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Abstract. In 2013, Tao et al. introduced the ABC Simple Matrix Scheme
for Encryption, a multivariate public key encryption scheme. The scheme
boasts great efficiency in encryption and decryption, though it suffers
from very large public keys. It was quickly noted that the original pro-
posal, utilizing square matrices, suffered from a very bad decryption fail-
ure rate. As a consequence, the designers later published updated param-
eters, replacing the square matrices with rectangular matrices and alter-
ing other parameters to avoid the cryptanalysis of the original scheme
presented in 2014 by Moody et al.
In this work we show that making the matrices rectangular, while de-
creasing the decryption failure rate, actually, and ironically, diminishes
security. We show that the combinatorial rank methods employed in the
original attack of Moody et al. can be enhanced by the same added de-
grees of freedom that reduce the decryption failure rate. Moreover, and
quite interestingly, if the decryption failure rate is still reasonably high,
as exhibited by the proposed parameters, we are able to mount a re-
action attack to further enhance the combinatorial rank methods. To
our knowledge this is the first instance of a reaction attack creating a
significant advantage in this context.

Keywords: Multivariate Cryptography, Simple Matrix, encryption, Min-
Rank

1 Introduction

Since the discovery by Peter Shor in the 1990s, cf. [26], of polynomial-time
quantum algorithms for computing discrete logarithms and factoring integers
the proverbial clock has been ticking on our current public key infrastructure. In
reaction to this discovery and the continual advancement of quantum computing
technologies, a large community has emerged dedicated to the development and
deployment of cryptosystems that are immune to the exponential speedups quan-
tum computers promise for our current standards. More recently, the National
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Institute of Standards and Technology (NIST) has begun directing a process to
reveal which of the many new options for post-quantum public key cryptography
are suitable for widespread use.

One family of candidate schemes relies on the known difficulty of solving large
systems of nonlinear equations. These multivariate public key cryptosystems
are inspired by computational problems that have been studied by algebraic
geometers for several decades. Still, even in the past two decades this field of
study has changed dramatically.

When multivariate public key cryptography was still early in its community
building phase, a great many schemes were proposed and subsequently attacked.
Notable examples of this phenomenon include C∗, HFE, STS, Oil-Vinegar, PMI
and SFLASH, see [14, 22, 32, 19, 6, 20, 21, 9, 25, 10, 8].

While multivariate cryptography has seen some lasting success with digital
signatures, see, for example, [12, 4, 2, 23, 5], multivariate encryption seems to
be particularly challenging. In the last several years there have been many new
proposals inspired by the notion that it may be easier to create a secure injective
multivariate function if the codomain is larger than the domain. Such schemes
include ZHFE, Extension Field Cancellation (EFC), SRP, HFERP, EFLASH
and the Simple Matrix Encryption Scheme, see [7, 28, 34, 11, 3, 29, 30]. Of these,
many have since endured attacks either outright breaking the scheme or affecting
parameters, see [1, 27, 24, 15–17].

In this work we present a new attack on the rectangular variant of the Simple
Matrix Encryption Scheme, see [30]. This version of the Simple Matrix Encryp-
tion Scheme was designed to repair the problems that the original scheme, see
[29], had with decryption failures and to choose large enough fields to avoid the
attack of [15]. Our new attack is still a MinRank method, but one that exploits
the rectangular structure, showing that the new parameterization is actually less
secure than the square variant.

In an interesting twist, we also develop a reaction attack based on the de-
cryption failures that the scheme is designed to minimize. This method further
boosts the performance of the MinRank step by a factor related to the field size.
With these attacks we break all of the published parameter sets at the most
efficient field size of 28, the only parameters for which performance data were
offered.

