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Abstract. Chameleon-hashes are collision-resistant hash-functions par-
ametrized by a public key. If the corresponding secret key is known,
arbitrary collisions for the hash can be found. Recently, Derler et al.
(PKC '20) introduced the notion of fully collision-resistant chameleon-
hashes. Full collision-resistance requires the intractability of �nding col-
lisions, even with full-adaptive access to a collision-�nding oracle. Their
construction combines simulation-sound extractable (SSE) NIZKs with
perfectly correct IND-CPA secure public-key encryption (PKE) schemes.
We show that, instead of perfectly correct PKE, non-interactive commit-
ment schemes are su�cient. For the �rst time, this gives rise to e�cient
instantiations from plausible post-quantum assumptions and thus candi-
dates of chameleon-hashes with strong collision-resistance guarantees and
long-term security guarantees. On the more theoretical side, our results
relax the requirement to not being dependent on public-key encryption.

1 Introduction

Chameleon-hashes (CHs) are collision-resistant hash-functions parametrized by
a public key. Knowledge of the corresponding secret key allows �nding arbi-
trary collisions. Chameleon-hashes were initially introduced by Krawczyk and
Rabin [KR00]. Similar underlying ideas even date back to the introduction of
�trapdoor commitments� by Brassard et al. [BCC88]. They are an integral part
of many cryptographic constructions, both in theory and practice. For instance,
CHs �nd usage in on/o�ine signatures [CZSM07, EGM96, ST01], to generically
lift non-adaptively secure signature schemes to adaptively secure ones [HW09,
ST01], or as a building block for tightly-secure signatures [BKKP15]. Likewise,
they �nd applications in strong one-time signatures [Moh10], the construction of
IND-CCA secure public-key encryption [Zha07] or to extend Schnorr and RSA
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signatures to the universal designated-veri�er setting [SBWP03]. CHs are also
widely used in sanitizable signatures [ACdMT05, BCD+17, BFF+09, CDK+17],
i.e., signatures where a designated entity can alter certain parts of a signed
message while also deriving a valid new signature for the altered message. Bel-
lare and Ristov have shown that chameleon-hashes and Σ-protocols (mean-
ing three-round public-coin honest-veri�er zero-knowledge proofs of knowledge),
are equivalent [BR08, BR14]. Likewise, several extensions such as (hierarchi-
cal) identity-based [AdM04a, AdM04b, BDD+11], policy-based chameleon-hash
functions [DSSS19, SS20], or multi-trapdoor CHs [CDK+17, KPSS18] have been
studied.

Derler et al. [DSS20] recently studied existing collision-resistance notions of
CHs and introduced the notion of full collision-resistance, which is the strongest
known such notion and arguably the most natural one. Compared to prior no-
tions, their de�nition requires that an adversary which has full adaptive access to
a collision-�nding oracle cannot �nd any collisions that it did not receive from
the oracle. For comparison, the weakest meaningful notion (those satis�ed by
trapdoor commitments) does not allow the adversary to see any collision.

Contribution. Given the wide variety of application scenarios relying on CHs
as building blocks, striving to �nd e�cient instantiations and construction para-
digms, based on minimal assumptions, yet with strong security guarantees, is
an important task. Our contributions are along those lines, and, in particular,
include:

� A black-box construction of fully collision-resistant chameleon-hashes based
on SSE NIZKs and non-interactive commitment schemes. Most importantly,
this construction manages to remove the requirement to rely on public-key
encryption. While this is interesting from a practical point of view as it gives
more freedom for possible instantiations, it is also interesting from a theoreti-
cal perspective, as we can instantiate our constructions from primitives which
require weaker assumptions. Besides that, our construction o�ers strong in-
distinguishability, a strong privacy notion recently introduced by Derler et
al. [DSSS19].

� An e�cient instantiation from post-quantum assumptions. In particular, we
present a concrete construction from the learning parity with noise (LPN)
problem. This yields the �rst chameleon-hash from post-quantum assump-
tions that provides a collision-resistance notion stronger than that provided
by trapdoor commitments (e.g., the lattice-based chameleon-hash by Cash
et al. [CHKP10]). We note that although the security of the used SSE NIZKs
obtained from the Fiat-Shamir transform are just argued in the random or-
acle model (ROM), there is a recent line of works [DFMS19, LZ19, DFM20]
that prove security of (SSE) NIZKs obtained via Fiat-Shamir in the quan-
tum accessible ROM (QROM) [BDF+11]. Latter gives evidence that security
in the ROM based on post-quantum assumptions is a meaningful security
guarantee in practice. We leave it as an interesting open question to study
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the security of instantiations from other post-quantum assumptions in the
QROM.

� An e�cient instantiation from the discrete logarithm (DL) assumption, in
contrast to the DDH assumption used by Derler et al. [DSS20].

� The new notion of randomness unforgeability of chameleon-hashes. Intu-
itively, it requires that the adversary cannot �nd new randomness for an
honestly generated hash. This notion is weaker than the uniqueness notion
by Camenisch et al. [CDK+17], but may �nd its usage in cases where neither
the holder of the secret key nor the hashing party is adversarial, protecting
against outsiders tempering with the generated values.

2 Preliminaries

Notation. With λ ∈ N we denote our security parameter. All algorithms im-
plicitly take 1λ as an additional input. We write a←r A(x) if a is assigned to the
output of an algorithm A with input x (and use a← A(x) if A is deterministic).
An algorithm is e�cient, if it runs in probabilistic polynomial time (PPT) in the
length of its input. All algorithms are PPT, if not explicitly mentioned other-
wise. Most algorithms may return a special error symbol ⊥ /∈ {0, 1}∗, denoting
an exception. Returning output ends execution of an algorithm or an oracle. In
order to make the presentation in the security proofs more compact, we occa-
sionally use (a,⊥)←r A(x) to indicate that the second output is either ignored
or not returned by A. If S is a �nite set, we write a←r S to denote that a is cho-
sen uniformly at random from S.M denotes a message space of a scheme, and
we generally assume that M is derivable from the scheme's public parameters
or its public key. For a list we require that there is an injective, and e�ciently
reversible, encoding, that maps the list to {0, 1}∗. A function ν : N → R≥0
is negligible, if it vanishes faster than every inverse polynomial, i.e., ∀k ∈ N,
∃n0 ∈ N such that ν(n) ≤ n−k, ∀n > n0.

2.1 One-Way Functions

A one-way function f is a function, where computing the function is easy, but
reversing the function is hard.

De�nition 1 (One-Way Functions). A function f : {0, 1}∗ → {0, 1}∗ is one-
way, if (1) there exists a PPT algorithm A1 so that for all ∀ x ∈ {0, 1}∗ : A1(x)
= f(x), and (2) for every PPT adversary A2 there exists a negligible function ν
such that:

Pr[x←r {0, 1}λ, x′ ←r A2(f(x)) : f(x) = f(x′)] ≤ ν(λ).

2.2 Non-Interactive Commitment Schemes

Non-interactive commitment schemes allow one party to commit itself to a value
without revealing it [Blu81]. Later, the committing party can give some opening
information to the receiver to �open� the commitment.
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De�nition 2 (Non-Interactive Commitments). A non-interactive commit-
ment scheme Γ is a tuple of PPT algorithms de�ned as follows:

ParGenΓ . This algorithm takes as input a security parameter λ and outputs the
public parameters ppΓ :

ppΓ ←r ParGenΓ (1
λ)

CommitΓ . This algorithm takes as input a message m, and outputs a commit-
ment C together with corresponding opening information O:

(C,O)←r CommitΓ (ppΓ ,m)

OpenΓ . This deterministic algorithm takes as input a commitment C, a message
m, and some opening information O. It outputs a decision d ∈ {0, 1}:

d← OpenΓ (ppΓ , C,O,m)

De�nition 3 (Correctness). A non-interactive commitment scheme Γ is said
to be (perfectly) correct, if for all λ ∈ N, all ppΓ ←r ParGenΓ (1

λ), for all mes-
sages m ∈M, for all (C,O)←r CommitΓ (ppΓ ,m), it holds that OpenΓ (ppΓ , C,
O,m) = 1.

De�nition 4 (Binding). A non-interactive commitment scheme is binding, if
for all PPT adversaries A there exists a negligible function ν such that:

Pr[ExpBinding
A,Γ (λ) = 1] ≤ ν(λ),

where the corresponding experiment is depicted in Figure 1b.

