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Abstract

Non-zero inner product encryption (NIPE) allows a user to encrypt a message with an at-
tribute vector and a receiver holding a secret-key associated to a predicate vector can recover
the message from the ciphertext if the inner product between the attribute and predicate
vectors is non-zero. The main focus is to hide messages in most of the existing NIPEs and the
associated attribute is trivially included in the ciphertext. In this work, we investigate the
design of NIPEs that are capable of hiding attributes along with messages and secure against
active adversaries. In particular, we describe a generic transformation of an attribute-hiding
chosen-ciphertext attack (CCA) secure NIPE from an inner product functional encryption
(IPFE) and a quasi-adaptive non-interactive zero-knowledge (QANIZK) proof system. This
leads us to a set of attribute-hiding NIPEs (AHNIPE) with security based on several as-
sumptions such as plain Decisional Diffie-Hellman (DDH), Learning With Errors (LWE) and
Decision Composite Reciprocity (DCR). Furthermore, we build a more efficient and concrete
construction of a CCA secure AHNIPE the security of which can be based on DDH and
Kernel Matrix Diffie-Hellman (KerMDH) assumptions. As DDH implies the computational
KerMDH assumption, the latter construction achieves a CCA secure AHNIPE from minimal
assumption to date. We explore a few applications of AHNIPE. More specifically, we show
that AHNIPE directly implies an anonymous identity-based revocation (IBR) scheme. Con-
sequently, we get the first CCA secure IBR solely based on plain DDH assumption in the
standard model, improving the security of any previous anonymous CCA secure IBR scheme
which is proven secure relying on pairing-based assumptions in the random oracle model.
Moreover, we add a tracing algorithm to our anonymous IBR scheme to convert it into an
efficient anonymous trace and revoked scheme with CCA security.

Keywords. non-zero inner product encryptions, attribute-hiding, chosen-ciphertext.

1 Introduction

To remedy all-or-nothing type encryption, plain public-key encryptions are refined over the years
into more advanced primitives like identity-based encryption, broadcast encryption, attribute-
based encryption [15, 19]. All these primitives can be combined into a single class of encryptions
called functional encryption (FE) introduced much later by Boneh et al. [10]. Realizing FE for
general class of functions employs heavy cryptographic tools [16], and as a result, existing
constructions are inefficient for day-to-day use. However, FEs for certain type of functionalities
such as Boolean formulae, inner product predicate, keyword search [19, 24] are built from
standard and well-understood assumptions, hence are eligible for practical implementation.

In attribute-based encryption, a secret-key sky is generated corresponding to a predicate y
and a ciphertext CT for a message M is associated with an attribute x. Using a secret-key sky,
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the decryption successfully recovers the message M from CTx if a relation R(x,y) holds. This
paper studies a primitive called non-zero inner product encryption (NIPE) [5] that considers the
predicate and attribute space to be Z` (resp. Z`p for some prime p) for a natural number ` and
the relation R is defined as R(x,y) = 1 if and only if 〈x,y〉 6= 0 over Z (resp. over Zp). In
recent years inner product encryptions have emerged with several applications in identity-based
encryption, polynomial evaluation, disjunctions/conjunctions equality test, proxy-re-encryption
[24, 11, 25] etc. Since NIPE is a negated subclass of IPE, the above primitives with negation
(such as identity-based revocation (IBR), polynomial non-equality and so on) are captured in
applications of NIPEs [5, 4].

Mostly the security of a NIPE scheme is considered in payload-hiding (PHNIPE) setting
where the challenge ciphertext is required to hide only the message associated with a single
challenge attribute. The attributes are assumed to be a part of ciphertexts in a PHNIPE sys-
tem. In many applications, for example, anonymous identity-based revocation (ANON-IBR) or
broadcast schemes [9, 30, 39, 28], the attributes may contain user-specific sensitive information
leaking of which is a strict violation of users privacy. Therefore, such applications demand
to hide the attribute along with messages while encryption. This additional security feature
is guaranteed by attribute-hiding NIPE (AHNIPE) where the adversary is asked to submit two
attribute-message pairs (xb,Mb) for b ∈ {0, 1}. Given encryption for a pair (xb,Mb), it is
required that for any PPT adversary the probability guessing the bit b is at most 1/2. The
secret-key queries for the predicate vectors y are restricted to satisfy that 〈x0,y〉 = 〈x1,y〉 = 0
if M0 6= M1, else 〈x0−x1,y〉 = 0. This is slightly weaker than the full attribute-hiding notion of
[33] as the case 〈x0,y〉 6= 〈x1,y〉 is not captured in our model. But, it defines stronger security
than the weak attribute-hiding model of [33] where the case M0 = M1 is totally excluded and
our notion of attribute-hiding is sufficient for many applications discussed latter in this section.

Background. The first NIPE construction was given by Attrapadung and Libert [5]. The
scheme is co-selectively secure under the Decision Linear (DLIN) and Decision Bilinear Diffie-
Hellman (DBDH) assumptions. In co-selective model the adversary A declares its secret-key
queries before the setup phase, but A can select the challenge attribute based on the informa-
tion gained from the secret-key queries. Therefore, co-selective is a dual of the selective model
where A picks the challenge attribute before seeing the master public-key and asks for secret-
keys adaptively. Both of these security models are weaker than the desirable adaptive security
in which A has the freedom to choose the challenge attribute as well as the predicate vectors
(to be queried for the secret-keys) after the setup phase. As an application of NIPE, [5] built
an IBR scheme [29] with constant size ciphertext. Despite its involvement in realizing many
useful primitives, the security of NIPEs has not much improved in standard models. Most of
the prior works [5, 32, 6, 38, 14, 13] have focused on reducing the size of ciphertexts or secret-
keys (or both), but they end up with a paring based system that is secure either in co-selective
or selective model. Okamoto and Takashima [33] gave the first adaptively secure NIPE from
DLIN assumption. Recently, a learning with errors (LWE) based NIPE is proposed in [23] which
is selectively secure and capable of one-bit encryption. In the multi-bit variant of the scheme,
sizes of the master public-keys, ciphertexts and secret-keys increase at least linearly with the
bit-length of the message. The NIPE also suffers from a complex parameter selection where
the noise to modulus ratio is exponentially large in the dimension of attribute vectors and the
ciphertext-size is greater than the square of this dimension. Although the generic construction
of [23] delivers adaptively secure NIPEs via inner product functional encryptions (IPFE) of [3]
in standard models, they are only payload-hiding and chosen-plaintext attack (CPA) secure like
all previously known NIPEs.

In literature, hiding attribute in ABE is termed as predicate encryption (PE) [11, 24, 20].
The notion of AHNIPE corresponds to a particular function class of a PE scheme and hence a PE
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for all circuits such as [20] readily gives an indirect construction of AHNIPE. However, the LWE-
based PE of [20] uses a fully homomorphic encryption (FHE) scheme [18] to evaluate predicate
circuits on attributes which are encrypted under the FHE. Consequently, the resulting scheme
becomes complex and expensive for simple function classes such as AHNIPE. Overcoming this
limitation, Patranabis et al. [34] built a subset non-membership encryption (SNME) relying on
the DDH-based IPFE of [3] which includes the function class needed for AHNIPE. The scheme
is CPA secure under Matrix DDH (MDDH) assumption. Therefore, a direct construction of
AHNIPE hardly exists and the efficiency of existing indirect schemes has been compromised in
order to support a broader class of predicates. While PEs are mostly proved secure in CPA model,
recently Koppula and Waters [27] provided a generic and black box transformation to achieve
chosen-ciphertext attack (CCA) secure one-sided1 PEs. The transformation additionally needs
to utilize a signature scheme, a public-key encryption and a special pseudorandom generator
and loses practical efficiency when applied to simple function classes.

A Motivating Example. To explain the importance of attribute-hiding property of a NIPE
system, we consider a practical scenario where our AHNIPE based ANON-IBR can fulfil users’
requirement. Suppose in a defence organization of a country the director wants to pass a message
to the senior officers of all the departments such as army, navy, marines and air-force working
at the post of General or Major. The director utilizes an ANON-IBR to encrypt the message
with the set of all revoked users in the system. Note that, the set of revoked users contains the
identities of all the junior officers in the organization working under a senior officer holding the
post of a General or Major. It is natural to protect not only the message as well as the identities
of each user in the organization since identities may contain code-names (or other delicate
credentials) of the officers revealing which bring essential threat to the security of the nation.
On the other hand, the significance of the message highly depends on the receivers identity,
that is, the message sent to the high-rank officers contains much more sensitive information.
Therefore, users’ anonymity is necessary for this application and AHNIPE provides an efficient
solution to it.

Contribution. Our contribution is mainly two-fold.