The article is organized as follows. In Section 2, we present the Simple Ma-
trix Scheme. We next review the MinRank attack techniques using properties of
the differential that was used against the original square variant of the Simple
Matrix scheme. In the subsequent section, we present the improvement obtained
in attacking the rectangular variant. Next, in Section 5, we present the reac-
tion attack and discuss its affect on key recovery. We then present a thorough
complexity analysis including our experimental data verifying our claimed com-
plexity. Finally, we conclude noting the effect this attack has on the status of
multivariate encryption.
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2 ABC Simple Matrix Scheme

The ABC Simple Matrix Encryption Scheme was introduced in [29] by Tao et
al. This scheme was designed with a new guiding principle in mind: make the
codomain much larger than the domain. The motivation for this notion comes
from the fact that there is a much richer space of injective functions with a large
codomain than the space of bijective functions; thus, it may be easier to hide the
types of properties we use to efficiently invert nonlinear functions such as low
rank or low degree in this larger context. In this section we present the scheme
and its functionality.

For clarity of exposition, we establish our notational standard. Throughout
this text bold font will indicate a matrix or vector, e.g. T or z, while regular
fonts indicate functions (possibly with outputs considered as matrices) or field
elements.

2.1 ABC Public Key Generation

Let F be a finite field with q elements. Let s be a positive integer and let n = s2.
Let F[x] be the polynomial ring over F in the variables x =

[
x1 · · · xn

]
.

The public key will be a system of m = 2n = 2s2 (for our purposes homoge-
neous) quadratic formulae in F[x]. The public key will ultimately be generated
by the standard isomorphism construction P = T ◦ F ◦ U where T and U are
invertible linear transformations of the appropriate dimensions, and F is a spe-
cially structured system of quadratic polynomials. The remainder of this section
is devoted to the construction of F . (In general the scheme can and does use
rectangular matrices, but for the ease of writing this note, we will assume that
the matrices are square for now.)

Define the matrix

A =


x1 · · · xs
xs+1 · · · x2s

...
. . .

...
xs2−s+1 · · · xs2

 .
Further define the s× s matrices of F[x] linear forms B =

[
bij
]

and C =
[
cij
]
.

From these matrices one can construct the matrices E1 = AB and E2 = AC.
Then we construct a system of m polynomials by concatenating the vectoriza-
tions of these two products: F = V ec(E1)‖V ec(E2). The public key is then
P = T ◦ F ◦ U . (Note that we can eliminate U by replacing A with random
linear forms.)

In the rectangular version of this scheme we replace A by a similar r ×
s version (and we can make the matrices B and C of size s × u and s × v,
respectively) where the algebra still works the same.

2.2 Encryption and Decryption

Encryption is accomplished by evaluating the public key at a plaintext value
encoded as a vector x. One computes P (x) = y.
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Decryption is accomplished by inverting each of the components of the public
key. One first sets v = T−1(y). Then v can be split in half producing v1 and v2.
Each of these can be parsed as a matrix by inverting the vectorization operator
E1 = Mat(v1) and E2 = Mat(v2).

We note that we can consider this pair of matrices as values derived from
functions on either the inputs x or the outputs y. The legitimate user knows
both of these representations. We will abuse notation slightly and denote these
functions as E1(u), E1(v), E2(u) and E2(v), where v = F (u) (and we use
similar notation for functions of u representing the matrices A, B and C. Thus,
we have computed E1 = E1(v) and E2 = E2(v). These values must be equal to
Ei(u). For both values of i, the function involves a left product by the square
matrix A(u). We construct a matrix W of new variables wi for 0 < i ≤ s2.
We suppose that the correct assignment of values in A(u) produces a matrix
with a left inverse, so the correct assignment of variables wi produces a valid left
inverse. Then we have

WE1 = WE1(u) = WA(u)B(u) = B(u),

and similarly for E2. Since the legitimate user knows the linear forms bij and
cij , this setup provides a system of m = 2s2 equations in the s2 +s2 variables wi

and ui. Via Gaussian elimination, the wi variables can be eliminated and values
for ui can be recovered.

Once u is recovered, one applies the inverse of U to this quantity to recover
x, the plaintext.

