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Abstract. This article gives a rigorous mathematical treatment of generalized and
closed loop invariants (CLI) which extend the standard notion of (nonlinear) invari-
ants used in the cryptanalysis of block ciphers. Employing the cycle structure of
bijective S-box components, we precisely characterize the cardinality of both gener-
alized and CLIs. We demonstrate that for many S-boxes used in practice quadratic
invariants (especially useful for mounting practical attacks in cases when the linear
layer is an orthogonal matrix) might not exist, whereas there are many quadratic in-
variants of generalized type (alternatively quadratic CLIs). In particular, it is shown
that the inverse mapping S(x) = x−1 over GF (24) admits quadratic CLIs that addi-
tionally possess linear structures. The use of cycle structure is further refined through
a novel concept of active cycle set, which turns out to be useful for defining invariants
of the whole substitution layer. We present an algorithm for finding such invariants
provided the knowledge about the cycle structure of the constituent S-boxes used.

Keywords: Block ciphers · Generalized nonlinear invariants · Permutation cycles ·
Closed loop invariants · Linear structures · Distinguishing attacks · SP networks.

1 Introduction

The design of block ciphers, used as symmetric key encryption algorithms, is well under-
stood and their security has been traditionally evaluated using some standard cryptanalytic
techniques such as differential attack [BS90], linear attack [Mat93], and their diverse vari-
ations [LH94] [HTW15]. During the last few years some other possibilities concerning the
cryptanalysis of certain families of block ciphers have emerged. Nevertheless, whereas most of
the well-established designs are quite robust to these cryptanalytic methods it appears that
almost exclusively lightweight block ciphers show certain vulnerability in this context. This
feature is primarily due to a rather simplified design strategy of implementation-constrained
block ciphers and in particular the main weakness seems to be their simple key schedule.

Nonlinear invariant attacks were introduced at ASIACRYPT 2016 by Todo et al. [TLS16]
and they gained a lot of attention due to their efficient application in breaking full-round
block ciphers such as SCREAM, iSCREAM [GLSV14] and Midori64 [BBI+15]. The non-
linear invariant attack can be seen as a further extension of the invariant subspace attack
introduced in [LAAZ11], which identifies the property of having inputs and outputs that
belong to the same affine subspace through (many) encryption rounds under the so-called
weak key assumption. The core idea of nonlinear invariant attacks is to look for a nonlinear
Boolean function g : Fn2 −→ F2 for which the evaluation of g(x) + g(Ek(x)) is constant for
any x, where Ek(x) is the encryption function of a considered n-bit block cipher performed
using the secret key k. The function g is then called a nonlinear invariant for Ek(x) and those
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keys k ∈ K for which g is a nonlinear invariant are called weak keys. In general, for a random
permutation this property holds with a probability of about 21−N if N plaintext/ciphertext
pairs are considered (assuming g is a balanced Boolean function). Consequently, any cipher
admitting nonlinear invariants covering all encryption rounds can be easily distinguished
from a random permutation, assuming that the used invariant has a certain bias.

In general, nonlinear invariants for a full-round block cipher are derived by finding non-
linear invariants for each separate round (if these exist) which are then merged together
assuming that the round keys all belong to the family of weak keys. The crucial point here
is that many lightweight block ciphers, motivated by efficiency of implementation, use a
simplified round key schedule and therefore deriving the round keys from the master key
using round constants. Even though the assumption on finding invariants for a whole cipher
appears to be quite unrealistic, it was demonstrated in [TLS16] that many recently proposed
lightweight block ciphers have serious weaknesses in this context. Another important point
is the fact that, apart from the assumption on weak keys, the success of this attack heav-
ily relies on the choice of round constants since their proper selection can protect ciphers
against these attacks [BCLR17].

