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Abstract

We investigate the exact round complexity of secure multiparty computation (MPC) against covert
adversaries who may attempt to cheat, but do not wish to be caught doing so. Covert adversaries lie in
between semi-honest adversaries who follow protocol specification and malicious adversaries who may
deviate arbitrarily.

Recently, two round protocols for semi-honest MPC and four round protocols for malicious-secure
MPC were constructed, both of which are optimal. While these results can be viewed as constituting
two end points of a security spectrum, we investigate the design of protocols that potentially span the
spectrum.

Our main result is an MPC protocol against covert adversaries with variable round complexity: when
the detection probability is set to the lowest setting, our protocol requires two rounds and offers same
security as semi-honest MPC. By increasing the detecting probability, we can increase the security guar-
antees, with round complexity five in the extreme case. The security of our protocol is based on standard
cryptographic assumptions.

We supplement our positive result with a negative result, ruling out strict three round protocols with
respect to black-box simulation.
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1 Introduction

The ability to securely compute on private datasets of individuals has wide applications of tremendous
benefits to society. Secure multiparty computation (MPC) [Yao86, GMW87] provides a solution to the
problem of computing on private data by allowing a group of parties to jointly evaluate any function over
their private inputs in such a manner that no one learns anything beyond the output of the function.

Since its introduction nearly three decades ago, MPC has been extensively studied with respect to various
complexity measures. In this work, we focus on the round complexity of MPC. This topic has recently seen
a burst of activity along the following two lines:

– Semi-honest adversaries: Recently, several works have constructed two round MPC protocols [GGHR14,
MW16, GS17, GS18, BL18] that achieve security against semi-honest adversaries who follow proto-
col specifications but may try to learn additional information from the protocol transcript. The round
complexity of these protocols is optimal [HLP11].

– Malicious adversaries: A separate sequence of works have constructed four round MPC protocols
[ACJ17, BGJ+18, HHPV18, CCG+19] that achieve security against malicious adversaries who may
arbitrarily deviate from the protocol specification. The round complexity of these protocols is op-
timal w.r.t. black-box simulation and crossing this barrier via non-black-box techniques remains a
significant challenge.

These two lines of work can be viewed as constituting two ends of a security spectrum: on the one hand,
the two round protocols do not offer any security whatsoever against malicious behavior, and may therefore
not be suitable in many settings. On the other hand, the four round protocols provide very strong security
guarantees against all malicious strategies.

Our Question. The two end points suggest there might be interesting intermediate points along the spec-
trum that provide a trade-off between security and round complexity. In this work, we ask whether it is
possible to devise protocols that span the security spectrum (as opposed to just the two end points), but do
not always require the cost of four rounds. More specifically, is it possible to devise MPC protocols with a
“tunable parameter” ε such that the security, and consequently, the round complexity of the protocol can be
tuned to a desired “level” by setting ε appropriately?

Background: MPC against Covert Adversaries. Towards answering this question, we look to the notion
of MPC against covert adversaries, first studied by Aumann and Lindell [AL07]. Intuitively, covert adver-
saries may deviate arbitrarily from the protocol specification in an attempt to cheat, but do not wish to be
“caught” doing so. As Aumann and Lindell argue, this notion closely resembles real-world adversaries in
many commercial, political and social settings, where individuals and institutions are potentially willing to
cheat to gain advantage, but do not wish to suffer the loss of reputation or potential punishment associated
with being caught cheating. Such adversaries may weigh the risk of being caught against the benefits of
cheating, and may act accordingly.

Aumann and Lindell model security against covert adversaries by extending the real/ideal paradigm for
secure computation. Roughly, the ideal world adversary (a.k.a. simulator) is allowed to send a special cheat
instruction to the trusted party. Upon receiving such an instruction, the trusted party hands all the honest
parties’ inputs to the adversary. Then, it tosses coins and with probability ε, announces to the honest parties
that cheating has taken place. This refers to the case where the adversary’s cheating has been detected.
However, with probability 1 − ε, the trusted party does not announce that cheating has taken place. This
refers to the case where the adversary’s cheating has not been detected.1

1The work of [AL07] also provides two other formulations of security. In this work, we focus on the above formulation.
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Our Results. Towards answering the aforementioned question, we investigate the round complexity of
MPC against covert adversaries. We provide both positive and negative results on this topic.

Positive Result. Our main result is an MPC protocol against covert adversaries with round complexity
2 + 5 · q, where q is a protocol parameter that is a function of the cheating detection parameter ε. When
q = 0, our protocol requires only two rounds and provides security against semi-honest adversaries. By
increasing q, we can increase the security guarantees of our protocol, all the way up to q = 1, when our
protocol requires seven rounds. We note, however, that by appropriately parallelizing rounds, the round
complexity in this case can in fact be decreased to five (see the technical sections for more details). Our
protocol relies on injective one-way functions, two-round oblivious transfer and Zaps (two-message public
coin witness indistinguishable proofs introduced in [DN00]).

As mentioned earlier, in this work, we consider the aforementioned formulation of security against
covert adversaries where the adversary always learns the honest party inputs whenever it decides to cheat.
An interesting open question is whether our positive result can be extended to the stronger model where the
adversary only learns the honest party inputs when its cheating goes undetected.

Negative Result. We supplement our positive result with a negative result. Namely, we show that security
against covert adversaries is impossible to achieve in strict three rounds with respect to black-box simulation.
We prove this result for the zero-knowledge proofs functionality in the simultaneous-broadcast model for
MPC.

1.1 Technical Overview

Negative Result. We start by briefly summarizing the main ideas underlying our negative result.
Recall that a black-box simulator works by rewinding the adversary in order to simulate its view. In a

three round protocol over simultaneous-broadcast model, the simulator has three potential opportunities to
rewind – one for each round. In order to rule out three round ZK against covert adversaries, we devise a
covert verifier strategy that foils all rewinding strategies in every round.

As a starting point, let us consider the first round of the protocol. In this case, a rushing covert verifier
can choose a fresh new first round message upon being rewound, which effectively leads to protocol restart.
Next, let’s consider the second round. Here, the covert verifier can choose to not be rushing, and instead
compute its second round message independent of the prover’s message in the second round. That is,
upon being rewound, the verifier simply re-sends the same message again and again, thereby making the
rewinding useless. Indeed, the main challenge is in ruling out successful rewinding in the third round.

One potential strategy for the covert verifier is to simply always abort in the third round. While such
a strategy would indeed work if our goal was to rule out ZK against malicious verifiers, it does not quite
work in the covert setting. This is because in this case, the simulator can simply request the prover’s input
(namely, the witness) from the trusted party and then use it to generate the view. Note that, this strategy
works because protocol abort counts as cheating behavior on behalf of the verifier.2

To rule out such “trivial” simulation, we devise a covert verifier strategy that “cheats only if cheated
with.” More specifically, our covert verifier behaves honestly in the third round if it receives an accepting
message from the prover; however, upon receiving a non-accepting message, it simply aborts. Clearly, this
verifier never aborts in the real world. However, when the simulator runs this verifier, it may always find that
the verifier aborts. Indeed, without the knowledge of the prover’s witness, and no advantage of rewinding

2One may ask whether modeling protocol abort as cheating could lead to scenarios where honest parties, in the presence of
network interruptions, are labeled as adversarial. We imagine that in such a scenario, one could put in place countermeasures,
where, e.g., a party is allowed to prove (in zero knowledge) honest behavior in the protocol (up to the point of purported abort) to
other parties in order to defend itself.

2



in the first two rounds, the simulator would not be able to generate an accepting third message. Moreover,
querying the trusted party on the prover’s input to generate the view would lead to a skewed distribution.

To establish a formal proof of impossibility, we show that the existence of a simulator can be used to
break soundness of the ZK protocol. We refer the reader to Section 5 for more details.

Positive Result. We now summarize the main ideas underlying our positive result.
The main insight behind our protocol is to perform random checking to ensure that the parties are

behaving honestly. Our strategy differs from prior works on MPC against covert adversaries in the following
manner: while prior works always check for malicious behavior in a manner such that the adversary is caught
with certain probability, we only initiate the checking procedure with certain probability. More specifically,
in our protocol, each party initiates the checking procedure with probability q. Indeed, this is what leads to
the variable round complexity of our protocol.

Armed with the above insight, we implement our protocol as follows:

– In the first round, the parties execute the first round of a two-round semi-malicious MPC protocol
(semi-malicious security proposed by [AJL+12] considers semi-malicious attackers that follow the
protocol specification, but may adaptively choose arbitrary inputs and random tapes for computing
each of its messages). In addition, the parties also commit to their inputs and random tapes, and
exchange the first round message of Zaps.

– In the second round, each party tosses a coin to determine with probability q, whether or not to vote
for initiating the verification mode. If its vote is “yes,” it announces it to the other parties. Otherwise,
it computes and sends the second round of semi-malicious MPC together with a Zap proving that the
second round message was computed honestly.

– If the total vote count is non-zero, then the parties execute the verification phase where each party
proves in zero-knowledge that it behaved honestly in the first round using the committed input and
randomness. To avoid malleability concerns, we in fact use simulation-extractable zero knowledge
(SE-ZK). When the verification mode ends (or if it was never executed), the parties execute the last
round of the protocol. Here, the parties who did not already vote for the verification phase complete
the second round of the two-round semi-malicious MPC, and additionally prove via Zap that the
second round was computed honestly.

– To enable simulation, we establish an alternative “trapdoor” witness for the Zap as follows. The
parties are required to commit to 0 in the first round, and prove in the verification mode that they
indeed committed to 0. Now, the trapdoor mode for Zap simply amounts to proving that a party had
in fact committed to 1.

At a first glance, the above protocol suggests a seemingly simple simulation strategy:

– The simulator starts by simulating the first round of the semi-malicious MPC, and commits to 1
(instead of 0).

– Next, the simulator always initiates the verification phase, where it uses the simulator-extractor of
SE-ZK to simulate the proofs as well as extract the adversary’s input and randomness.

– Finally, it simulates the second round of the semi-malicious MPC and completes the Zap using the
trapdoor witness.

A closer inspection, however, reveals several problems with the above strategy. A minor issue is that
the above strategy leads to a skewed distribution since the verification phase is executed with probability 1.
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This, however, can be easily resolved as follows: after completing extraction, the simulator rewinds to the
end of the first round and then uses random coins to determine whether or not to execute the verification
phase.

A more important issue is that the simulator may potentially fail in extracting adversary’s input and ran-
domness, possibly because of premature aborts by the adversary. Since aborts constitute cheating behavior, a
natural recourse for the simulator in this case is to send the cheat signal to the ideal functionality. Now, upon
learning the honest party inputs, the simulator rewinds to the beginning of the protocol, and re-computes
the first round messages of the semi-malicious MPC using the honest party inputs. But what if now, when
the verification phase is executed, the adversary no longer aborts? In this case, the distribution, once again,
would be skewed.