De�nition 5 (Hiding). A non-interactive commitment scheme Γ is hiding, if
for any PPT adversary A, there exists a negligible functions ν such that:∣∣∣Pr[ExpHiding

A,Γ (λ) = 1]− 1/2
∣∣∣ ≤ ν(λ),

where the corresponding experiment is depicted in Figure 1b.

2.3 Non-Interactive Proof Systems

Let L be an NP-language with associated witness relation R, i.e., such that
L = {x | ∃w : R(x,w) = 1}. A non-interactive proof system allows to prove
membership of some statement x in the language L. More formally, such a system
is de�ned as follows.

De�nition 6 (Non-Interactive Proof System). A non-interactive proof sys-
tem Π for language L consists of three algorithms {PGΠ,PrfΠ,VfyΠ}, such that:

PGΠ. The algorithm PGΠ outputs public parameters of the scheme, where λ is
the security parameter:

crsΠ ←r PGΠ(1
λ)
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ExpBinding
A,Γ (λ)

ppΓ ←r ParGenΓ (1
λ)

(C∗, O∗, O′∗,m∗,m′∗)←r A(ppΓ )
return 1, if OpenΓ (ppΓ , C

∗, O∗,m∗) = 1 ∧
OpenΓ (ppΓ , C

∗, O′∗,m′∗) = 1 ∧
m∗ 6= m′∗

return 0

(a) Binding

ExpHiding
A,Γ (λ)

ppΓ ←r ParGenΓ (1
λ)

b←r {0, 1}
b∗ ←r ACommit′Γ (ppΓ ,·,·,b)(ppΓ )
where Commit′Γ on input ppΓ , m0, m1, and b:
return ⊥, if m0 /∈M∨m1 /∈M
(C,O)←r CommitΓ (ppΓ ,mb)
return C

return 1, if b∗ = b
return 0

(b) Hiding

Fig. 1: Security Games for Non-Interactive Commitments

PrfΠ. The algorithm PrfΠ outputs the proof π, on input of the CRS crsΠ, state-
ment x to be proven, and the corresponding witness w:

π ←r PrfΠ(crsΠ, x, w)

VfyΠ. The deterministic algorithm VfyΠ veri�es the proof π by outputting a bit
d ∈ {0, 1}, w.r.t. to some CRS crsΠ and some statement statement x:

d← VfyΠ(crsΠ, x, π)

De�nition 7 (Correctness). A non-interactive proof system is called correct,
if for all λ ∈ N, for all crsΠ ←r PGΠ(1

λ), for all x ∈ L, for all w such that
R(x,w) = 1, for all π ←r PrfΠ(crsΠ, x, w), it holds that VfyΠ(crsΠ, x, π) = 1.

In the context of (zero-knowledge) proof-systems, correctness is sometimes also
referred to as completeness. In addition, we require two standard security no-
tions for zero-knowledge proofs of knowledge: zero-knowledge and simulation-
sound extractability (also known as simulation-extractability). We de�ne them
analogously to the de�nitions given in [DS19].

Informally speaking, zero-knowledge says that the receiver of the proof π
does not learn anything except the validity of the statement. It is required that
the distribution of crsΠ output by SIM1 is distributed identically to PGΠ.

De�nition 8 (Zero-Knowledge). A non-interactive proof system Π for lan-
guage L is zero-knowledge, if for any PPT adversary A, there exists an PPT
simulator SIM = (SIM1,SIM2) such that there exist negligible functions ν1 and
ν2 such that∣∣∣Pr [crsΠ ←r PGΠ(1

λ) : A(crsΠ) = 1]−

Pr
[
(crsΠ, τ)←r SIM1(1

λ) : A(crsΠ) = 1
]∣∣∣ ≤ ν1(λ),

and that ∣∣∣Pr [ExpZero-Knowledge
A,Π,SIM (λ) = 1

]
− 1/2

∣∣∣ ≤ ν2(λ),
where the corresponding experiment is depicted in Figure 2a.
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ExpZero-Knowledge
A,Π,SIM (λ)

(crsΠ, τ)←r SIM1(1
λ)

b←r {0, 1}
b∗ ←r APb(·,·)(crsΠ)
where P0 on input x, w:
return π ←r PrfΠ(crsΠ, x, w), if R(x,w) = 1
return ⊥

and P1 on input x, w:
return π ←r SIM2(crsΠ, τ, x), if R(x,w) = 1
return ⊥

return 1, if b∗ = b
return 0

(a) Zero-Knowledge

ExpSimSoundExt
A,Π,E (λ)

(crsΠ, τ, ζ)←r E1(1λ)
Q ← ∅
(x∗, π∗)←r ASIM(·)(crsΠ)
where SIM on input x:
obtain π ←r SIM2(crsΠ, τ, x)
Q ← Q∪ {(x, π)}
return π

w∗ ←r E2(crsΠ, ζ, x
∗, π∗)

return 1, if VfyΠ(crsΠ, x
∗, π∗) = 1 ∧

R(x∗, w∗) = 0 ∧ (x∗, π∗) /∈ Q
return 0

(b) Simulation-Sound Extractability

Fig. 2: Security Games for Non-Interactive Proof Systems

Simulation-sound extractability says that every adversary which is able to come
up with a proof π∗ for a statement must know the witness, even when seeing
proofs for statements potentially not in L [Sah99]. Clearly, this implies that
the proofs output by a simulation-sound extractable proof-systems are non-
malleable. Note that the de�nition of simulation-sound extractability of [Gro06]
is stronger than ours in the sense that the adversary also gets the trapdoor ζ
as input. However, in our context this weaker notion (previously also used e.g.
in [ADK+13, DHLW10]) su�ces.

De�nition 9 (Simulation-Sound Extractability). A zero-knowledge non-
interactive proof system Π for language L is said to be simulation-sound ex-
tractable, if for any PPT adversary A, there exists a PPT extractor E = (E1, E2),
such that∣∣∣Pr [(crsΠ, τ)←r SIM1(1

λ) : A(crsΠ, τ) = 1
]
−

Pr
[
(crsΠ, τ, ζ)←r E1(1λ) : A(crsΠ, τ) = 1

]∣∣∣ = 0,

and that there exist a negligible function ν so that

Pr
[
ExpSimSoundExt

A,Π,E (λ) = 1
]
≤ ν(λ),

where the corresponding experiment is depicted in Figure 2b.

3 Syntax and Security of Chameleon-Hashes

We next present the formal framework for CHs used by Derler et al. [DSS20],
which itself is based on prior work [AMVA17, BFF+09, CDK+17].

De�nition 10. A chameleon-hash CH is a tuple of �ve PPT algorithms (CHPG,
CHKG,CHash,CHCheck,CHAdapt), such that:
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CHPG. The algorithm CHPG, on input a security parameter λ outputs public
parameters of the scheme:

ppch ←r CHPG(1λ)

We assume that ppch contains 1λ and is implicit input to all other algorithms.
CHKG. The algorithm CHKG, on input the public parameters ppch outputs the

private and public keys of the scheme:

(skch, pkch)←r CHKG(ppch)

CHash. The algorithm CHash gets as input the public key pkch, and a message
m to hash. It outputs a hash h, and some randomness r:4

(h, r)←r CHash(pkch,m)

CHCheck. The deterministic algorithm CHCheck gets as input the public key
pkch, a message m, randomness r, and a hash h. It outputs a bit d ∈ {0, 1},
indicating whether the hash h is valid:

d← CHCheck(pkch,m, r, h)

CHAdapt. The algorithm CHAdapt on input of a secret key skch, the message m,
the randomness r, hash h, and a new message m′ outputs new randomness
r′:

r′ ←r CHAdapt(skch,m,m
′, r, h)

De�nition 11 (Correctness). A chameleon-hash is called correct, if for all
security parameters λ ∈ N, for all ppch ←r CHPG(1λ), for all (skch, pkch) ←r

CHKG(ppch), for all m ∈ M, for all (h, r) ←r CHash(pkch,m), for all m′ ∈ M,
we have for all r′ ←r CHAdapt(skch,m,m

′, r, h), that 1 = CHCheck(pkch,m,
r, h) = CHCheck(pkch,m

′, r′, h).

Full Collision-Resistance. Derler et al. [DSS20] recently de�ned the notion
of full collision-resistance. Here, the adversary gets access to a collision-�nding
oracle CHAdapt′, which outputs a collision for the adversarially chosen hash,
but also keeps track of each of the queried and returned hash/message pairs
(h,m) and (h,m′), using the list Q. The adversary wins, if it comes up with
a hash/message pair (h∗,m∗) colliding with (m′∗, r′∗), for the given public key,
where (m′∗, r′∗) was never queried to or output from the collision-�nding oracle.