The concept of nonlinear invariants was extended in [YWP19] to consider generalized
invariants for which g(x+ a1) + g(Ek(x) + a2) = c, with c ∈ F2, thus employing two n-bit
vectors a1 and a2 for the purpose of eliminating the effect from the round constants. This
method was demonstrated to be efficient in mounting a distinguishing attack on iSCREAM,
using a different family of weak keys than the one identified for iSCREAM in the context of
standard nonlinear invariant attacks in [TLS16]. Extending this approach further [YWP19],
two Boolean functions g1, g2 : Fn2 −→ F2 were used to define the notion of closed loop
invariants (CLIs) which is another useful criterion related to the robust choice of round
constants. More precisely, for a given block cipher Ek(x) the adversary may also try to
identify two different nonlinear Boolean functions g1, g2 : Fn2 −→ F2 such that g1(x) +
g2(Ek(x)) = c and g2(x) + g1(Ek(x)) = c are simultaneously satisfied for any x, for some
class of weak keys. It was then shown that the conclusion drawn in [BCLR17], that a choice
of round constants is independent of the substitution layer, is quite inadequate when these
generalized concepts are employed.

One objective of this article is to provide a more comprehensive and rigorous treatment
of generalized and closed loop invariants; their precise description and exact cardinality
(based on the cycle structure of underlying S-box) as well as their relationship to standard
invariants. In this context, we provide exact estimates on the cardinality of generalized
and closed loop invariants in terms of the cycle structure of bijective S-boxes and identify
quadratic such invariants. Most notably, we show that many S-boxes used in practice do not
admit standard quadratic invariants whereas there exist subspaces of quadratic generalized
invariants and CLIs. In particular, we show that the downscaled inverse S-box of AES
defined over GF (24) admits quadratic CLIs which furthermore possess linear structures.
For this reason, the use of such S-boxes in the design of lightweight block ciphers may cause
undesired security issues. Nevertheless, these quadratic CLIs provably do not exist for the
inverse mapping S(x) = x−1 over GF (2n) whenever n > 4.

A novel concept of active cycle set is introduced, and then used to specify nonlinear
invariants that not only address a single S-box but rather can be used to handle the whole
substitution layer in the (classical) case that this layer is implemented as a parallel applica-
tion of several (not necessarily identical) S-boxes of relatively small size. In this context, we
propose algorithm for determining the cycle structure of concatenated S-boxes which can
be used (in certain cases) to determine the cycle structure of the entire substitution layer,
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cf. Algorithm 2. This specification is possible in those cases when the number of cycles is
relatively small which appears to be the case for some well known S-boxes, for instance
those used in LED cipher and AES. The complexity of Algorithm 2 relies on the number
of cycles of the two concatenated boxes. More precisely, if the number of cycles of the two
concatenated boxes are r1 and r2, respectively, then the complexity of Algorithm 2 is r1×r2
× gcd(l1, l2), where l1 and l2 are the lengths of two cycles considered.

1.1 Organization

The rest of the paper is organized as follows. The basic idea and principles of the generalized
nonlinear invariant attack are described in Section 2. In Section 3, the exact cardinality of
closed loop invariants in terms of the cycle decomposition of a given S-box is derived. It
is shown that the inverse function S(x) = x−1 over GF (24) admits quadratic CLIs which
additionally posses linear structures of dimension two. In Section 4, we perform an extensive
theoretical analysis related to generalized invariants. For many S-boxes used in practice,
not admitting standard invariants, we demonstrate the existence of generalized ones among
these also quadratic ones. The concept of an active cycle set is introduced in Section 5 as a
useful tool for specifying probabilistic invariants based on which an efficient algorithm for
specifying invariants of the whole S-box layer is given. Some concluding remarks are given
in Section 6.