To tackle this issue, we develop a procedure to sample the first round message in a manner such that
the adversary aborts with roughly the same probability as before. We build on techniques from [GK96a] to
devise our sampling technique, with the key difference that unlike [GK96a] which perform similar sampling
with respect to a fixed prefix of the protocol, in our setting, we are sampling the very first message itself
without any prefix. We refer the reader to the technical section for more details on this subject.

Now, suppose that the trusted party sends the “detect” signal to the simulator. In this case, the simulator
must make sure that the verification phase is executed, and that an aborting transcript is generated. Towards
this end, the simulator tries repeatedly until it is able to find such a transcript. Indeed, this is guaranteed
given the aforementioned property of the re-sampled first round message. However, if the trusted party sends
“non-detect” signal, the simulator may still end up with an aborting transcript. One may notice that this is
not necessarily a bad thing since the simulator is able to detect cheating behavior with probability higher
than what is required by the trusted party. To this end, we consider a strengthened formulation of MPC
against covert adversaries where we allow the simulator to increase the detection probability by sending a
parameter εsim > ε to the trusted party. Upon receiving this parameter, the trusted party declares cheating
to the honest parties with probability εsim as opposed to ε.

We now highlight another technical issue that arises during simulation. In an honest protocol execution,
only a subset (and not necessarily all) of the honest parties may vote to initiate the verification phase. This
means that when the simulator attempts to launch the verification phase for the first time in order to extract
adversary’s inputs, it must use random coins for the honest parties repeatedly until it leads to at least one
honest party voting yes. In this case, the honest parties who do not vote for the verification phase must send
their second round messages of semi-malicious MPC (as well as Zaps) before the extraction of adversary’s
input and randomness has been performed. A priori, it is unclear how this can be done without trivially
failing the simulation.

We resolve this issue by using a new notion of free simulation for semi-malicious MPC. Roughly, we
say that semi-malicious MPC protocol has free-simulation property if it possible to simulate the messages of
all but one honest party using honest strategy (with respect to some random inputs) without the knowledge
of adversary’s inputs or output. Fortunately, as we discuss in the technical sections, the recent protocol of
[BL18] based on two-round semi-malicious OT satisfies the free simulation property.

The above discussion is oversimplified and ignores several other issues that arise during simulation; we
refer the reader to the technical sections for more details.

We address two natural questions that arise from our protocol

– Can we build a protocol that has a worst case round complexity of 4? We believe that similar ideas
from our work may in fact eventually result in a protocol with a worst case complexity of four rounds.
But given the complex nature of the known four round protocols [BGJ+18, HHPV18, CCG+19], any
attempt to transform them in to the setting of covert adversaries is unlikely to yield a clean protocol
and will only detract from the main underlying ideas of our presented protocol.

– A malicious party can always force a worst case complexity of five rounds. Our expected number of
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rounds is in fact for honest parties. On the one hand an adversarial party can always force the protocol
into verification mode, and such a strategy would force the adversarial party to provide a proof of
honest behavior. On the other hand, an adversary can cheat undetected if the protocol does not go into
verification mode thereby incentivizing a cheating adversary not to force verification mode.

1.2 Related Work

The round complexity of MPC has been extensively studied over the years in a variety of models. Here, we
provide a short survey of this topic in the plain model, focusing on the dishonest majority setting. We refer
the reader to [BGJ+18] for a more comprehensive survey.

Beaver et al. [BMR90] initiated the study of constant round MPC in the honest majority setting. Several
follow-up works subsequently constructed constant round MPC against dishonest majority [KOS03, Pas04,
PW10, Wee10, Goy11]. Garg et al. [GMPP16] established a lower bound of four rounds for MPC. They
constructed five and six round MPC protocols using indistinguishability obfuscation and LWE, respectively,
together with three-round robust non-malleable commitments.

The first four round MPC protocols were constructed independently by Ananth et al. [ACJ17] and
Brakerski et al. [BHP17] based on different sub-exponential-time hardness assumptions. [ACJ17] also
constructed a five round MPC protocol based on polynomial-time hardness assumptions. Ciampi et al. con-
structed four-round protocols for multiparty coin-tossing [COSV17a] and two-party computation [COSV17c]
from polynomial-time assumptions. Benhamouda and Lin [BL18] gave a general transformation from any
k-round OT with alternating messages to k-round MPC, for k > 5. More recently, independent works
of Badrinarayanan et al. [BGJ+18] and Halevi et al. [HHPV18] constructed four round MPC protocols
for general functionalities based on different polynomial-time assumptions. Specifically, [BGJ+18] rely on
DDH (or QR or N -th Residuosity), and [HHPV18] rely on Zaps, affine-homomorphic encryption schemes
and injective one-way functions (which can all be instantiated from QR).

Asharov et. al. [AJL+12] constructed three round semi-honest MPC protocols in the CRS model.
Subsequently, two-round semi-honest MPC protocols in the CRS model were constructed by Garg et al.
[GGHR14] using indistinguishability obfuscation, and by Mukherjee and Wichs [MW16] using LWE as-
sumption. Recently, two-round semi-honest protocols in the plain model were constructed by Garg and
Srinivasan [GS17, GS18] and Benhamouda and Lin [BL18] from two-round OT.

2 Definitions

We provide below the relevant definitions and our new definition of Free-Simulatability.

2.1 Secure Multi-Party Computation

A secure multi-party computation protocol is a protocol executed by n parties P1, · · · , Pn for a n-party
functionality F . We allow for parties to exchange messages simultaneously. In every round, every party is
allowed to broadcast messages to all parties. A protocol is said to have k rounds if the number of rounds in
the protocol is k. We require that at the end of the protocol, all the parties receive the output F(x1, . . . , xn),
where xi is the ith party’s input.

2.1.1 Adversarial Behavior

One of the primary goals in secure computation is to protect the honest parties against dishonest behavior
from the corrupted parties. This is usually modeled using a central adversarial entity, that controls the set
of corrupted parties and instructs them how to operate. That is, the adversary obtains the views of the
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corrupted parties, consisting of their inputs, random tapes and incoming messages, and provides them with
the messages that they are to send in the execution of the protocol.

Semi-Malicious Adversary A semi-malicious adversary is a stronger notion than semi-honest adver-
saries, but weaker than a malicious adversary. Formulation of this notion as presented in [AJL+12] is
follows:
A semi-malicious adversary is modeled as an interactive Turing machine (ITM) which, in addition to the
standard tapes, has a special witness tape. In each round of the protocol, whenever the adversary produces a
new protocol message m on behalf of some party Pk, it must also write to its special witness tape some pair
(x; r) of input x and randomness r that explains its behavior. More specifically, all of the protocol messages
sent by the adversary on behalf of Pk up to that point, including the new message m, must exactly match the
honest protocol specification for Pk when executed with input x and randomness r. Note that the witnesses
given in different rounds need not be consistent. Also, we assume that the attacker is rushing and hence may
choose the message m and the witness (x; r) in each round adaptively, after seeing the protocol messages
of the honest parties in that round (and all prior rounds). Lastly, the adversary may also choose to abort the
execution on behalf of Pk in any step of the interaction.
This definition captures the semi-honest adversary who always follows the protocol with honestly chosen
random coins (and can be easily modified to write those on its witness tape). On the other hand, a semi ma-
licious adversary is more restrictive than a fully malicious adversary, since its behavior follows the protocol
with some input and randomness which it must know. Note that the semi-malicious adversary may choose
the different input or random tape in an adaptive fashion using any PPT strategy according to the partial
view it has seen.

2.1.2 Security

Secure computation that guarantees security with abort can be formalized as follows:

Real World. The real world execution begins by an adversary A selecting any arbitrary subset of parties
PA ⊂ P to corrupt. The parties then engage in an execution of a real n-party protocol Π. Throughout the
execution of Π, the adversary A sends all messages on behalf of the corrupted parties, and may follow an
arbitrary polynomial-time strategy. In contrast, the honest parties follow the instructions of Π.

At the conclusion of all the update phases, each honest party Pi outputs all the outputs it obtained in the
computations. Malicious parties may output an arbitrary PPT function of the view of A.

For any adversary A with auxiliary input z ∈ {0, 1}∗, input vector −→x , and security parameter 1λ, we
denote the output of the MPC protocol Π by

REALA,Π

(
1λ,−→x , z

)
.

Ideal World. We start by describing the ideal world experiment where n parties P1, · · · ,Pn interact with
an ideal functionality for computing a function F . An adversary may corrupt any subset PA ⊂ P of the
parties. We denote the honest parties by H .

Inputs: Each party Pi obtains an initial input xi. The adversary Sim is given auxiliary input z. Sim selects
a subset of the parties PA ⊂ P to corrupt, and is given the inputs xk of each party Pk ∈ PA.

Sending inputs to trusted party: Each honest party Pi sends its input xi to the trusted party. For each
corrupted party Pi ∈ PA, the adversary may select any value x∗i and send it to the ideal functionality.

Trusted party computes output: Let x∗1, ..., x
∗
n be the inputs that were sent to the trusted party. The trusted

party sendsF(x∗1, ..., x
∗
n) to the adversary who replies with either continue or abort. If the adversary’s
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message is abort, then the trusted party sends ⊥ to all honest parties. Otherwise, it sends the function
evaluation F(x∗1, ..., x

∗
n) to all honest parties.

Outputs: Honest parties output all the messages they obtained from the ideal functionality. Malicious
parties may output an arbitrary PPT function of the adversary’s view.

The overall output of the ideal-world experiment consists of the outputs of all parties. For any ideal-
world adversary Sim with auxiliary input z ∈ {0, 1}∗, input vector−→x , and security parameter 1λ, we denote
the output of the corresponding ideal-world experiment by

IDEALSim,F

(
1λ,−→x , z

)
.

Security Definition. We say that a protocol Π is a secure protocol if any adversary, who corrupts a subset of
parties and runs the protocol with honest parties, gains no information about the inputs of the honest parties
beyond the protocol output.

Definition 1. A protocol Π is a secure n-party protocol computing F if for every PPT adversary A in the
real world, there exists a PPT adversary Sim corrupting the same parties in the ideal world such that for
every initial input vector −→x , every auxiliary input z, it holds that

IDEALSim,F

(
1λ,−→x , z

)
≈c REALA,Π

(
1λ,−→x , z

)
.

2.2 Free-Simulatability

We define below the property of free-simulatability for a semi-malicious protocol. At a high level, a 2-round
protocol computing f is said to satisfy the notion of free simulatability if there exists a simulator that can
simulate the view for an adversary, consisting of second round messages for all strict subsets of honest
parties, without querying the ideal functionality computing f . In addition, when it receives the output from
the ideal functionality, it should be able to complete simulation of the view. The definition augments the
definition of semi-malicious protocols (see Section 2.1) introduced in [BGJ+13].