3 Previous Cryptanalysis

In this section, we summarize the technique from [15] recovering a secret key
in the square case, that is when r = s, via MinRank informed by differential
invariant structure. For convenience, we present the relevant definitions we will
use in Section 4, possibly generalized to the rectangular setting.

The main object used in the attack from [15] is the discrete differential of
the public key.

Definition 1 Let F : Fn → Fm. The discrete differential of F is a bivariate
analogue of the discrete derivative; it is given by the normalized difference

DF (a,x) = F (a + x)− F (a)− F (x) + F (0).

DF is a vector-valued function since the output is in Fm. Since DF is bilinear, we
can think of each coordinate DFi as a matrix. We can then consider properties
of these matrices as linear operators. In particular, we can consider rank and
perform a MinRank attack.

Definition 2 The MinRank(q, n,m, r) Problem is the task of finding a linear
combination over Fq of m matrices, DQi, of size n × n such that the resulting
rank is at most r.
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Although there are many different techniques for solving MinRank, the most
relevant technique here is known as linear algebra search. One attempts to guess
` = dmn e vectors that lie in the kernel of the same map. Since matrices with low
rank have more linearly independent vectors in their kernels, the distribution
of maps whose kernels contain these vectors is skewed toward lower rank maps.
Therefore, to solve MinRank, one guesses ` vectors xi, sets up the linear system

m∑
i=1

τiDQixj = 0,

for j = 1, . . . , `, solves for τi and computes the rank of
∑m

i=1 τiDQi. If the rank
is at or below the target rank then the attack has succeeded. Otherwise another
set of vectors is chosen and the process continues.

In [15], the attack is formulated in the language of differential invariants.

Definition 3 A subspace differential invariant of a vector-valued map F is a
triple of vector spaces (X,V,W ) such that X ⊆ Fm, and V,W ⊆ Fn satisfying
(x ·DF )V ⊆W for all x ∈ X where dim(W ) ≤ dim(V ).

In other words, a subspace differential invariant is a subspace X of the span of
the DFi along with a subspace that is mapped linearly by every map in X into
another subspace of no larger dimension. The definition is supposed to capture
the idea of a subspace of the span of F acting like a linear map on a subspace
of the domain of F .

Differential invariants are related to low rank, but not equivalent. They are
useful at providing an algebraic condition on interlinked kernels, that is, when
there are very many maps in the span of F that have low rank and share a large
common subspace in their kernels, see [33]. In such a case, the invariant structure
provides a tiny and insignificant savings in some linear algebra steps after the
hard MinRank step of the attack is complete. The main value of the idea lies in
providing algebraic tools for determining whether an interlinked kernel structure
is present in a map.

Considering the Simple Matrix Scheme, there are maps in the span of the
public maps that correspond to products of the first row of A and linear combi-
nations of the columns of B and C. The differential of this type of map has the
following structure, where gray indicates possibly nonzero coefficients.

Dg =

This map is clearly of low rank, probably 2s, and illustrates a differential in-
variant because a column vector with zeros in the top s entries is mapped by
this matrix to a vector with zeros in everything except the top s entries. Also,



6 D. Apon, D. Moody, R. Perlner, D. Smith-Tone & J. Verbel

it is important to note that there is an entire u+ v dimensional subspace of the
public key corresponding to the X in Definition 3 that produces differentials of
this shape which we call a band space. There is nothing special about the first
row. We could use anything in the rowspace of A and express our differential as
above in the appropriate basis. This motivates the following definition modified
from [15, Definition 4]:

Definition 4 Fix an arbitrary vector v in the rowspace of A, i.e. v =
∑r

d=1 λdAd

where Ad is the dth row of A. The u + v dimensional space of quadratic forms
Bv given by the span of the columns of vB and vC is called the generalized
band-space generated by v.

Thus, recovery of an equivalent private key is accomplished by discovering r
linearly independent band spaces in the span of the public key. Since these maps
all share the property that they are of rank 2s, the band spaces can be recovered
with a MinRank attack.