• Firstly, we give a generic transformation to achieve a chosen-ciphertext attack (CCA)
secure tag-based AHNIPE from an indistinguishability based CPA secure (IPFE) [3] and
a quasi-adaptive non-interactive zero-knowledge (QANIZK) proof system [1, 26]. We in-
troduce tag-based AHNIPE where the encryption algorithm takes a tag as an additional
input along with an attribute and a message. Note that decryption with a tag is success-
ful only if the same tag is used for encryption. However, we can always avoid the tag
through a generic transformation by using a one-time signature on the tags. We show
that the classic Naor-Yung dual encryption technique [31] can be applied in the setting of
inner product encryption. We replace the PKE with IPFE in the transformation of [31] to
achieve a CCA secure AHNIPE scheme. The generic NIPE of [23] is also based on IPFE and
provides payload-hiding CPA security whereas our transformation delivers stronger secu-
rity of attribute-hiding and additionally, we get CCA security with the help of a QANIZK
proof system. If we drop QANIZK our transformation, generalizing the MDDH-based AH-
NIPE of [34], leads to the first CPA secure AHNIPE schemes based on various assumptions
such as DDH, LWE, DCR, DDH-f and HSM when equipped with the IPFEs of [3, 12]. We
note that any simulation sound NIZK scheme based on either paring or LWE [37, 21, 35]
can be used in our transformation instead of QANIZK. Alternatively, one may avoid the
use of QANIZK by considering CCA secure IPFEs of [7] in our transformation to achieve

1One-sided security corresponds to weak-attribute hiding, that is, the adversary is not allowed to get a secret-
key which can decrypt the challenge ciphertext.
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Table 1: Comparison with existing adaptively secure AHNIPEs where ` denotes the length of an attribute or predicate.
The columns |MSK|, |MPK|, |sky | and |CT| refer to the number of group elements in a cyclic group G of prime order or
the number of Z elements. The row PMR19 corresponds to k = 1 of the SNME scheme of [34]. We instantiate our generic
AHNIPE with DDH-based IPFE of [3] and KerMDH-based QANIZK of [26].

scheme |MSK| |MPK| |sky | |CT| assumption CCA

PMR19 [34] 4`|Z| (2`+ 2)|G| (`+4)|G| (2`+ 4)|G| MDDH 7

Ours generic (2`+ 8)|Z| (4`+ 14)|G| 2|Z| (4`+ 16)|G| DDH + KerMDH X
Ours concrete (4`+ 8)|Z| (2`+ 12)|G| 4|Z| (2`+ 4)|G| DDH + KerMDH X

CCA secure AHNIPE, but this would require additional MDDH assumption and the result-
ing AHNIPE can not be completely based on LWE assumption. However, the Naor-Yung
transformation naturally doubles the ciphertext size of our CCA secure AHNIPE which
needs more storage and communicational power. To overcome this inefficiency we require
different approach compatible with existing IPFE schemes.
• Next, we give a concrete instantiation of a CCA secure AHNIPE based on plain DDH as-

sumption. Our generic transformation needs four ciphertexts of an IPFE and the QANIZK
proof adds more elements to it. For example, a ciphertext of our DDH-based AHNIPE
contains at least 4` + 16 group elements when using the DDH-based IPFE of [3] and the
Kernel Matrix Diffie-Hellman (KerMDH) based QANIZK of [26]. Note that the IPFE con-
tributes 4`+8 elements to the ciphertext and the rest are coming from the QANIZK proof.
We show how to reduce the ciphertext size to only 2`+ 4 elements using a technique pro-
posed by Biagioni et al. [8]. Main idea is to use a shared randomness in Naor-Yung
dual encryptions. This helps us to reduce the ciphertext and public-key sizes significantly.
More precisely, we present a CCA secure AHNIPE based on the DDH-based IPFE of [3]
and the KerMDH-based QANIZK of [26]. Interestingly, DDH implies KerMDH which is
a computational assumption [26], and hence the AHNIPE is solely based on plain DDH
assumption. The ciphertext of the MDDH-based AHNIPE of [34] also contains 2`+4 group
elements but achieves only CPA security. In addition to CCA security, our AHNIPEs are
well comparable with the work of [34] in terms of ciphertext size and hardness assumption
as shown in Table 1.

There are interesting implications of our results. Following the blueprint of [5], we show that
any AHNIPE system directly implies an anonymous identity-based revocation (ANON-IBR) (or
anonymous identity-based broadcast encryption [39]) scheme. Recall that an IBR allows one
to encrypt messages with respect to a list of revoked users and only the users lying outside
the revoked list can decrypt the ciphertext. We call the IBR anonymous if the ciphertext does
not reveal revoked users identities. Our DDH-based CCA secure AHNIPE yields the first CCA
secure ANON-IBR from plain DDH assumption in the standard model. Prior work [22] achieves
anonymity and CCA security based on BDDH assumptions in the random oracle model. Inspired
from the IBTR scheme of Agrawal et al. [2], we extend the IBR to efficient CPA secure anonymous
identity-based trace and revoke (ANON-IBTR) schemes where the security can be based on DDH,
LWE and DCR assumptions.

2 Preliminaries

Notation. We denote by x← D the process of sampling a value x according to the distribution
of D. We consider x← S as the process of random sampling a value x according to the uniform
distribution over a finite set S. We assume that the predicate and attribute vectors are of same
length `. The inner product between two vectors x,y ∈ Z` is written as 〈x,y〉 =

∑`
i=1 xiyi =
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xTy. For any λ > λ0, if a non-negative function negl satisfies negl(λ) < 1/λc, c is a constant,
then negl is called a negligible function over the positive integers.

2.1 Pairing Groups and Hardness Assumptions

Let GGen be a probabilistic polynomial time (PPT) algorithm that on input 1λ returns a
description PG = {G1,G2,GT , p, g1, g2, e} of asymmetric pairing groups where Gs be a cyclic
group of order p (for a λ-bit prime p) with a generator gs for each s ∈ {1, 2, T}, and e : G1×G2 →
GT is an efficiently computable (non-degenerate) bilinear map such that gT = e(g1, g2). We use
implicit representation of group elements as [a]s = gas ∈ Gs for any a ∈ Zp and s ∈ {1, 2, T}.
More generally, for a matrix A = (aij) ∈ Zn×mp we define [A]s as the implicit representation of
A in Gs:

[A]s =

ga11s · · · ga11s

gan1s · · · ganms


Given [a]1 and [b]2 one can efficiently compute [a ·b]T using the pairing e. For matrices A and B
of matching dimensions, we define [AB]T = e([A]1, [B]2). We now recall the DDH and KerMDH
assumptions.

Definition 1. (Decisional Diffie-Hellman assumption) Let s ∈ {1, 2, T}. We say that decisional
Diffie-Hellman (DDH) assumption holds relative to GGen in group Gs (GGens), if for all PPT
adversary A,

AdvDDH
A,GGens(λ) = |Pr[A(Gs, [a]s, [ar]s) = 1] − Pr[A(Gs, [a]s, [u]s) = 1]|

is negligible in λ where the probability is taken over Gs = (Gs, gs, p) ← GGens(1
λ), (a, r) ←

Z2
p,u← Z2

p and a = (1, a).

Definition 2. (Kernel Diffie-Hellman assumption)[26] Let k ∈ N and Dk be a matrix distribu-

tion which outputs matrices in Z(k+1)×k
p of full rank k in polynomial time. Let s ∈ {1, 2}. We

say that Dk-Kernel Diffie-Hellman (Dk-KerMDH) assumption holds relative to GGens in group
Gs, if for all PPT adversary A,

AdvDk-KerMDH
A,GGens (λ) =Pr[c>A = 0 ∧ c 6= 0 : [c]3−s ← A(Gs, [A]s)]

is negligible in λ where the probability is taken over Gs = (Gs, gs, p)← GGens(1
λ), A← Dk. If

k = 1, we simply denote it by KerMDH where Dk is assumed to output non-zero vectors from
Z2
p.

2.2 Inner Product Functional Encryption [3]

Definition 3. (Inner product functional encryption) An inner product functional encryption
(IPFE) scheme for a predicate space P, an attribute space Q and an inner product space I
consists of four PPT algorithms IPFE = (Setup,KeyGen,Enc,Dec) satisfying the following re-
quirement:

• (MPK,MSK)← Setup(1λ, 1`): A trusted authority runs the setup algorithm taking inputs
a security parameter λ, a vector length parameter ` (a natural number that is a polynomial
in λ) and outputs a master public-key MPK and a master secret-key MSK.
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1. (MPK,MSK)← Setup(1λ, 1`)
2. (x0,x1)← AOKG(·)(1λ)
3. ct∗ ← Enc(MPK,xb)
4. b′ ← AOKG(·)(ct∗)
5. return b′

OKG(·):
1. input: y ∈ P
2. return KeyGen(MPK,MSK,y)

Figure 1: ExptIND-IPFE
A (1λ, b)

• sky ← KeyGen(MPK,MSK,y): A predicate holder submits a vector y ∈ P to an authority
that runs the key generation algorithm providing inputs as a master public-key MPK, a
master secret-key MSK, a vector y and outputs a secret key sky corresponding to the
predicate vector y.
• ct ← Enc(MPK,x): An encrypter runs the encryption algorithm that takes as input a

master public-key MPK, an attribute vector x ∈ Q and publishes the ciphertext ct corre-
sponding to the attribute x.
• ⊥ or ζ ← IPFE.Dec(MPK, sky, ct): A decrypter runs the decryption algorithm taking as

input a master public-key MPK, a secret-key sky, a ciphertext ct and outputs either a
message ζ ∈ I or a symbol ⊥ indicating failure.