Definition 2. Let f be an n-party functionality. A semi-malicious protocol computing f is said to satisfy
free simulatability if for all semi-malicious PPT adversaryA controlling a set of parties I in the real world,
there exists a PPT simulator Sim controlling the same set of parties such that for every input vector −→x ,
every auxiliary input z, for every strict subset J ⊂ H of honest parties, the following is satisfied

– free simulatability

{(
REALA1 (−→x , z),REALA2,J(−→x , z)

)}
≈c

{(
γ1, γ2

)∣∣∣ (γ1, state1) = Sim(z)

(γ2, state2) = Sim(J, state1, z)

}

– full simulatability

{(
REALA(−→x , z)

)}
≈c


(
γ1,
(
γ2, γ3

))∣∣∣ (γ1, state1) = Sim(z)

(γ2, state2) = Sim(J, state1, z)

γ3 = Sim(J, y, state2, z)
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H is the set of honest parties H := [n] \ I , REALA1 (−→x , z) is the view of the adversary in the first round for
the real execution of the protocol, REALA2,J is the view of the adversary A consisting of only messages from
honest parties in the set J in the second round of the real execution of the protocol, and REALA(−→x , z) is
the entire view of the adversary in the real execution of the protocol. Here y is the output received from the
ideal functionality computing the function f on the input vector −→x ∗ where the adversarial inputs have been
replaced by {x∗i }i∈I .

Remark 1. Note that this notion extends to any L round protocol, where instead of round 2, as in the
definition above, we require the properties for partial view of the L-th round of the protocol. The basic
GMW [GMW87] construction when instantiated with an appropriate semi-malicious OT (oblivious transfer)
protocol gives us such an L round protocol satisfying free simulatability.

For the 2 round setting, consider the 2 round semi-malicious protocol construction by Benhamouda and
Lin [BL18]. At a very high level, the protocol in [BL18] compiles any L-round semi-malicious protocol
into a 2 round protocol by garbling each next message function of the underlying L-round protocol. These
garbled circuits are sent in the second round of the protocol, where the evaluation of these garbled circuits
are enabled via a semi-malicious OT protocol. Importantly, to simulate the second round of their protocol,
the simulator proceeds by first simulating the underlying L-round protocol, and then using the simulated
transcript to simulate the garbled circuits. If the underlying L-round protocol satisfies free simulatability,
then a transcript absent some messages from the last round is simulated without querying an ideal function-
ality. For the parties whose garbled circuits need to be simulated, i.e. parties in the subset J as described
above, this transcript is sufficient since in the underlying L-round protocol parties send their last message of
the protocol independent of the last message from the other parties. Once the full transcript is generated on
querying the ideal functionality, the remaining garbled circuits are simulated. We refer the reader to [BL18]
for the details.

2.3 Zero Knowledge

Definition 3. An interactive protocol (P,V) for a language L is zero knowledge if the following properties
hold:

– Completeness. For every x ∈ L,

Pr
[
outV [P(x,w)↔ V(x)] = 1

]
= 1

– Soundness. There exists a negligible function negl(·) s.t. ∀x /∈ L and for all adversarial prover P∗.

Pr
[
outV [P∗(x)↔ V(x)] = 1

]
≤ negl(λ)

– Zero Knowledge. For every PPT adversary V ∗, there exists a PPT simulator Sim such that the
probability ensembles{

viewV [P(x,w)↔ V(x)]
}
x∈L,w∈RL(x)

and
{
Sim(x)

}
x∈L,w∈RL(x)

are computationally indistinguishable.

Remark 2. An interactive protocol is an argument system if it satisfies the completeness and soundness
properties. We say an interactive proof is input delayed if both the statement and witness are required only
for the computation of the last prover message.
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2.4 Input Delayed Non-malleable Zero Knowledge

Let Πnmzk = 〈P, V 〉 be a input delayed interactive argument system for an NP-language L with witness
relation RelL. Consider a PPT Man in the Middle (MiM) adversary A that is simultaneously participating
in one left session and one right session. Before the execution starts, both P , V and A receive as a common
input the security parameter 1λ, and A receives as auxiliary input z ∈ {0, 1}∗.

In the left session A interacts with P using identity id of his choice. In the right session, A interacts
with V , using identity ĩd of his choice. In the left session, before the last round of the protocol, P gets the
statement x. Also, in the right session A, during the last round of the protocol selects the statement x̃ to be
proved and sends it to V . Let ViewA(1λ, z) denote a random variable that describes the view of A in the
above experiment.

Definition 4 (Input Delayed NMZK). A input delayed argument system
Πnmzk = 〈P, V 〉 for NP-language L with witness relation RelL is Non-Malleable Zero Knowledge (NMZK)
if for any MiM adversary A that participates in one left session and one right session, there exists a PPT
machine Sim(1λ, z) such that

1. The probability ensembles {Sim1(1λ, z)}1λ∈N,z∈{0,1}∗ and
{ViewA(1λ, z)}λ∈N,z∈{0,1}∗ are computationally indistinguishable over 1λ, where Sim1(1λ, z) de-
notes the first output of Sim(1λ, z).

2. Let z ∈ {0, 1}∗ and let (View, w̃) denote the output of Sim(1λ, z). Let x̃ be the right-session statement
appearing in View and let id and ĩd be the identities of the left and right sessions appearing in View.
If the right session is accepting and id 6= ĩd, then RelL(x̃, w̃) = 1.

2.5 ZAP

Zap [DN00] are two-message public coin witness indistinguishable proofs, are defined as follows.

Definition 5. A pair of algorithms 〈P,V〉 where P is PPT and V is (deterministic) polytime, is a Zap for an
NP relation RelL if it satisfies:

1. Completeness: there exists a polynomial r such that for every (x,w) ∈ RelL,

PrP,r←$ {0,1}r(|X|) [V(x, π, r) = 1 : π ← P(x,w, r)] = 1

2. Adaptive Soundness: for every malicious prover P∗ and every λ ∈ N:

Prr←$ {0,1}r(|X|)

[
∃x ∈ {0, 1}λ \ L

π ∈ {0, 1}∗
: V(x, π, r) = 1

]
≤ 2−λ

3. Witness Indistinguishability: for any instance I = {(x,w1, w2) : w1, w2 ∈ RelL(x)} and any first
message sequenceR = {rx,w1,w2 : (x,w1, w2) ∈ I}:

{π ← P (x,w1, rx,w1,w2)}(x,w1,w2)∈I ≈c {π ← P (x,w2, rx,w1,w2)}(x,w1,w2)∈I
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3 Model

We describe in brief the motivation behind the model described in [AL07]. The model is intermediary to that
of semi-honest and malicious. At a high level, the model allows for the adversary to be caught sufficiently
often if it attempts to “cheat” during the protocol. The model formalizes the notion of “cheating” in the
manner described below.

We parameterize adversarial cheating with the parameter ε ∈ (0, 1], called the deterrence factor. The
parameter signifies that honest parties detect cheating with probability at least ε. The notion is also referred
to as security in the presence of covert adversaries with ε-deterrent. The ideal functionality is modified
to accept a special cheat message from the adversary. On receiving the message, the ideal functionality
sends the inputs of the honest parties to the adversary, and allows the adversary to set the output of honest
parties. It then tosses coins internally and announces, with probability ε, to the honest parties that cheating
has been detected. It should be noted that the adversary can always choose to cheat in the ideal world, but
would be detected with probability ε.

The following text is taken largely verbatim from [AL07] but for a few important changes. We discuss
these changes subsequent to the definition. At a high level, we strengthen the definition by allowing the
simulator to override the situation that the ideal functionality did not send a cheat detection message to the
honest parties, by forcing a detection message to be sent. This captures the intuition our protocol results in
the adversary getting caught with a higher probability than parameterized by ε.

We also note that for simplicity we only consider the setting where all parties receive the same output
and the definition naturally extends to the setting of each party receiving a different output. We denote the
set of adversarial parties by I .

Input: Each party obtains an input; the party Pi’s input is denoted by xi; we assume that all inputs are of
the same length denoted `. The adversary receives an auxiliary-input z.

Send inputs to trusted party: An honest party Pi sends its received input xi to the trusted party. The
adversarial parties, controlled byA, may either send their received input, or send some other input
of the same length ot the trusted party. This decision is made by A and may depend on the values
xj for j ∈ I and the auxiliary input z. Denote the vector of inputs sent to the trusted party by −→w .

Abort options: If an adversarial party sends wj = abortj to the trusted part as its input, then the trusted
party sends abortj to all of the honest parties and halts. If multiple parties send abortj , then the
trusted party picks only one of them (say, the one with the smallest j).

Attempted cheat option: If an adversarial party sendswj = cheatj to the trusted party as its input, then the
trusted party sends to the adversary all of the honest parties’ inputs {xj}j 6∈I (as above, if multiple
cheatj messages are sent, the trusted party ignores all but one). In addition,

1. With probability ε, the trusted party sends corruptedj to the adversary and all of the honest
parties.

2. With probability 1− ε, the trusted party sends undetected to the adversary. Following this, the
adversary can either:

– send corruptedi to the trusted party on behalf of a party in I . Then the trusted party sends
corruptedi to all of the honest parties and halts; or

– send output y of its choice for the honest parties to the trusted party. Then the trusted
party sends y to all honest parties.
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The ideal execution ends at this point.
If no wj equals abortj or cheatj , the ideal execution continues below.

Trusted party answers adversary: The trusted party computes y = f(−→w ) and sends y to A.

Trusted party answers honest parties: After receiving the output, the adversary either sends abortj ,
corruptedj for some j ∈ I , or continue to the trusted party. If the trusted party receives continue
then it sends y to all honest parties. Otherwise, if it receives abortj (resp. corruptedj) for some
j ∈ I , it sends abortj (resp. corruptedj) to all honest parties.

Outputs: An honest party always outputs the message it obtained from the trusted party. The adversar-
ial parties output nothing. The adversary A outputs any arbitrary (probabilistic polynomial-time
computable) function of the initial inputs {xj}j∈I , the auxiliary input z, and the messages obtained
from the trusted party.

The output of the honest parties and the adversary in an execution of the above ideal model is denoted
by IDEALCεf,Sim(z),I(

−→x , λ) where −→x is the vector of inputs, z is the auxiliary input to A, I is the set of
adversarial parties, and λ is the security parameter. REALπ,A(z),I(

−→x , λ) denotes the analogous outputs in a
real execution of the protocol π. When we talk about the corruptedi message, it is easier to think of this as
a “detect” message sent to the ideal functionality to alert the honest parties of a detected cheating.

Definition 6. Let f : ({0, 1}∗)n → {0, 1}∗ be a function computed on n inputs, π be an n-party protocol,
and ε : N → [0, 1] be a function. Protocol π is said to securely compute f in the presence of covert
adversaries with ε-deterrent if for every non-uniform probabilistic polynomial time adversaryA for the real
model, there exists a non-uniform probabilistic polynomial-time adversary Sim for the ideal model such that
for every I ⊆ [n]:{

IDEALCεf,Sim(z),I(
−→x , λ)

}
−→x ,z∈({0,1}∗)n+1;`∈N

≈c
{
REALπ,A(z),I(

−→x , λ)
}
−→x ,z∈({0,1}∗)n+1;`∈N

where every element of −→x is of the same length.

Remarks about our definition. We discuss the small but important changes to the definition of the ideal
functionality from that in [AL07]:

– We work with the explicit-cheat formulation in [AL07], wherein we don’t guarantee security of honest
party inputs if the adversary cheats. This is opposed to the setting where the honest party inputs are
secure if the adversary is caught cheating.

