HPS.Gen, HPS.Pub, HPS.Priv):

19

e HPS.Setup(1™). The parameter generation algorithm takes as input 1", and outputs pp =
(XY, LHE, HP, Ay X = Vo : HK — HP).

e HPS.Gen(pp). The key generation algorithm takes as input pp. It outputs the secret
hashing key hk <—sHK and the public key hp := ¢(hk) € HP.

e HPS.Pub(hp,z,w). The public evaluation algorithm takes as input hp = p(hk), a language
element z € £ with the witness w of the fact that z € L. It outputs the hash value

y = App(z).

e HPS.Priv(hk,z). The private evaluation algorithm takes as input hk, an element x € X.
It outputs the hash value y = Apg(x).

It is generally assumed that one could efficiently sample elements from X. In this work, for
sampling x € L, we explicitly define the following algorithms.

e HPS.Wit(pp). The witness sampling algorithm takes as input pp. It outputs a witness w
as w <—s VW where W is the witness space included in pp.

e HPS.Ele(w). The language element generation algorithm takes as input w. It outputs the
language element x € L.

Note that here we require the language element generation only takes as input the witness
(and public parameter) and mainly consider the HPS where the projection key is independent
from the language element, which is also known as KV-type HPS [25].

Correctness. For all pp <—s HPS.Setup, all (hk, hp) <-sHPS.Gen, all w +-sHPS.Wit(pp) and z :=
HPS.Ele(w), it holds that HPS.Pub(hp, z,w) = Apx(z) = HPS.Priv(hk, x).

Subset Membership Problem. We say the subset membership problem is hard in HPS if it is
computationally hard to distinguish a random element £ from a random element from X \ L.
A formal definition appears in Appendix A.1.

Computational Smoothness. We say HPS satisfies computational smoothness if the hash value
of a random element from X \ £ looks random to an adversary only knowing the projection key.
A formal definition appears in Appendix A.1l.

KEMs from HPS [27, 23]. Kurosawa and Desmedt [27] proposed a generic KEM based on
HPS. Their paradigm is later explicitly given by Hofheinz and Kiltz in [23]. Let HPS =
(HPS.Setup, HPS.Gen, HPS.Pub, HPS.Priv, HPS.Wit, HPS.Ele) be an HPS. The constructed
KEM KEM = (KEM.Setup, KEM.Gen, KEM.Enc, KEM.Dec) is as follows.

e KEM.Setup(1™). Run pp <—s HPS.Setup(1™), output the public parameter pp.

e KEM.Gen(pp). Run (hk, hp) <—sHPS.Gen(pp), set ek = hp, dk = hk, output (pk =
ek, sk = dk).

e KEM.Enc(pk). Run the following sub-algorithms.

— KEM.Rg(pp) : Run w <—s HPS.Wit(pp), and return r := w;
— KEM.Cg(r) : Run x := HPS.Ele(r), and return C = x;
— KEM.Kg(ek,r) : Run y := HPS.Pub(ek, C,), and return K = y.

Output (K, C).
e KEM.Dec(sk,C). Run y := HPS.Priv(dk, C), output K := y.

20

For their generic construction, we have the following result.

Theorem 5.1. The above generic construction KEM is universally decryptable and key-pseudo-
random if HPS is of computational smoothness and the subset membership problem is hard in

HPS.
We defer the detailed proof and instantiations to Appendix A.2 and A.3.

5.2 Concrete KEMs
Below we present some known KEM constructions that are subvertible by our ASA.

Cramer-Shoup KEMs [15]. In [15], Cramer and Shoup designed a hybrid encryption frame-
work based on KEMs and provided instantiations based on various hardness assumptions.

The DDH-Based. Let G be a cyclic group of prime order p, and g1, g2 are generators of G. Fig. 8
shows the DDH-based KEM proposed in [15]. The public parameter is pp = (G, p, g1, g2). The
key space Kyem is G and the randomness space Ryem is Z,,. H : G? — Z,, is a collision resistant
hash function.

KEM.Gen KEM.Enc KEM.Dec
KEM.Ek KEM.Tk KEM.Rg | KEM.Kg KEM.Cg KEM.Tg KEM.Kd KEM.Vf
(y1,y2, 21, 22)
(z1,22) <3 8 Zay;
72 c= g} g% t=H(C);
S C = (u1,u2) | t=H(C);
h=g7"95% d=g7tg3?; rs$Zy | K=h" o) (e K = ujlu3? ol =yt
= (91,92 m = (ed")"
ek = h; tk = (c,d); 192 .u52+z2t

dk = (z1,22) | vk = (y1,y2,

21, 22)

Figure 8: The DDH-Based KEM from Cramer-Shoup Encryption Scheme [15]

KEM.Gen KEM.Enc KEM.Dec
KEM.Ek KEM.Tk KEM.Rg KEM.Kg | KEM.Cg KEM.Tg KEM.Kd KEM.Vf
y<+<s${0, -,
[N?/2]};
T <$
z++s${0,---,
{0, [N?/2]}; rs{0,- -, t=H(C); t=H(C);
[N2/2]} K=h" | C=g" K=C®
h = g%; [N/2]} = (cd*)" = Coytet
c=g¥%d=g%
ek =h;dk =z
tk = (¢, d);
vk = (y,2)

Figure 9: The DCR-Based KEM from Cramer-Shoup Encryption Scheme [15]

The DCR-Based. Let p,q,p’,q denote distinct odd primes with p = 2p’ + 1 and ¢ = 2¢' + 1.
Let N = pq and N’ = p'q’. The group Z}, = Gy - Gy - G2 - G where each group G, is a cyclic
group of order p, and G is the subgroup of Z},, generated by (—1 mod N 2). Let n<¢s YA

21

and g = —n?N. Fig. 9 shows the DCR-based KEM proposed in [15]. The public parameter is
pp = (IV,g). The key space Kyem is Z}. and the randomness space Ryem is {0,---, [IN/2]}.
H : Z7> — Ryem is a target collision resistant hash function.

The QR-Based. Let p,q,p’, ¢’ be distinct odd primes with p = 2p’+1 and ¢ = 2¢'+1. Let N = pq
and N’ = p'q’. Group Z}; = G- G2 -G where each group G, is a cyclic group of order p, and G
is the subgroup of Z}; generated by (—=1 mod N). Let n<sZ} and g = n?. Fig. 10 describes
the QR-based KEM proposed in [15]. The public parameter is pp = (V, g, k, 12:) The key space
Kkem is (Z3)F and the randomness space Riem is {0, ,[N/4]}. Let Q = {0,...,|N/2]|}.
H : 73 — {0,1} is an efficiently computable injective map.