Correctness: For any λ, ` ∈ N, y ∈ P, x ∈ Q, (MPK,MSK) ← Setup(1λ, 1`), sky ←
KeyGen(MPK,MSK,y), ct← Enc(MPK,x) we have

Pr
[
〈x,y〉 = Dec(MPK, sky, ct)

]
= 1− negl(λ)

Definition 4. (Indistinguishability-based security for IPFE) An inner product functional en-
cryption scheme IPFE = (Setup,Keygen,Enc,Dec) for a predicate space P, an attribute space
Q and an inner product space I is said to be adaptively secure under chosen-plaintext attacks
(IND-IPFE) if, for any PPT adversary A, for any λ ∈ N, the advantage

AdvIND-IPFE
A,CPA (λ) =

∣∣∣∣Pr[ExptIND-IPFE
A,CPA (1λ, 0) = 1]− Pr[ExptIND-IPFE

A,CPA (1λ, 1) = 1]

∣∣∣∣
is negligible in λ where ExptIND-IPFE

A,CPA (1λ, b) is defined in Fig. 4 with the restriction that all secret-
key queries {y} made to the key generation oracle OKG(·) should satisfy 〈x0,y〉 = 〈x0,y〉 = 0.

2.3 Non-zero Inner Product Encryption [5, 33]

Definition 5. (Non-zero inner product encryption) A non-zero inner product functional en-
cryption (NIPE) scheme for a predicate space P, an attribute space Q, an inner product space
I, a tag space T and a message space M consists of four probabilistic polynomial time (PPT)
algorithms NIPE = (Setup,Keygen,Enc,Dec) operating as follows:

• (MPK,MSK) ← Setup(1λ, 1`): A trusted authority runs the setup algorithm which takes
as input a security parameter λ, a vector length parameter ` (a natural number that is a
polynomial in λ) and outputs a master public-key MPK and a master secret-key MSK.
• sky ← KeyGen(MPK,MSK,y): A predicate holder submits a vector y ∈ P to an authority

that runs the key generation algorithm providing inputs as a master public-key MPK, a
master secret-key MSK, a vector y and outputs a secret key sky corresponding to the
predicate vector y.
• CT← Enc(MPK, τ,x,M): An encrypter runs this algorithm that takes as input a master

public-key MPK, a tag τ ∈ T , an attribute vector x ∈ Q, a message M ∈M and publishes
the ciphertext CT corresponding to the attribute x.
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1. (MPK,MSK)← Setup(1λ, 1`)
2. (τ∗, (x0,M0), (x1,M1))← AOKG(·),ODec(·,·,·)(1λ)
3. CT∗ ← Enc(MPK, τ∗,xb,Mb)
4. b′ ← AOKG(·),ODec(·,·,·)(CT∗)
5. return b′

OKG(·):
1. input: y ∈ P
2. return KeyGen(MPK,MSK,y)

ODec(·, ·, ·):
1. input: τ ∈ T ,CT,y ∈ P
2. sky ← KeyGen(msk,y)
3. return Dec(MPK, τ, sky ,CT)

Figure 2: ExptAHNIPE
A,CCA (1λ, b)

• ⊥ or ζ ← Dec(MPK, τ, sky,CTx): A user runs the decryption algorithm that takes as input
a master public-key MPK, a tag τ , a secret-key sky, a ciphertext CTx, and outputs either
a message ζ ∈M or a symbol ⊥.

Correctness: For any security parameter λ, ` ∈ N, any tag τ ∈ T , y ∈ P, x ∈ Q, (MPK,MSK)←
Setup(1λ, 1`), sky ← KeyGen(MPK,MSK,y) and CT← Enc(MPK, τ,x,M) we have:

1. Pr
[
M = Dec(MPK, τ, sky,CT) : 〈x,y〉 6= 0

]
= 1− negl(λ)

2. Pr
[
⊥= Dec(MPK, τ, sky,CT) : 〈x,y〉 = 0

]
= 1− negl(λ)

Definition 6. (Adaptively attribute-hiding CCA security for NIPE) A non-zero inner product
encryption scheme NIPE = (Setup,Keygen,Enc,Dec) for a predicate space P, an attribute space
Q, a tag space T , an inner product space I and a message space M is said to be adaptively
attribute-hiding secure under chosen-ciphertext attacks (AHNIPE) if, for any PPT adversary A,
for any λ ∈ N, the advantage

AdvAH-NIPE
A,CCA (λ) =

∣∣∣∣Pr[ExptAHNIPEA,CCA (1λ, 0) = 1]− Pr[ExptAHNIPEA,CCA (1λ, 1) = 1]

∣∣∣∣
is negligible in λ, where ExptAHNIPEA,CCA (1λ, b) is defined in Fig. 2 with the following restriction on
A’s queries:

– All secret-key queries {y} to the key generation oracle OKG(·) should satisfy 〈x0,y〉 =
〈x0,y〉 = 0 if M0 6= M1 and 〈x0 − x1,y〉 = 0 if M0 = M1.

– All decryption queries {(τ,CT,y)} to the decryption oracle ODec(·, ·, ·) should satisfy that
τ 6= τ∗.

2.4 Quasi-Adaptive Non-Interactive Zero-Knowledge Proof [26]

A quasi-adaptive non-interactive zero knowledge argument (QANIZK) is a type of NIZK where
the common reference string (crs) is allowed to depend on the specific parameter defined by
the language for which proofs have to be generated. For public parameters par, let Dpar be
a probability distribution over a collection of relations R = {Rρ} parameterized by ρ with as
associated language Lρ = {x : ∃ w s.t. Rρ(x,w) = 1}.

Definition 7. (quasi-adaptive non-interactive zero knowledge argument) A Quasi-adaptive
non-interactive zero knowledege argument (QANIZK) for a language distribution Dpar consists
of five PPT algorithms QANIZK = (Genpar,Gencrs ,Prv, Sim, Vrfy) working as follows:

• par ← Genpar(λ): It is a probabilistic algorithm which on input a security parameter λ
outputs public parameters par.
• (crs, trap) ← Gencrs(par, ρ): It is a probabilistic algorithm which takes as input par and a

string ρ, an outputs crs and a trapdoor trap. We assume that crs implicitly contains par
and ρ, and that it defines a tag space T .
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• π ← Prv(crs, τ, x, w): It is a deterministic algorithm which on input a crs, a tag τ ∈ T , a
statement x ∈ Lρ and a witness w outputs a proof π.
• 1 or 0 ← Vrfy(crs, τ, x, π): It is a deterministic algorithm which on input a crs, a tag τ , a

statement x and a proof π outputs 1 if π is a valid proof that x ∈ Lρ; otherwise returns 0.
• π ← Sim(crs, trap, τ, x): It is a deterministic algorithm which on input a crs, a trapdoor
trap, a tag τ ∈ T an a statement x (not necessarily in Lρ) outputs a simulated proof π.

We require that the algorithms satisfy the following properties:

Perfect completeness. For all λ, all par output by Genpar(λ), all ρ output by Dpar, all
(x,w) with Rρ(x,w) = 1, all τ ∈ T , we have

Pr

[
Vrfy(crs, τ, x, π) = 1

∣∣∣∣ (crs, trap)← Gencrs(par, ρ)
π ← Prv(crs, τ, x, w)

]
= 1

Perfect zero-knowledge. For all λ, all par output by Genpar(λ), all ρ output by Dpar, all
(crs, trap) output by Gencrs(par, ρ), all (x,w) with Rρ(x,w) = 1, all τ ∈ T , the distributions

Prv(crs, τ, x, w) and Sim(crs, trap, τ, x)

are the same (where the coin tosses are taken over Prv and Sim).
Simulation soundness. For all PPT adversary A and any QANIZK the following advantage

AdvSSA (λ) =Pr

[
Vrfy(crs, τ∗, x∗, π∗) = 1
∧x∗ 6∈ Lρ ∧ τ∗ 6∈ Tsim

∣∣∣∣∣
par← Genpar(λ); ρ← Dpar;
(crs, trap)← Gencrs(par, ρ);

(τ∗, x∗, π∗)← AOsim(·,·)(crs)

]

is negligible, where Osim(τ, x) returns π ← Sim(crs, trap, τ, x) and Tsim is the set of all tags
queried by A. We call QANIZK to satisfy one-time simulation soundness (OTSS) if A is
allowed to make only one query to Osim(·, ·), and the corresponding advantage is denoted
as AdvOTSS

A (λ).

Lemma 1. (core lemma for one-time soundness of QANIZK)[26] Let n, t, k ∈ N. For any

M ∈ Zn×tp ,A ∈ Z(k+1)×k
p and any (possibly unbounded) adversary A,

Pr

[
y 6∈ Span(M) ∧ τ 6= τ̂
∧z> = y>(K0 + τ̂K1)

∣∣∣∣ K0,K1 ← Zn×(k+1)
p ;

(z,y, τ)← AO(·)(M>K0,M
>K1,K0A,K1A)

]
≤ 1

p

where O(τ̂) may be called one time and returns K0 + τ̂K1.