2 Standard and generalized nonlinear invariant attacks

The encryption process of an iterative block cipher consisting of r rounds, the ciphertext C
is derived by encrypting a plaintext P using the round subkey Ki, where i = 0, . . . , r − 1.
More precisely,

x0 = P, xi+1 = FKi(xi) = F (xi) +Ki, C = xr, (1)

where F : Fn2 → Fn2 is the round function of the considered (n-bit) block cipher, and
FKi(xi) = F (xi) + Ki means that the output of the round function is XORed with the
round subkey Ki. For simplicity, the pre-whitening key is ignored.

In difference to the standard invariant attack [TLS16,TLS18], based on the relationship
g(x) + g(FKi

(x)) = c, its recent generalization considers a nonlinear Boolean function g :
Fn2 −→ F2 and a pair of n-bit constants (a1, a2) such that g(x + a1) + g(FKi

(x) + a2) = c
(where c is a binary constant) holds for any x ∈ Fn2 . This approach, employing a pair of
constants, may be more flexible for the purpose of compensating the effect of round constant
addition, see [YWP19] for more details.

We consider the following round function F : Ft×m2 −→ Ft×m2 , with t × m = n, of an
substitution permutation network (SPN) cipher that consists of an S-box layer S : Ft×m2 −→
Ft×m2 and a linear layer L : Ft×m2 −→ Ft×m2 :

F (x) = L ◦ S(x),

where S(x1, . . . , xt) = (S1(x1), . . . , St(xt)) and xi ∈ Fm2 . In general, t not necessarily iden-
tical bijective S-boxes are used in each round, though commonly these are same. We will
denote the space of m-variable Boolean functions f : Fm2 → F2 with Bm.

The main reason for avoiding the use of S-boxes that admit invariants of small algebraic
degree, is the possibility to extend these invariants (in certain cases) to the whole encryption
round as demonstrated in [YWP19], see also [BCLR17].
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Theorem 1. [YWP19] Assume that the round function of an SPN-based block cipher uses
LS design rationale and that a binary representation of the linear layer L is an orthogonal
matrix M ∈ Fn×n2 . If there is a quadratic generalized nonlinear invariant g ∈ U(S, a1, a2) =
{g ∈ Bm: g(xi + a1) = g(S(xi) + a2) + c, c ∈ F2, xi ∈ Fm2 }, then the function

G(x1, . . . , xt) =

t∑
i=1

g(xi)

is also a generalized nonlinear invariant for the round function L ◦ S.

2.1 Specifying standard invariants for arbitrary bijective S-boxes

The possibility of applying a distinguishing attack, based on the existence of standard invari-
ants, to many lightweight block ciphers [BCLR17] is a serious security concern. A natural
question regarding the existence of standard nonlinear invariants, their cardinality #g and
structural properties has been considered in [TLS16]. The main conclusion is that there
always exist standard invariants for any given bijective S-box and their number is closely
related to the cycle structure of the S-box. More precisely, Todo et al. [TLS16] showed that

#g = 2(# cycles of F ) when F (representing a bijective S-box) has at least one cycle of odd

length; alternatively #g = 2(# cycles of F )+1 when F only has cycles of even length.
An important consequence of the above result is that full-cycle permutations admit the

smallest cardinality of standard invariants, thus reducing the probability of finding suitable
invariants, e.g. of low algebraic degree or containing a few terms in their algebraic represen-
tation. Assuming that identical S-boxes are used in encryption rounds, it was furthermore
proved that such a set of invariants, say {gi : i = 1, . . . , t}, can be used to construct an
invariant for the whole substitution layer S : Ftm2 → Ftm2 of the form G =

∑t
i αigi, for any

nonzero choice of the binary coefficients αi [TLS16, Proposition 1]. Nevertheless, one can
also deduce other standard invariants that do not stem from this simple technique [TLS16].

3 Closed loop invariants for S-boxes

In this section, we derive exact cardinality of CLIs of a given bijective mapping S(x) over
F2m that entirely depends of the cycle structure of S.