De�nition 12 (Full Collision-Resistance). A chameleon-hash CH provides
full collision-resistance, if for any PPT adversary A there exists a negligible
function ν such that

Pr[ExpF-CollRes
A,CH (λ) = 1] ≤ ν(λ)

The corresponding experiment is depicted in Figure 3a.

4 We note that the randomness r is also sometimes called �check value� [AMVA17].
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ExpF-CollRes
A,CH (λ)

ppch ←r CHPG(1
λ)

(skch, pkch)←r CHKG(ppch)
Q ← ∅
(m∗, r∗,m′∗, r′∗, h∗)←r ACHAdapt′(skch,·,·,·,·)(pkch)
oracle CHAdapt′ on input skch,m,m

′, r, h:
return ⊥, if CHCheck(pkch,m, r, h) 6= 1
r′ ←r CHAdapt(skch,m,m

′, r, h)
Return ⊥, if r′ = ⊥
Q ← Q∪ {(h,m), (h,m′)}
return r′

return 1, if CHCheck(pkch,m
∗, r∗, h∗) = 1 ∧

CHCheck(pkch,m
′∗, r′∗, h∗) = 1 ∧

m∗ 6= m′∗ ∧ (h∗,m∗) /∈ Q
return 0

(a) Full Collision-Resistance

ExpS-Ind
A,CH(λ)

ppch ←r CHPG(1
λ)

(skch, pkch)←r CHKG(ppch)
b←r {0, 1}
b∗ ←r AHashOrAdapt(skch,pkch,·,·,b)(skch, pkch)
where HashOrAdapt on input skch, pkch,m,m

′, b:
(h, r)←r CHash(pkch,m

′)
(h′, r′)←r CHash(pkch,m)
r′′ ←r CHAdapt(skch,m,m

′, r′, h′)
return ⊥, if r′′ = ⊥ ∨ r′ = ⊥ ∨ r = ⊥
if b = 0, return (h, r)
if b = 1, return (h′, r′′)

return 1, if b∗ = b
return 0

(b) Strong Indistinguishability

Fig. 3: Security Games for Chameleon-Hashes

Strong Indistinguishability. Strong indistinguishability is a strong privacy
notion [DSSS19]. It requires that a randomness r does not reveal whether it was
generated using CHash or CHAdapt, even if the adversary A knows all secret
keys.

De�nition 13 (Strong Indistinguishability). A chameleon-hash CH pro-
vides strong indistinguishability, if for any PPT adversary A there exists a neg-
ligible function ν such that∣∣∣Pr[ExpS-Ind

A,CH(λ) = 1]− 1/2
∣∣∣ ≤ ν(λ)

The corresponding experiment is depicted in Figure 3b.

Randomness Unforgeability. Uniqueness, introduced by Camenisch et al. at
PKC20 [CDK+17], requires that an adversary controlling all values (but the
public parameters) cannot �nd two distinct randomness values r∗ 6= r′∗ for the
same hash/message pair (h,m).5Uniqueness is a very strong notion that is hard
to achieve, and, in this strong form, only seems to be required in one particu-
lar use case [BCD+17, CDK+17, HZM+20, SS20]. To this end, we introduce a
slightly weaker variant that is easier to achieve while still being useful in other ap-
plications. It requires that an adversary cannot �nd new randomness for hashes
it did not create by itself. We call this notion randomness unforgeability.

In our formalization, the challenger generates the key pair and parameters
honestly, and uses pkch to initialize the adversary. The adversary gains access to
two oracles. The oracle CHash′ allows the adversary to adaptively receive hashes
on messages of its choice. The generated hash/randomness pairs (h, r) are stored
in a set Q. The oracle CHAdapt′ allows the adversary to adaptively �nd collisions
for hashes. If the adversary queries a hash/randomness pair which is an element
of Q, the resulting (h, r′) is also added to Q. The adversary wins, if it can come
up with a new randomness r∗ (i.e., not stored in Q) for whatever message m∗,
verifying for a hash h∗ which was output by CHash′.

5 The de�nition of uniqueness is restated in Appendix A.
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ExpRand-Uf
A,CH (λ)

ppch ←r CHPG(1
λ)

(skch, pkch)←r CHKG(ppch)
Q ← ∅
(m∗, h∗, r∗)←r ACHash′(pkch,·),CHAdapt′(skch,·,·,·,·)(pkch)
oracle CHash′ on input pkch,m:

(h, r)←r CHash(pkch,m)
Q ← Q∪ {(h, r)}
return (h, r)

oracle CHAdapt′ on input skch,m,m
′, r, h:

r′ ←r CHAdapt(skch,m,m
′, r, h)

return ⊥, if CHCheck(pkch,m
′, r′, h) 6= 1

If ∃(h, ·) ∈ Q:
Q ← Q∪ {(h, r′)}

return r′

return 1, if CHCheck(pkch,m
∗, r∗, h∗) = 1 ∧

(h∗, ·) ∈ Q ∧ (h∗, r∗) /∈ Q
return 0

Fig. 4: Randomness Unforgeability

De�nition 14 (Randomness Unforgeability). A chameleon-hash CH o�ers
randomness unforgeability, if for any PPT adversary A there exists a negligible
function ν such that

Pr[ExpRand-Uf
A,CH (λ) = 1] ≤ ν(λ)

The corresponding experiment is depicted in Figure 4.

4 Generic Construction

The main idea of our generic construction follows the original idea by Derler et
al. [DSS20], but slightly altered to meet our requirements. Namely, hashing a
message m means committing to it. The randomness r is a SSE NIZK proving
membership of a tuple containing the opening O for the commitment, and the
pre-image x of a one-way function f , ful�lling the following NP-relation:

L := {(ppΓ , h,m, y) | ∃ (O, x) : OpenΓ (ppΓ , h,O,m) = 1 ∨ y = f(x)} (1)

Informally, this language requires the prover to demonstrate that it either knows
an opening O such that h is a well-formed commitment of m under ppΓ , or the
pre-image x corresponding to f(x) of a one-way function f is known. Our con-
struction of a fully collision-resistant, strongly indistinguishable, and randomness
unforgeable, CH is presented as Construction 1.

4.1 Security

Subsequently, we prove the security of our CH in Construction 1.

Theorem 1. If Γ is correct, and Π is complete, then CH in Construction 1 is
correct.
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CHPG(1λ) : Fix a commitment scheme Γ , a one-way function f , and a compatible
NIZK proof system for language L in (1). Return ppch = (f, ppΓ , crsΠ), where

ppΓ ←r ParGenΓ (1
λ), and crsΠ ←r PGΠ(1

λ).

CHKG(ppch) : Return (skch, pkch) = (x, y), where

x←r {0, 1}λ, y ← f(x).

CHash(pkch,m) : Parse pkch as ((f, ppΓ , crsΠ), y) and return (h, r) = (C, π), where

(C,O)←r CommitΓ (ppΓ ,m), and π ←r PrfΠ(crsΠ, (ppΓ , h,m, y), (O,⊥)).

CHCheck(pkch,m, r, h) : Parse pkch as ((f, ppΓ , crsΠ), y) and r as π, and return 1, if the
following holds, and 0 otherwise:

m ∈M ∧ VfyΠ(crsΠ, (ppΓ , h,m, y), π) = 1.

CHAdapt(skch,m,m
′, r, h) : Parse skch as x, and set y ← f(x). Check that m′ ∈M and

CHCheck(y,m, r, h) = 1. Return ⊥, if not. Otherwise, return r′ = π′, where

π′ ←r PrfΠ(crsΠ, (ppΓ , h,m
′, y), (⊥, x)).

Construction 1: Our Construction of a Fully Collision-Resistant CH

Correctness follows from inspection and the (perfect) correctness of the used
primitives.

Theorem 2. If Γ is binding, f is a one-way function, and Π is simulation-
sound extractable, then CH in Construction 1 is fully collision-resistant.

The proof of this theorem is along the same lines as that in Derler et al. [DSS20].

Proof. We prove full collision-resistance using a sequence of games.

Game 0: The original full collision-resistance game.
Game 1: As Game 0, but we replace the CHPG algorithm with an algorithm

CHPG′ and modify the CHAdapt′ oracle as follows:

CHPG′(1λ) :

crsΠ ←r PGΠ(1
λ
) (crsΠ, τ)←r SIM1(1

λ) .