KEM.Gen KEM.Enc KEM.Dec
KEM.Ek KEM.Tk KEM.Rg KEM.Kg KEM.Cg KEM.Tg KEM.Kd KEM.Vf
y <$ QF
k. 3 t=H(C); t = H(C);
xsQF; | 2480 Vie[1,k]: X Vie 1,k : v [1(1@;
Vi € [1,k] : UASH Y
h = g*%; c=g%; r +3${0, K; =h; i€ 1,4 K; = C%i;
C=g" | m=cl-di; m = CYi . C%i;
ek = h; d = g% 7|.N/4J} K:{Kh ‘ K:{Kl’ ’ ’
m={my, ' = {1,
dk=x | th=(cd) L K} LK) ,
---,71‘,;} "'aﬂ'fc}
k= (yvz)

Figure 10: The QR-Based KEM from Cramer-Shoup Encryption Scheme [15]. x =
{ﬂfl,"',wk},h - {hla"'7hk}7y = {yla'”)y];}vz = {Zlv'”azk}vc - {Cl,"',lec},d -
{dy,---,d;}.

KEM.Gen KEM.Enc KEM.Dec
KEM.Ek KEM.Tk | KEM.Rg KEM.Kg KEM.Cg KEM.Tg KEM.Kd KEM.Vf
(2,2) 3 (Z3)%;
Vie[1,K]: C = (u,
(i, i) 5 (Z35)?; t=H(C); C U,) t=H(C)
T nn Vi€ [1,k] : .
hi = g;* g% - K= =(gi", -, - K = uttz. -
h; = g¥i g% ri <8 L k th o\ Tk k zit+y;
i=9; 97 H1:1(h1hz) ° 9> Hi:l Uy
ek = (b, h); gt
dk = (x,y,2,2)

Figure 11: Generalized Kurosawa-Desmedt KEM based on k-Linear Assumption [27, 23]. x =
{xlf" 7xk‘}7y = {ylu'” 7yk}7h: {hl)"' 7h’k}7h - {hla"' 7hk}}

Kurosawa-Desmedt KEM [27]. In [27], Kurosawa and Desmedt designed a KEM that is not
CCA-secure whereas the resulting hybrid encryption scheme is CCA secure. In [23], Hofheinz
and Kiltz generalized the Kurosawa-Desmedt KEM to be based on the k-linear assumption.
Here we show the generalized Kurosawa-Desmedt KEM in its implicit-rejection variant. Let
G be a cyclic group of prime order p, and g1, - , gk, § are randomly chosen generators of G.
Fig. 11 depicts the generalized Kurosawa-Desmedt KEM based on k-linear assumption. The
public parameter is pp = (G, p,k, 91, - , gk, 7). The key space Kyem is G and the randomness
space Ryem 18 Z’; . H:GH1 o Z, is a target collision resistant hash function. Note that DDH

22

KEM.Gen KEM.Enc KEM.Dec
KEM.Ek KEM.Tk KEM.Rg | KEM.Kg | KEM.Cg KEM.Tg KEM.Kd KEM.Vf
T $ Zp; (y,2) <% Zg;
t=H(C); t=H(C);
h = g%; c=g¥;d = g% r$Zy K=h" C=g" K=C~"
m = (cd®)" = Cvtat
ek =h;dk =1z | tk = (c,d),vk = (y,2)

Figure 12: Hotheinz-Kiltz KEM based on k-Linear Assumption [23]

assumption is equivalent to the 1-linear assumption, and the scheme instantiated with k£ = 1
precisely reproduces the Kurosawa-Desmedt KEM[27].

Hofheinz-Kiltz KEMs[23]. In [23], Hofheinz and Kiltz formalized a new notion of CCCA
(constrained chosen-ciphertext security) security for KEM and designed a new CCCA-secure
KEM from the DDH assumption. As depicted by Fig. 12, the construction (the public parameter
is pp = (G, p,g)) is almost the same as the DDH-based one by Cramer and Shoup [15] except
that the ciphertext consists of only one group element. Therefore, the DDH-based KEM by
Hofheinz and Kiltz is also subvertible by our ASA.

REMARK. In [24], Hotheinz and Kiltz generalized their DDH-based KEM to the k-linear based
one. We remark that their k-linear version is not subvertible by our ASA as all the group gen-
erators must be parts of the public key and thus the public subversion key cannot be generated
before the public key is generated by the user. Moreover, an implicit-rejection variant of the
above DDH-based KEM (Fig. 12) is also proposed in [24], we claim that it is not subvertible
to our ASA either as the key ciphertext depends on the public key and thus is not of universal
decryptability. For more details we refer the reader to [24].

6 Discussions on Countermeasures

In this section, we mainly discuss how to design KEMs secure against ASAs. Indeed, as we have
discussed previously, there exist several KEMs that are not subvertible by our ASA [24, 30].
Nevertheless, we generally consider the security of KEMs against a wider range of possible
subversion attacks in the real world. Since almost all known ASAs are mainly due to the
free choice of randomness in the cryptographic algorithm, current defense approaches could be
roughly classified as two types, depending on whether the randomness is permitted.

6.1 Abandoning Randomized Algorithms

Some prior works [7, 6, 3, 5, 17] have suggested to use deterministic schemes that produce
unique output (e.g., unique ciphertext for encryption). For such schemes, any subversion attack
could be detected via comparing the output of the (possibly) subverted algorithm with the
expected output of the legitimate one at running time. The notion of unique-ciphertext public-
key encryption has been proposed by Bellare and Hoang [5] as a useful primitive to resist
undetectable subversion attacks. Unfortunately, although abandoning randomized algorithms
could well resist subversions, it naturally makes some desirable security notions unachievable.
In particular, it is a common wisdom that the conventional IND-CPA security is impossible for
deterministic encryption.

23

6.2 Permitting Randomized Algorithms with Further Assumptions

Some other approaches permitting randomized algorithms have been proposed to defeat subver-
sions. Note that it is generally impossible for randomized algorithms to resist subversion attacks
without making further assumptions (regarding trusted component assumptions and architec-
tural requirements). Indeed, all current generic approaches that permit randomized algorithms
require various assumptions. Here we mainly introduce three generic techniques using which
one could possibly secure KEM against subversion. Note that all these defensive techniques rely
on different assumptions and thus are generally incomparable.

(1) Split-program methodology [32, 33, 34, 13, 2]. The split-program methodology is intro-
duced by Russell et al.[32, 33] where an algorithm is decomposed into several functional compo-
nents that are executed independently (as in threshold cryptography or multiparty computation
elements is often assumed, and as can be implemented based on well isolated enclaves architec-
turally). It mainly relies on a so-called watchdog that is trustworthy for detecting subversions
of each individual component of the randomized algorithm. Particularly, in the split-program
model, the adversary is required to supply implementations of all components to the watchdog
who has the specification of these components. The watchdog ’s goal is to test whether the
(possibly subverted) implementation of each individual component is compliant with the speci-
fication via black-box testing. The split-program methodology is generally applicable for every
randomized algorithm and has nice properties in resisting the complete subversion including
subverted key generation. Note that Russell et al.’s PKE construction [33] trivially implies an
IND-CPA-secure KEM with subversion resilience in the offline watchdog model. However, it
remains unknown how to achieve stronger security (e.g., IND-CCA security) for KEMs in the
subversion setting.