– In addition, we allow for the ideal world adversary to change the non-detection of cheating to a
detection. Specifically, when the ideal functionality sends undetected to the ideal world adversary,
it can choose to override this by subsequently sending a corrupted message to the ideal functionality
which is then sent to all honest parties. We note that the adversary can only change a non-detect
to detect, but not the other way round. This arguably strengthens the model allowing a cheating
adversary to be detected with a higher probability.

– While we define the above model, for our proofs we find it more convenient to work with an equivalent
model to the one described. In this model, the ideal world adversary can choose to send an additional
parameter εSim > ε in addition to the cheat message it sends to the trusted party. The trusted party
now uses this new εSim to determine whether or not cheating is detected by the honest parties. We still
allow the ideal world adversary to override an undetected message. Equivalence between the models
is easy to see since we essentially need to bias coins that detects with probability ε to one that detects
with probability εSim using the override option.

11



4 Protocol

Overview. The goal of covert secure computation is to provide the adversary enough of a deterrent to
deviate from the protocol. We want to do this while also minimizing the number of communication rounds
in our protocol. The basic idea is to run the protocol in two “modes”. The normal mode, where an adversary
can possibly get away by cheating; and the extend mode where the parties prove honest behavior via a (non-
malleable) zero-knowledge protocol. The normal mode requires only two rounds of communication, while
the extended mode requires five rounds. At the end of the first round of the nomal mode, parties vote to
determine whether they enter extend mode, where the vote of a party is determined by sampling coins with
parameter q. If there is even a single party that votes to go into extend mode, then all players run the extend
mode prior to executing the second round of the normal mode.

While it is possible to parallelize rounds of the non-malleable zero knowledge with the first and voting
rounds of the protocol, for simplicity of exposition we ignore this point for now. We shall make a note of
this at the end of our protocol.

Expected number of rounds. If the probability with which each party decides to vote for the extend
mode is q, the expected number of rounds for an honest execution of the protocol with n-parties will be
2 + 5 · (1 − (1 − q)n). We set the voting parameter to be q = min {2 · ε, 1}, where ε is the deterrent
parameter. This gives us a total of

2 + 5 ·
(

1− 1

e2·ε·n

)
rounds in expectation.

We achieve a simpler expression if we use the union bound. By the union bound, the probability of
going into extend mode is upper bounded by 2 · ε · n. This gives us 2 + 5 · (2nε) rounds in expectation,
which is close to 2 for small values of ε.

Note that an adversary can always choose to ignore q and always go into the extend mode thereby forcing
the worst case scenario of 7 rounds in the presence of an active adversary. As alluded to, our protocol can
be easily modified to be 5 rounds in the worst case (see Remark 3).

4.1 Components

We list below the components of our protocol.

– Com is a non interactive commitment which can be instantiated from injective one-way functions. We
use two instances of the protocol and denote the messages by com and icom, where the former will be
used as the commitment to the “trapdoor witness” for the Zap while the latter is the commitment to
the inputs. Subsequently referred to as “trapdoor commitment” and “input commitment” respectively.

– NMZK = (NMZK1,NMZK2,NMZK3,NMZK4,NMZK.Ver) is a four round non-malleable zero
knowledge protocol (NMZK) which can be instantiated from collision resistant hash functions [COSV17b].
The language for the NMZK protocol is described below. The corresponding simulator-extractor for
the NMZK is denoted by Simnmzk.

– Zap = (Zap1,Zap2,Zap.Ver) is Zap, i.e., a two-message public-coin witness indistinguishable proof.
The language for the Zap is described below.

– Π = (Π1,Π2,OUT) is a two round semi-malicious protocol computing the function f . OUT denotes
the algorithm to compute the final output. Let SimΠ denote the simulator for the protocol.
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We additionally require the protocol Π to satisfy the property of Free Simulatability, formally defined
in Appendix 2.2. The property ensures that we can simulate the second round messages of the protocol
for a strict subset of the honest parties without requiring the output. Such a protocol can be instantiated
from a two round semi-malicious OT protocol [BL18].

Notation. For notational convenience we make the use of the following conventions (i) we will ignore as
input to the protocols the security parameter, which we assume is implicit; (ii) for multi-round protocols, we
assume that the protocol maintains state and the previous round messages for the corresponding instances
are implicit inputs; (iii) TX [k] will indicate the transcript of protocol X for the first k round of the protocol,
with suitable superscripts as required. For the underlying semi-malicious protocol Π, this corresponds to
collecting all messages broadcast by the parties.

NP Languages. In our construction, we use proofs for the following NP languages:

1. Zap: We use Zap for language L, which is characterized by the following relation R

st = (TΠ[1],msg2, com, icom)
w = (x, r, rcom, ricom)

R(st,w) = 1 if either of the following conditions is satisfied:
(a) Honest: all of the following conditions hold

– icom is a commitment of Com w.r.t. to input (x, r and randomness ricom).
– msg1 is honestly computed 1st round message of Π w.r.t. to input x and r.
– msg2 is honestly computed 2nd round message of Π w.r.t. to input x, transcript TΠ[1] and r.

where TΠ[1] includes msg1.

(b) Trapdoor: com is a commitment of Com w.r.t. to input 1 and randomness rcom

2. NMZK: We use NMZK for language L̃, which is characterized by the following relation R̃

s̃t = (msg1, icom, com)
w̃ = (x, r, ricom, rcom)

R̃(s̃t, w̃) = 1 if all of the following conditions hold:
– icom is a commitment of Com w.r.t. to input (x, r and randomness ricom).

– com is a commitment of Com w.r.t. to input 0 and randomness rcom
– msg1 is honestly computed 1st round message of Π w.r.t. to input x and r.

Our protocol will crucially use the fact that if relation R̃ holds, then the trapdoor witness for R cannot
hold.

4.2 Protocol Description

We now describe our protocol between n parties P1, · · · ,Pn. The input of party Pi is denoted by xi. The
protocol is parameterized by q which is set to be min {2 · ε, 1}.

Round 1: Pi computes and broadcasts the following:
1. First round of the following protocols

– Semi-malicious MPC Π: msg1,i ← Π1(xi, ri) using randomness ri.
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– Zap: for all j 6= i: zapj→i1 ← Zap

2. Non-interactive commitments Com

– icomi ← Com((xi, ri); ricom,i) to (xi, ri)

– comi ← Com(0; rcom,i) to 0.

Round 2 (E.1): At the end of round 1, Pi determines whether it votes to go into extend mode, or directly go to
normal mode. It does so by tossing a coin that outputs 1 with probability q. If the output is 1, set voteExtend = 1,
broadcast extendi and go to Extend Mode. Else, set voteExtend = 0 and go to Normal Mode and broadcast
messages of Normal Mode described below.

Extend Mode: If there is even a single party that votes to go into the extend, then round E.1 counts as the first
round of the extend mode. The parties prove honest behavior of the first round via a four round non-malleable
zero-knowledge protocol. If during the Extend Mode, a party does not send the expected message, Pi aborts and
sets its output as corrupted.

Round E.2 Pi does the following:
1. If parties sent Normal Mode messages, store them for later use.

2. Compute and broadcast the following first round messages:

– NMZK: for all j 6= i, nmzkj→i1 ← NMZK1

Round E.3 Pi computes and broadcasts the following second round messages:
1. NMZK: for all j 6= i, nmzki→j2 ← NMZK2

Round E.4 Pi computes and broadcasts the following third round messages:
1. NMZK: for all j 6= i, nmzkj→i3 ← NMZK3

Round E.5 Pi computes and broadcasts the following fourth round messages:
1. NMZK: for all j 6= i, nmzki→j4 ← NMZK4(s̃ti, w̃i) to prove that R̃(s̃ti, w̃i) = 1, where

Statement s̃ti :=
(
msg1,i, icomi, comi

)
Witness w̃i := (xi, ri, ricom,i, rcom,i)

Normal Mode: a Pi does the following:
We separate out the steps performed based on how Pi arrived at the Normal Mode.

– If Pi sent extendi it performs all the operations. Since we’re guaranteed that the party has already completed
execution of Extend Mode.

– If Pi did not send extendi, we split its arrival into two cases:

– if it comes prior to completion of Extend Mode, it performs all the operations other than the NMZK
check.

– if it comes after completion of Extend Mode, then we do only the checks for the NMZK. This is
because it has already sent out its corresponding messages of Normal Mode when it sent out the
second round message without voting to go to Extend Mode.

1. If voteExtend = 1, check the NMZK proofs. If any of the checks do not succeed, abort computation and
output corrupted.

– for all k, j 6= i, NMZK.Ver
(
s̃tj ,T

j→k
nmzk[4]

)
?
= 1

2. Compute and broadcast second round messages of the following protocols:

– Π: msg2,i ← Π2 (xi,TΠ[1], ri)

– Zap: for all j 6= i, zapi→j2 ← Zap2 (sti,wi) to prove that R(sti,wi) = 1, where
Statement sti :=

(
TΠ[1],msg2,i, comi, icomi

)
“Honest” Witness wi := (xi, ri, rcom,i,⊥)
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If voteExtend = 0, check if ∃Pj that sends extendj at the end of the first round. If so, set voteExtend = 1 and go
to Extend Mode. In this case we will have to run the Normal Mode again.
If no party has voted to go into extend mode, then we’re done.

Output Phase. Pi does the following,
1. Check the Zap proofs.

– for all k, j 6= i, Zap.Ver
(
stj ,T

j→k
zap [2]

) ?
= 1

– If any of the Zap proofs do not verify above, do the following and abort:
(a) if Extend Mode was executed, output ⊥
(b) else output corrupted.

2. Compute the output of the function y ← OUT(xi, ri,TΠ[2])

aDifferent parties may execute parts of Normal Mode at different points in the protocol.

Remark 3. It is easy to observe that we can bring down the worst case round complexity to five rounds if
the computations performed in E.2 and E.3 are moved to Round 1 and 2 respectively. In this setting, the
expected number of rounds are 2 + 3 · (1− (1− q)n), or alternatively 2 + 3 · (2nε)

Theorem 1. Assuming the existence of injective one-way functions, collision resistant hash functions, semi-
malicious oblivious transfer and ZAPs, the above protocol securely computes f in the presence of covert
adversaries with deterrent ε.

To ensure that honest parties correctly identify when an adversarial party has cheated, the proof of our
protocol is quite intricate, and we describe the proof below..

4.3 Proof of Security

Consider a malicious non-uniform PPT adversary A who corrupts t < n parties. We denote byH the set of
uncorrupted parties. We abuse notation slightly and also considerA to refer to the subset of parties corrupted
by the adversary. In the ideal world, the functionality F has deterrent parameter ε.

4.3.1 Description of the simulator

We briefly describe the high level overview of the simulator.

– The simulator starts by simulating the first round of the protocol, and always enters the extend mode
to determine if the adversary cheated in the first round.

– Once in the extend mode, the simulator attempts to extract the adversary’s input from the NMZK.

– if the simulator is able to extract, it uses the extracted input to complete the simulation by restart-
ing the protocol from after the completion of the first round. This completes the simulation.