CHAdapt′(skch,m,m
′, r, h) : In CHAdapt:

π ←r PrfΠ(crsΠ, (ppΓ , h,m, y), (x,⊥)) π ←r SIM2(crsΠ, τ, (ppΓ , h,m, y)).

Transition - Game 0 → Game 1: We bound the probability for an adversary to
detect this game change by presenting a hybrid game, which, depending on
a zero-knowledge challenger Czk, either produces the distribution in Game
0 or Game 1, respectively. In particular, assume that we use the following
algorithm CHPG′′ instead of CHPG and CHPG′:

10



CHPG′′(1λ) :

(crsΠ, τ)←r SIM1(1
λ
) crsΠ ←r Czk .

CHAdapt′(skch,m,m
′, r, h) : In CHAdapt:

π
′ ←r SIM2(crsΠ, τ, (ppΓ , h,m

′
, y)) π′ ←r Czk.Pb((ppΓ , h,m

′, y), (⊥, x)) .

Clearly, if the challenger's internal bit is 0 we simulate the distribution in
Game 0, whereas we simulate the distribution in Game 1 otherwise. We have
that |Pr[S0]− Pr[S1]| ≤ νzk(λ).

Game 2: As Game 1, but we replace the CHPG′ algorithm with an algorithm
CHPG′′′ which works as follows:

CHPG′′′(1λ) :

(crsΠ, τ)←r SIM1(1
λ
) (crsΠ, τ, ζ)←r E1(1λ) .

Transition - Game 1 → Game 2: Under simulation-sound extractability, Game
1 and Game 2 are indistinguishable. That is, |Pr[S1]− Pr[S2]| = 0.

Game 3: As Game 2, but we keep a list Q of all tuples (h, r,m) previously
submitted to the collision-�nding oracle which are accepted by the CHCheck
algorithm, where h was never submitted to the collision-�nding oracle before.

Transition - Game 2 → Game 3: This change is purely conceptual, i.e., it does
not change the view of the adversary. |Pr[S2]− Pr[S3]| = 0 follows.

Game 4: As Game 3, but for every valid collision (m∗, r∗,m′∗, r′∗, h∗) output by
the adversary we observe that either (m∗, r∗) or (m′∗, r′∗) must be a �fresh�
collision, i.e., one that was never output by the collision-�nding oracle. We
assume, without loss of generality, that (m′∗, r′∗) is the �fresh� collision. We
run (x′, O′) ←r E2(crsΠ, ζ, (ppΓ , h

∗,m′∗, y), r′∗) and abort if the extraction
fails. We call this event E1.

Transition - Game 3 → Game 4: Game 3 and Game 4 proceed identically, un-
less E1 occurs. Assume, towards contradiction, that event E1 occurs with
non-negligible probability. We now construct an adversary B which breaks
the simulation-sound extractability property of the NIZK proof-system with
non-negligible probability. We engage with a simulation-sound extractability
challenger Csse and modify the algorithms as follows:

CHPG′′′′(1λ) :

(crsΠ, τ, ζ)←r E1(1λ) (crsΠ,⊥,⊥)←r Csse .

CHAdapt′′(skch,m,m
′, r, h) :

π
′ ←r SIM2(crsΠ, τ, (ppΓ , h,m

′
, y)) π′ ←r Csse.SIM(ppΓ , h,m

′, y) .

In the end we output ((ppΓ , h
∗,m′∗, y), r′∗) to the challenger. This shows

that we have |Pr[S3]− Pr[S4]| ≤ νsse(λ).
Game 5: As Game 4, but we observe that if (m∗, r∗) does not correspond

to a fresh collision for h∗ in the above sense, then we will have an entry

11



(h∗, r,m) ∈ Q where (m, r) is a �fresh� collision, i.e., one computed by the
adversary. We run the extractor for the fresh collision, i.e., either obtain
(x′′, O′′) ←r E2(crsΠ, ζ, (ppΓ , h

∗,m∗, y), r∗) or (x′′, O′′) ←r E2(crsΠ, ζ, (ppΓ ,
h∗,m, y), r), respectively. In case the extraction fails, we abort. We call the
abort event E2.

Transition - Game 4 → Game 5: Analogously to the transition between Game
3 and Game 4, we argue that Game 4 and Game 5 proceed identically unless
E2 occurs which is why we do not restate the reduction to simulation-sound
extractability here. We have that |Pr[S4]− Pr[S5]| ≤ νsse(λ).

Reduction to Binding and One-Wayness: We are now ready to construct
an adversary B which breaks either the binding property of the used one-
way function or the binding property of the underlying Γ . Our adversary B
proceeds as follows. It receives ppΓ from its binding challenger, as well as, f
and y from a one-way challenger. It embeds them straightforwardly as ppch

and pkch to initialize A. Now we know that we have extracted two witnesses
(x,O) as well as (x′′, O′′) where one attests membership of (pkΩ, h

∗,m′∗, y)
in L and one attests membership of (pkΩ, h

∗,m′′, y) for some m′′ 6= m′∗ in
L. In either case, B can check whether f(x) = y or f(x′′) = y holds. In
this case, it can return x, or x′′ resp., to its one-way challenger. In all other
cases, O and O′′ open the commitment h∗ to di�erent messages. Thus, B
can directly return (h∗, O,O′′,m∗,m′∗) as its own forgery. A union bound
gives us Pr[S5] ≤ νowf(λ) + νbinding(λ). This concludes the proof. ut

Remark 1. Note that, like Derler et al. [DSS20], we conduct a full collision-
resistance proof that only requires extracting twice. While the formal notion of
simulation-sound extractability would allow us to simply extract in every oracle
query, and, thus, obtain a more general result, this is to ensure that one can plug
in proof systems that rely on a rewinding extractor without putting a restriction
on the allowed adversarial queries. We note, however, that this way of proving the
theorem implies some limitations and if one can not a�ord these limitations one
would need to prove it via extracting in every oracle query, thus excluding some
of the proof systems we can plausibly plug in when only extracting twice. The
limitations are as follows: Observe that the extractor is formally only guaranteed
to work as long as either the proof we want to extract from, or the corresponding
statement does not correspond to an output of a query to the simulator. For the
proof above to go through, this means that the concrete proof system plugged
into our generic construction needs to have the property that for any given valid
proof for some statement the probability that the proof output by an honest
run of the simulator for the same statement will only collide with this proof
with negligible probability. This is a pretty common property for proof systems,
and all proof systems we can think of provide the required guarantees (e.g.,
Groth-Sahai proofs [GS08], or Fiat-Shamir transformed Σ protocols).

Theorem 3. If Γ is hiding, and Π is zero-knowledge, then CH in Construction 1
is strongly indistinguishable.
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In the proof, we use frameboxes and  to highlight the changes we make in
the algorithms throughout a sequence of games (and we only show the changes).

Proof. To prove strong indistinguishability, we use a sequence of games:

Game 0: The original strong indistinguishability game.
Game 1: As Game 0, but we modify the algorithms CHPG and the HashOrAdapt

oracle as follows:

CHPG′(1λ) :

crsΠ ←r PGΠ(1
λ
) (crsΠ, τ)←r SIM1(1

λ) .

HashOrAdapt′(pkch, skch,m,m′, b) : In CHash:

π ←r PrfΠ(...) π ←r SIM2(crsΠ, τ, (ppΓ , h,m, pkch))

and CHAdapt:

π
′ ←r PrfΠ(...) π′ ←r SIM2(crsΠ, τ, (pkΩ, h,m

′, f(skch))).

Transition - Game 0 → Game 1: We bound the probability for an adversary to
detect this game change by presenting a hybrid game, which, depending on
a zero-knowledge challenger Czk, either produces the distribution in Game
0 or Game 1, respectively. In particular, assume that we use the following
changes:

CHPG′′(1λ) :

(crsΠ, τ)←r SIM1(1
λ
) crsΠ ←r Czk .

HashOrAdapt′′(pkch, skch,m,m′, b) : In CHash:

π ←r SIM2(...) π ←r Czk.Pb((ppΓ , h,m, pkch), (O,⊥)) .

and CHAdapt:

π
′ ←r SIM2(...) π′ ←r Czk.Pb((ppΓ , h,m

′, f(skch)), (⊥, x)) .