Due to the differential invariant structure, it is shown in [15] that there is a
significant speed-up in the standard linear algebra search variant of MinRank.
The attack proceeds by finding dmn e vectors in the kernel of the same band space
map.

A series of statements about such maps are proven in [15] in the square case
revealing the complexity of the MinRank step of the attack.

Definition 5 Let u1, . . . , urs be the components of Ux and fix an arbitrary vec-
tor v in the rowspace of A, i.e. v =

∑r
d=1 λdAd where Ad is the dth row of A.

An rs-dimensional vector, x is in the band kernel generated by v, denoted Bv if
and only if

∑r
d=1 λduds+k = 0 for k = 1, . . . , s.

As shown in [15] membership in the band kernel requires that s linear forms
vanish; the probability of this occurrence is q−s. They then show that given two
maps in the same band kernel, the probability that they are in the kernel of
the same band space map is q−1. Therefore the complexity of searching for a
second vector given one vector in a band kernel is qs+1. Since A is singular with
probability approximately q−1 for sufficiently large q, the total probability of
randomly selecting two vectors that are simultaneously in the kernel of the same
band space map is q−s−2.

While in [15] it was noted that there are some dependencies in the linear
systems resulting in the need to search through a nontrivial space in the case that
the characteristic is 2 or 3, it was discovered in [17] that we can add constraints
to the system reducing the dimension and eliminating the search. Therefore the
complexity of searching for a band space map is the same for all fields. The
techniques in [17] can also be adapted to require only 2 band space maps for key
recovery, the second of which can be found more cheaply by reusing one of the
vectors used to find the first band space map. Since we have to compute the rank
of an n × n matrix for each guess, the complexity of the attack is O(nωqs+2)
including the linear algebra overhead.
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4 Combinatorial Key Recovery, the Rectangular Case

The change from square instances of the Simple Matrix scheme to rectangular
instances was proposed in [30] as a way of improving efficiency by having smaller
fields while maintaining a low decryption failure rate. Still requiring a left inverse
of A, the proposal requires that r > s. Notice, however, that this implies that
there is a nontrivial left kernel of A(x) for any vector x!

Specifically, notice that since there are more rows than columns in A for the
new parameters, there is always a linear combination of the rows producing the
zero vector for any input. Thus, there is no search through plaintexts to find a
vector in some band kernel.

In fact, the situation is worse. Note that any plaintext x is guaranteed to
produce an A for which there are r − s linearly independent combinations of
row vectors producing zero. Therefore x is in very many distinct band spaces.
This fact reduces the complexity of finding a second vector in the band kernel
considerably, as we now show.

4.1 The Probability of Choosing a Second Band Kernel Vector

A vector u = (u1, u2, . . . , urs) belongs to a band kernel Bv if there is a nonzero
vector v ∈ Fr such that for i = 1, . . . , s

v · ui = 0, where ui = (ui, ur+i, . . . , u((r−1)s+i).

That is, each subvector ui belongs to the orthogonal space 〈v〉⊥.
Since the space 〈v〉⊥ has dimension r − 1, membership of each subvector in

this space can be modeled as the satisfaction of one linear relation; therefore,
there are a total of s linear constraints on u defining membership in the Bv.
Thus, for any uniformly chosen vector u ∈ Frs we have

Pr (u ∈ Bv) = q−s.

Now consider a vector w ∈ Fr linearly independent with v. The dimension of
the orthogonal space (w ⊕ v)⊥ is r − 2. Thus by the same reasoning as above,

Pr (u ∈ Bw ∩ Bv) = q−2s.

In the case r = s + 1, we are assured that a plaintext x gives us u ∈ Bv,
where u = Ux. Therefore membership of a second vector in the same band kernel
occurs with probability q−s, and the complexity of finding the second vector is
qs.