3 Generic Construction: AHNIPE from IPFE and QANIZK

We describe how to use the indistinguishability-based security of a IPFE [3] to achieve the
attribute-hiding security for a NIPE through a generic transformation. Our technique is com-
patible with the CCA transformation given by Sahai [37] which obtains CCA security of a
public-key encryption via NIZK proofs. However, we use QANIZK proofs in our transforma-
tion to achieve CCA security. Let us consider an IPFE = (Setup,KeyGen,Enc,Dec) with a
predicate space P ′, an attribute space Q′ and an inner product space I ′. We construct a
NIPE = (Setup,KeyGen,Enc,Dec) with the same predicate space P = P ′, the attribute space Q,
the inner product space I = I ′ and a message space M such that P,Q,Q′ ⊆ I l, M ⊂ I and
for any x = (x1, . . . , xl) ∈ Q, M ∈M it holds that M ·x ∈ Q′ where M ·x = (Mx1, . . . ,Mxl).
It is also required that the division operation can be efficiently executed in I, that is for any
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Setup(1λ, 1`):

1. (mski,mpki) ← IPFE.Setup(1λ, 1`) for i = 1, 2
2. (crs, trap) ← QANIZK.Gencrs(par,mpk)
3. set MSK := msk1, MPK := (mpk1,mpk2, crs)
4. return (MSK,MPK)

Enc(MPK, τ,x,M):
1. parse MPK = (mpk1,mpk2, crs)
2. for i = 1, 2
3. choose ri, si ← {0, 1}l(λ) // l(λ) is a polynomial in λ
4. ct1,i ← IPFE.Enc(mpki,x; ri)
5. ct2,i ← IPFE.Enc(mpki,M · x; si)
6. π ← QANIZK.Prv(crs, τ, ({ct1,i, ct2,i}2i=1), (x,M, r1, s1, r2, s2))
7. return CT := ({ct1,i, ct2,i}2i=1, π)

KeyGen(MPK,MSK,y):
1. parse MSK = msk1, MPK = (mpk1,mpk2, crs)
2. sky ← IPFE.KeyGen(mpk1,msk1,y)
3. return sky

Dec(MPK, τ, sky,CT):

1. parse MPK = (mpk1,mpk2, crs)
2. parse CT = ({ct1,i, ct2,i}2i=1, π)
3. if QANIZK.Vrfy(crs, τ, ({ct1,i, ct2,i}2i=1), π) = 0
4. return ⊥
5. µ← IPFE.Dec(mpk1, sky, ct1,1)
6. if µ = 0
7. return ⊥
8. µ′ ← IPFE.Dec(mpk1, sky, ct2,1)
9. return µ′ · µ−1

Figure 3: CCA secure AHNIPE from IPFE and QANIZK

product value α · β ∈ I, one can easily compute β if α is known. We also consider a QANIZK
= (Genpar,Gencrs ,Prv, Sim, Vrfy) for the language

Lmpk =

({ct1,i, ct2,i}2i=1) :
∃(x,M, r1, s1, r2, s2) s.t.

∧i=1,2(ct1,i ← IPFE.Enc(mpki,x; ri)∧
ct2,i ← IPFE.Enc(mpki,M · x; si))

 (1)

and par is a part of the system parameters of IPFE. Our CCA secure attribute-hiding NIPE is
described in Fig. 3. QANIZK is employed to prove that the two IPFE ciphertexts ct1,i, ct2,i, main
part of the NIPE ciphertext, corresponds to the same attribute x for each i = 1, 2. If a ciphertext
CT = ({ct1,i, ct2,i}2i=1, π) passes the verification, by the correctness of IPFE, µ = 〈x,y〉 and We
note that one can get rid of the tag from the AHNIPE if a one-time signature scheme is utilized.
Specifically at the time of encryption, a tag is randomly chosen from T and include a signature
of the tag into the final ciphertext. Decryption proceeds in the same as before except it first
verifies the signature of the tag.
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Theorem 1. Assuming the underlying IPFE is indistinguishability-based secure under chosen
plaintext attacks and QANIZK is a one-time simulation sound, the AHNIPE described in Fig. 3
is adaptively attribute-hiding secure under chosen-ciphertext attacks. More specifically, for any
PPT adversary A, there exists PPT adversaries B1 and B2 such that:

AdvAHNIPEA,CCA (λ) ≤ 4 · AdvIND-IPFE
B1,CPA (λ) + 3QDec · AdvOTSS

B2 (λ)

where QDec denotes the total number of decryption queries made by the adversary.

Proof. To prove this theorem, we consider a sequence of games {Gamej}j∈[6] (overview given
in Table. 2) where we denote [6] = {0, 1, . . . , 10}. Let Gj denotes the event b = b′ in game
j where b′ is the bit output by the adversary A. Let (τ∗, (x0,M0), (x1,M1)) be the challenge
tuple submitted by the adversary A.

Game 0: It is the standard security AHNIPE experiment ExptAHNIPEA,CCA (1λ, 0) (Def. 6). Let the
challenge ciphertext be CT∗ = ({ct01,i, ct02,i}2i=1, π

0) where ct01,i and ct02,i are the encryptions of x0

and M0 · x0 respectively under mpki and π0 ← QANIZK.Prv(crs, τ∗,
({ct01,i, ct02,i}2i=1), (x0,M0, r1, s1, r2, s2)).

Game 1: In this game, we use the Sim algorithm of QANIZK to replace the proof π0 by a sim-
ulated proof πsim ← QANIZK.Sim(crs, trap, τ∗, ({ct01,i, ct02,i}2i=1)). By the perfect zero-knowledge
property of QANIZK, the distributions of the challenge ciphertext are identical in the games 0
and 1. Therefore, Pr[G0] = Pr[G1].

Game 2: Here, we replace the ciphertext component ct01,1 by an encryption of x1, that is,

ct11,1 ← IPFE.Enc(mpk1,x1; r1). Since all secret-key queries {y} satisfy the condition 〈x0,y〉 =
〈x1,y〉, there exists an adversary B1 such that

|Pr[G1] − Pr[G2]| ≤ AdvIND-IPFE
B1,CPA (λ)

Note that, B1 can simulate the decryption oracle using msk2. In particular, for a ciphertext
query (τ,CT = ({c̄t1,i, c̄t2,i}2i=1, π̄),y), B1 first verifies the proof π̄. If the proof passes then it
uses the secret-key sky ← IPFE.KeyGen(mpk2,msk2,y) to decrypt c̄t1,2 and c̄t2,2 and return the
message according to the original decryption algorithm.

Game 3: In this game, we perform an additional check on all decryption queries (τ,CT =
({c̄t1,i, c̄t2,i}2i=1, π̄),y) using the following circuit with i = 1:

C[mski](c̄t1,i, c̄t2,i):

1. for j runs from 1 to `
2. skej ← IPFE.KeyGen(mpki,mski, ej) // {ej}j∈[`] is the standard basis of I`

3. zj ← IPFE.Dec(mpki, skej , c̄t1,i)
4. z′j ← IPFE.Dec(mpk, skei , c̄t2,i)
5. set z ← (z1, . . . , z`) and z′ ← (z′1, . . . , z

′
`)

6. if ∃M ∈M s.t. z′ = M · z, return 1
7. else return 0

Observe that, C[mski] uses secret-keys {skej}j∈[`] to verify (without using the tag τ) that
c̄t1,1, c̄t2,1 are encryptions of the vectors z, z′ such that z′ = M · z for some M ∈ M. If
this additional check fails for a ciphertext CT = ({c̄t1,i, c̄t2,i}2i=1, π̄), but passes through the
verification QANIZK.Vrfy(crs, τ, ({c̄t1,i, c̄t2,i}2i=1), π̄) then the tuple (τ, ({c̄t1,i, c̄t2,i}2i=1), π̄) vio-
lates the one-time simulation soundness of QANIZK (Def. 7). Hence, running through all the
decryption queries we get a PPT adversary B2 such that

|Pr[G2] − Pr[G3]| ≤ QDec · AdvOTSS
B2 (λ)
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Game 4: Here, we replace the ciphertext component ct02,1 by an encryption of M1 · x1, that

is, ct12,1 ← IPFE.Enc(mpk1,M1 · x1; s1). Since all secret-key queries {y} satisfy the condition
〈M0 · x0,y〉 = 〈M1 · x1,y〉, we get the following

|Pr[G3] − Pr[G4]| ≤ AdvIND-IPFE
B1,CPA (λ)

As described in game 3, here also B1 uses msk2 in a similar fashion to answer the decryption
queries of A.

Game 5: In this game, we replace the ciphertext component ct01,2 by an encryption of x1,

that is, ct11,2 ← IPFE.Enc(mpk2,x1; r2). Since all secret-key queries {y} satisfy the condition
〈x0,y〉 = 〈x1,y〉, there exists an adversary B1 such that

|Pr[G4] − Pr[G5]| ≤ AdvIND-IPFE
B1,CPA (λ)

Now, B1 uses msk1 to simulate the decryption oracle as in the original scheme.