Clearly, if the challenger's internal bit is 0 we simulate the distribution in
Game 0, whereas we simulate the distribution in Game 1 otherwise. We have
that |Pr[S0]− Pr[S1]| ≤ νzk(λ).

Game 2: As Game 1, but we modify the HashOrAdapt oracle as follows:

HashOrAdapt′′′(·, ·, ·, b) : In CHash

(C,O)←r CommitΓ (ppΓ ,m) (C,O)←r CommitΓ (ppΓ , 0) .

Transition - Game 1 → Game 2: We bound the probability for an adversary to
distinguish between two consecutive games by introducing a hybrid game
which uses a hiding challenger to interpolate between two consecutive games.
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CHPG′′′(λ) :

ppΓ ←r ParGenΓ (1
λ
) ppΓ ←r Chiding .

HashOrAdapt′′′′(pkch, skch,m,m′, b) : In CHash:

(C,O)←r CommitΓ (ppΓ , 0) (C,⊥)←r Chiding.Commit′Γ (m, 0) .

Now, depending on the challenger's bit, we either simulate Game 1 or Game
2. Thus we have that |Pr[S1]− Pr[S2]| ≤ νhiding(λ).

Now, the strong indistinguishability game is independent of the bit b, proving
strong indistinguishability. ut

Theorem 4. If Γ is binding and hiding, f is a one-way function, Π is simulation-
sound extractable, and CH fully collision-resistant, then CH in Construction 1 is
randomness unforgeable.

The proof of this theorem is presented in Appendix B.

5 Concrete Instantiations

5.1 Concrete Instantiation from Pre-Quantum Primitives

Our pre-quantum instantiation follows our generic compiler. As instantiation
for Γ we use Pedersen commitments [Ped91] in discrete-logarithm (DL) hard
groups. For f we use is the exponentiation in the aforementioned group, which
is a one-way function under the DL assumption. For the non-interactive proof
system, we use Fiat-Shamir (FS) transformed Σ-protocols for DLOG relations
in the random-oracle model [FS86] and additionally apply the compiler by Faust
et al. [FKMV12] to make it simulation-sound extractable. This compiler requires
additionally including the statement x upon hashing in the challenge computa-
tion. In addition the Σ-protocol needs to provide a property called quasi-unique
responses for this compiler to apply, which is straightforward for our statements.
See, e.g., [DS18], for a detailed discussion of this transformation. Although when
using FS we have to rely on a rewinding extractor, this choice is suitable as in
our security proofs we only need to extract a bounded number of times (i.e.,
twice).

We provide this concrete instantiation as Construction 2, where we let (G, g1,
q) ←r GGen(1λ) be an instance generator which returns a prime-order, and
multiplicatively written, group G, where the DL problem is hard, along with
two generators g1, g2 as the Pedersen parameters (we compute g2 = H ′(g1)
where H ′ is a random oracle to avoid a trusted setup). Note that an SSE NIZK
for the required L in (2) is obtained using an or composition of a proof of a
discrete logarithm [CDS94] of Fiat-Shamir transformed Σ-protocols.

L := {(y, h,m) | ∃ (x, ξ) : h = (gm1 g
ξ
2) ∨ y = gx1}. (2)
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CHPG(1λ) : Outputs the public parameters (G, g1, g2, q,H), where ppch = (G, g1, q)←r

GGen(1λ), g2 ← H ′(g1), and a hash-functions H : {0, 1}∗ → Zq and H ′ : {0, 1}∗ →
G (which we assume to behave like a random oracle and to be implicitly available
to all algorithms below).

CHKG(ppch) : Return (skch, pkch) = (x, y), where x←r Zq and y ← gx1 .

CHash(pkch,m) : Parse pkch as y and m ∈ Zq, choose (ξ, k1,1, k1,2, k2, e2, s2)←r Z6
q, set

u1 ← g
k1,1
1 g

k1,2
2 , u2 ← gs21 ·y−e2 , e← H((y, h,m), (u1, u2)) and e1 ← e−e2 mod q.

Then compute s1,1 ← k1,1 + e1m mod q, s1,2 = k1,2 + e1ξ and �nally, return
(h, r) = (O, π), where

O ← gm1 g
ξ
2 , and π ← (e1, e2, s1,1, s1,2, s2).

CHCheck(pkch,m, r, h) : Parse pkch as y and r as (e1, e2, s1,1, s1,2, s2), and h as O.
Return 1 if the following holds, and 0 otherwise:

m ∈ Zq ∧ e1 + e2 = H((y, h,m), (g
s1,1
1 g

s1,2
2 ·O−e1 , gs2 · y−e2)).

CHAdapt(skch,m,m
′, r, h) : Parse skch as x, and h as O. Set y ← gx1 . Verify whether

m′ ∈ Zq, and CHCheck(y,m, r, h) = 1. Return ⊥ if not. Otherwise, choose
(k1,1, k1,2, e1, s1,1, s1,2) ←r Z5

q, set u1 ← g
s1,1
1 · gs1,22 · O−e1 , u2 ← gk21 , e ←

H((y, h,m′), (u1, u2)), and e2 ← e − e1 mod q. Finally compute s2 ← k2 +
e2x mod q, and return r′ = π′, where

π′ ← (e1, e2, s1,1, s1,2, s2).

Construction 2: Concrete instantiation from DLOG

5.2 Concrete Instantiation from Post-Quantum Primitives

Our post-quantum instantiation follows the paradigm of the previous instantia-
tion, however leveraging the hardness of the Learning Parity with Noise (LPN)
problem instead of that of DLOG, cf., e.g., Pietrzak [Pie12] for an overview. The
computational LPN assumption says that it is computationally infeasible (and
actually NP hard) to distinguish samples of the form (A,As ⊕ e) from such of
the (A, r), where A ←r {0, 1}k×λ, s ←r {0, 1}λ, x ←r {0, 1}k, and e ←r χ; the
computational problem is de�ned analogously. In the standard LPN problem, χ
is an k-dimensional Bernoulli distribution with parameter τ , i.e., each entry of
e equals 1 with probability τ and 0 otherwise. Following Jain et al. [JKPT12],
we will rely on the exact LPN (xLPN) problem in the following, where χ is an
k-dimensional Bernoulli distribution conditioned on ‖e‖1 = dkτc and d.c denotes
rounding to the nearest integer. It is easy to see that xLPN is computationally
related to the standard LPN problem. Let the message length be denoted by
v, let τ ∈ [0, 0.25) and k ∈ O(v + λ) such that the linear code generated by
A←r {0, 1}k×(v+λ) has a distance of more than 2dkτc with overwhelming prob-
ability. The commitment scheme in [JKPT12] now works as follows. The public
parameters consist of a matrix A←r {0, 1}k×(v+λ) and the value τ . A commit-
ment to m ∈ {0, 1}v is now given by choosing ξ1 ←r {0, 1}λ and ξ2 ←r χ, and
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CHPG(1λ) : Outputs the public parameters (A, τ,H,H ′), where ppch = (A, τ) for A←r

{0, 1}(v+λ)×k and τ ∈ [0, 0.25) as above, H : {0, 1}∗ → {0, 1, 2}` is a hash-function
(which we assume to behave like a random oracle and to be implicitly available to
all algorithms below), and H ′ : {0, 1}∗ → {0, 1}2λ is a cryptographic hash function
(which will be used as a computationally binding and statistically hiding auxiliary
commitment scheme).

CHKG(ppch) : Return (skch, pkch) = ((x1, x2), y), where x1 ←r {0, 1}v+λ, x2 ←r χ, and
y ← Ax1⊕x2, where as before χ indicates a Bernoulli distribution with parameter
τ conditioned on ‖x2‖1 = dτkc.

CHash(pkch,m) : Parse pkch as y, then proceed as follows:

� Compute h: Draw ξ1 ←r {0, 1}λ and ξ2 ←r χ. Set h← A(m‖ξ1)⊕ ξ2.
� Simulate proof for y: Choose e2 ←r {0, 1, 2} and r2,0, r2,1, r2,2 ←r {0, 1}2λ.
• If e2=0, let π2 ←r Sk, v2 ←r {0, 1}v+λ, f2 ←r {0, 1}k, c2,0 ←r

H ′((π2, Av2 ⊕ f2), r2,0), c2,1 ←r H
′(π2(f2), r2,1) and c2,2 ←r H

′(0, r2,3).
Set s0 ←r (π2, Av2 ⊕ f2, r2,0), s1 ←r (π2(f2), r2,1), s2 ←r ⊥.