One of the main conclusions, using the framework of generalized nonlinear invariants
[YWP19], was that the choice of round constants is not only related to the linear layer of a
block cipher, but there is a rather strong dependency on the substitution layer as well. In
other words, a large dimension of the parameter WL(D) (see [BCLR17] for more details),
suggested as a design rationale by Beierle et al. [BCLR17], is not a sufficient condition to
protect block ciphers against generalized nonlinear invariant attacks.

In addition, a (different) concept of closed-loop invariants was used in [YWP19] for
mounting a distinguishing attack on a variant of the Midori64 block cipher [BBI+15]. For
any bijective S-box S : Fm2 −→ Fm2 , its closed-loop invariant was defined as

CLI(S) = {(g1, g2) | g1(x) + g2(S(x)) = c1, g2(x) + g1(S(x)) = c2, ci ∈ F2}.

Remark 1 Given an S-box and taking any function g1 one can compute g1(S(x)), which
then uniquely specifies g2(x) so that g2(x) + g1(S(x)) = c2 is satisfied. In general, there is



Cycle structure of generalized and closed loop invariants 5

no guarantee that such g1 and g2 satisfy g1(x)+g2(S(x)) = c1, for a fixed c1 ∈ F2. However,
there are cases when one can assure it, for instance, when S is an involution. In this case,
we have that g2(x) + g1(S(x)) = c2 for every x ∈ Fm2 , implies that g2(S(x)) + g1(x) = c2 for
every x ∈ Fm2 , thus (g1, g2) ∈ CLI(S).

To characterize robust round constants, the authors in [YWP19] proposed a new design
criterion which requires that for each closed loop invariant in CLI(S) the round constants
should not be contained in LS(gi), i ∈ {1, 2}. Here, LS(gi) denotes the subspace of linear
structures given by LS(gi) = {a ∈ Fm2 : gi(x) + gi(x+ a) = c}, where c ∈ F2.

3.1 Counting closed loop invariants

Similarly to the case of standard/generalized invariants, the set CLI(S) forms a subspace
of Bm × Bm.

Lemma 1. For every permutation S on Fm2 , CLI(S) is a subspace of Bm × Bm.

Proof. Clearly, (0, 0) ∈ CLI(S). For different tuples (g1, g2), (g′1, g
′
2) ∈ CLI(S) we have

g1(x) + g2(S(x)) = c1; g2(x) + g1(S(x)) = c2

and
g′1(x) + g′2(S(x)) = c′1; g′2(x) + g′1(S(x)) = c′2,

for some constants c1, c2, c
′
1, c
′
2 ∈ F2. Then, g1(x)+g′1(x)+g2(S(x))+g′2(S(x)) = c1+c′1 and

similarly g2(x) + g′2(x) + g1(S(x)) + g′1(S(x)) = c2 + c′2. Hence, (g1 + g′1, g2 + g′2) ∈ CLI(S)
and thus CLI(S) is a subspace of Fm2 . ut

Note that for every standard invariant g of S, we have (g, g) ∈ CLI(S). So CLI(S)
has dimension at least k + ε, where k denotes the number of cycles and ε is equal to zero
or one depending whether there are odd cycles or not. Throughout this article a cycle of
length l containing an element x0 ∈ Fm2 , with respect to S, is the set of distinct values
Cx0

= {Sj(x0) : 1 ≤ j ≤ l}, where Sj denotes the composition of S with itself j times and
Sl(x0) = x0. We obtain a better bound if we observe that the complement of every element
induces a new pair, i.e., (g, g + 1) ∈ CLI(S). So dimCLI(S) ≥ k + ε+ 1. Actually, we can
deduce the exact cardinality of CLI(S).

Theorem 2. Let S be a permutation on Fm2 and ke and ko be the number of cycles of even
and odd length of S, respectively. The cardinality of CLI(S) is given by:

– 4ke+1 if there are only cycles of even length greater than two.
– 4ke2ko+1 otherwise.