In the case that r > s+ 1, for each plaintext x we are guaranteed that there
are r− s linearly independent vectors v1, . . . ,vr−s such that u ∈ Bvi

. Therefore
u belongs to

` =
qr−s − 1

q − 1
= qr−s−1 + qr−s−2 + · · ·+ q + 1
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distinct band kernels. Let them be Bv1 ,Bv2 , . . . ,Bv` . Here it might be the case
that Bvi ∩ Bvj 6= Bvs ∩ Bvk , but all the intersections have the same dimension
rs − 2s. So, the probability u, chosen at random, belongs to one of them is
roughly

Pr

(
u ∈

⋃̀
k=1

Bvk

)
≈

(
∑r−s−1

i=0 qi)qrs−s −
(∑r−s−1

i=0 qi

2

)
qrs−2s

qrs

≈ qr−2s−1 − q2(r−2s−1)

≈ qr−2s−1.

Thus, the complexity of finding a second band kernel vector is roughly q2s+1−r.

4.2 The effect of u + v > 2s

A further effect of the rectangular augmentation of the Simple Matrix Scheme is
that it requires the number of columns of the matrices B and C to be increased
for efficiency. We therefore find that all of the proposed parameters with q < 232

have u+ v ≥ 2s+ 4.

Theorem 1 If x1 and x2 fall within the band kernel Bv, then they are both
in the kernel of some generalized band-space differential DQ =

∑
Qi∈Bv

τiDQi

with probability approximately q−1 if u+ v = 2s and probability 1 if u+ v > 2s.
Further, if u + v > 2s then there exists, with probability 1, some (u + v − 2s)-
dimensional subspace of Bv, all elements of which have both vectors in their
kernel.

Proof. There are two cases: (i) u + v = 2s and (ii) u + v > 2s. The first case
follows exactly from [15, Theorem 2]. The second case is new, so we focus on
this second case in what follows. This will be quite similar to the original proof,
but we include the full details for the reader.

A DQ meeting the above condition exists iff there is a nontrivial solution to
the following system of equations∑

Qi∈Bv

τiDQix1
T = 0

∑
Qi∈Bv

τiDQix2
T = 0.

(1)

Expressed in a basis where the first s basis vectors are chosen to be outside
the band kernel, and the remaining n − s basis vectors are chosen from within
the band kernel, the band-space differentials take the form:

DQi =


Si Ri

RT
i 0

 , (2)
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where Ri is a random s×n−s matrix and Si is a random symmetric s×s matrix.
Likewise x1 and x2 take the form (0| xk ). Thus removing the redundant degrees
of freedom we have the system of 2s equations in u+ v variables:

u+v∑
i=1

τiRix1
T = 0

u+v∑
i=1

τiRix2
T = 0.

(3)

This has a nontrivial solution precisely when the following matrix has a
nontrivial right kernel:

| | |
R1x1

T R2x1
T · · · Ru+vx1

T

| | |
| | |

R1x2
T R2x2

T · · · Ru+vx2
T

| | |

 (4)

By the assumption that u+v > 2s, this matrix has more columns than rows,
and therefore must have a nontrivial right kernel with probability 1. Moreover,
with probability 1, this right kernel has dimension at least u + v − 2s. There-
fore, any differential produced by taking the direct product of (Q1, ..., Qu+v),
where Q1, ..., Qu+v are the generators of Bv, and a right kernel vector of the
aforementioned matrix will have both x1 and x2 in its kernel.

4.3 Controlling the Ratio m
n

.

The new parameters presented in [30] added another feature to Simple Matrix:
the ability to decouple the number of variables n from the size rs of the matrix
A. The authors want to ensure that the number of equations is not significantly
more than twice the number of variables so that the first fall degree of the system
is not diminished.

In all but the case of q = 28, the authors of [30] propose parameters with
m = 2n. In the case of q = 28, however, the relationship is more complicated. All
parameters in this case are functions of s. Specifically, r = s+ 3, u = v = s+ 4,
n = s(s+ 8) and m = 2(s+ 3)(s+ 4). Therefore m− 2n = 24− 2s.