Game 6: It is similar to the previous game except that we perform an additional check on all
decryption queries (τ,CT = ({c̄t1,i, c̄t2,i}2i=1, π̄),y) using the circuit C[msk2] (described in game
3) on the component (c̄t1,2, c̄t2,2) of the ciphertext. If this additional check fails we return ⊥ in
the decryption oracle. Using the similar argument as in game 3, we obtain a PPT adversary B2
such that

|Pr[G5] − Pr[G6]| ≤ QDec · AdvOTSS
B2 (λ)

Game 7: Here, we replace the ciphertext component ct02,2 by an encryption of M1 · x1, that

is, ct12,2 ← IPFE.Enc(mpk2,M1 · x1; s2). Since all secret-key queries {y} satisfy the condition
〈M0 · x0,y〉 = 〈M1 · x1,y〉, there exists an adversary B1 such that

|Pr[G6] − Pr[G7]| ≤ AdvIND-IPFE
B1,CPA (λ)

Game 8: In this game, we drop the additional checks defined by C[mski] for i = 1, 2, on the
decryption queries. By one-time simulation soundness of QANIZK, we have the following

|Pr[G7] − Pr[G8]| ≤ QDec · AdvOTSS
B2 (λ)

Game 9: We now compute the proof of the challenge ciphertext using Prv of the QANIZK.
That is, π1 ← QANIZK.Prv(crs, τ, ({ct11,i, ct12,i}2i=1), (x1,M1, r1, s1, r2, s2)). By the perfect zero-
knowledge property of QANIZK we have Pr[G8] = Pr[G9].

We can see that game 9 is eventually the standard experiment ExptAHNIPEA,CCA (1λ, 1) (Def. 6).
Therefore, combining all the probabilities we complete the proof.

Remark 1. From the generic transformation it is clear that we need QANIZK for the CCA
security of AHNIPE. Therefore, dropping the QANIZK and considering the IPFEs of [3] our
transformation accomplishes CPA secure AHNIPEs based on various assumptions such as DDH,
LWE and DCR. For CCA security of the AHNIPE, any one-time simulation sound NIZK (OTSS-
NIZK) is sufficient. We have seen constructions of NIZK proof systems for any arbitrary NP
language based on bilinear pairing [21] and (plain) LWE assumption [35]. A transformation from
NIZK to OTSS-NIZK is also well know [37]. Using such OTSS-NIZK proof system we can get rid
of the tag from our AHNIPE and the all decryption queries of the form (CT∗,y) should satisfy
that 〈xb,y〉 = 0 for b ∈ {0, 1}. However, the reason behind selecting QANIZK over OTSS-NIZK
for our application is that QANIZK proofs [1, 26] for certain languages are much shorter than
the existing OTSS-NIZK. Consequently, the ciphertext size is (significantly) reduced as shown in
the next section.
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Game ctj,1 for j = 1, 2 ctj,2 for j = 1, 2 π CHECK

0
IPFE.Enc(mpk1,x0; r1)

IPFE.Enc(mpk1,M0 · x0; s1)
IPFE.Enc(mpk2,x0; r2)

IPFE.Enc(mpk2,M0 · x0; s2)
π0

−

1
IPFE.Enc(mpk1,x0; r1)

IPFE.Enc(mpk1,M0 · x0; s1)
IPFE.Enc(mpk2,x0; r2)

IPFE.Enc(mpk2,M0 · x0; s2)
πsim

−

2
IPFE.Enc(mpk1,x1; r1)

IPFE.Enc(mpk1,M0 · x0; s1)

IPFE.Enc(mpk2,x0; r2)
IPFE.Enc(mpk2,M0 · x0; s2)

πsim
−

3
IPFE.Enc(mpk1,x1; r1)

IPFE.Enc(mpk1,M0 · x0; s1)
IPFE.Enc(mpk2,x0; r2)

IPFE.Enc(mpk2,M0 · x0; s2)
πsim C[msk1]

4
IPFE.Enc(mpk1,x1; r1)

IPFE.Enc(mpk1,M1 · x1; s1)
IPFE.Enc(mpk2,x0; r2)

IPFE.Enc(mpk2,M0 · x0; s2)
πsim C[msk1]

5
IPFE.Enc(mpk1,x1; r1)

IPFE.Enc(mpk1,M1 · x1; s1)
IPFE.Enc(mpk2,x1; r2)

IPFE.Enc(mpk2,M0 · x0; s2)
πsim C[msk1]

6
IPFE.Enc(mpk1,x1; r1)

IPFE.Enc(mpk1,M1 · x1; s1)
IPFE.Enc(mpk2,x1; r2)

IPFE.Enc(mpk2,M0 · x0; s2)
πsim C[msk1]

C[msk2]

7
IPFE.Enc(mpk1,x1; r1)

IPFE.Enc(mpk1,M1 · x1; s1)

IPFE.Enc(mpk2,x1; r2)

IPFE.Enc(mpk2,M1 · x1; s2)
πsim C[msk1]

C[msk2]

8
IPFE.Enc(mpk1,x1; r1)

IPFE.Enc(mpk1,M1 · x1; s1)
IPFE.Enc(mpk2,x1; r2)

IPFE.Enc(mpk2,M1 · x1; s2)
πsim

−

9
IPFE.Enc(mpk1,x1; r1)

IPFE.Enc(mpk1,M1 · x1; s1)
IPFE.Enc(mpk2,x1; r2)

IPFE.Enc(mpk2,M1 · x1; s2)
π1

−

Table 2: An overview of the games used in the proof of Th. 1

4 Concrete Construction: AHNIPE from DDH

In this section, we present a more efficient construction of AHNIPE from plain DDH assumption.
First, we recall the DDH-based IPFE of [3]. Consider a cyclic group G of prime order p. Let mpk
= ([a], [Ua]), msk = U where a = (1, a) ← Z2

p and U ← Z`×2p . The ciphertext and secret-key
are computed as

Enc(mpk,x) =

[
ar

x+ Uar

]
∈ G`+2 and KeyGen(msk,y) =

(
−U>y

y

)
∈ Z`+2

where r ← Zp. Let c = ar and c1 = x + Uar. The decryption computes a discrete log of
the inner product of (c, c1) and sky. To instantiate our AHNIPE with this IPFE, one considers
two pairs of keys mpki = ([ai], [Uiai]) and mski = Ui for i = 1, 2. We need two independent
encryptions of an attribute-message pair (x,M) ∈ Z`p × Zp as

Enc(mpk,x) =

[
ci = airi
x+ Uiairi

]
and Enc(mpk,M · x) =

[
c′i = aisi

M · x+ Uiaisi

]
12



where ri, si ← Zp and a proof π that will verify that both ci and c′i belongs to spanning set of
ai (instead of proving the whole encryption process) for each i = 1, 2. In particular, we consider
QANIZK for the language

L[a1,a2] = {({[ci], [c′i]}2i=1) : ∃(ri, si) ∈ Z2
p s.t. ∧i=1,2 (ci = airi ∧ c′i = aisi)}

If we employ the QANIZK of Kiltz and Wee [26] based on KerMDH assumption (with k = 1), the
proof π consists of 8 group elements. Therefore, a ciphertext of the AHNIPE contains 4` + 16
group elements and we need 16 pairing operations to verify the proof which slows the decryption
procedure.

Setup(1λ, 1`,PG):

1. a = (1, a)← Z2
p, (U1,U2)← (Z`×2p )

2. msk := (U1,U2), mpk := ([a]1, [U1a]1, [U2a]1)
3. α← D1, K1,K2 ← Z2×2

p

4. ϑ1 := K1a, ϑ2 := K2a, β1 := K1α, β2 := K2α
5. crs := ([ϑ1]1, [ϑ2]1, [β1]2, [β2]2, [α]2), trap := (K1,K2)
6. return MSK := (msk, trap), MPK := (mpk, crs)

Enc(MPK = (mpk, crs), τ,x,M):

1. mpk = ([a]1, [U1a]1, [U2a]1), crs := ([ϑ1]1, [ϑ2]1, [β1]2, [β2]2, [α]2)
2. r ← Zp, c := ar, π := [(ϑ1 + τϑ2)r]1 ∈ G2

1

3. [ct]1 :=

 c
x+ U1c

M · x+ U2c


1

∈ G2`+2
1

4. return CT := ([ct]1, π) ∈ G2`+4
1

KeyGen(MSK = (msk, trap),y):

1. msk = (U1,U2)

2. return sky :=

−U>1 y

−U>2 y
y

 ∈ Z`+4

Dec(MPK = (mpk, crs), τ, sky,CT = ([ct]2, π)):

1. mpk = ([a]1, [U1a]1, [U2a]1), crs := ([ϑ1]1, [ϑ2]1, [β1]2, [β2]2, [α]2)

2. [ct]1 =

 c
c1
c2


1

, [υ1]1 :=

[
c
c1

]
1

, [υ2]1 :=

[
c
c2

]
1

3. if e(π, [α]2) 6= e([c]1, [β1 + τβ2]2), return ⊥

4. sky =

s1
s2
y

 , ς1 :=

(
s1
y

)
, ς2 :=

(
s2
y

)
5. µ := [〈υ1, ς1〉]1, µ′ := [〈υ2, ς2〉]1
6. if µ = [0]1, return ⊥
7. return logg1(µ′ · µ−1)

Figure 4: CCA secure AHNIPE from DDH assumption

13



We show how to utilize the shared randomness technique of [8] to enable much more efficient
QANIZK proof where only four pairing operations are required to verify the proof. The main
observation is that, instead of considering two independent encryptions as above, we encrypt
x and M · x together. More precisely, a ciphertext corresponding to (x,M) and a secret-key
associated to y become

Enc(MPK,x,M) =

 ar
x+ U1ar

M · x+ U2ar

 and KeyGen(MSK,y) =

−U>1 y

−U>2 y
y


where MPK = ([a], [U1a], [U2a]) ∈ G2`+2 and MSK = (U1,U2) ∈ (Z`×2p )2. Consequently, the
ciphertext includes a shorter QANIZK proof of a statement belongs to a language defined by

L[a] = {[c] : ∃r ∈ Zp s.t. c = ar} (2)

and each proof consists of only two group elements when considering the QANIZK of Kiltz and
Wee [26] based on KerMDH assumption (with k = 1). Hence, the ciphertext contains 2` + 4
group elements and a secret-key belongs to Z4 (excluding the predicate vector).