Proof. Suppose first that ko = 0 and there are no transpositions. Let us fix c1 and c2
and consider a fixed x0 ∈ Fm2 . We consider the images of gj , j ∈ {1, 2}, evaluated at
the cycle Cx0

:= { Si(x0) : i ≥ 0}. Notice that every fixed value for g1(x0) com-
pletely determines the value of g2(S(x0)). Now, once g2(S(x0)) is determined, g1(S2(x0))
can be computed using g2(S(x0)) + g1(S2(x0)) = c2. We see that all values in the se-
quence g2(S(x0)), g1(S2(x0)), . . . , g2(S|Cx0 |−1(x0)) are determined. Similarly, any fixed value
of g2(x0) completely determines the value of g1(S(x0)), g2(S2(x0)), . . . , g1(S|Cx0 |−1(x0)).
In total, we have four possible independent choices for g1(x0) and g2(x0) and considering
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fixed elements in different cycles there are 4ke pairs (g1, g2) in CLI(S), for any fixed c1 and
c2. Noticing that different choices of constants give rise to distinct pairs, we deduce that
there are 4ke+1 elements in CLI(S).

Now suppose ko > 0 or there are transpositions. In the latter case, consider x0 ∈ Fm2 such
that S2(x0) = x0 which implies g1(x0)+c1+c2 = g2(S(x0))+c2 = g1(x0); thus c1 = c2. When
k0 > 0, we take x0 that belongs to a cycle of odd length and then g1(x0)+c1+c2+ . . .+c1 =
g2(x0), where c1 and c2 appear an even and an odd number of times, respectively. Hence,
g1(x0) + c2 = g2(x0). In a similar fashion g2(x0) + c1 = g1(x0), thus c1 = c2. In both cases
we have c1 = c2, and therefore for these types of cycles there are only two possible choices
for the constants c1, c2. In addition, for fixed c1, c2 and a given x0 belonging to a cycle of
odd length, the value of g1(x0) determines the values of g1 and g2 in this cycle. This gives
only the two possibilities when a cycle has odd length and four when it is of even length (as
shown above). Therefore, |CLI(S)| = 2 · 2ko · 4ke . ut

We observe that ko is always even, since adding the lengths of each disjoint cycle must
equal 2m which is impossible when ko is odd.

Remark 2 Note that if g admits a non-trivial linear structure, then it must be the case
that the weight of g is even: g(x) = g(x+ α) + 1 implies g is balanced and g(x) = g(x+ α)
implies we always have pairs with the same value. Therefore, when S is a product of two odd
cycles its two non-constant invariants will not admit any linear structure (since they have
odd weight). According to Theorem 2, such a permutation S will only admit eight CLIs which
are just distinct pairs of standard invariants and none of them will admit linear structures.

Corollary 1. Let S be a permutation on Fm2 . If ks is the dimension of the space of standard
invariants of S2 = S ◦ S, then ke + 1 ≤ ks. Furthermore, if S has a cycle of odd length or a
transposition then 2ke + ko + 1 ≤ 2ks.

Proof. Taking (g1, g2) ∈ CLI(S), we deduce that g1(x) + g1(S2(x)) = c1 + c2 and g2(x) +
g2(S2(x)) = c1 +c2. So g1 and g2 are invariants of S2. This means that dim(CLI(S)) ≤ 2ks.
Applying Theorem 2, we obtain the desired result. ut

For instance, if S2 is a full-length cycle or a product of two cycles of odd length ks = 2,
then S has to be a full-length cycle or a product of two cycles of odd length.3

The existence of quadratic CLI-s, assuming the use of an orthogonal matrix as a linear
layer, can induce immediate weaknesses in the design [YWP19] whose resistance to distin-
guishing attacks then entirely depends on the choice of round constants. Below, we give a
detailed analysis related to the existence of quadratic CLI-s for the inverse S-box of AES
of variable size. It is shown that there are exactly 63 quadratic CLI-s for the inverse S-box
of size 4 × 4 out of which exactly 35 CLI-s admit linear structures of dimension two (see
Theorem 8). On the other hand, there provably do not exist quadratic CLI-s for the inverse
S-box of size m×m when m > 4.