(2) Cryptographic reverse firewall [29, 12, 20]. Cryptographic reverse firewall was firstly
introduced by Mironov and Stephens-Davidowitz [29] to secure arbitrary two-party protocol that
are run on possibly subverted machines. The reverse firewall model requires an on-line external
party to re-randomize all incoming/outgoing communication of the randomized algorithm. This
model is quite powerful in the sense that it could secure the fully black-box use of (possibly
subverted) algorithms without complex detection mechanisms. However, it requires a source of
trusted randomness, and may not be readily applicable to every existing protocol as it requires
some “re-randomizable” structure of the cryptographic scheme. In [20], Dodis et al. showed
how to design secure message transmission protocols on corrupted machines. Their CPA-secure
rerandomizable PKE trivially implies IND-CPA-secure KEMs with reverse firewalls. However,
as pointed out by Dodis et al., such a construction usually requires the computation of public-key
operations on the entire plaintext and thus is inefficient.

(3) Self-guarding mechanism [21]. The self-guarding mechanism, introduced by Fischlin and
Mazaheri [21], assumes the existence of a good initial phase when the randomized algorithm
is not subverted. It could be viewed as an alternative approach to reverse firewall, but does
not depend on external parties and applies more smoothly to some primitives like symmetric
encryption. The core idea is to use samples gathered from its underlying primitives during their
good initial phase in addition to basic operations to resist subversion attacks that are later on
mounted on the primitives. That is, self-guarding mechanism mainly counter subversion attacks
that are triggered to wake up at a later point in time. Here we roughly discuss how to construct
self-guarding KEMs. Once a set of fresh samples are gathered at the good initial phase, for
each output (K, 1) of the possibly subverted encapsulation algorithm, a sample (Kg, 1)g) is first
randomly chosen (and deleted) from the set, and then Kj is used to mask v while vg is appended
to the updated ciphertext. To decapsulate the key K, Kg is first recovered to remove the mask
in the ciphertext and thereafter the recovered ciphertext is decrypted. Note that the security of

24

KEM in this setting is inherently bounded by the number of samples collected during the good
initial phase.

Note that in [22], Giacon et al. introduced the notion of KEM combiners as an approach to
garner trust from different KEM constructions instead of relying on a single one. We remark
that their proposed combiners could be potentially used to restore security against subversion
attacks by assuming at least one of the underlying KEMs is not subverted. Further, there are
several other approaches for protecting specific primitives against subversions, e.g., anonymous
attestation protocols by Camenisch et al. [10], and backdoored pseudorandom generators by
Dodis et al. [18].

Acknowledgement. We would like to thank all anonymous reviewers for their valuable com-
ments. Part of this work was done while Rongmao Chen was visiting COSIC in KU Leuven,
Belgium. Rongmao Chen is supported in part by the National Natural Science Foundation of
China (Grant No. 61702541 and Grant No. 61872087), and the Young Elite Scientists Spon-
sorship Program by China Association for Science and Technology. Xinyi Huang is supported
in part by the National Natural Science Foundation of China (Grant No. 61822202).

References

[1] Armour, M., Poettering, B.: Subverting decryption in AEAD. In: 17th IMA International
Conference on Cryptography and Coding. pp. 22-41. LNCS, Springer, Heidelberg (Dec 2019).
https: / /doi.org/10.1007 /978-3-030-35199-1_2

[2] Ateniese, G., Francati, D., Magri, B., Venturi, D.: Public immunization against complete sub-
version without random oracles. In: ACNS 19. pp. 465-485. LNCS, Springer, Heidelberg (2019).
https://doi.org/10.1007/978-3-030-21568-2_23

[3] Ateniese, G., Magri, B., Venturi, D.: Subversion-resilient signature schemes. In: Ray,
I, Li, N., Kruegel:;;, C. (eds.) ACM CCS 15. pp. 364-375. ACM Press (Oct 2015).
https://doi.org/10.1145/2810103.2813635

[4] Auerbach, B., Bellare, M., Kiltz, E.: Public-key encryption resistant to parameter subversion and its
realization from efficiently-embeddable groups. In: Abdalla, M., Dahab, R. (eds.) PKC 2018, Part I.
LNCS, vol. 10769, pp. 348-377. Springer, Heidelberg (Mar 2018). https://doi.org/10.1007/978-3-
319-76578-5_12

[5] Bellare, M., Hoang, V.T.: Resisting randomness subversion: Fast deterministic and hedged
public-key encryption in the standard model. In: Oswald, E., Fischlin, M. (eds.) EURO-
CRYPT 2015, Part II. LNCS, vol. 9057, pp. 627-656. Springer, Heidelberg (Apr 2015).
https://doi.org/10.1007 /978-3-662-46803-6_21

[6] Bellare, M., Jaeger, J., Kane, D.: Mass-surveillance without the state: Strongly undetectable
algorithm-substitution attacks. In: Ray, I., Li, N., Kruegel:, C. (eds.) ACM CCS 15. pp. 1431-
1440. ACM Press (Oct 2015). https://doi.org/10.1145/2810103.2813681

[7] Bellare, M., Paterson, K.G., Rogaway, P.: Security of symmetric encryption against mass surveil-
lance. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 1-19.
Springer, Heidelberg (Aug 2014). https://doi.org/10.1007/978-3-662-44371-2_1

[8] Benhamouda, F., Blazy, O., Chevalier, C., Pointcheval, D., Vergnaud, D.: New techniques for SPHFs
and efficient one-round PAKE protocols. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I.
LNCS, vol. 8042, pp. 449-475. Springer, Heidelberg (Aug 2013). https://doi.org/10.1007/978-3-642-
40041-4_25

25

[9]

Berndt, S., Liskiewicz, M.: Algorithm substitution attacks from a steganographic perspective. In:
Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 17. pp. 1649-1660. ACM
Press (Oct / Nov 2017). https://doi.org/10.1145/3133956.3133981

Camenisch, J., Drijvers, M., Lehmann, A.: Anonymous attestation with subverted TPMs. In: Katz,
J., Shacham, H. (eds.) CRYPTO 2017, Part III. LNCS, vol. 10403, pp. 427-461. Springer, Heidelberg
(Aug 2017). https://doi.org/10.1007/978-3-319-63697-9_15

Checkoway, S., Niederhagen, R., Everspaugh, A., Green, M., Lange, T., Ristenpart, T., Bernstein,
D.J., Maskiewicz, J., Shacham, H., Fredrikson, M.: On the practical exploitability of dual EC in
TLS implementations. pp. 319-335 (2014)

Chen, R., Mu, Y., Yang, G., Susilo, W., Guo, F., Zhang, M.: Cryptographic reverse fire-
wall via malleable smooth projective hash functions. In: Cheon, J.H., Takagi, T. (eds.) ASI-
ACRYPT 2016, Part I. LNCS, vol. 10031, pp. 844-876. Springer, Heidelberg (Dec 2016).
https://doi.org/10.1007/978-3-662-53887-6_31

Chow, S.S.M., Russell, A., Tang, Q., Yung, M., Zhao, Y., Zhou, H.S.: Let a non-barking watchdog
bite: Cliptographic signatures with an offline watchdog. In: PKC 2019, Part I. pp. 221-251. LNCS,
Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-030-17253-4 8

Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against adaptive chosen
ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO’98. LNCS, vol. 1462, pp. 13-25. Springer,
Heidelberg (Aug 1998). https://doi.org/10.1007/BFb0055717

Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen ciphertext secure
public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 45-64.
Springer, Heidelberg (Apr / May 2002). https://doi.org/10.1007/3-540-46035-7_4

Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption schemes secure
against adaptive chosen ciphertext attack. STAM Journal on Computing 33(1), 167-226 (2003)

Degabriele, J.P., Farshim, P., Poettering, B.: A more cautious approach to security against mass
surveillance. In: Leander, G. (ed.) FSE 2015. LNCS, vol. 9054, pp. 579-598. Springer, Heidelberg
(Mar 2015). https://doi.org/10.1007/978-3-662-48116-5_28

Dodis, Y., Ganesh, C., Golovnev, A., Juels, A., Ristenpart, T.: A formal treatment of backdoored
pseudorandom generators. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part I. LNCS,
vol. 9056, pp. 101-126. Springer, Heidelberg (Apr 2015). https://doi.org/10.1007/978-3-662-46800-
5.5

Dodis, Y., Gennaro, R., Hastad, J., Krawczyk, H., Rabin, T.: Randomness extraction and key
derivation using the CBC, cascade and HMAC modes. In: Franklin, M. (ed.) CRYPTO 2004. LNCS,
vol. 3152, pp. 494-510. Springer, Heidelberg (Aug 2004). https://doi.org/10.1007/978-3-540-28628-
8.30

Dodis, Y., Mironov, 1., Stephens-Davidowitz, N.: Message transmission with reverse firewalls—
secure communication on corrupted machines. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016,
Part I. LNCS, vol. 9814, pp. 341-372. Springer, Heidelberg (Aug 2016). https://doi.org/10.1007/978-
3-662-53018-4_13

Fischlin, M., Mazaheri, S.: Self-guarding cryptographic protocols against algorithm substitution
attacks. In: 31st IEEE Computer Security Foundations Symposium, CSF 2018, Oxford, United
Kingdom, July 9-12, 2018. pp. 76-90 (2018). https://doi.org/10.1109/CSF.2018.00013

Giacon, F., Heuer, F., Poettering, B.: KEM combiners. In: Abdalla, M., Dahab, R.
(eds.) PKC 2018, Part I. LNCS, vol. 10769, pp. 190-218. Springer, Heidelberg (Mar 2018).
https://doi.org/10.1007/978-3-319-76578-5_7

26

[23]

[24]

[25]

28]

[29]

Hofheinz, D., Kiltz, E.: Secure hybrid encryption from weakened key encapsulation. In: Menezes,
A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 553-571. Springer, Heidelberg (Aug 2007).
https://doi.org/10.1007/978-3-540-74143-5_31

Hoftheinz, D., Kiltz, E.: Secure hybrid encryption from weakened key encapsulation. Cryptology
ePrint Archive, Report 2007/288 (2007), http://eprint.iacr.org/2007/288

Katz, J., Vaikuntanathan, V.: Round-optimal password-based authenticated key exchange. In:
Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 293-310. Springer, Heidelberg (Mar 2011).
https://doi.org/10.1007/978-3-642-19571-6_18

Kiltz, E., Pietrzak, K., Stam, M., Yung, M.: A new randomness extraction paradigm for hybrid en-
cryption. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 590-609. Springer, Heidelberg
(Apr 2009). https://doi.org/10.1007/978-3-642-01001-9_34

Kurosawa, K., Desmedt, Y.: A new paradigm of hybrid encryption scheme. In: Franklin,
M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 426-442. Springer, Heidelberg (Aug 2004).
https://doi.org/10.1007/978-3-540-28628-8_26

Kwant, R., Lange, T., Thissen, K.: Lattice klepto - turning post-quantum crypto against itself. In:
Adams, C., Camenisch, J. (eds.) SAC 2017. LNCS, vol. 10719, pp. 336-354. Springer, Heidelberg
(Aug 2017). https://doi.org/10.1007/978-3-319-72565-9_17

Mironov, 1., Stephens-Davidowitz, N.: Cryptographic reverse firewalls. In: Oswald, E., Fischlin, M.
(eds.) EUROCRYPT 2015, Part II. LNCS, vol. 9057, pp. 657-686. Springer, Heidelberg (Apr 2015).
https://doi.org/10.1007/978-3-662-46803-6_22

Peikert, C.: Lattice cryptography for the internet. In: Mosca, M. (ed.) Post-Quantum Cryptogra-
phy - 6th International Workshop, PQCrypto 2014. pp. 197-219. Springer, Heidelberg (Oct 2014).
https://doi.org/10.1007/978-3-319-11659-4_12

Prabhakaran, M., Rosulek, M.: Rerandomizable RCCA encryption. In: Menezes, A.
(ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 517-534. Springer, Heidelberg (Aug 2007).
https://doi.org/10.1007/978-3-540-74143-5_29

Russell, A., Tang, Q., Yung, M., Zhou, H.S.: Cliptography: Clipping the power of kleptographic
attacks. In: Cheon, J.H., Takagi, T. (eds.) ASTACRYPT 2016, Part II. LNCS, vol. 10032, pp. 34-64.
Springer, Heidelberg (Dec 2016). https://doi.org/10.1007/978-3-662-53890-6_2

Russell, A., Tang, Q., Yung, M., Zhou, H.S.: Generic semantic security against a kleptographic
adversary. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 17. pp. 907-
922. ACM Press (Oct / Nov 2017). https://doi.org/10.1145/3133956.3133993

Russell, A., Tang, Q., Yung, M., Zhou, H.S.: Correcting subverted random oracles. In: Shacham, H.,
Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol. 10992, pp. 241-271. Springer, Heidelberg
(Aug 2018). https://doi.org/10.1007/978-3-319-96881-0_9

Young, A., Yung, M.: The dark side of “black-box” cryptography, or: Should we trust capstone?
In: Koblitz, N. (ed.) CRYPTO’96. LNCS, vol. 1109, pp. 89-103. Springer, Heidelberg (Aug 1996).
https://doi.org/10.1007/3-540-68697-5_8

Young, A., Yung, M.: Kleptography: Using cryptography against cryptography. In: Fumy,
W. (ed.) EUROCRYPT’97. LNCS, vol. 1233, pp. 62-74. Springer, Heidelberg (May 1997).
https://doi.org/10.1007/3-540-69053-0_6

Young, A., Yung, M.: The prevalence of kleptographic attacks on discrete-log based cryptosystems.
In: Kaliski Jr., B.S. (ed.) CRYPTO’97. LNCS, vol. 1294, pp. 264-276. Springer, Heidelberg (Aug
1997). https://doi.org/10.1007/BFb0052241

27

http://eprint.iacr.org/2007/288

A
Al

Omitted Definitions, Proof and Instantiations

Hash Proof System

(1). Subset membership problem. We say the subset membership problem is hard in HPS if it is

computationally hard to distinguish a random element £ from a random element from X \ L.
Formally, for any PPT algorithm A,

Advii? 4 (n) = |PrlA(X,L,z) = 1|z +s L]~
PriA(X,L,z) =1l s X \ L]]| < negl(n).