We describe our AHNIPE for P = Q = Z`p, I = T = Zp and M ⊂ I, in Fig. 4 where

PG = {G1,G2,GT , p, g1, g2, e} ← GGen(1λ). We assume that M is polynomially bounded so
that messages can be recovered by discrete logarithm.

Correctness. For all x,y ∈ Z`p, τ ∈ Zp,M ∈M we have

e(π, [α]2) = e([(ϑ1 + τϑ2)r]1, [α]2)

= e([(K1 + τK2)c]1, [α]2) (when c = ar)

= e([c]1, [(K1 + τK2)α]2)

= e([c]1, [β1 + τβ2)

which verifies the ciphertext component c = ar. Next, we note that

〈υ1, ς1〉 =

(
c

x+ U1c

)>(−U>1 y
y

)
= −(U1c)>y + (x+ U1c)>y = x>y.

Therefore, µ = [〈x,y〉]1 and similarly one can show that µ = [M · 〈x,y〉]1. If µ 6= [0]1, we
recover the message as M = logg1(µ′ · µ−1).

Theorem 2. Assuming the DDH and the KerMDH assumptions hold in the groups G1 and G2

respectively, the AHNIPE described in Fig. 4 is adaptively attribute-hiding secure under chosen-
ciphertext attacks. More specifically, for any PPT adversary A, there exist PPT adversaries B1
and B2 such that:

AdvAHNIPEA,CCA (λ) ≤ 2 · AdvDDH
B1,GGen1(λ) + 2QDec · AdvKerMDH

B2,GGen2(λ) +negl(λ)

where QDec denotes the total number of decryption queries made by the adversary.

Proof. We prove this theorem using a sequence of hybrid games {Gamej}j∈[7] described in Fig.

5 where game 0 is the standard AHNIPE experiment ExptAHNIPEA,CCA (1λ, 0) (Def. 6). Let Gj denotes
the event b = b′ in game j where b′ is the bit output by the adversary A. Further, we assume
that A’s queries are consistent with the restrictions described in Def. 6.
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Game j, j ∈ [7] = {0, 1, 2, 3, 4, 5, 6, 7}

1. j ∈ [7] \ {3, 4}, a = (1, a)← Z2
p

j ∈ {3, 4}, a = (1, a)← Z2
p,a
⊥ ← Z2

p \ {0} s.t. a>a⊥ = 0

2. j ∈ [7], (U1,U2)← (Z`×2p )2

3. j ∈ [7], msk := (U1,U2), mpk := ([a]1, [U1a]1, [U2a]1)
4. j ∈ [7], α← D1, K1,K2 ← Z2×2

p

5. j ∈ [7], ϑ1 := K1a, ϑ2 := K2a, β1 := K1α, β2 := K2α
6. j ∈ [7], crs := ([ϑ1]1, [ϑ2]1, [β1]2, [β2]2, [α]2), trap := (K1,K2)
7. return MSK := (msk, trap), MPK := (mpk, crs)
8. (τ∗, (x0,M0), (x1,M1))← AOKG(·),ODec(·,·,·)(MPK)
9. CT∗ ← OEnc(τ

∗, {xb,Mb}b∈{0,1})
10. b′ ← AOKG(·),ODec(·,·,·)(CT∗)
11. return b′

OEnc(τ
∗, {xb,Mb}b∈{0,1}):

1. j ∈ {0, 1, 6, 7}, r ← Zp, c∗ := ar
j ∈ {2, 3, 4, 5}, c∗ ← Zp

2. j ∈ {0, 7}, π∗ := [(ϑ1 + τ∗ϑ2)r]1
j ∈ [7] \ {0, 7}, π∗ := [(K1 + τ∗K2)c

∗]1

3. j ∈ {0, 1, 2, 3}, [ct∗]1 :=

 c∗

x0 + U1c
∗

M0 · x0 + U2c
∗


1

4. j ∈ {4, 5, 6, 7}, [ct∗]1 :=

 c∗

x1 + U1c
∗

M1 · x1 + U2c
∗


1

5. return CT := ([ct∗]1, π
∗)

OKG(y):

1. return sky :=

−U>1 y

−U>2 y
y


ODec(τ,CT,y):

1. j ∈ [7], if τ = τ∗, return ⊥

2. j ∈ [7], [ct]1 =

 c
c1
c2


1

, [υ1]1 :=

[
c
c1

]
1

, [υ2]1 :=

[
c
c2

]
1

3. j ∈ [7] \ {3, 4}, if e(π, [α]2) 6= e([c]1, [β1 + τβ2]2), return ⊥
j ∈ {3, 4}, if (e(π, [α]2) 6= e([c]1, [β1 + τβ2]2) ∧ [c>a⊥]1 6= [0]1),

return ⊥

4. j ∈ [7], sky :=

−U>1 y

−U>2 y
y

 =

s1
s2
y

 , ς1 :=

(
s1
y

)
, ς2 :=

(
s2
y

)
5. j ∈ [7], µ := [〈υ1, ς1〉]1, µ′ := [〈υ2, ς2〉]1
6. j ∈ [7], if µ = [0]1, return ⊥
7. return logg1(µ′ · µ−1)

Figure 5: Sequence of Games used in the proof of Th. 2
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Game 1: In this game, we compute the proof π∗ for the statement [c∗]1 without using the
witness r, that is, we set π∗ := [(K1 + τ∗K2)c

∗]1. The distributions of π∗ in both the games 0
and 1 are identical since

π∗ = [(ϑ1 + τ∗ϑ2)r]1︸ ︷︷ ︸
(Game 0)

= [(K1 + τ∗K2)ar]1 = [(K1 + τ∗K2)c
∗]1︸ ︷︷ ︸

(Game 1)

(3)

Therefore, we have Pr[G0] = Pr[G1].

Game 2: It is exactly same game 1 except that we choose c∗ uniformly at random from Z2
p.

For indistinguishability between games 1 and 2, we rely on DDH assumption in group G1.
Suppose, B1 be a DDH adversary which receives a tuple ([a]1, [c

∗]1) from it’s challenger. It
then selects (U1,U2)← (Z`×2p ), α← D1, K1,K1 ← Z2×2

p and simulates A as defined in Fig. 5,
using [c∗]1 to compute [ct∗]1. We note that, if c∗ = ar for some r ∈ Zp then B1 plays the role
of a challenger in game 1, and if c∗ is picked uniformly at random from Z2

p then B1 simulates

game 2. By DDH assumption we get |Pr[G1] − Pr[G2]| ≤ AdvDDH
B1,GGen1(λ).

In this game, we observe that the probability of c∗ belonging to Span(a) is negligible,
precisely (1 − 1

p). Hence, there exits a vector a> ∈ Zp such that a>a⊥ = 0 and c∗>a⊥ = 1
whenever c∗ 6∈ Span(a).

Game 3: It is identical to game 2, except that in the decryption oracle we perform an additional
check on the queried ciphertext CT = ([ct]1, π). With the usual verification of ([c]1, π), the
oracle also returns ⊥ if [c>a⊥]1 6= [0]1 where [c] is the first component of [ct]1.

Suppose the additional check fails, but the tuple (τ, [c]1, π) passes the verification e(π, [α]2) =
e([c]1, [β1+τβ2]2), then we construct a PPT adversary B2 against KerMDH assumption in group
G2 (Def. 2). On receiving a challenge vector [α]2 from it’s challenger, B2 picks a = (1, a)← Z2

p,

(U1,U2) ← (Z`×2p ), K1,K1 ← Z2×2
p and simulates the game for A as defined in Fig. 5.

Note that, A already gets a simulated proof as π∗ = [(K1 + τ∗K2)c]1 included in the chal-
lenge ciphertext. If A submits a decryption query containing a tuple (τ 6= τ∗, [c]1, π = [z]1)
such that [c>a⊥]1 6= [0]1 and e([z]1, [α]2) = e([c]1, [β1 + τβ2]2) then c 6∈ Span(a) and z>α =
c>(β1 + τβ2) = c>(K1 + τK2)α. Let [α⊥]1 = [z − (K1 + τK2)

>c]1. From Lemma 1, with
n = 2, t = k = 1, we have Pr[z − (K1 + τK2)

>c = 0] ≤ 1
p . Therefore, B2 is able to find a

(non-zero) vector [α⊥]1 ∈ G2
1 such that α>α⊥ = 0. Thus, B2 violates the KerMDH assumption

in group G2, if A is able to find such a decryption query. If QDec is the the total number of
decryption queries of A, then we have

|Pr[G2] − Pr[G3]| ≤ QDec · AdvKerMDH
B2,GGen2(λ) + negl(λ).