For small s, this change poses a challenge to the linear algebra search Min-
Rank method. The reason is that choosing merely two kernel vectors results in
a system that is underdetermined, and since the size of the field is still fairly
large q = 28, it is very costly to search through the solution space. On the other
hand, if we increase the number of kernel vectors we guess to three, we have an
additional factor of qs in our complexity estimate.

Luckily, there is an easy way to handle this issue. We simply ignore some of
the public differentials. Consider the effect of removing a of the public equations
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on the MinRank attack. If a ≥ m−2n, then we need to only consider dm−an e = 2
kernel vectors. Since the expected dimension of the intersection of any band
space, which is of dimension u+ v, and the span of the m− a remaining public
maps is (u+v)+(m−a)−m = u+v−a, we can apply Theorem 1 with u+v−a
in place of u+ v. We have now shown the following:

Corollary 1 Consider the public key P with a equations removed. Let B̂v be the
intersection of the band space Bv and the remaining public maps. If x1,x2 ∈ Bv,
then there exists a band-space differential DQ =

∑
Qi∈B̂v

τiDQi whose kernel

contains both x1 and x2 with probability approximately q−1 if u+v−a = 2s and
probability 1 if u+ v − a > 2s. Further, if u+ v − a > 2s then there exists, with
probability 1, some (u+ v − a− 2s)-dimensional subspace of B̂v, all elements of
which have both vectors in their kernel.

Considering the parameters from [30], we see that the largest value of a
required to produce a fully determined MinRank system with two kernel vectors
is in the case that s = 8 producing a = m−2n = 24−2s = 8. In this same set of
parameters u = v = s+ 4 so that u+ v = 2s+ 8. Therefore, Corollary 1 applies.

5 Improvements from a Reaction Attack

As noted in [30], the original proposal of the square version of Simple Matrix,
cf. [29], did not properly address decryption failures. To maintain performance
and avoid the attack from [15], the rectangular scheme was introduced with many
possible field sizes. Still, the proposed parameters only made decryption failures
less common but not essentially impossible. The smallest decryption failure rate
for parameters in [30] is 2−64 and the only parameters with sufficiently good
performance to advertise had decryption failure rates of 2−32.

These augmentations addressed decryption failures out of precaution, but
had no claim of how such failures could be used to undermine the scheme. In
this section we develop an enhancement of our combinatorial key recovery from
the previous section utilizing these decryption failures. To our knowledge, this is
the first example of a key recovery reaction attack against a multivariate scheme
in this context.

5.1 Decryption Failures in the Simple Matrix scheme

As described in Subsection 2.2, the decryption algorithm of Simple Matrix as-
sumes that the matrix A(u) has a left inverse. This property is exactly the same
assumption in the more general case of rectangular matrices as well. The failure
of A(u) to be full rank makes the decryption algorithm fail, producing decryp-
tion failures. One could imagine guessing which rows of WA could be made into
elementary basis vectors trying to recover linear relations on the values of u
to recover a quadratic system in fewer variables which may produce an unique
preimage, but this is costly in performance and still allows an adversary to detect
when A(u) is not of full rank.
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If we consider A to be rectangular, say r × s, then we need the number of
rows r to be greater than or equal to s. Then we may still have a left inverse W,
an s× r matrix satisfying WA = Is. The probability of the existence of at least
one such W is the same as the probability that the rows of A span Fs. Thus

Pr(Rank(A) < s) = 1−
r∏

i=r−s+1

(1− q−i) ≈ qs−r−1.

Notice that decryption failure reveals precise information about the internal
state of the decryption algorithm. Specifically, the quantityA(u) where u = U(x)
is not of full rank. Even for very large q, one requires a disparity in the values
r and s to make the decryption failure rate very low. Even for the parameters
proposed having the smallest decryption failure rate, q = 232 and r = s+ 1, the
probability of decryption failure is 2−64 and 264 decryption queries on average
are needed to detect a decryption failure.