• If e2=1, let π2 ←r Sk, b←r {0, 1}v+λ, a←r {0, 1}k, c2,0 ←r H
′((π2, Ab⊕

y ⊕ a), r2,0), c2,1 ←r H
′(0, r2,1) and c2,2 ←r H

′(π2(a), r2,3). Set s0 ←r

(π2, Ab⊕ y ⊕ a, r2,0), s1 ←r ⊥, s2 ←r (π2(a), r2,2).
• If e2=2, let b ←r χ, a ←r {0, 1}k, c2,0 ←r H

′(0, r2,0), c2,1 ←r H
′(a, r2,1)

and c2,2 ←r H
′(a⊕b, r2,3). Set s0 ←r ⊥, s1 ←r (a, r2,1), s2 ←r (a⊕b, r2,2).

� Compute �rst message for h: Choose r1,0, r1,1, r1,2 ←r {0, 1}2λ. Draw π1 ←r

Sk, v1 ←r {0, 1}v+λ, f1 ←r {0, 1}k, c1,0 ←r H
′((π1, Av1 ⊕ f1), r1,0, c1,1 ←r

H ′(π1(f1), r1,1) and c1,2 ←r H
′(π(f1 ⊕ ξ2), r1,2)

� Compute challenge for h: Compute e ← H((y, h,m), (c1,0, c1,1, c1,2, c2,0,
c2,1, c2,2)). Set e1 ← e− e2 mod 3.

� Compute proof for h:
• If e1=0, set s0 ←r (π1, Av1 ⊕ f1, r1,0), s1 ←r (π1(f1), r1,1), s2 ←r ⊥.
• If e1=1, set s0 ←r (π1, Av1 ⊕ f1, r1,0), s1 ←r ⊥, s2 ←r (π1(f1 ⊕ ξ2), r1,2).
• If e1=2, set s0 ←r ⊥, s1 ←r (π1(f1), r1,1), s2 ←r (π1(f1 ⊕ ξ2), r1,2).

� Generate output : Return (h, r), where r ← ((c1,0, c1,1, c1,2, c2,0, c2,1, c2,2), (e1,
e2), (s1,0, s1,1, s1,2, s2,0, s2,1, s2,2)).

Construction 3: Instantiation from LPN: Key Generation and Hashing

setting h = A(m‖ξ1)⊕ ξ2; upon receiving the opening (ξ1, ξ2) of a commitment
h, one checks that h has the correct form and that ‖ξ2‖1 = dτkc.

As before, we use plain xLPN as a one-way function using the same generator
matrix A, leading to the following language underlying our construction:

L := {(y, h,m) | ∃(x1, x2, ξ1, ξ2) : h = A(m‖ξ1)⊕ ξ2 ∨ y = Ax1 ⊕ x2}. (3)

The zero-knowledge proofs for xLPN presented in [JKPT12] are based on
those by Stern [Ste93] and come with a soundness error of 2/3, therefore requiring
about ` = 1.7λ parallel repetitions to achieve a soundness error or 2−λ. We
note that the compiler to obtain simulation-sound extractability due to Faust
et al. [FKMV12] also applies here: violating quasi-unique responses would imply
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CHCheck(pkch,m, r, h) : Parse pkch as y and r as ((c1,0, c1,1, c1,2, c2,0, c2,1, c2,2), (e1, e2),
(s1,0, s1,1, s1,2, s2,0, s2,1, s2,2)), then proceed as follows:
� Check message and challenges: Return 0 if m /∈ {0, 1}v or e1 + e2 6=
H((y, h,m), (c1,0, c1,1, c1,2, c2,0, c2,1, c2,2)).

� Verify proofs: Return 1 if all following tests succeed for j = 1, 2, where z ← h
for j = 1 and z ← y for j = 2, and return 0 otherwise:
• If ej = 0, parse sj,0 as ((πj , tj,0), rj,0) and sj,1 as (tj,1, rj,1). Check if
cj,0 = H ′((πj , tj,0), rj,0) and cj,1 = H ′(tj,1, rj,1). Check if πj ∈ Sk and
tj,0 ⊕ π−1

j (tj,1) ∈ imgA.
• If ej = 1, parse sj,0 as ((πj , tj,0), rj,0) and sj,2 as (tj,2, rj,2). Check if
cj,0 = H ′((πj , tj,0), rj,0) and cj,2 = H ′(tj,2, rj,2). Check if πj ∈ Sk and
tj,0 ⊕ π−1

j (tj,2)⊕ z ∈ imgA.
• If ej = 2, parse sj,1 as (tj,1, rj,1) and sj,2 as (tj,2, rj,2). Check if cj,1 =
H ′(tj,1, rj,1) and cj,2 = H ′(tj,2, rj,2). Check if ‖tj,1 ⊕ tj,2‖1 = dτkc.

CHAdapt(skch,m,m
′, r, h) : Parse skch as (x1, x2), and with y = Ax1 ⊕ x2:

� Check inputs: Return ⊥ if CHCheck(y,m, r, h) = 0 or m′ /∈ {0, 1}v.
� Simulate proof for h: Choose e1 ←r {0, 1, 2} and r1,0, r1,1, r1,2 ←r {0, 1}2λ.
• If e1=0, let π1 ←r Sk, v1 ←r {0, 1}v+λ, f1 ←r {0, 1}k, c1,0 ←r

H ′((π1, Av1 ⊕ f1), r1,0), c1,1 ←r H
′(π1(f1), r1,1) and c1,2 ←r H

′(0, r1,3).
Set s0 ←r (π1, Av1 ⊕ f1, r1,0), s1 ←r (π1(f1), r1,1), s2 ←r ⊥.

• If e1=1, let π1 ←r Sk, b←r {0, 1}v+λ, a←r {0, 1}k, c1,0 ←r H
′((π1, Ab⊕

y ⊕ a), r1,0), c1,1 ←r H
′(0, r1,1) and c1,2 ←r H

′(π1(a), r1,3). Set s0 ←r

(π1, Ab⊕ y ⊕ a, r1,0), s1 ←r ⊥, s2 ←r (π1(a), r1,2).
• If e1=2, let b ←r χ, a ←r {0, 1}k, c1,0 ←r H

′(0, r1,0), c1,1 ←r H
′(a, r1,1)

and c1,2 ←r H
′(a⊕b, r1,3). Set s0 ←r ⊥, s1 ←r (a, r1,1), s1 ←r (a⊕b, r1,2).

� Compute �rst message for y: Choose r2,0, r2,1, r2,2 ←r {0, 1}2λ. Draw π2 ←r

Sk, v2 ←r {0, 1}v+λ, f2 ←r {0, 1}k, c2,0 ←r H
′((π2, Av2 ⊕ f2), r2,0, c2,1 ←r

H ′(π2(f2), r2,1) and c2,2 ←r H
′(π(f2 ⊕ ξ2), r2,2).

� Compute challenge for h: Compute e ← H((y, h,m), (c1,0, c1,1, c1,2, c2,0, c2,1,
c2,2)). Set e2 ← e− e1 mod 3.

� Compute proof for y:
• If e2=0, set s0 ←r (π2, Av2 ⊕ f2, r2,0), s2 ←r (π2(f2), r2,1), s2 ←r ⊥.
• If e2=1, set s0 ←r (π2, Av2 ⊕ f2, r2,0), s2 ←r ⊥, s2 ←r (π2(f1 ⊕ x2), r2,2).
• If e2=2, set s0 ←r ⊥, s2 ←r (π2(f2), r2,1), s2 ←r (π2(f2 ⊕ x2), rx,2).

� Generate output : Return r′ ←r ((c1,0, c1,1, c1,2, c2,0, c2,1, c2,2), (e1, e2), (s1,0,
s1,1, s1,2, s2,0, s2,1, s2,2).

Construction 4: Instantiation from LPN: Verify and Adapt

�nding a collision for the hash function used to instantiate the random oracle
and the statement is included when hashing the challenge. 6

We present the instantiation as Construction 3-4 and note that for notational
convenience and readability, we only consider ` = 1. For practical parameters, all
proofs need to be simulated or computed ` times in parallel, with the challenges

6 We note that replacing LPN by learning with errors (LWE) and using the commit-
ment scheme and zero-knowledge proofs of Benhamouda et al. [BKLP15] gives an
immediate post-quantum instantiation that does not require parallel repetitions, yet
requiring assumptions that give rise to public-key encryption.
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being computed via a single invocation of H. In the following we denote the
symmetric group on k elements (i.e., the set of all permutations on k elements)
by Sk. Furthermore, for A ∈ {0, 1}m×n, img(A) we denote the image of the
linear function characterized by A, i.e., img(A) = {Ax | x ∈ {0, 1}n}. Checking
whether or not y ∈ img(A) can e�ciently be done by seeking a solution to the
linear system y = Ax, e.g., using Gaussian elimination.
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A Additional Property of Chameleon-Hashes

We now present some additional security notions and relations.