– if after sufficient number of attempts (to establish a high confidence), the simulator is unable
to extract the inputs, it determines that the adversary is cheating with a high probability and
proceeds accordingly.

– Now that the simulator has determined that the adversary has cheated, the simulator first estimates the
probability that the adversary aborts, and then sends a cheat message (with the appropriate parameter)
to the ideal functionality.

– The simulator then receives the honest inputs and is notified if the cheating was detected.
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– With the honest inputs, the simulator samples a first round message such that the adversary aborts
the same number of times, as before, in the extend mode. This is done to ensures an appropriate
distribution.

– Now, based on whether on whether the ideal functionality reported cheating, the simulator samples an
aborting transcript or skips the extend mode altogether. This needs to be done carefully to ensure that
the distribution matches that of the real protocol.

We now give a formal description of the simulator.

Simulator Sim

Initial Phase The simulator does the following:

1. Round 1 Sim performs the following actions:

– Commit to inputs 0 for all honest parties via the non-interactive commitment. ∀i ∈ H icomi :=
Com (0; ricom,i)

– Commit to 1 in the non-interactive commitment to the trapdoor. ∀i ∈ H comi := Com (1; rcom,i)

– First round message of the Zap. Specifically ∀i ∈ H,∀j ∈ [n] \ {i} zapj→i1 ← Zap(1λ)

– First round of the underlying protocol using input 0. ∀i ∈ H,
({

msg1,i

}
i∈H , state1

)
:=

SimΠ(1λ,H)

– Send the computed messages to A, and receive corresponding first round messages from A.

2. Go to Extend Mode. Sim always goes to the Extend Mode by doing the following.

– For each honest party, Sim samples independently a coin that outputs 1 with probability q. If all coins
return 0, repeat till there is at least one honest party with output of coin toss 1.

– For each honest party Pi
– If coin toss above returned 1, set message to be extendi.

Else, let V be the set of parties that did not vote to go into extend mode. Simulate the Normal Mode
messages of these parties as follows:

– For the underlying protocol, use the Free-Simulatability property of SimΠ

({
msg2,i

}
i6∈V

)
←

SimΠ (V, state2) . We know that from the free simulatability property of the underlying protocol
Π, and the guarantee that at least one honest party has its coin toss set to 1, the simulator of the
underlying protocol can simulate the second round messages of Pi of the underlying protocol.

– Use the trapdoor witness ricom,i for the Zap ∀i ∈ V , set statement

sti :=
({

msg1,j

}
j∈[n]

,msg2,i, comi, icomi

)
wi := (⊥,⊥,⊥, rcom,i)

∀j ∈ [n] \ {i}, compute zapi→j2 ← Zap
(
sti,wi, zap

i→j
1

)
– Send above set message to A, and receive corresponding messages from A. Since we are definitely

going to Extend Mode, we ignore messages sent by A.

3. Extraction from the NMZK in Extend Mode. Select a super-log parameter p2 = log2 n. Set counter = 0

(a) If counter = p2, go to Extraction Fail Phase described below. Else, continue
(b) Run Simnmzk for rounds E.2 to E.5. This is done by relaying messages between Simnmzk and A. We

note that there are no other protocol messages for this period.
(c) If Simnmzk returns ⊥, increment counter to be counter := counter + 1. This happens if the extractor

returns ⊥ (for example, if the adversary aborted).
Else, go to Step 4 to send extracted inputs to F .

(d) Go to step (a) and run Simnmzk with fresh randomness.
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4. Send extracted inputs to F . Sim only reaches this point if Simnmzk succeeded in extracting inputs from
A. Send extracted inputs {xj}j∈A to F to receive output y.

5. Rewind the adversary to after the first round.

6. Sim now simulates the rest of the protocol on behalf of the honest parties as follows:

– Sample vote for Extend Mode for each honest party using independent random coins, and accordingly
send messages to A.

– If any party, honest or controlled by A, votes to go into Extend Mode, complete the NMZK by
simulating the proof using Simnmzk.

– For the second round of the Normal Mode, simulate the messages on behalf of the honest parties, that
did not send the extend message, using the output y received from F . Specifically,

{
msg2,i

}
i∈H ←

SimΠ (V, y, state2)

– Use the trapdoor witness rcom,i for the Zap. ∀i ∈ H, set statement

sti :=
({

msg1,j

}
j∈[n]

,msg2,i, comi, icomi

)
wi := (⊥,⊥,⊥, rcom,i)

∀j ∈ [n] \ {i}, compute zapi→j2 ← Zap
(
sti,wi, zap

i→j
1

)
7. If A aborts during the computation of Zap after computing Extend Mode, send abort to the ideal function-

ality; else if A aborts at any other point, send corrupted to the ideal functionality.

8. If the Zap and NMZK from A verify, send continue to F to deliver the output to the honest parties.

9. Output Transcript. Output transcript.

Extraction Fail Phase. Sim enters this phase only if all p2 runs of Simnmzk returned ⊥. Thus, Sim has
determined A has cheated, and needs to send cheat to F .

1. Estimate abort. We need to estimate the probability (over the randomness used in the first round) that
Simnmzk fails in all p2 attempts. This is done exactly as in [GK96a]. We denote the true probability of this
event to be δ, and will denote its estimate by δ̃. We do this since we need to sample a first round message
that will fail all p2 attempts when executed with Simnmzk.

– Sim fixes a polynomial t = poly(λ), where t is picked such that Pr
[

1
2 ≤

δ

δ̃
≤ 2
]
> 1− 2λ.

– Repeat Steps 1, 2 and 3 of the Initial Phase repeatedly using fresh randomness in the first round of
the simulation until A causes Simnmzk to abort in all p2 attempts t times.

– Estimate δ as δ̃ = t
(# of repetitions) .

Note that we’re not estimating this for a fixed first message.

2. Send εSim and cheat to F . (Refer to the remark in the model in Section 3.) We set the value of εSim to be

εSim :=
(

1− (1− q)|H|
)
· 1

2
where

(
1− (1− q)|H|

)
is the probability that at least one honest party votes to go to the extend mode. 1

2
loosely estimates the probability that A will abort in the Extend Mode given the first round message. This
will be suitably modified subsequently. Send εSim and cheat to F . Since(

1− (1− q)|H|
)
≥ (1− (1− q)) = q,

we have εSim ≥ q
2 = ε as required.

3. Receive inputs of honest parties along with either corrupted or undetected.
If received corrupted then

Store (YES,YES).
Else //received undetected from F
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Toss a coin that outputs 1 with probability εSim
1−εSim .

If output of coin toss 1 then
Store (YES,NO).

Else
Store (NO,⊥).

End
End
If the trusted party sends corrupted, we store (YES,YES) to indicate that the honest parties go into Extend
Mode and that cheating is detected. If not, we toss a coin to determine whether we go into Extend Mode
anyway. If so, we store this as (YES,NO). It is possible that in this case we override undetected to send
corrupted. Lastly, (NO,⊥) is stored if we will not enter Extend Mode on behalf of the honest parties (the
adversary can still force extend mode). Subsequent to storing these values, the simulation will restart the
protocol from scratch. The strategy that the simulator follows is determined by the tuple stored above.

4. Choose appropriate first round message. We now restart the first round of the protocol using the honest
inputs obtained from F . But we need to pick a first round message such that the honest execution of the
NMZK aborts on all p2 attempts. We will use the estimate δ̃ for this purpose. Repeat the following procedure
at most min

(
t

δ̃
, 2λ
)

times

– Using fresh randomness and honest inputs, compute the first round messages of the protocol.
– As in the Initial Phase, repeat steps 2 and 3. If Simnmzk aborts on all p2 threads, select the first

message picked in the first round and go to Step 5.

If no first round message picked, output fail and abort simulation. Note that the first round message comes
from a different distribution as compared to earlier, since we’re now behaving honestly in the first round.

5. If first stored value in the tuple is YES then
(a) Go to Extend Mode as in Step 2 of Initial Phase of the simulations.
(b) Run Extend Mode honestly on behalf of the honest parties using the honest execution of

NMZK.
(c) If second stored values YES (i.e. it is (YES,YES))) then

Repeat from after the first round until A aborts in Extend Mode.
//this is to ensure cheating is detected

Else //stored value is (YES,NO)
We sample an aborted thread with probability 2p−1±negl(λ) where p is the probability
that A aborts in the extended mode, and additionally send corrupted to F . This is done
as follows:
i. Repeat from after the first round to generate 3 threads.

ii. If all 3 threads above abort then
Output the first aborted thread.

Else
Estimate the value p to be p̃. This is done by fixing the first round and repeating
from after the second round with new randomness.
– With probability 2p̃−1−p̃3

1−p̃3 output the first aborted thread. If no aborted
thread in the above three sampled threads, repeat process till aborted thread
obtained.a

– With probability 1− 2p̃−1−p̃3
1−p̃3 output the first non-aborted thread.

End
End

Else //stored values is (NO,⊥)

(a) Sample coins on behalf of each honest party for the vote to enter Extend Mode. Repeat sam-
pling until no honest party votes to go into extended mode.
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(b) Run the rest of the protocol honestly using the obtained honest party inputs.
(c) If A votes to enter Extend Mode and then aborts then

Send corrupted to F and output the view.
Else

Complete the second round of the Normal Mode honestly.
End

End
6. For computing the output, recall that when a cheat message is sent to F , A can choose an output of its

choice. Additionally, note that Sim proceeds to Normal Mode only if F hasn’t already sent corrupted to
the honest parties.

– Sim on receiving A’s Normal Mode messages, computes the output as honest parties would, and
sends the resultant honest party output to F .

– A can choose to abort in the second round of the Normal Mode. If the Extend Mode was not
executed, send corrupted to F and abort. Else, send abort to F as the output.

aSince we’re in the case that the adversary aborted sufficiently often and thus p is close to 1, we only need a constant number
of tries in expectation.

Probability Calculation. Since our simulator’s behavior is determined by various events during its execu-
tion, we compute the relevant probabilities that determine its behavior.

We start by defining the following events for the real execution of the protocol:

BAD = if first message results in p2 aborts of Simnmzk

GOOD = BADc

EXTEND = protocol goes into Extend Mode
ABORT = Adversary aborts

Note that GOOD and BAD are events rather than message sets.

Remark 4. In the real world, there is no notion of Simnmzk. The above event GOOD (and correspondingly
BAD) indicates that if one were to hypothetically run the Simnmzk extraction procedure for an honestly
generated first round message in the real world, it would result in p2 aborts.

Let us denote the following probabilities,

γGOOD = Pr[GOOD]

γBAD = Pr[BAD]

qGOOD = Pr[EXTEND | GOOD]

qBAD = Pr[EXTEND | BAD]

pGOOD = Pr[ABORT | GOOD ∧ EXTEND]

pBAD = Pr[ABORT | BAD ∧ EXTEND]

p = Pr[EXTEND ∧ ABORT]

Note that qGOOD and qBAD could potentially differ from q since an adversary can choose to vote for
Extend Mode independent of the protocol parameter q.