3.2 CLIs of the inverse AES box and its small-scaled variant

Here, we describe an efficient approach for specifying CLIs of the inverse S-box using its
compact univariate representation. This method can be easily applied to arbitrary bijective
S-boxes (of reasonable size) using their univariate representation ober the finite field F2m .

3 Moreover, S2 splits just the cycles of even length in the cycle decomposition of S in halves. S3

will split only the cycles with length a multiple of 3, and so on. In particular, if we start with
two cycles of odd length then S, S2, S4, . . . , S2m = 1 are all conjugates.
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We recall that the univariate representation of a mapping F : F2m → F2m is given as

F (x) =
∑2m−1
i=0 aix

i, where ai ∈ F2m . In particular, if the coefficients ai satisfy the following
(Boolean conditions): a0, a2m−1 ∈ F2 and a2i (mod 2m−1) = a2i for i = 1, . . . , 2m − 2, then
it turns out that F is essentially a Boolean mapping thus F : F2m → F2 instead. This is
due to the condition that for any Boolean mapping f(x)2 ≡ f(x) (mod x2

m − x). This
representation is convenient when analysing the composition g(S(x)) = g(y) since both S
and g can be described as univariate polynomials. We use this approach to demonstrate
that the inverse S-box defined as a permutation S(x) = x−1 over F24 not only admit a large
set of quadratic CLIs but furthermore a majority of these invariants have linear structures
of dimension two.

Theorem 3. There are exactly 63 quadratic closed loop invariants for the inverse S-box
S(x) = x−1 over F24 and 35 of these invariants admit linear structures of dimension two.

Proof. To determine CLIs for the inverse S-box S(x) = x−1, we write g1 and g2 as g1(x) =∑24−1
i=0 aix

i and g2(x) =
∑24−1
i=0 bix

i, where ai, bi ∈ F4
2. Since we are looking for quadratic g1

and g2 then all ai, bi whose Hamming weight is greater than two equal zero. Thus, neglecting
the constant terms,

g1(x) = (a1x+ a2x
2 + a4x

4 + a8x
8) + a3x

3 + a5x
5 + a6x

6 + a9x
9 + a10x

10 + a12x
12 and

g2(x) = (b1x+ b2x
2 + b4x

4 + b8x
8) + b3x

3 + b5x
5 + b6x

6 + b9x
9 + b10x

10 + b12x
12.

Now the condition that g1(x) + g2(y) = g1(x) + g2(x−1) = c implies the following. First
notice that, after cutting exponents modulo 15,

g2(x−1) = g2(x14) = (b1x
14+b2x

13+b4x
11+b8x

7)+b3x
12+b5x

10+b6x
9+b9x

6+b10x
5+b12x

3,

which then implies that b1 = b2 = b4 = b8 = 0 since these terms are cubic or quartic.
Similarly, to satisfy g1(x) +g2(y) = c we have a1 = a2 = a4 = a8 = 0. Furthermore, we have
a3 = b12, a5 = b10, a6 = b9, a9 = b6, a10 = b5, a12 = b3. Then using the Boolean conditions
on the coefficients ai, bi (a6 = a23; a10 = a25; a26 = a12; a212 = a9; a29 = a3 and similarly for bi)
we get:

g1(x) = a3x
3 + a5x

5 + a23x
6 + a83x

9 + a25x
10 + a43x

12

g2(x−1) = a3x
3 + a5x

5 + a6x
6 + a9x

9 + a10x
10 + a12x

12 = g1(x).

Hence, we can specify g2 as

g2(x) = b3x
3+b5x

5+b6x
6+b9x

9+b10x
10+b12x

12 = a12x
3+a10x

5+a9x
6+a6x

9+a5x
10+a3x

12.