(2). Computational smoothness. We say HPS is of computational smoothness if the hash value

of a random element from X \ £ looks random to an adversary only knowing the projection key.

smooth

Formally, for any PPT algorithm A, its advantage Advieo%™ (n) defined as below is negligible.

A.2

pp <3 HPS.Setup(1™);

(hp, hk) +sHPS.Gen(pp);
Advﬁmoﬁh(n) = |Pr [0 =b: Tes XN Lib s {0,1); 1 .
- Yo <3 V; 2
y1 == HPS.Priv(hk, x);

v < A(pp, hp, x, yp)

Proof of Theorem 4

Theorem 4 The generic construction of KEM depicted in section.1 is universally decryptable
and key-pseudo-random if HPS is computationally smooth and the subset membership problem
1s hard in HPS.

Proof. The property of universal decryptability clearly holds due to the projection property of
HPS. We now prove the key-pseudo-randomness via games: {Gg, G1, G2, G3}. Let Adv, be
the advantage of A in Game G,. Below we provide more details of each game.

GAME Gg: This is the real game and thus AdvE::n 4(n) = Advy.

GAME Gj: Same as G except that the challenger computes K; := KEM.Kd(dk, C) instead
of computing K; := KEM.Kg(ek,r). One can see that from the view of the adversary, G
is identical to Gg due to the property of universal decryptability. Therefore, we have
AdV1 = AdVo.

GAME Ga: Same as G except that the challenger chooses C' <—s X"\ L. One can see that
from the view of the adversary, Go is indistinguishable from G; due to the hard subset
membership problem in HPS. Therefore, we have |Advy — Advy| < Advf]'ssp a(n).

GAME Gj3: Same as Go except that the challenger chooses K s Kyem instead of com-
puting K; = KEM.Kd(dk,C). Below we show that a distinguisher between both games
could be turned into an attacker A’ against the smoothness of KEM. Precisely, when A’
receives (pp, hp,z*,y*) from its challenger, it sets ek := hp, C' := z and K; = y*. One
can note that if y* := HPS.Priv(hk, z*), then the simulation is GAME Go, otherwise it is
GAME Gg. This yields |Advs — Adva| < Advino%" ().

28

In GAME Gg, the view of the adversary actually does not depend on the chosen bit b and
thus we have Advs = 0. Putting all the above together,

AdVE 4(n) = Advg
= |Advp — Adv; + Adv; — Advs + Advy — Advs + Advs|
< |Advg — Advi| + |Adv; — Advs| + |Adva — Advs| + Advs
< Advir;s'jA(n) + Advf]r;‘s‘jf’fh(n).
This completes the proof of the theorem. O

A.3 Instantiating HPSs from Graded Rings

In [8], Benhamouda et al. introduced a generic framework for HPSs using the notion of graded
rings, which is a common formalization for cyclic groups, bilinear groups, and even multilinear
groups. We show that under some conditions, by instantiating HPS from the notion of graded
rings by Benhamouda et al. [8], the resulted KEM are subvertible by our proposed ASA.
We first recall the notion of graded rings-based HPS introduced in [8]. Let the notation @
and ©® correspond to the addition operation and the multiplication operation, respectively.
For a language £ which is specified by the parameter aux, suppose there exist two positive
integers m and n, a function I' : X —— G™*™ (for generating the element basis) and a function
Oaux : X — G, such that for any =z € X,

(z € L) < (AN € Z*™ s.t., Oaux(z) = A0 I'(2)).

That is, z € L if and only if ©,u«(x) is a linear combination of the rows in I'(z). Here we
assume that given the witness w of the membership x € L, one can efficiently compute the
linear combination A. For an element z, the hashing key/projection key hk/hp in an HPS is
hk = o = (a1, ,ap)" s Ly, hp = ~v(z) =T (r) O € G* The hash value for an element
x is HPS.Priv(hk,) := O.ux(z) ©® e, and HPS.Pub(hp, z,w) := X ® y(x). Intuitively, if z € £
with A, then we have,

HPS.Priv(hk,z) = Oaux(2) © a = A © T'(z) © a = HPS.Pub(hp, z, w).

This guarantees the correctness of the HPS. As for the (computational) smoothness property, we
can see that for any element x ¢ £ and a projection key hp = v(z) = I'(x) ©®ax, the vector O 4y« ()
is not in the linear span of I'(z), and thus its hash value y = HPS.Priv(hk,z) = Oux(z) © a
is independent from hp = I'(x) ® a. One can note that if the function I : X — G™*" is a
constant function, the corresponding HPS is of KV-HPS type. Therefore, we have the following
theorem (the proof is intuitive and thus we omit it).

Theorem A.l. The generic construction of KEM depicted in Section 5.1 is universally de-
cryptable and key-pseudo-random if the underlying HPS is a KV-HPS type HPS based on graded
TiNgs.

A Simple Example. We illustrate this framework for the DDH language. Let g1, go be two
generators of a cyclic group G of prime order p. Let X = G'*2 and £ = {(uj,u2) |7 €
Ly, s.t., up = gj,us = gj}. For any = = (u1,u2) € L, Oax(z) =z, I'(x) = (g91,92) and the
witness for z € £ is w = r and here A = w = r. The hashing key is hk = a = (a1, az)! s Z]%

) o

and the projection key is hp = v(z) =I'(z) © a = ¢g7'" 95> € G. Then,
HPS.Priv(hk,) = Qau(z) ©® o = (u1,u2) © (a1,)" = ufuy?,
HPS.Pub(hp, z,w = 1) = A©y(z) =7 © (g1 95*) = (97" 95%)"-

29

B Constructing Subversion-Resistant KEMs

In this part, we provide more discussions on constructing secure KEMs against ASAs.

B.1 Subversion-resistant KEMs in the Cliptographic Model

In [32, 33], Russell et al. initiated the study of cliptography that aims at designing a broad
class of cryptographic tools secure against subversion attacks, including one-way-permutations,
pseudorandom generators, signature schemes and IND-CPA-secure encryption schemes.

The cliptographic model (in brief). In the cliptographic model, the adversary first supplies
the implementation of all algorithms of the cryptographic scheme to a trust party called watch-
dog who has the corresponding specification of all algorithms. The watchdog tests whether the
(possibly subverted) implementation of each algorithm is compliant with the specification via
black-box testing. A cryptographic scheme is said to be subversion-resistant, if

e cither there exists a watchdog that could detect the subversion of algorithms with non-
negligible probability;

e or the security of the cryptographic scheme is preserved even in the face of component
implementations being subverted.

That is, for a cryptographic scheme secure in the cliptographic model, if all algorithm imple-
mentations pass the testing of watchdog, the composed scheme should preserve its security.