Our interest is the probability p, as this corresponds to the probability with which honest parties output
corrupted in the real execution of the protocol. We represent p in terms of the probabilities defined above.
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Specifically,

p = Pr[EXTEND ∧ ABORT]

= Pr[EXTEND ∧ ABORT|GOOD]Pr[GOOD] + Pr[EXTEND ∧ ABORT|BAD]Pr[BAD]

= Pr[ABORT|EXTEND ∧ GOOD]Pr[EXTEND|GOOD]Pr[GOOD]

+ Pr[ABORT|EXTEND ∧ BAD]Pr[EXTEND|BAD]Pr[BAD]

= pGOOD · qGOOD · γGOOD + pBAD · qBAD · γBAD

Now, in the simulated world,

BAD = simulator goes to Extraction Fail Phase
GOOD = BADc

the analogous probabilities are denotes as γ̂GOOD,γ̂BAD, q̂GOOD, q̂BAD, p̂GOOD, p̂BAD, p̂.
In order to argue that the simulator outputs a transcript of the appropriate distribution, we specifically

compare the probability of the adversary aborting in the Extend Mode, i.e. p and p̂. From the above
discussion, it suffices to show that each of the individual probabilities are negligibly close in the real and
simulated worlds. In fact, for the real probabilities γGOOD,γBAD, qGOOD, qBAD, pGOOD the corresponding
probabilities in the simulated world differ only by a negligible amount. Intuitively, this will follow directly
from the indistinguishability of the underlying primitives when we simulate the corresponding components,
and will follow directly from our indistinguishability of the hybrids. What separates p̂BAD and pBAD from
them is that in the simulated world we do a lot of intricate sampling in an attempt to ensure that we arrive
at the right distribution. Therefore, we need to argue that p̂BAD and pBAD are negligibly close, i.e. we argue
that the probability of aborting in the extend mode given that the bad event happens are almost identical in
the real and simulated world.

Lemma 1. p̂BAD = pBAD ± negl(λ)

Proof. Note that in the real world, if the event BAD happens, the protocol is executed by continuing honestly.
On the other hand, in the simulated world, the simulator executes the Extraction Fail Phase, re-samples
first message and attempts to output an aborting thread with the appropriate probability (See Step 5 in the
Extraction Fail Phase).

To do so, we first show that if we obtain a message m that results in the event BAD, the following claim
holds. We denote message m resulting in event BAD as ‘m � BAD’.

Claim 1. For any message m that results in the event BAD,

Pr[EXTEND ∧ ABORT |m � BAD] = q̂BAD · pm ± negl(λ)

where pm = Pr[ABORT |m � BAD ∧ EXTEND]

Proof. Given the first message m that leads to BAD, say that the probability of going into Extend Mode is
q̂BAD. We can rewrite this probability as

q̂BAD = q̂honestYES + q̂honestNO

where q̂honestYES is the probability that one of the honest parties voted to go into Extend Mode, and
q̂honestNO is the probability that all honest parties voted against going to Extend Mode, but the adversary
voted to go to it.

Note that we, as the simulator, send εSim to F which is identical to q̂honestYES · 1
2 .
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– stored value is (YES,YES): in this case, F has sent corrupted to the honest parties. Thus, the proba-
bility of aborting is

εSim = q̂honestYES ·
1

2

– stored value is (YES,NO): in this case, we override undetected sent by F to corrupted with proba-
bility 2 · pm − 1± negl(λ). Thus, the probability of aborting is

(1− εSim) · εSim
1− εSim

· (2 · pm − 1± negl(λ)) = q̂honestYES ·
1

2
· (2 · pm − 1± negl(λ))

– stored value is (NO,⊥): in this case, send corrupted only if A aborts in the Extend Mode. Thus, the
probability of aborting is

q̂honestNO · pm

Therefore, the total probability of aborting is

q̂honestYES ·
1

2
+ q̂honestYES ·

1

2
· (2 · pm − 1± negl(λ)) + q̂honestNO · pm

= q̂honestYES · pm + qhonestNO · pm ± negl(λ)

= (q̂honestYES + q̂honestNO) · pm ± negl(λ)

= q̂BAD · pm ± negl(λ)

This completes our claim. Now, we sum over all messages that lead to BAD,

Pr[EXTEND ∧ ABORT | BAD] =
∑

m�BAD

Pr[EXTEND ∧ ABORT |m � BAD] · Pr[m � BAD]

= q̂BAD
∑

m�BAD

pm · Pr[m � BAD]± negl(λ)

= q̂BAD · pBAD ± negl(λ)

where
∑

m�BAD pm · Pr[m � BAD] = pBAD. By definition, we also know that

Pr[EXTEND ∧ ABORT | BAD] = q̂BAD · p̂BAD

This gives us pBAD = p̂BAD ± negl(λ).

As discussed, this suffices to argue that Sim outputs a transcript that aborts with probability negligi-
bly close to that of a real execution. We will see the direction application of this lemma in our hybrid
indistinguishability.

Correctness of Sim. For correctness, we need to argue that in Step 5(c) of the simulator, the described
simulation strategy indeed results in a thread that aborts with probability close to 2p− 1.

Lemma 2. For the stored value (YES,NO), simulator outputs an aborted thread with probability 2p− 1±
negl(λ).
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Proof. We are required to sample an aborted thread with probability 2p−1±negl(λ) without the knowledge
of p. As a first step, we estimate p as p̃.

Let E1 be the event that the simulator samples an aborted thread when the stored value is (YES,NO),
and E2 corresponds to the event that the first three sampled threads all aborted. Then,

Pr[E1] = Pr[E2] + Pr[Ec2] · 2p̃− 1− p̃3

1− p̃3
= p3 +

(
1− p3

)
· 2p̃− 1− p̃3

1− p̃3

= p3 +
(
1− p3

)
· (1− p̃)(p̃2 − 1 + p̃)

1− p̃3
= p3 +

(
1− p3

)
· (p̃2 − 1 + p̃)

1 + p̃ + p̃2

=
p3 ·

(
1 + p̃ + p̃2

)
+
(
1− p3

)
· (p̃2 − 1 + p̃)

1 + p̃ + p̃2

=
2p3 + p̃2 + p̃− 1

1 + p̃ + p̃2
=

2p̃3 + p̃2 + p̃− 1± negl(λ)

1 + p̃ + p̃2

= 2p̃− 1± negl(λ) = 2p− 1± negl(λ)

where 2p̃−1−p̃3
1−p̃3 is the probability that the first aborted thread is output given that not all 3 threads aborted.

The p̃ can be off by negligible, giving the ±negl(λ) error in the calculation.

Lastly, it must also be the case that the probability 2p̃−1−p̃3
1−p̃3 is non-negative. We prove this below.

Probability 2p̃−1−p̃3
1−p̃3 is non-negative. To output an aborted thread with probability 2p̃−1−p̃3

1−p̃3 , we need
to ensure that the probability is non-negative. Since (1 − p̃3) > 0 when p̃ < 1, it suffices to show that
2p̃− 1− p̃3 is non-negative.

2p̃− 1− p̃3 = p̃2 − p̃3 − 1 + 2p̃− p̃2

= p̃2(1− p̃)− (1− p̃)2 = (1− p̃)(p̃2 − 1 + p̃)

p̃2 − 1 + p̃ is non-negative for 3
4 < p̃ < 1. We show below that this is indeed the case.

Claim 2. Let E be the event that simulator goes to Extraction Fail Phase and then samples a first round
message m with pm < 3

4 . Then Pr[E] < negl(λ)

Proof. Let us split the proof into two cases:

– The fraction of first round messages m such that they abort with probability > 3
4 in the Extend Mode

is negligible. Then probability of aborting all p2 attempts is < (1− 1
4)p2 ≈ ec·p2 = ec·ω(logn) which

is negligible.

– The fraction of first round messages m such that they abort with probability > 3
4 in the Extend Mode

is noticeable. Let this be some distributionD1 that we’re sampling from. When we do the re-sampling
we sample from an indistinguishable distribution D2. If the fraction of first round messages m such
that they abort with probability > 3

4 in the Extend Mode is noticeable when sampled from D1, then
this must be true for D2 as well. If not, we can distinguish between the two distributions.

For the sake of contradiction, assume that Pr[E] = γ is noticeable.

Then there exists a fixed polynomial q = q(λ) such that in q attempts with probability at least 1− γ
2 ,

we find a message m by re-sampling from D2 such that it aborts in all p2 iterations of Extend Mode.

22



Let F be the event that we sampled a message that m that aborts in all p2 iterations of Extend Mode.
Now we get that from the union bound,

Pr[E] = Pr[E|F ]Pr[F ] + Pr[E|F c]Pr[F c] = Pr[E|F ]
(

1− γ

2

)
+ Pr[E|F c]γ

2

< negl(λ)
(

1− γ

2

)
+ 1 · γ

2
<
γ

2
+ negl(λ)

which gives us a contradiction.

Running time of Sim. We sketch below the proof of Sim’s running time.

Claim 3. Sim runs in expected time that is polynomial in λ.

Proof. It is easy to see that other than the estimation and sampling of the first round message, Sim runs in
poly(λ) time. We repeat the analysis in [GK96a] to show that this step too runs in expected polynomial
time.

The probability that Sim goes to Extraction Fail Phase is δ. The expected number of iterations during
estimation is t

δ , and the cut off point before Sim outputs fail is t

δ̃
< t

2δ . Note that this step may still take

time 2λ when the estimation δ̃ is incorrect, but this only happens with probability 2−λ Hence, other than
with negligible probability the expected running time of the estimation phase and sampling of first round
message is given by

poly(λ) · δ ·
(
t

δ
+

(
1− 1

2λ

)
2t

δ
+

(
1

2λ
· 2λ
))
≤ poly(λ)

4.3.2 Hybrids

We describe here the hybrids for our proof of indistinguishability.

Hybrid Hyb0: This is the real execution of the protocol.

Hybrid Hyb1: Hyb1 is the same as Hyb0 but the output thread is picked in the following manner:

– Initial Phase. Always enter Extend Mode on behalf of honest players by sampling coins repeatedly
until at least one honest party votes to go into Extend Mode.

1. Repeat Extend Mode p2 times.

2. If there is at least one execution thread where A did not abort, keep round 1 and restart from
after round 1 behaving honestly. Else, go to Extraction Fail Phase.

– Extraction Fail Phase. If all p2 threads in the Initial Phase aborted, we need to estimate the
probability that all p2 threads were aborted. This is done exactly as in Step 1 of Sim. Repetitions
are done by sampling fresh randomness for round 1 messages. Now repeat the following min

(
t

δ̃
, 2λ
)

1. Always enter Extend Mode on behalf of honest players by sampling coins repeatedly until at
least one honest party votes to go into Extend Mode.
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2. Repeat Extend Mode p2 times honestly.

3. If A aborts in all p2 threads, keep the round 1 and exit the loop. Else, continue.

If we fail to to find such a first round message, we output fail. Else, restart from after picked first
round message and follow honest strategy.

For the next few hybrids, we make changes only to the Initial Phase.