A.1 Full Indistinguishability

Full indistinguishability requires that a randomness r does not reveal whether
it was generated using CHash or CHAdapt, even if the adversary A controls all
values, but the public parameters [SS20].7

ExpF-Indistinguishability
A,CH (λ)

ppch ←r CHPG(1
λ)

b←r {0, 1}
b∗ ←r AHashOrAdapt(·,·,·,·,b)(ppch)
oracle HashOrAdapt on input pkch, skch,m,m

′, b:
(h, r)←r CHash(pkch,m

′)
(h′, r′)←r CHash(pkch,m)
r′′ ←r CHAdapt(skch,m,m

′, r′, h′)
return ⊥, if r′′ = ⊥ ∨ r′ = ⊥ ∨ r = ⊥
if b = 0, return (h, r)
if b = 1, return (h′, r′′)

return 1, if b∗ = b
return 0

Fig. 5: Full Indistinguishability

De�nition 15 (Full Indistinguishability). A chameleon-hash CH o�ers full
indistinguishability, if for any PPT adversary A there exists a negligible function
ν such that ∣∣∣Pr[ExpF-Indistinguishability

A,CH (λ) = 1]− 1/2
∣∣∣ ≤ ν(λ).

The corresponding experiments are depicted in Figure 5.
7 Lifting this de�nition to also cover those parameters is straightforward.
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A.2 Uniqueness

Camenisch et al. [CDK+17] de�ned a property called uniqueness. Uniqueness
requires that for each hash/message pair, exactly one randomness can be found,
even if the adversary A controls all values, but the public parameters.8

ExpUniqueness
A,CH (λ)

ppch ←r CHPG(1
λ)

(pk∗,m∗, r∗, r′∗, h∗)←r A(ppch)
return 1, if CHCheck(pk∗,m∗, r∗, h∗) = CHCheck(pk∗,m∗, r′∗, h∗) = 1 ∧ r∗ 6= r′∗

return 0

Fig. 6: Uniqueness

De�nition 16 (Uniqueness). A chameleon-hash CH is unique, if for any PPT
adversary A there exists a negligible function ν such that

Pr[ExpUniqueness
A,CH (λ) = 1] ≤ ν(λ).

The corresponding experiment is depicted in Figure 6.

The relations between randomness unforgeability and uniqueness are de-
picted in Figure 7.

Full Collision-Resistance

(
Uniqueness Randomness-Unforgeability

)

Fig. 7: Relations between CH uniqueness properties

Theorem 5. If CH is fully collision-resistant, then uniqueness is strictly stronger
than randomness unforgeability.

Proof. We �rst prove that uniqueness implies randomness unforgeability (as-
suming full collision-resistance), and then give a counterexample showing that
the other direction of the implication does not hold, even if we assume full in-
distinguishability and full collision-resistance.

F-CollRes =⇒ (Uniqueness =⇒ Rand-Unforg): Assume A to be an adversary
who wins the randomness unforgeability game with some probability (non-
negligibly) larger than 0. Consider the output (m∗, h∗, r∗). If m∗ is fresh
(thus was never input/output to the hash or adaption oracles), a standard
reduction shows that the scheme is not fully collision-resistant. The proof

8 Lifting this de�nition to also cover those parameters is straightforward.
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essentially follows along the same lines as the proof for Theorem 4, and is
therefore omitted. Thus, we can now assume that m∗ is not �fresh�. Next,
we construct an adversary B which wins the uniqueness game. In particular,
B proceeds as follows. It receives ppch from its own challenger, generates
(skch, pkch) honestly, and uses ppch and pkch to initialize A. All queries to
the collision-�nding oracle are answered by B directly, while hashing is done
honestly. Whenever A outputs (m∗, h∗, r∗), B outputs (pkch,m

∗, r∗, r′∗, h∗)
as its own forgery, where r′∗ was generated by the reduction itself in on
of the oracles. Hence, B's winning probability equals the one of A, as the
simulation is perfect.

Rand-Unforg 6=⇒ Uniqueness: Assume CH := (CHPG,CHKG,CHash,CHCheck,
CHAdapt) to be a fully collision-resistant, randomness unforgeable, unique,
and fully indistinguishable chameleon-hash. Let CH′ := (CHPG′,CHKG′,
CHash′,CHCheck′,CHAdapt′) be a chameleon-hash which internally uses CH
but appends a random bit to each r. In particular let CH′ be de�ned as fol-
lows: CHPG′(1λ) := CHPG(1λ), CHKG′(ppch) := CHKG(ppch), CHash′(pkch,
m) := (h, (r, 0)) where (h, r) ←r CHash(pkch, (m, 0)), CHCheck′(pkch,m, r,
h) := CHCheck(pkch, (m, r

′′), r′, h) where r = (r′, r′′), and CHAdapt′(skch,
m,m′, r′, h) := (CHAdapt(skch, (m, r

′′), (m, r′′), r′, h), r′′) where r = (r′,
r′′). Clearly, CH′ is still fully collision-resistant, randomness unforgeable,
and fully indistinguishable, but changing the bit in the randomness r is triv-
ial (for any non-outsider), breaking uniqueness unconditionally. ut

B Proof of Theorem 4: Randomness Unforgeability

Before we prove the theorem, we introduce an intermediate security notion for Γ
which we name opening hiding and prove a lemma which says that this security
property directly follows from hiding and binding. We introduce this intermedi-
ate notion because it will make our proof more compact.

Essentially, this property says that an adversary cannot �nd any opening for
a commitment it did not create by itself, even if it can adaptively query for new
commitments on messages of its own choice.

In more detail, the challenger generates the public parameters ppΓ honestly.
The adversary is then initialized with ppΓ and gets access to an oracle Commit′Γ
which the adversary can use to obtain commitments on messages of its own
choice. Thus, we de�ne a multi-challenge version. Again, this makes our proofs
more readable. The generated commitments (and messages) are stored in a set
Q. The adversary wins, if it can generate any opening O∗ (along with some
message m∗) for a commitment generated by the Commit′Γ oracle (checked via
Q) which makes OpenΓ verify correctly.

De�nition 17 (Opening Hiding). A non-interactive commitment scheme Γ
is opening hiding, if for any PPT adversary A, there exists a negligible functions
ν such that

Pr[ExpOH
A,Γ (λ) = 1] ≤ ν(λ),
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where the corresponding experiment is depicted in Figure 8.

ExpOH
A,Γ (λ)

ppΓ ←r ParGenΓ (1
λ)

Q ← ∅
(C∗, O∗,m∗)←r ACommit′Γ (ppΓ ,·)(ppΓ )
where Commit′Γ on input ppΓ , and m:

(C,O)←r CommitΓ (ppΓ ,m)
return ⊥, if C = ⊥
Q ← Q∪ {(C,O,m)}
return C

return 1, if OpenΓ (ppΓ , C
∗, O∗,m∗) = 1 ∧ (C∗, ·, ·) ∈ Q

return 0

Fig. 8: Opening Hiding

Lemma 1. If Γ is binding and hiding, then Γ o�ers opening hiding.

Proof (of Lemma 1). To prove opening hiding, we use a sequence of games.

Game 0: The original opening hiding game.
Game 1: As Game 0, but we abort if (C∗, ·,m∗) /∈ Q. Let this event be E1.
Transition - Game 0 → Game 1: Game 0 and Game 1 proceed identically un-

less E1 happens, i.e., we have that |Pr[S0] − Pr[S1]| ≤ Pr[E1]. To show
that the games are indistinguishable, we present a reduction which breaks
binding of the underlying commitment with Pr[E1]. In particular, we replace
the ParGenΓ algorithm with an algorithm ParGen′Γ that obtains ppΓ from a
binding challenger Cbinding:

ParGen′Γ (1
λ) :

ppΓ ←r ParGenΓ (1
λ
) ppΓ ←r Cbinding .