TEST PHASE
w A

}CgM IMPL

byy 8 WKEMue (17

EXECUTE PHASE
C

[

pp <% KEM.Setup,,;.; (1™)
(pk, sk) <$ KEM.Genner. (pp)
(Ko,9*) <$ KEM.Encer (pk)
K1 <% Kyem, b <5 {0,1}
(PP, Pk, Ky, ¥*)
b

-

be=1ifb=10

be = 0 otherwise

Figure 13: The cliptographic game for key encapsulation mechanism.

Below we provide a formal security definition of subversion-resistant KEMs in the clip-
tographic model, more precisely, in the offline watchdog model where the watchdog has the
weakest power (without access to the online transcript of the scheme execution). In the follow-
ing, for an algorithm (or component) F, we let Fgppe denote its specification and Fyp;, denote
its implementation (supplied by the adversary).

Definition B.1 (Subversion-resistant KEM in the offline watchdog model). A key encapsu-
lation mechanism with specification KEMgppc = (KEM.Setupgppe, KEM.Gengpge, KEM.Encgpgc,
KEM.Decgpr) is subversion-resistant in the offline watchdog model if there is a PPT
watchdog W so that, for any PPT adversary A playing the game described in Figure 13, either

30

Adv 4(n) is negligible, or, Det 4y (n) is non-negligible,

where Adv4(n) = |Prlbe = 1] — 1/2| denotes the advantage of adversary A in the security
experiment, and, Detyy 4(n) = |PrWkEMur(1n) = 1] — PrwkEéMsree(17) = 1]| denotes the
detection advantage of watchdog in the test phase.

The split-program methodology. To eliminate the general steganographic channels on
randomized algorithms, Russell et al. [32, 33] proposed a non-black-box design model, namely
split-program methodology. The main idea of such an approach is to further split each algorithm
of the specification into several components. In the cliptographic game, each component of the
implementation is exposed to the watchdog for testing while the fully functional implementation
via a trusted amalgamation by the challenger is used in the security game with the adversary.
By using such a decomposition-and-amalgamation approach, Russell et al. [33] showed that
it is possible to generically destroy steganographic channels, leading to subversion-resistant
cryptography (in the cliptographic model) without abandoning randomized algorithms. As we
will show later, Russell et al.’s general approach could be also applied for designing subversion-
resistant KEMs. Below we first introduce their general results, followed by our construction of
subversion-resistant KEM.

TEST PHASE
w A
G]I\l}’llv IG
byy 8 WOmr,IG (1)
EXECUTE PHASE
c A

B «$ {IMPL,SPEC}

149
-—
fori=1toq
xT; (—$|G(1n)
yi = Gg(1", @)
Y1, ", Yq
ﬁ/
R A

be=1if =4

be = 0 otherwise

Figure 14: The general stego-freeness game for randomized algorithms.

Definition B.2 (stego-freeness [33]). We say a randomized algorithm G is stego-free if there is
a PPT watchdog W so that, for any PPT adversary A playing the game described in Figure 14,
either

Adv 4(n) is negligible, or, Det 4y (n) is non-negligible,

where Adv4(n) = |Pr[bc = 1] — 1/2| denotes the advantage of adversary A in the security
experiment, and, Detyy 4(n) = |Pr[WCnrl6(17) = 1] — Pr[WCselG(1m) = 1]| denotes the
detection advantage of watchdog in the test phase.

Following the above defintion, Russell et al. [33] proposed a stego-free specification of ran-
domness generation via double splitting as depicted in Figure. 15. Concretely, the specificiation

31

RG!

spec

RGgF’EU

Figure 15: A stego-free specification for randomness generation.

RGgpgc is decomposed into two randomized algorithms RGY,.. and RGL,. . of which the outputs
are combined using a hash function Hgpec. In practice, this could be simply realized by letting
the user run RGyp;, twice independently to generate two randomness rg and rq, and pass them
to Hper, which finally outputs 7 := Hspec(r0,71). Since now the final output is not fully de-
termined by either randomness, one could see that if the hash function Hgyec is modeled as a
random oracle and the output of RGyyp, has certain entropy (this could be guaranteed by the
watchdog through testing), the output of RGgpge would look random to the attacker even it
subverts RGpyp, and Hyypr, that are undetectable to the watchdog. Formally, for the randomness
generation depicted in Figure. 15, Russell et al. [33] proved the following result.

Theorem B.1 ([33]). Consider randomness generation specification RGgppe = (RGhge, RGlope,
Hsprc) as described in Figure 15:

° RGngc and RG;pEC, given 1™, output uniformly random strings of length \(n);
e Hgppe is a hash function so that Hspre(w) has length |w|/2;

e the specification for RGgppc(1™) is the trusted composition:

HSPEC (RGngc(ln)a RGsl‘PEc(ln))

Then the specification is stego-free if Hgppe is modeled as a random oracle.

More generally, Russell et al. [33] showed how to construct a stego-free specification for any
randomized algorithm with a public input distribution. Consider a randomized algorithm G
which uses A(n) random bits for input of length n. Let (RG,dG) denote the specification of G,
where RG(1") produces A(n) uniformly random bits and dG(r, x) is a deterministic algorithm
so that for every z, the output distribution of G(z) is identical to that of dG(RG(1™),z). Then,
by using the above stego-free sepcification of randomness generation (i.e., Figure 15), we have
the following result.

Theorem B.2 ([33]). For any randomized algorithm G, consider the specification Ggppe =
(RGsprc, dGsprc) where RGgpre generates A(n) bits of uniform randomness and dGgpg is deter-
ministic. Let RGgppe = (RG(S)PEC, RG;PEC, Hspee) as depicted in Figure 15, then Ggpre 18 stego-free
with a trusted amalgamation if Hgpre is modeled as a random oracle.

The above theorem is implied by Theorem B.1 and the following lemma which was formalized
in [32]. Basically, this lemma says that for any deterministic algorithm, an offline watchdog can
ensure it is consistent with its specification with an overwhelming probability when the inputs
are sampled from a public distribution.

32

O

ek EE—— KEM~KgspEc — K

0
KEM.Cgeree —> ('

-

KEM.Rgspec
T / tk 7T
Figure 16: KEM in the cryptographic model
Lemma B.3 ([32]). Consider Iyp, == (Flp, -+, FE0), an adversarial implementation of a
specification Mgppe = (Flopes > Fioge), where FL, - [F¥ are deterministic algorithms. Addi-
tionally, for each security parameter n, public input distributions XL, - - - ,Xﬁ are defined respec-

tively. If 35 € [k‘],Pr[F{I\,IPL(x) #+ ngEc(Cﬂ) DT s Xﬁl] is d, then this can be detected by a PPT
offtine watchdog with probability at least §.