Hybrid Hyb2: Hyb2 is identical to Hyb1 except for the following changes:

– In the Initial Phase use the simulator-extractor Simnmzk in the Extend Mode.

– This includes all p2 threads and potentially one more if the Extend Mode is voted for by the parties
subsequent to the running of the p2 threads of the Initial Phase.

The Extraction Fail Phase remains unchanged.

Hybrid Hyb3: Hyb3 is identical to Hyb2 except that in the Initial Phase, we commit to 1 in comi on behalf
of all honest parties Pi.
The Extraction Fail Phase remains unchanged.

Hybrid Hyb4: Hyb4 is identical to Hyb3 except that we switch the witness used in the Zap sent by the
honest parties in the Normal Mode of the Initial Phase. Recall that the Normal Mode of the Initial Phase
is only reached if at least one of the p2 threads in the Initial Phase did not abort.
The Extraction Fail Phase remains unchanged.

Hybrid Hyb5: Hyb5 is identical to Hyb4 except that we commit to input 0 in icomi on behalf of every
honest party Pi.
The Extraction Fail Phase remains unchanged.
Note that we order this hybrid here since we can only make changes to the input commitment once we’re
using the “trapdoor witness” in the Zap.

Hybrid Hyb6: Hyb6 is identical to Hyb5 except that we now simulate the underlying protocol messages
using SimΠ. First, the first round Π component is replaced by the one returned by SimΠ. Then, if the Initial
Phase leads to at least a single non-aborting thread, we send the extracted adversarial inputs (using the
NMZK) to the ideal functionality, and receive the output. The output is then used to simulate the second
round messages of the underlying protocol. Recall that a non-aborting Initial Phase implies that the first
round messages of the underlying protocol were computed honestly.
The Extraction Fail Phase remains unchanged.

We now make changes to the Extraction Fail Phase while the Initial Phase remains unchanged.

Hybrid Hyb7: Hyb7 is identical to Hyb6 except that we now send a cheat to the ideal functionality when
we reach the Extraction Fail Phase. On receiving the honest parties’ inputs, use it in the entire execution
of the Extraction Fail Phase (excluding the estimation).
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At this point, we’ve stopped using honest inputs completely, other than those received from F . But we need
to modify how the honest party outputs are computed. To this end, we make these changes via the following
two hybrids.

Hybrid Hyb8: Hyb8 is identical to Hyb7 except that we determine the parameter εSim sent to the ideal
functionality along with subsequent overrides to corrupted. This is done identically to the simulation as
follows:

1. Set the value of εSim to be

εSim :=
(

1− (1− q)|H|
)
· 1

2
where

(
1− (1− q)|H|

)
is the probability that at least one honest party votes to go to the extend mode. 1

2
loosely estimates the probability that A will abort in the Extend Mode given the first round message.

2. Receive inputs of honest parties along with either corrupted or undetected.
If received corrupted then

Store (YES,YES).
Else //received undetected from F

Toss a coin that outputs 1 with probability εSim
1−εSim .

If output of coin toss 1 then
Store (YES,NO).

Else
Store (NO,⊥).

End
End

3. If first stored value in the tuple is YES then
(a) Go to Extend Mode as in Step 2 of Initial Phase of the simulations.
(b) Run Extend Mode honestly on behalf of the honest parties using the honest execution of NMZK.
(c) If second stored values YES (i.e. it is (YES,YES))) then

Repeat from after the first round until A aborts in Extend Mode.
//this is to ensure cheating is detected

Else //stored value is (YES,NO)
We sample an aborted thread with probability 2p−1±negl(λ) where p is the probability
that A aborts in the extended mode, and additionally send corrupted to F . This is done
as follows:
i. Repeat from after the first round to generate 3 threads.

ii. If all 3 threads above abort then
Output the first aborted thread.

Else
Estimate the value p to be p̃. This is done by fixing the first round and repeating
from after the second round with new randomness.
– With probability 2p̃−1−p̃3

1−p̃3 output the first aborted thread. If no aborted thread
in the above three sampled threads, repeat process till aborted thread ob-
tained.a

– With probability 1− 2p̃−1−p̃3
1−p̃3 output the first non-aborted thread.

End
End

Else //stored values is (NO,⊥)

(a) Sample coins on behalf of each honest party for the vote to enter Extend Mode. Repeat sampling
until no honest party votes to go into extended mode.
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(b) Run the rest of the protocol honestly using the obtained honest party inputs.
(c) If A votes to enter Extend Mode and then aborts then

Send corrupted to F and output the view.
Else

Complete the second round of the Normal Mode honestly.
End

End
aSince we’re in the case that the adversary aborted sufficiently often and thus p is close to 1, we only need a constant number

of tries in expectation.

Hybrid Hyb9: Hyb9 is identical to Hyb8 except for how the outputs of the honest parties are computed.
Previously the output of the honest parties was computed following the honest strategy. Since the ideal
functionality expects an output to send to the honest parties if A does not abort, we pass the computed
output to the ideal functionality.

Note that Hyb9 is identical to our simulator Sim.

4.3.3 Indistinguishability of Hybrids

Hyb0 ≈ Hyb1: We separate the analysis into two cases:

– If least one of the p2 threads in Initial Phase do not abort in Extend Mode, then the views output in
the two hybrids are the same. So in this case, they are identically distributed.

– If all p2 threads in Initial Phase abort, then the Extraction Fail Phase is executed. Since the round
1 message for the view is sampled from the same distribution, the views are identical except for the
case that fail is output. Below we prove that this happens only with negligible probability.

Claim 4. Probability fail is output is negligible.

Proof. Here, the estimation of p2 is done by running the Extend Mode of Initial Phase, where the
Extend Mode is run using the honest non-malleable zero knowledge (NMZK). When we sample a
first round message in Extraction Fail Phase, we run the honest NMZK too. Thus, the estimation
and the selection of the first round message come from the same distribution.

By our choice of parameters for estimation, we know that the estimate is correct up to a factor of 2
other than with negligible probability. Thus, with only negligible probability will we fail to sample
the appropriate first round message in the Extraction Fail Phase. Thus, the probability that fail is
output is negligible.

Hyb1 ≈ Hyb2: As before, we separate our analysis into two case. This follows from the fact that the
changes are only made in the Initial Phase.

– If at least one of the p2 threads in Initial Phase do not abort in Extend Mode, we output a view that
contains either:

– A transcript containing a single execution of the non-malleable zero knowledge (NMZK) output
by Simnmzk, if any party votes to go the Extend Mode.
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– A transcript without an execution of the NMZK. This occurs when no party votes to go to Extend
Mode.

In the first case, the view indistinguishability follows from the security of the NMZK when simulating
with Simnmzk. In the second case, the view output is identical

– If all p2 threads in Initial Phase abort, then the subsequent thread is executed.

Claim 5. Probability fail is output is negligible.

Proof. Here, the estimation of p2 is done by running the Extend Mode of Initial Phase, where the
Extend Mode is run using the simulator-extractor Simnmzk. On the other hand, when we sample a
first round message in the Extraction Fail Phase, we run the honest non-malleable zero knowledge.

This is exactly the analysis captured by [GK96a]. We denote by δ, the probability that adv aborts in
all p2 attempts when using the simulated NMZK in the Extend Mode. Let ρ denote the probability
of A aborting in all p2 attempts when using the honest execution of NMZK. From the security of the
NMZK, we require that |ρ− δ| is negligible. Else we break simulation-extraction security.

Pr[Sim outputs fail] = q
∑
i

(
Pr

[
1

δ̃
= i

])
(1− ρ)t·i

≤ δPr
[
δ

δ̃
≥ 1

2

]
(1− ρ)

t

δ̃ + δPr

[
δ

δ̃
<

1

2

]
≤ δ(1− ρ)

t
2δ + negl(λ) (1)

To show that the above equation is negligible in λ, we split the analysis into two cases:

– Case 1: ρ ≥ δ
2 . Substituting, we get

(1− ρ)
t
2δ ≤

(
1− δ

2

) t
2δ

< e−
t
4

which is negligible is λ since t is polynomial in λ.

– Case 2: ρ < δ
2 . To the contrary, let us assume Equation (1) is non-negligible. Then, there is a

polynomial poly(λ) and infinitely many values λ such that

δ ≥ δ(1− ρ)
t
2δ + negl(λ) >

1

poly(λ)
.

Thus δ > 1
poly(λ) for some polynomial poly(λ). This gives us

|δ − ρ| >
∣∣∣∣δ2
∣∣∣∣ > 1

2poly(λ)
.

This breaks the security of the non-malleable zero-knowledge.

Thus Sim outputs fail with only negligible probability.

Hyb2 ≈ Hyb3: The only change made is to the “trapdoor commitment” in the first round of the Initial
Phase. The analysis follows similarly to that of Hyb1 ≈ Hyb2.
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– If at least one of the p2 threads in Initial Phase do not abort in Extend Mode, we output a view
that contains the “trapdoor commitment” to 1. The rest is identical to the previous hybrid. The view
indistinguishability follows from the hiding property of the commitment scheme.

– If all p2 threads in Initial Phase abort, then the subsequent thread is executed. Since there is no
change in the Subsequent Mode, the views are identical except for the case that fail is output. This
follows identically from the analysis of Hyb1 ≈ Hyb2.

Hyb3 ≈ Hyb4: Recall that this change is only made in the Initial Phase if the Extraction Fail Phase is not
executed. The change is only made in the last round of the protocol by switching the witness in Zap. The
indistinguishability of the view follows from the witness indistinguishability of Zap.

Since the changes made are after the completion of the Extend Mode, it has no bearing on the estimation
probability used in the Extraction Fail Phase. Thus the analysis of the views output in the Extraction Fail
Phase remain unchanged.

Hyb4 ≈ Hyb5: Since the only change is made to the non-interactive commitment to the input in the
first round of the Initial Phase, the analysis follows identically to that of the analysis used in proving
Hyb2 ≈ Hyb3.

Hyb5 ≈ Hyb6: We split our analysis into two cases:

– If at least one of the p2 threads in Initial Phase do not abort in Extend Mode, we output a view that
contains the simulated of the underlying protocol Π using the output received from querying the ideal
functionality.

We remark that we additionally require the property of free-simulatability from the underlying proto-
col. This is because we sample coins honestly to go to Extend Mode conditioned on at least a single
party voting for it. We need to send the second round messages of the underlying protocol on behalf of
the honest parties that do not vote to extend the protocol. Thus, free simulatability of the underlying
protocol guarantees that privacy of honest parties is maintained when a strict subset of second round
messages are sent without knowledge of the output.

– If all p2 threads in Initial Phase abort, then the subsequent thread is executed. Since there is no change
in the Subsequent Mode, the views are identical except for the case that fail is output. This follows
identically from the analysis of Hyb1 ≈ Hyb2 where the only change arises due to the estimation
using the simulated first round messages.

Hyb6 ≈ Hyb7: Here, we start making changes to the Extraction Fail Phase. Note that instead of using
the honest parties inputs as in the previous hybrid, a cheat message is sent to F which returns the honest
parties inputs. Ignore any additional information sent by F . These returned inputs are then used to run the
Extraction Fail Phase honestly. At this point we’ve stopped using the initialized honest inputs completely.
The hybrid simulator continues to output the value computed by the honest parties.