5.2 The Reaction Attack

Consider, for a moment, the square case of the Simple Matrix Scheme, that is,
when r = s. In the search process, you try to find two vectors x1 and x2 that
are simultaneously in the kernel of the same linear combination of the public
differentials. For the search to succeed in finding a band map you need three
events to simultaneously occur: (P1) xi to be in the band kernel of a band space;
(P2) x3−i to be in the band kernel of the same band space; and, (P3) for them
to both be in the kernel of the same band space map.

The probability of these events occurring simultaneously is then

Pr(P1 ∧ P2 ∧ P3) = Pr(P1)Pr(P2|P1)Pr(P3|P1 ∧ P2) = q−1 · q−s · q−1 = q−s−2.

So, it takes qs+2 guesses in expectation to succeed in finding two such vectors
and thereby recover a band space.

Notice that decryption failure occurs when the matrix A is singular, which
is exactly the condition for membership in some band kernel. Thus, the first
vector lying in a band kernel need not be found by search. If you already have
access to a decryption failure producing plaintext, then the first condition is
satisfied saving a factor of q in complexity at the cost of q decryption queries.
So this component of q is now, in some sense, additive instead of multiplicative
in the complexity analysis of the attack. Therefore, if the decryption failure rate
is sufficiently low, a reaction attack can be employed.

We find that decryption failures provide a similar advantage in the rect-
angular case as well. When r > s, a decryption failure x assures the exis-
tence of r − s + 1 linearly independent vectors v1, . . . , vr−s+1 ∈ Fr such that
u ∈ Bv1 ∩ · · · ∩ Bvr−s+1

, where u = Ux. Thus we know for sure there are

` =
qr−s+1 − 1

q − 1
= qr−s + qr−s−1 + · · ·+ q + 1
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distinct band kernel spaces in which u belongs. Let them be Bv1 ,Bv2 , . . . ,Bv` .
Here it might be the case that Bvi

∩ Bvj 6= Bvs ∩ Bvk , but all the intersection
have the same dimension rs− 2s. So, the probability that u, chosen at random,
belongs to one of them is roughly

Pr

(
u ∈

⋃̀
k=1

Bvk

)
≈

(
∑r−s

i=0 q
i)qrs−s −

(∑r−s
i=0 qi

2

)
qrs−2s

qrs

≈ qr−2s − q2(r−2s)

≈ qr−2s.

6 Complexity

Noting that there is statistically no difference between using the input transfor-
mation U and choosing A to consist of random linear forms, we note that full
key extraction including the input and output transformations proceeds as in
[17]. Since this last part occurs after the recovery of the band spaces, it is of
additive complexity. Therefore the complexity of the attack is equivalent to the
MinRank step plus some additive overhead.

Recovering a band space then requires q2s+1−r iterations of solving a linear
system of size n and rank calculations on a matrix of size n. (Note that in this
case, finding the second map from the same band space is cheaper by a factor
of q.) Thus the complexity of the combinatorial key recovery is O(nωq2s+1−r),
where ω is the linear algebra constant. We note that in practice that assuming ω
takes a value of approximately 2.8 results in a big-oh constant of less than one.

In the case of the reaction attack, recovering two maps from a band space re-
quires only 2q2s−r iterations of system solving and rank calculations. Therefore,
for the reaction attack, the complexity is O(nωq2s−r). The actual complexity in
field operations for completing the attacks are listed in Table 3.

Using SAGE1 [31], we performed some minrank computations on small scale
variants of the ABC scheme. The computations were done on a computer with a
64 bit quad-core Intel i7 processor, with clock cycle 2.8 GHz. We were interested
in verifying our complexity estimates on the most costly step in the attack, the
MinRank instance, rather than the full attack on the scheme. Given as input the
finite field size q, and the scheme parameter s, we computed the average number
of vectors x required to be sampled in order to recover a matrix of rank 2s. For
our first experiment we set our parameters to u = v = s + 1, r = s + 2, and
n = ru = (s+ 1)(s+ 2). Our results are provided in Table 1.