Construction of subversion-resistant KEMs. We are now ready to describe our construc-
tion of subversion-resistant KEMs. Given the previous results by Russell et al.[32, 33|, the
construction is quite intuitive. KEssentially, it mainly adopts the above general structure of
stego-free specification for randomized algorithms. Here we provide more details. We remark
that here we only consider the subversion of encapsulation algorithm while assume that the key
generation and decapsulation algorithms are honest implemented. In fact, as shown in [32, 33],
one can also achieve subversion-resistant key generation by adopting a similar strategy.
As depicted by Figure 16, the specification of encapsulation algorithm is:

KEM.Encgpec = (KEM.Rgyppos KEM.Kggppe, KEM.Cgoppos KEM. Tggppe)-

where KEM.Rggp = (KEM.Rg%..., KEM.Rgl. .., Hspc) as described in Figure 16. Note that
KEM.Rg¢pro is randomized while others are all deterministic. Therefore, by Theorem B.2, we
have that KEM.Encgpgc is stego-free. Formally, we have the following result.

Theorem B.4. The KEM specification KE Mgpre = (KEM.Setupgpp., KEM.Gengppc, KEM.Encgprc,
KEM.Decgprc), where KEM.Encgpic is depicted in Figure 16, is subversion-resistant in the offline
watchdog model in the random oracle model, assuming that KEM.Setupgp,, and KEM.Gengpre
are honestly implemented.

Security Analysis. According to Theorem B.1 and Lemma B.3, the watchdog could guarantee
that KEM.Rggpp is stego-free and that KEM.Kggppo, KEM.Cgeppe, KEM. Tgepp are consistent
with their corresponding specification on inputs from KEM.Ekyp, X KEM.Rg b, KEM.Rgpr
and KEM. Tkypr, X KEM.Rg ., respectively (since we already assume KEM.Ekyypr, and KEM. Tkypr,
are not subverted). Below we sketch the game sequence for security proof and analysis the neg-
ligible difference between each game transition.

e Game-0 is the original game as depicted in Figure. 13 with a trusted amalgamation.

e Game-1 is the same as Game-0 except KEM.Setup,,,;, is replaced with KEM.Setupgpy,-

33

e Game-2 is the same as Game-1 except that KEM.Genyyp,, is replaced with KEM.Gengpg.
e Game-3 is the same as Game-2 except that KEM.Encpypr, is replaced with KEM.Encgpgc.

The difference between Game-0 and Game-1, Game-1 and Game-2 is trivially negligible since
KEM.Setup,yp;, and KEM.Genyyp,, are honest (and thus stego-free). According to Theorem B.2,
KEM.Encgprc is stego-free, due to the fact that KEM.Rggpy, is stego-free and that KEM.Kggppes
KEM.Cggppe and KEM. Tgg,o are all consistent with specifications (conditioned on the watchdog
testing). Thus, we have that Game-2 and Game-3 are indistinguishable. It is easy to see that
all algorithms in Game-3 are faithfully implemented and thus the subversion resistance of the
underlying KEM holds.

B.2 Further Discussions on other Approaches

Cryptographic reverse firewall (CRF). The concept of CRF was firstly introduced by
Mironov and Stephens-Davidowitz [29] to secure arbitrary two-party protocol that are run on
possibly subverted machines. Specifically, consider a cryptographic protocol run between two
parties namely Alice and Bob. A CRF for Alice is an autonomous intermediary that locates
between Alice and the outside world, and modifies the incoming and outgoing messages of Alice’s
machine. The goal of such a treatment is that a protocol equipped with the CRF can provide
meaningful security for Alice even when the implementation of Alice’s machine is subverted. A
CRF is expected to meet several desirable properties. Roughly, a CRF for Alice in this message
transmission protocol is expected to achieve the following three properties.

e The first basic one is that the CRF should preserve the functionality of a legitimate
protocol, i.e., the output of Bob should still match Alice’s input message;

e The CRF should preserve the security of the protocol, i.e., the protocol equipped with
Alice’s CRF should be still secure even when Alice’s machine implementation is subverted;

e The third property is regarding the subversion resistance and formalized as exfiltration
resistance in [29], which mainly says that for the transcript output by (possibly subverted)
Alice, it should be indistinguishable from a legitimate transcript after it is sanitized by
the CRF.

Dodis et al.’s results [20]. In [20], Dodis et al. showed how to design secure message transmission
protocols on corrupted machines. The main idea is to design reverse firewalls for the underlying
encryption schemes which is required to be of “re-randomizable” structure. It is worth noting
that their construction for CPA-secure rerandomizable PKE trivially implies reverse firewalls
for IND-CPA-secure KEMs. Unfortunately, as pointed out by Dodis et al., such construction
usually requires the computation of public-key operations on the entire plaintext and thus is
inefficient. The adoption of hybrid encryption (which is the main target of our attack) cannot
solve this problem as the subverted encryption algorithm could choose a “bad” key that either is
known to the adversary or makes the resulting ciphertext distribution unbiased. To defend such
an attack, the reverse firewall should be able to the rerandomize the key and correspondingly
the ciphertext to maintain its decryptability. However, as shown by Dodis et al. [20], such
schemes turn out to be not faster than PKE. More details are please referred to the discussions
by Dodis et al. in [20]. Therefore, we say that reverse firewalls are not well applicable to KEMs
(and thus hybrid encryption) in practice.

Self-guarding KEMs with bounded security. Noting that the reverse firewall approach
is only applicable for schemes of “re-randomizable” structure, Fischlin and Mazaheri [21] put

34

forward the notion of self-guarding mechanism as an alternative defense approach. The core
idea is to use samples gathered from its underlying primitives during their good initial phase
in addition to basic operations to resist subversion attacks that are later on mounted on the
primitives. That is, self-guarding mechanism only counter subversion attacks that are triggered
to wake up at a later point in time, e.g., due to the software update. Note that its security is
inherently bounded by the number of samples collected during the good initial phase.

We first briefly introduce the self-guarding symmetric encryption scheme by Fischlin and
Mazaheri [21]. In their construction, the subversion of the encryption is thwarted by using
a random message to rerandomize the (possibly subverted) ciphertext and appending the en-
cryption of the random message so that the receiver could first recover the random message
to remove the mask of the ciphertext for further decryption. To resist subversion, the random
message and its corresponding encryption should be gathered before the encryption algorithm
is subverted (i.e., during the good initial phase) otherwise the rerandomized ciphertext may
still contain potential leakage. One may note that the self-guarding mechanism and the reverse
firewall model share the same spirit of sanitizing transcript using some fresh information. The
main difference between them is that the self-guarding mechanism gathers the fresh during the
good initial phase of the underlying primitive while the reverse firewall requires a trusted ran-
dom source run by itself. In this sense, we argue that the self-guarding scheme could be viewed
as a variant of reverse firewall which has better applicability for some concrete primitives.