Game 4: In this game, we replace the pair (x0,M0) in the challenge ciphertext with the pair
(x1,M1). In particular, last two components of ct∗1 become x1 + U1c

∗ and M1 · x1 + U2c
∗.

We claim that the two games 3 and 4 are identical in A’s view. In other words, we show that
Pr[G3] = Pr[G4].

First, we assume that A chooses the challenge pair ((x0,M0), (x1,M1)) independent of MPK
and the corresponding advantages of A in game 3 and 4 are Pr[Gs3] and Pr[Gs4] respectively.
Then guessing the challenge pair in the adaptive game will incur an exponential security loss,
i.e. Pr[Gj ] = p2`|M| Pr[Gsj ] for j = 3, 4. If we can show that Pr[Gs3] = Pr[Gs4] (in selective
experiment) then this automatically leads to Pr[G3] = Pr[G4].

Finally, we assume that the challenge pair ((x0,M0), (x1,M1)) independent of MPK. Since
(U1,U2) are chosen uniformly at random from (Z`×2p )2, the following distributions are statisti-

cally close over (Z`×2p )2:

(U1,U2) and (U1 + (x1 − x0)(a
⊥)>,U2 + (M1 · x1 −M0 · x0)(a

⊥)>)
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The corresponding changes in MPK, OKG(·), ODec(·, ·, ·) and OEnc(·, ·) are as follows:

MPK: (U1 + (x1 − x0)(a
⊥)>)a = U1a, (U2 + (M1 · x1 −M0 · x0)(a

⊥)>)a = U2a

OKG(y): sky :=

 −U>1 y + a⊥(x1 − x0)
>y

−U>2 y + a⊥(M1 · x1 −M0 · x0)
>y

y

 =

s1
s2
y


ODec(τ,CT = ([ct]1, π),y): Let [ct]1 =

 c
c1
c2


1

, [υ1]1 :=

[
c
c1

]
1

, [υ2]1 :=

[
c
c2

]
1

. If [c>a⊥]1 6= [0]1,

then the oracle returns ⊥. The oracle computes a secret-key sky as above and set ς1 :=(
s1
y

)
, ς2 :=

(
s2
y

)
. We observe that

µ := [〈υ1, ς1〉]1 =

[
〈−(U1 + (x1 − x0)(a

⊥)>)>y, c〉
〈y, c1〉

]
1

=

[
〈−U>1 y, c〉
〈y, c1〉

]
1

(when [c>a⊥]1 = [0]1)

=

[(
−U>1 y
y

)>
·
(

c
c1

)]
1

and similarly µ′ := [〈υ2, ς2〉]1 =

[(
−U>2 y
y

)>
·
(

c
c2

)]
1

. Therefore, decryption performs cor-

rectly.

OEnc(τ
∗, {xb,Mb}b∈{0,1}): Finally, the challenge ciphertext component is distributed as

[ct∗]1 :=

 c
x0 + U1c

M0 · x0 + U2c


1

(in Game 3)

≈

 c
x0 + (U1 + (x1 − x0)(a

⊥)>)c
M0 · x0 + (U2 + (M1 · x1 −M0 · x0)(a

⊥)>)c


1

(statistically close)

=

 c
x0 + U1c + (x1 − x0)

M1 · x1 + U2c + (M1 · x1 −M0 · x0)


1

(as c>a⊥ = 1)

=

 c
x1 + U1c

M1 · x1 + U2c


1

(in Game 4)

Hence, we have Pr[Gs3] = Pr[Gs4] which directly implies Pr[G3] = Pr[G4].

Game 5: It is identical to game 4, except we omit the additional check in decryption oracle.
For a query (τ,CT,y), the decryption oracle only verifies e(π, [α]2) = e([c]1, [β1 + τβ2]2) to
proceed further. Following the same argument as in game 3, we get

|Pr[G4] − Pr[G5]| ≤ QDec · AdvKerMDH
B2,GGen2(λ).

Game 6: In this game instead of picking c∗ uniformly from Z2
p, we set c∗ := ar for r ← Zp.

Relying on DDH assumption in group G1, as in game 2, we get
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|Pr[G5] − Pr[G6]| ≤ AdvDDH
B1,GGen1(λ).

Game 7: Finally, we use the witness r to set the proof π∗ := [(ϑ1 + τ∗ϑ2)r]1. From equa-
tion 3, we have Pr[G6] = Pr[G7]. Note that, game 7 is the standard AHNIPE experiment
ExptAHNIPE

A,CCA (1λ, 1). Combining all the probabilities, we conclude the proof.

5 Applications of AHNIPE

5.1 Anonymous Identity-Based Revocation

In this section, we present one particular application of our AHNIPE in identity-based revocation
(IBR) scheme [29]. Attrapadung and Libert showed in [5] that an NIPE can be used to build
an IBR with constant size ciphertext. As their NIPE is only payload-hiding, the resulting
IBR system fails to provide users anonymity. We strengthen the security of an IBR system
using our AHNIPE following the technique of [5]. Recall that, in an IBR system messages are
encrypted with respect to a revoked set R and a secret-key skid corresponding to an identity id
can recover the message only if id 6∈ R. Given all the secret-keys associated to the identities
in R, an adversary remains oblivious about the message. In the IBR of [5] based on NIPE, the
ciphertexts trivially contains the list of all revoked users which often becomes unacceptable in
many applications where identities include sensitive users credentials [9, 30, 39, 28].

Definition 8. (Identity-based revocation)[29] A tag-based identity-based revocation (IBR) scheme
for an identity space ID, a tag-space T and a message spaceM consists of four PPT algorithms
IBR = (Setup, Enc, KeyGen, Dec) and works as follows:

• (MSK, MPK)← Setup(1λ, 1r): The setup algorithm takes as input a security parameter λ
and a bound on the number of revoked users r, and generates a master public-key MPK
and a master secret-key MSK.
• CT ← Enc(MPK, τ, R,M): A data owner encrypts a message M ∈ M with a tag τ ∈ T

and a revoked list R ⊂ ID containing at most r identities using the master public-key
MPK, and publishes a ciphertext CT. Note that CT does not include the list R, but may
contain the tag τ .
• skid ← KeyGen(MSK, id): A trusted authority generates a secret-key skid for an identity

id ∈ ID using the master secret-key MSK. The identity may contain user’s sensitive
information.
• ⊥ or M ← Dec(MPK, τ, skid,CT): An user decrypts a ciphertext CT associated with a tag
τ using the master public-key MPK and its own secret-key skid to either recover a message
M ∈M or face a failure.

Correctness: For any λ, r ∈ N, id ∈ ID, τ ∈ T , M ∈ M, (MPK,MSK) ← Setup(1λ, 1r),
skid ← KeyGen(MSK, id), CT← Enc(MPK, τ, R,M) we have

Pr[M = Dec(MPK, τ, skid,CT)] = 1− negl(λ)

Definition 9. (Adaptively anonymous CCA security for IBR) A (tag-based) identity-based re-
vocation scheme IBR = (Setup, Enc, KeyGen, Dec) for an identity space ID, a tag-space T and
a message spaceM is said to be adaptively anonymously secure under chosen-ciphertext attacks
(ANON-IBR) if, for any PPT adversary A, for any λ ∈ N, the advantage

AdvANON-IBR
A,CCA (λ) =

∣∣∣∣Pr[ExptANON-IBR
A,CCA (1λ, 0) = 1]− Pr[ExptANON-IBR

A,CCA (1λ, 1) = 1]

∣∣∣∣
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1. (MPK,MSK)← Setup(1λ, 1r)
2. (τ∗, (R0,M0), (R1,M1))← AOKG(·),ODec(·,·,·)(1λ)
3. CT∗ ← Enc(MPK, τ∗, Rb,Mb)
4. b′ ← AOKG(·),ODec(·,·,·)(CT∗)
5. return b′

OKG(·):
1. input: id ∈ ID
2. return KeyGen(MSK, id)

ODec(·, ·, ·):
1. input: τ ∈ T ,CT, id ∈ ID
2. skid ← KeyGen(msk, id)
3. return Dec(MPK, τ, skid,CT)

Figure 6: ExptANON-IBR
A,CCA (1λ, b)

is negligible in λ, where ExptANON-IBR
A,CCA (1λ, b) is defined in Fig. 6 with the following restriction

on A’s queries:

– All secret-key queries {id} to the key generation oracle OKG(·) should satisfy that id ∈
R0 ∩R1.

– All decryption queries {(τ,CT, id)} to the decryption oracle ODec(·, ·, ·) should satisfy that
τ 6= τ∗.

Construction. Let us consider an AHNIPE = (Setup, Enc, KeyGen, Dec) for P = Q = Zr+1
p ,

T = I = Zp andM⊂ Zp. We build an ANON-IBR scheme for ID = Zp with the same message
and tag spaces:

• Setup(1λ, 1r): It compute (MSK, MPK) ← AHNIPE.Setup(1λ, 1r+1) and outputs (MSK,
MPK).