In case E1 happens, the reduction can directly return (C∗, O∗, O,m∗,m)
for some (C∗, O,m) ∈ Q as its own forgery. Thus, we have that |Pr[S0] −
Pr[S1]| ≤ νbinding(λ).

Game 2: As Game 1, but we modify the CommitΓ algorithm used inside the
Commit′Γ oracle as follows:

Commit′′Γ (ppΓ ,m) :

(C,O)←r ... choose m′ 6= m and set (C,O)←r CommitΓ (ppΓ ,m
′) .

Transition - Game 1 → Game 2: We show that the probability to distinguish
between Game 1 and Game 2 is negligible by presenting a reduction that
uses a hiding challenger Chiding to interpolate between Game 1 and Game
2. In particular, we further modify the algorithms used inside the game as
follows:
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ParGen′′Γ (1
λ) :

ppΓ ←r ParGenΓ (1
λ
) ppΓ ←r Chiding .

Commit′′′Γ (ppΓ ,m) :

(C,O)←r ... choose m′ 6= m and set (C,⊥)←r Chiding.Commit′Γ (m,m
′) .

Depending on the challenger's bit we either simulate Game 1 or Game 2 and
we have that we have that |Pr[S1]− Pr[S2]| ≤ νhiding(λ).

Reduction to binding: Now we are in a game where a reduction to binding is
straightforward. We have already established in the previous game changes
that the adversary can only return a tuple (C∗, O∗,m∗) where (C∗, ·,m∗) ∈
Q and that C∗ is not a commitment tom∗. Hence we can use the messagem′

and the opening from the respective oracle call together with (C∗, O∗,m∗)
to break binding. ut

Proof (of Theorem 4). To prove randomness unforgeability, we use a sequence
of games.

Game 0: The original randomness unforgeability game.

Game 1: As Game 0, but we alter CHash′, CHAdapt′, and the winning condi-
tions as follows:

CHash′′(1λ) :

Q ← Q∪ {(h, r)} Q ← Q∪ {(h, r,m)} .

CHAdapt′′(skch,m,m
′, r, h) :

∃(h, ·) ∈ Q ∃(h, ·, ·) ∈ Q and

Q ← Q∪ {(h, r′)} Q ← Q∪ {(h, r′,m′)}

Winning Conditions :

(h
∗
, ·) ∈ Q ∧ (h

∗
, r
′∗
) /∈ Q (h∗, ·, ·) ∈ Q ∧ (h∗, r′∗, ·) /∈ Q .

Transition - Game 0 → Game 1: This change is conceptual and we have that
|Pr[S0]− Pr[S1]| = 0.

Game 2: As Game 1, but we abort, if the adversary makes a query (m,m′, r, h)
to CHAdapt′′, for which (h, ·, ·) ∈ Q ∧ (h, ·,m) /∈ Q ∧ CHCheck(pkch,m,
r, h) = 1.

Transition - Game 1 → Game 2: We bound the probability for an adversary to
detect this game change by presenting a reduction which, in case of an abort,
wins a full collision-resistance game presented by the challenger Cch-fcoll-res.
In particular, consider the following changes:
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CHPG′(1λ) :

crsΠ ←r PGΠ(1
λ
) crsΠ ←r Cch-fcoll-res .

CHAdapt′′′(pkch,m) :

r
′ ←r CHAdapt(skch,m,m

′
, r, h) r′ ←r Cch-fcoll-res.CHAdapt′(m,m′, r, h) .

Clearly, the simulation is perfect, while the above query let's the reduction
win the full collision-resistance game. We have that |Pr[S2] − Pr[S3]| ≤
νch-fcoll-res(λ).

Game 3: As Game 2, but we replace the CHPG′ algorithm with an algorithm
CHPG′′ and modify the CHAdapt′′ and CHash′′ oracles as follows:

CHPG′′′(1λ) :

crsΠ ←r PGΠ(1
λ
) (crsΠ, τ)←r SIM1(1

λ) .

CHash′′′(pkch,m) : In CHash:

π ←r PrfΠ(crsΠ, (ppΓ , h,m, y), (⊥, O)) π ←r SIM2(crsΠ, τ, (ppΓ , h,m, y)).

CHAdapt′′′(skch,m,m
′, r, h) : In CHAdapt:

π ←r PrfΠ(crsΠ, (ppΓ , h,m, y), (x,⊥)) π ←r SIM2(crsΠ, τ, (ppΓ , h,m, y)).

Transition - Game 2 → Game 3: We bound the probability for an adversary to
detect this game change by presenting a hybrid game, which, depending on
a zero-knowledge challenger Czk, either produces the distribution in Game
2 or Game 3, respectively. In particular, assume that we use the following
algorithms:

CHPG′′′(1λ) :

(crsΠ, τ)←r SIM1(1
λ
) crsΠ ←r Czk .

CHash′′′′(pkch,m) : In CHash:

π ←r SIM2(crsΠ, τ, (ppΓ , h,m, y)) π ←r Czk.Pb((ppΓ , h,m, y), (O,⊥)) .

CHAdapt′′′′(skch,m,m
′, r, h) : In CHAdapt:

π
′ ←r SIM2(crsΠ, τ, (ppΓ , h,m

′
, y)) π′ ←r Czk.Pb((ppΓ , h,m

′, y), (⊥, x)) .

Clearly, if the challenger's internal bit is 0 we simulate the distribution in
Game 2, whereas we simulate the distribution in Game 3 otherwise. We have
that |Pr[S2]− Pr[S3]| ≤ νzk(λ).

Game 4: As Game 3, but we replace the CHPG′′′ algorithm with an algorithm
CHPG′′′′ which works as follows:

CHPG′′′′(1λ) :

(crsΠ, τ)←r SIM1(1
λ
) (crsΠ, τ, ζ)←r E1(1λ) .

28



Transition - Game 3 → Game 4: Under simulation-sound extractability, Game
3 and Game 4 are indistinguishable. That is, |Pr[S3]− Pr[S4]| = 0.

Game 5: As Game 4, but for every valid collision (m∗, h∗, r∗) output by the
adversary we observe that (m∗, r∗) must be a �fresh� collision w.r.t. h∗

(while m∗ was either input or output to the adaption oracle), i.e., one
that was never seen by the collision-�nding oracle. We run (x′, O′) ←r

E2(crsΠ, ζ, (ppΓ , h
∗,m∗, y), r∗) and abort if the extraction fails. We call this

event E1.
Transition - Game 4 → Game 5: Game 4 and Game 5 proceed identically, un-

less E1 occurs. Assume, towards contradiction, that event E1 occurs with
non-negligible probability. We now construct an adversary B which breaks
the simulation-sound extractability property of the NIZK proof-system with
non-negligible probability. We engage with a simulation-sound extractability
challenger Csse and modify the algorithms as follows:

CHPG′′′′′′(1λ) :

(crsΠ, τ, ζ)←r E1(1λ) crsΠ ←r Csse .

CHash′′′′′′(pkch,m) : In CHash

π ←r SIM2(crsΠ, τ, (ppΓ , h,m, y)) π ←r Csse.SIM((ppΓ , h,m
′, y)) .

CHAdapt′′′′′′′′′′(skch,m,m
′, r, h) :

π
′ ←r SIM2(crsΠ, τ, (ppΓ , h,m

′
, y)) π′ ←r Csse.SIM((ppΓ , h,m

′, y)) .

In the end we output ((ppΓ , h
∗,m∗, y), r∗) to the challenger. This shows that

we have |Pr[S4]− Pr[S5]| ≤ νsse(λ).
Reduction to Opening Hiding and One-Wayness: We are now ready to

construct an adversary B which breaks the used one-way function or the
binding property of the underlying Γ . Our adversary B proceeds as follows.
It receives ppΓ from its opening hiding challenger, as well as, f and y from
a one-way challenger. It embeds them straightforwardly as ppch and pkch

to initialize A. It further (conceptually) modi�es the CHash algorithm as
follows:

CHash′′′′′′′(pkch,m) : In CHash:

(C,O)←r CommitΓ (ppΓ ,m) (C,⊥)←r COpeningHiding.Commit′Γ (m) .

We now need to consider the following cases: we have extracted (x′,⊥) or
(⊥, O′). In the �rst case, we have that f(x′) = y by SSE. Thus, we can
directly return x′ to the one-way challenger. In the other case, we know that
O′ is a fresh opening and we can return (m∗, h∗, O′). A union bound gives
us that Pr[S5] ≤ νowf(λ) + νOH(λ). This, together with Lemma 1, concludes
the proof. ut
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