KEM®&.Gen(pp) KEM®€.Enc(pk,) KEM®8.Dec(sk, (18, ¢g))
(pk, sk) <—s KEM.Gen(pp) (K,) <—s KEM.Enc(pk) K3 := KEM.Dec(sk, 1g)
Return (pk, sk) (Ks,1g) <s 2 =% P Kg

=0\ {(Ks,vs)} K = KEM.Dec(sk, 9)
P8 =1 D Kg Return K

Return (K, (¢°8, ¥g))

Figure 17: The construction of self-guarding KEM (informal)

Below we discuss how to construct self-guarding KEMs. Our approach is inspired by
the above self-guarding symmetric encryptions scheme in [21]. Consider a KEM KEM =
(KEM.Setup, KEM.Gen, KEM.Enc, KEM.Dec). Denote its self-guarding scheme as KEM =
(KEM?8& Setup, KEM*8.Gen, KEM®*6.Enc, KEM®*¢.Dec). Fig. 17 depicts LKEM®®. The algorithm
KEM®€ Gen is actually (pk, sk) <sKEM.Gen(pp). Let Q := {(Kg;,¥s;)}, (N = poly(n)) de-
note a set of fresh samples gathered when KEM has not been subverted, i.e, any (Kg,1g) € Q
is generated by the genuine algorithm KEM.Enc. Both KEM® Setup and KEM?®.Gen are the
same as the original ones. For the self-guarding encapsulation algorithm KEM®8.Enc, for each
output (K, 1) by the possibly subverted KEM.Enc, a sample (Kg,g) is first randomly chosen
(and deleted from), and then Ky is used to mask ¢ while g is appended to the updated
ciphertext. Note that here for simplicity, we assume the length of ciphertext is the same as that
of an encapsulated key. For the case of different lengths, one could use a common padding to
expand the ciphertext and/or use multiple K¢ to make them have equal length. To decapsulate
the key K, Kg is first recovered to remove the mask in the ciphertext and thereafter the recov-
ered ciphertext is decrypted. The correctness of KEM?®E is clear and the subversion resistance
could be guaranteed by a similar analysis for self-guarding symmetric encryption scheme given
in [21].

35

C ASA on Hybrid Encryption

A PKE scheme PKE consists of (PKE.Setup, PKE.Gen, PKE.Enc, PKE.Dec) which are defined
as follows: PKE.Setup takes as input the security parameter n € N, and outputs the public
parameter pp. The key generation algorithm PKE.Gen takes as input the public parameter
pp, and outputs the public/secret key pair (pk, sk). To encrypt a message m, the algorithm
PKE.Enc takes as input the public key pk and a message m, and outputs the ciphertext C.
The decryption algorithm PKE.Dec takes as input the secret key sk and the ciphertext C, and
outputs the plaintext m or L. It is required that for all n € N, pp «sPKE.Setup(1™) and
all (pk, sk) <—s PKE.Gen(pp), for any message m € M (M denotes the message space), and
C s PKE.Enc(pk, m), we have PKE.Dec(sk,C) = m.

Hybrid encryption. Hybrid encryption was firstly introduced by Cramer and Shoup for
constructing practical PKE schemes of security against adaptive chosen ciphertext attack [16].
In a nutshell, a hybrid encryption scheme uses a KEM to produce a key which plays as the
encryption key of a symmetric-key encryption scheme for encrypting message. Generally, this
hybrid approach supports the encryption of unrestricted message and significantly improves the
practicality of encryption schemes. It was later proved that a secure—not necessarily IND-
CCA-secure—KEM, combined with an appropriately secure symmetric-key encryption scheme,
yields a hybrid encryption scheme which is of IND-CCA security [27, 23].

Let CEM = (KEM.Setup, KEM.Gen, KEM.Enc, KEM.Dec) be a KEM and let SKE = (SKE.Enc,
SKE.Dec) be a symmetric-key encryption scheme. We assume that the two schemes are compat-
ible in the sense that for all n € N, for all pp output by KEM.Setup(1™), the key space of KEM is
the same as that of SKE. The resulting hybrid encryption scheme PXE = (PKE.Setup, PKE.Gen,
PKE.Enc, PKE.Dec) is depicted in Fig. 18. Note that PKE.Setup is pp <—s KEM.Setup(1").
PKE.Dec outputs L if either KEM.Dec or SKE.Dec returns |. The running of PKE.Gen is
(pk, sk) +—s KEM.Gen(pp).

PKE.Gen(pp) PKE.Enc(pk, M) PKE.Dec(sk,CT = (¢, Cy,))

(pk, sk) <—s KEM.Gen(pp)
Return (pk, sk)

(K,) s KEM.Enc(pk)
Cy = SKE.Enc(K, M)
Return CT = (¢, Cp,)

K := KEM.Dec(sk, 1)
M = SKE.Dec(K, C),)
Return M or L

Figure 18: KEM-based hybrid encryption

ASA on hybrid encryption. Assuming that the underlying KEM in Fig. 18 is subvertible
by our proposed attack, below we briefly describe how a hybrid encryption could be subverted
so that the adversary could recover the message without using the valid decryption key.

o Subverted Encryption. To subvert the encryption algorithm PKE.Enc shown in Fig. 18,
the plaintext replace the encapsulation part (i.e., KEM.Enc) by a subverted one ASA.Enc
which works as depicted in Fig. 3. Particularly, algorithm ASA.Enc is embedded with a
public subversion key and maintains an internal state—the randomness used during the
last invocation of the encryption algorithm. It is easy to note that such a subversion
well preserves the decryptability of the original encryption scheme and is undetectable to
legitimate users who choose all input messages and obtain all corresponding ciphertexts.
Here we omit the models and formal analysis due to the space limitation.

36

e Plaintext Recovery. Given two sequential ciphertexts CT = (¢, Cy,) and CT' = (¢/, CY)
(i.e., C'T is the last ciphertext output by the subverted encryption algorithm before CT"),
to recover the plaintext from C] , the subverter who holds the secret subversion key could
first recover the encryption key encapsulated in 1)’ via running ASA.Rec as depicted in
Fig. 3 and then decrypt C] via SKE.Dec. The algorithm ASA.Rec takes as input the
ciphertext 1) and the secret subversion key, and outputs the key underlying 1)’

Concrete subvertible PKE schemes. Below we list some known PKE schemes that are sub-
vertible by the subversion described above: (1) PKE schemes (i.e., DDH-based, DCR-based and
QR-based) proposed in [15]; (2) two DDH-based encryption schemes and the QR-based encryp-
tion scheme proposed in [26];(3)the rerandomizable RCCA-secure encryption scheme proposed
in [31]; and (4) the Kurosawa-Desmedt hybrid encryption scheme [27] and its improved variant
[23].

37

	Introduction
	Algorithm-Substitution Attacks
	Our Results

	Preliminaries
	Entropy Smoothing Hash Functions
	Key Encapsulation Mechanism (KEM)

	Asymmetric ASA Model for KEMs
	Asymmetric ASA on KEMs
	Session Key Recovery
	Undetectability

	Mounting ASAs on KEMs
	A Module-Level Syntax of KEM
	Our Non-Black-Box ASA on KEMs
	Formal Analysis

	Instantiations
	KEMs from Hash Proof Systems
	Concrete KEMs

	Discussions on Countermeasures
	Abandoning Randomized Algorithms
	Permitting Randomized Algorithms with Further Assumptions

	Conclusions
	Omitted Definitions, Proof and Instantiations
	Hash Proof System
	Proof of Theorem 4
	Instantiating HPSs from Graded Rings

	Constructing Subversion-Resistant KEMs
	Subversion-resistant KEMs in the Cliptographic Model
	Further Discussions on other Approaches

	ASA on Hybrid Encryption