• Enc(MPK, τ, R,M): Let R = {id1, . . . , idr} ⊂ Zp be the set of revoked identities (without
loss of generality we take |R| = r). Then it computes a polynomial P (X) = (X −
id1) · · · (X − idr) = x0 + x1X + · · ·+ xrX

r ∈ Zp[X] and set xR = (x0, . . . , xr) ∈ Zr+1
p . It

returns CT← AHNIPE.Enc(MPK, τ,xR,M).

• KeyGen(MSK, id): For an identity id ∈ Zp, it sets yid = (1, id, . . . , idr) ∈ Zr+1
p . Then it

returns skid ← AHNIPE.KeyGen(MSK,yid).

• Dec(MPK, τ, skid,CT) = AHNIPE.Dec(MPK, τ, skid,CT)

We note that 〈xR,yid〉 = P (id) = 0 if and only if id ∈ R. Therefore, correctness of the above
IBR follows directly from the AHNIPE system. For security, we assume that A adaptively
submits a challenge tuple (τ∗, (R0,M0), (R1,M1)). Then, 〈xR0 ,yid〉 = 〈xR0 ,yid〉 = 0 for all id
queried by A to the key generation oracle. Moreover, A can not query a tuple (τ∗,CT, id) for
decryption. Therefore, adaptively attribute-hiding CCA security of AHNIPE ensures that the
challenge ciphertext CT∗ ← AHNIPE.Enc(MPK, τ,xRb ,Mb) hides b from A’s view. We state the
security of the IBR in the following theorem.

Theorem 3. Assuming the AHNIPE is a tag-based adaptively attribute-hiding CCA secure non-
zero inner product encryption, the ANON-IBR described above is a adaptively anonymous CCA
secure identity-based revocation scheme.

Remark 2. Using the generic AHNIPEs of Sec. 3, we achieve CCA secure ANON-IBR schemes
from various assumptions such as DDH, LWE, DCR, DDH-f and HSM along with a QANIZK proof
system. We also instantiate the ANON-IBR scheme using our CCA secure AHNIPE from Sec.
4 based on plain DDH and KerMDH assumptions. A secret-key skid consists of only 4 elements
of Z and a ciphertext associated to a revoked list of size r contains 2r + 6 group elements. We
formally state the security in the following theorem.
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Theorem 4. Assuming the DDH assumption holds in the group G1 and the KerMDH assumption
holds in the group G2, there exists an ANON-IBR scheme which is adaptively anonymously secure
under chosen-ciphertext attacks. More specifically, for any PPT adversary A, there exist PPT
adversaries B1 and B2 such that:

AdvANON-IBR
A,CCA (λ) ≤ 2 · AdvDDH

B1,GGen1(λ) + 2QDec · AdvKerMDH
B2,GGen2(λ) +negl(λ)

where QDec denotes the total number of decryption queries made by A.

Going through the state of art, the ANON-IBR improves the security assumption where exist-
ing CPA secure IBR schemes either hide only messages based on DDH like assumptions in both
groups G1,G2 (i.e. similar to SXDH assumption) [36, 17] or provide anonymity from pairing-
based DH assumptions [39]. The only CCA secure ANON-IBR of [22] is proven secure relying on
BDDH assumption in the random oracle model whereas we provide anonymity based on plain
DDH assumption and CCA security based on a simple computational KerMDH (weaker than the
DDH [26]) assumption in the standard model.

5.2 Anonymous Identity-Based Trace and Revoke

Agrawal et al. [2] gave a generic transformation of an identity-based trace and revoke (IBTR)
scheme from any IPFE. An IBTR scheme works in the same way as an IBR system except that
it has an additional trace algorithm. The purpose of tracing is to identify malicious users who
build pirate decoders. We extend our ANON-IBR to achieve anonymous IBTRs (ANON-IBTR)
by modifying the tracing algorithm of Agrawal et al.’s scheme [2]. Note that, the ciphertexts
of the IBTR of [2] do not hide the revoked list whereas our ANON-IBTR achieves anonymity of
users identities. Therefore, the generic AHNIPE of Sec. 3 without the QANIZK (see Remark ??)
leads us to CPA secure ANON-IBTR schemes based on DDH, LWE and DCR assumptions.

To identify malicious users (traitors) whose keys are compromised in building a pirate de-
coder, tracing is necessary to revoke those users from the system. We take the tag-free version
of our AHNIPE omitting the QANIZK proof system. We describe the black box tracing given
by Agrawal et al. [2] where it is assumed that the tracing algorithm has the access to an oracle
OD that on input a ciphertext-message pair (CTR,M) outputs 1 if D(CTR) = M , otherwise
outputs 0. Let CTR be the output of Enc(MPK, R,M) where R is a revoked list and M is a
message belonging to the message space M. If a decoder cannot decrypt the ciphertext CTR
to the correct message, then it is of no use. Therefore, we must define the behaviour of a good
decoder as follows:

Pr
M ←M

CTR ← Enc(MPK, R,M)

[
OD(CTR,M) = 1

]
≥ 1

|M|
+

1

λc
(4)

for some constant c > 0. This probability can be estimated by repeated queries to OD on
arbitrary ciphertext-message pairs, using Hoeffding’s inequality.

In public traceability, the adversary A adaptively asks at most t traitor keys skid and the
challenger keeps a track on all these traitors in the list T . A submits a revoked list R containing
at most r users and receives all the secret-keys of the users in R. Finally, A outputs a decoder
D and a suspected set S of cardinality less or equal to t that contains T . The challenger runs
a trace algorithm Trace(pd, R, S,OD) where pd denotes the public directory of users’ identities.
The adversary wins if D satisfies equation 4 and Trace either outputs ⊥ or an identity id 6∈ T
with high probability.

We describe the tracing algorithm in Fig. 7. The main observation is that if Si 6= ∅ and
id ∈ Si ∪R then 〈yid,x〉 = M〈yid,xR〉 which means AHNIPE.Enc′(MPK,xR,x) is distributed as
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Trace(pd, R, S,OD):

1. Find M,M ′ ∈M such that the following quantity is non-negligible:

∣∣∣∣ Pr
CTR←Enc(MPK,R,M)

[
OD(CTR,M) = 1

]
− Pr

CT′
R
←Enc(MPK,R,M′)

[
OD(CT′R,M) = 1

]∣∣∣∣
2. S1 := {id1, . . . , idk} = S \R

3. compute xR ∈ Zr+1
p \ {0} such that 〈xR,yid〉 = 0 ∀id ∈ R

4. for i runs from 1 to k

5. if i = 1,

6. xSi := 0

7. if Si = ∅

8. xSi := (M ′ −M)xR

9. else compute xSi such that (〈yid,xSi〉 = 0 ∀id ∈ Si ∪R) ∧

(〈yid,xSi〉 = (M ′ −M)〈yid,xR〉 ∀id ∈ S1 \ Si)

10. Repeat the following steps sufficiently many times (as dictated by Hoeffd-

ing’s inequality) to compute an approximation of the probability pi that

the output of OD is bi = 1:

11. x = xSi +MxR

12. CTSi ← AHNIPE.Enc′(MPK,xR,x) where we define

AHNIPE.Enc′(MPK,xR,x) := (IPFE.Enc(mpk,xR), IPFE.Enc(mpk,x))

13. bi ← OD(CTSi)

14. if (i > 1) ∧ (|pi − pi−1| is non-negligible)

15. return idi−1 and abort

16. Si = ∅

17. return ⊥ and abort

18. else Si+1 := Si \ {idi}

Figure 7: Tracing in Anonymous IBTR scheme

AHNIPE.Enc(MPK,xR,M). On the other hand, if Si = ∅ or id ∈ S1 \ Si then 〈yid,x〉 =
M ′〈yid,xR〉 which means AHNIPE.Enc′(MPK,xR,x) is distributed as AHNIPE.Enc(MPK,xR,M

′).
If OD satisfies equation 4 then it must behave differently for the dual nature of AHNIPE.Enc′.
Therefore, there exists i such that |pi − pi−1| is non-negligible and Trace successfully identifies
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a traitor from T . Finally, we note that step 1 of the Trace algorithm can be implemented
efficiently as OD satisfies equation 4 (Lemma 14 of [2]).

6 Conclusion

We investigate the way of achieving CCA security for NIPE schemes with the capability of hiding
attributes based on standard assumptions. Firstly, we have described a generic transformation
for establishing CCA secure AHNIPE from any existing CPA secure IPFE schemes and a QANIZK
proof system. In our concrete construction of AHNIPE relying on plain DDH assumption,
we employ the shared randomness technique in Naor-Yung paradigm to reduce public-key and
ciphertext size. Furthermore, it makes the decryption much faster than our generic construction.
We show that AHNIPE directly implies ANON-IBR scheme which has significant applications
in the area of broadcast encryption. Our concrete AHNIPE leads us to the first CCA secure
ANON-IBR scheme based on the plain DDH assumption in the standard model. Moreover, we
extend our ANON-IBR to a set of CPA secure ANON-IBTR scheme by adding a tracing algorithm
utilizing the work of [2]. Future work includes finding an efficient CCA secure AHNIPE based
on LWE assumption. Also, exploring CCA secure constructions for full-hiding NIPE [34] with an
efficient decryption procedure.
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