For higher values of q and s the computations took too long to produce
sufficiently many data points and obtain meaningful results with SAGE. Our
analysis predicted the number of vectors needed would be on the order of
Exp=(q − 1)qs−3. Table 1 shows the comparison between our experiments and
the expected value. We only used a small number of trials, particularly for the
higher values of s listed for each q.

1 Any mention of commercial products does not indicate endorsement by NIST.
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We also ran another experiment exhibiting the behavior of the attack when
2n > m. We used u = v = s + 1, r = s + 2, and n = ru − 1 = s2 + 3s + 1.
We then threw away two of the equations generated. Our analysis predicted the
number of trials required to be roughly (q−1)qs−2. The resulting data are given
in Table 2. The expected number of trials was Exp=(q − 1)qs−2.

!htbp

s = 3 Exp s = 4 Exp s = 5 Exp s = 6 Exp s = 7 Exp

q = 2 1.8 1 3.0 2 4.7 4 6.6 8 15.8 16
q = 3 2.5 2 6.6 6 19.1 18 53.1 54 173 162
q = 4 3.1 3 11.9 12 47.6 48 189.0 192
q = 5 4.3 4 20.6 20 99.4 100 520.8 500
q = 7 6.5 6 40.6 42 281.4 284 1873 1988
q = 8 8 7 62.8 56 444.2 448
q = 11 9.8 10 113.6 110 1318.8 1210
q = 13 11.7 12 157.7 156 2026.7 2028

Table 1. Average number of vectors needed for the rank to fall to 2s. This experiment
used u = v = s + 1, r = s + 2, and n = ru = (s + 1)(s + 2).

!htbp

s = 3 Exp s = 4 Exp s = 5 Exp s = 6 Exp

q = 2 1.9 2 4.4 4 7 8 14.5 16
q = 3 5.9 6 16.3 18 47 54 138.9 162
q = 5 17.9 20 86.2 100 500.3 500 2137.3 2500
q = 7 36.6 35 277.7 245 2092.3 1715
q = 11 100.4 110 1175 1210
q = 13 148.3 156 1855.4 2028

Table 2. Average number of vectors needed for the rank to fall to 2s. This experiment
used u = v = s + 1, r = s + 2, and n = ru − 1 = s2 + 3s + 1, and did not use two of
the equations generated.

7 Conclusion

The rectangular version of the Simple Matrix Encryption Scheme is needed to
avoid a high decryption failure rate and known attacks. From the analysis made
in this paper, we conclude that the security of this version is actually worse than
that of the square version. Furthermore, we showed that decryption failures are
actually still exploitable in a concrete reaction attack that clearly undermines
the security claims of the scheme.

It is interesting to consider the historical difficulty of achieving secure multi-
variate public key encryption. Even using the relatively new approach of defining
public keys with vastly larger codomains— a change which on the surface would
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Scheme Sec. Level a Comb. Att. Comp. React. Att. Comp.

ABC(28, 11, 8, 12, 12, 264, 128) 80 8 275.6 267.6

ABC(28, 12, 9, 13, 13, 312, 153) 90 6 276.3 268.3

ABC(28, 13, 10, 14, 14, 364, 180) 100 4 285.0 277.0

Table 3. Complexity of our Combinatorial MinRank and Reaction attacks against
q = 28 parameters of the ABC Simple Matrix Encryption Scheme.

seem to allow much greater freedom in selecting secure injective functions— we
observe that essentially none of the recent such proposals have attained their
claimed level of security after scrutiny. Perhaps there is a fundamental barrier
ensuring that any efficiently invertible function must have some exploitable prop-
erty, such as low rank, preventing the advantage of privileged information of the
legitimate user from dramatically separating the complexity of that efficient in-
version from the adversary’s task. It seems that multivariate encryption is an
area still in need of significant development.
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