Since the only difference is how we receive the honest inputs, Hyb7 is identical to Hyb6.

Hyb7 ≈ Hyb8: We need to show that the probability of corrupted has only negligible difference from Hyb7.
This follows immediately from Lemma 1, and the discussion preceding the lemma.

Hyb8 ≈ Hyb9: In this hybrid, we simply change how the outputs of the honest party are computed. The
computed output on receiving the last round from the adversary are sent to F . This is identical to the case
that corrupted was not sent to F . In the case that corrupted was sent to F , the output of the honest parties
remains identical.
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5 3 Round Lower Bound

In this section, we show that it is impossible to achieve security against covert adversaries in fixed 3 rounds
via black-box simulation. We shall do this by considering the zero knowledge (ZK) functionality in the
simultaneous message model, where both the prover and verifier send messages in each round, including
the last. Similar to the notion of promise zero-knowledge in [BGJ+18], zero-knowledge is only required to
hold against verifiers that do not send invalid messages, even in the last round of the protocol.3

There are two main challenges in ruling out a protocol secure against covert adversaries in the simul-
taneous message model: (i) the setting of covert adversaries allows the simulator to send a cheat message
to the ideal functionality if the verifier attempts to cheat. This allows the simulator to receive the prover’s
input to the functionality, the witness w, thereby allowing an easy completion of simulation; (ii) the setting
of simultaneous message model allows for a simulator to potentially use the third round of the verifier to
extract some form of trapdoor in order to produce a simulated transcript.

To rule out the latter simulation strategy while preventing the simulator to take the “easy way out” by
sending a cheat message to the ideal functionality, we define an adversarial verifier V∗ with the strategy
“cheat if cheated with”, which roughly translates to an adversarial verifier that will abort protocol execution
if the protocol messages received are “incorrect”. First we see why this prevents a simulator from taking the
easy way out. In the real world, V∗ behaves honestly while interacting with honest provers. This prevents
the simulator from sending a cheat message to the trusted party to receive the prover’s input since it would
result in a distinguishable distribution from the real execution, where the V∗ does not cheat.

Next, the rough idea to rule out any simulation strategy is the following: to simulate such a covert
adversarial verifier V∗, the simulator needs to provide an accepting proof in the third round, else the rushing
adversarial verifier V∗ will always abort, thereby constraining the simulator to rewinding only the first or
second rounds of the protocol. Rewinding the first round is not useful to the simulator because a rushing
verifier can always restart afresh with new randomness. Thus the simulator can only rewind the second
round. But the verifier can choose its second round message to be independent of the simulator’s second
round message, as in the honest protocol. Thus, the simulator seemingly gains no advantage by rewinding
the second round. At best the simulator can make its own second round depend on the adversarial verifier’s
second round message.

Below we formally describe the strategy of the cheating verifier V∗. Next, we show that if there exists a
simulator Sim∗ that succeeds in simulating the view for adversarial verifier V∗, then the language must be in
BPP. The proof borrows ideas from [GK96b], and we have kept notation largely the same for those familiar
with the work in question.

Description of adversarial verifier V∗: We describe below the strategy of a rushing V∗ that is param-
eterized by h a hash function from the family of t-wise independent hash functions. The value of t will
be appropriately set. We denote by αi and βi the messages sent by the prover and verifier respectively.
Let ρV (x, r, α1, α2, α3) = ACCEPT/REJECT correspond to the decision output by the verifier V with
randomness r.

1. Wait for first round message from the prover α1.

2. Apply h on the received message to obtain randomness used to compute the first round of the protocol.
Specifically, rV∗ := h(α1) and the first round message computed as β1 := V1(1λ; rV∗). Send β1.

3. Compute the second round message of the protocol honestly independent of the second round re-
ceived. Specifically, β2 := V2(α1; rV∗). Send β2.

3This in particular means we cannot ignore the verifier’s last message to transform the protocol to a three round protocol in the
alternating message model as in [GMPP16].
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4. If in the third (last) round of the protocol doesn’t receive an accepting proof, abort. Else, send honest
message in the third round.

We now formalize the intuition described earlier. For simplicity, we enforce the prover messages αi to
also contain all preceding messages. Any protocol can be transformed to this setting by the use of delimiters.

Consider a simulator Sim∗ that succeeds in simulating the view of the verifier V∗ described above. We
describe below the procedure to run the simulator Sim∗ as a subroutine without access to V∗. Looking ahead,
we will build a decider for the language L that runs Sim∗ as a subroutine.

Executing Sim∗. In order to execute the simulator Sim∗ one needs to provide it the appropriate inputs
where Sim∗’s output is determined by the input x, its random tape RSim∗ and the strings sent by the verifier
V∗. Let the running time of the simulator be upper bounded by t = t(λ). Fix t random strings r(1), · · · , r(t),
each of length `(λ), where `(λ) is the polynomial upper bound on the randomness needed by the V∗. 4

When Sim∗ outputs a pair (y, α) intended for V∗, abort if α is not of the specified format. Recall that
the simulator can initialize the verifier with an input y potentially different from x. If α is of the specified
format, we use one of the random strings r(i) to respond to α in the following manner:

1. If α is the i-th unique first round message, denote this by α(i)
1 ; then use random string r(i) to compute

the response β1 = V1(y; r(i)) and send it to Sim∗.

2. If α is a second round message, it contains within it the first round message. Check to see if the first
round has already been queried. If not, abort. Else, let α(i)

1 correspond to the (previously queried i-th
unique) first round message in α. Compute the response as β2 = V2(y, α

(i)
1 ; r(i)).

Note (i) the response β2 depends only on the corresponding first round component of α; and (ii) the i-th
unique first round message α(i)

1 is determined by x, RSim∗ and r(1), · · · , r(i−1).
We denote by convSim

(
x,RSim∗ , r

(1), · · · , r(t)
)

= (x, α1, β1, α2, β2, α3, β3)5 the conversation output by
the simulator Sim∗ when executed with the specified inputs. Recall that we don’t care about the third round
response of the verifier since Sim∗ needs to simulate verifiers that do not send their third round unless the
proof is accepting. Thus, the simulator must be able to simulate without requiring the third round message of
the verifier. This is important in the context of covert adversaries since in the real execution of the protocol,
the verifier continues to behave honestly.

Definition 7. We say that a vector
(
x,RSim∗ , r

(1), · · · , r(t)
)

is Sim-good if convSim
(
x,RSim∗ , r

(1), · · · , r(t)
)

=

(x, α1, β1, α2, β2, α3, β3) and ρV
(
x, r(i), α1, α2, α3

)
= ACCEPT where i is such that α(i)

1 = α1, and the

first and second round of the verifier are β1 = V2(x, r(i)) and β2 = V2(x, α
(i)
1 , r(i)) respectively. According

to this value i, we call the conversation (Sim∗, i)-good or i-good.

Theorem 2. Let 〈P,V〉 be a 3 round zero-knowledge proof in the simultaneous message model for a lan-
guage L. Suppose 〈P,V〉 is black-box simulatable against covert adversaries, and let Sim∗ be the black-box
simulator. Then,

– if x 6∈ L, only a negligible fraction of vectors are
(
x,RSim∗ , r

(1), · · · , r(t)
)
Sim∗-good.

– if x ∈ L, a non-negligible fraction of vectors are
(
x,RSim∗ , r

(1), · · · , r(t)
)
Sim∗-good.

Before we look at the proof, let us look at the corresponding corollary which is relevant to us.
4We note that while we consider only strict polynomial time here, for an expected polynomial time simulator, we can convert it

to a strict polynomial time simulator while only affecting the probability of success by a noticeable factor as shown in [GK96b].
5w.l.o.g. we assume the conversation outputs x, otherwise the resultant transcript would be distinguishable.
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Corollary 1. The corollary of the above theorem is that the language L ∈ BPP.

Proof. The decider works in the following manner. On input x;

1. select random values RSim∗ , r
(1), · · · , r(t)

2. if
(
x,RSim∗ , r

(1), · · · , r(t)
)

is Sim∗-good, then x ∈ L, else x 6∈ L.

Since Sim∗ runs in polynomial time, our decider for L runs in polynomial time too.

Proof. We now prove Theorem 2.

Negligible fraction when x 6∈ L. We prove this by contradiction. If there are a non-negligible fraction of
vectors that are Sim∗-good, then we construct a cheating prover P∗ violating the soundness of 〈P,V〉. Since
there are a non-negligible fraction of vectors that are Sim∗-good, there is an index i such that non-negligible
fraction of vectors are i-good. We now describe the cheating prover strategy.

P∗, interacting with an external verifier, picks a random index i∗ from [t]. For all i ∈ [t] such that i 6= i∗,
pick random strings r(i). Other than the i∗-th unique α1 query, we answer the rest internally using r(i). The
i∗-th unique α1 is forwarded to the external verifier. The response from the external verifier is fed as input
to Sim∗.

If Sim∗ queries a second round α2 that has the same first round component as another second round
message, we can just replay the same message β2 sent by the external verifier. At the end of this process,
we can use convSim∗ to compute an accepting transcript. Since we picked the index i∗ at random, with
noticeable probability we now have an accepting proof for an external V ∗. This violates the soundness
condition since x 6∈ L.

Non-negligible fraction when x ∈ L. Consider the behavior of cheating verifiers described above. Each of
them is associated with a hash function sampled from a family of t = t(λ)-wise independent hash functions.
This guarantees that rewound verifiers will use “new randomness” at each call.

For each hash function h ∈ Hλ we associate an adversarial verifier V∗h, which responds to the prover’s
message by setting the randomness to be used to be h(α1) where α1 is the first round message received. Let
ν(x,RSim∗ , h) = (x,RSim∗ , r

(1), · · · , r(t)).

Claim 6. For x ∈ L, there are a non-negligible fraction of pairs (RSim∗ , h) such that ν(x,RSim∗ , h) is
Sim∗-good.

Proof. For any input x, let px be the probability that P convinces an honest verifier V to accept x, where the
probability is over the random coins of both P and V. From the completeness property, px is non-negligible.

Since the output of h is uniformly distributed, the probability that P and honest verifier V output an ac-
cepting conversation px is the same as the probability that P and constructed verifier Vh output an accepting
proof.

Since the simulator Sim∗ succeeds in simulating the transcript for all V∗h, the probability that Sim∗

outputs an accepting conversation when interacting with h is px − negl(λ). Thus, the probability over
RSim∗ , h that ν(x,RSim∗ , h) is Sim∗-good is px − negl(λ), which is non-negligible.

Now, from the t(λ)-wise independence property of the family Hλ, we have that ν(x,RSim∗ , h) is uni-
formly distributed over

(
x,RSim∗ , r

(1), · · · , r(t)
)
. This trivially follows from the fact that the hash h is

applied only to distinct elements.
This completes the proof since this establishes that non-negligible fraction of

(
x,RSim∗ , r

(1), · · · , r(t)
)

are Sim∗-good.
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