Notice that the conditions a6 = a23; a12 = a26 = a43; a9 = a212 = a83; a5 = a210 implies that
all the other coefficients can be expressed in terms of a3 and additionally a45 = a5 must be
satisfied. There are exactly four elements x in F24 such that x4 = x, thus there are 16 · 4
possible choices for (a3, a5) ∈ F24 × F24 . Excluding a3 = a5 = 0 gives 63 pairs of quadratic
invariants out of which 35 admit linear structures of dimension two. ut

Using computer based simulations one can verify that out of the 63 closed loop invariants
there are 35 functions g such that its space of linear structures has dimension 2, i.e. |LS(g)| =
4, and 28 functions g with a trivial space of linear structures. Partial specification of these
invariants along with their corresponding linear structures is given in Table 1.
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Pair (a3, a5) Linear structures

(α, α5) 0, α, α8, α10

(α, α10) 0, 1, α6, α13

(α, 1) 0, α3, α5α11

(α2, α5) 0, 1, α11, α12

(α2, α10) 0, α, α2, α5

(α2, 1) 0, α6, α7, α10

(α3, 0) 0, α4, α9, α14

(α5, α5) 0, α5, α6, α9

(α5, α10) 0, α10, α11, α14

(α5, 1) 0, 1, α, α4

(α6, 0) 0, α3, α8, α13

(α7, α5) 0, α4, α11, α13

(α7, α10) 0, α, α3, α9

(α7, 1) 0, α6, α8, α14

(α10, α5) 0, α5, α7, α13

(α10, α10) 0, α3, α10, α12

(α10, 1) 0, 1, α2, α8

(α11, α5) 0, α8, α9, α12

(α11, α10) 0, α2, α13, α13

(α11, 1) 0, α3, α4, α7

(1, 0) 0, α5, α10, α15

Table 1. Specifying CLIs of S(x) = x−1 over F24 of the form g1(x) = a3x
3 + a5x

5 + a23x
6 + a83x

9 +
a25x

10+a43x
12 and g2(x) = a43x

3+a25x
5+a83x

6+a23x
9+a5x

10+a3x
12 determined by the pair (a3, a5),

where a5 ∈ {0, 1, α5, α10} with α being a generator of F∗
24 .

Remark 3 A design whose substitution layer consists of identical 4-bit inverse S-boxes
along with the use of an orthogonal binary matrix to provide diffusion, might be vulnerable
to CLI-based attacks if the round constants are not carefully chosen.

The same analysis for m > 4, representing both g1 and g2 as univariate polynomials and
keeping only linear and quadratic terms, gives:

g1(x) =
∑

0≤i≤j<m

a2i+2jx
2i+2j ; g2(x) =

∑
0≤i≤j<m

b2i+2jx
2i+2j .

As before, the condition that g1(x) + g2(y) = g1(x) + g2(x−1) = c this time implies that the
coefficients b2i+2j of g2(x) must satisfy the following equation,

bl 6= 0 ⇐⇒ −l ≡ k mod 2m − 1, (2)

where 1 ≤ l, k ≤ 2m−1 + 2m−2 and both have weight less than or equal to two. Notice
that 2 ≤ k + l ≤ 2(2m−1) + 2(2m−2) = 2m + 2m−1. Therefore the only possible solutions
to (2) is k + l = 2m − 1 which would imply that (for quadratic coefficients) we would
have 2m − 1 = 2a + 2b + 2c + 2d for some integers a, . . . , d of weight one. This is however
impossible wheneverm > 4 and therefore there are no quadratic CLIs for the inverse function
S(x) = x−1 over F2m when m > 4.
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4 Cycle structure of generalized nonlinear invariants

Structurally, generalized nonlinear invariants offer more diversity due to the involvement of
two constants in their definition which may be useful for eliminating the impact of round
constants. Most notably, the distinguishing attack on iSCREAM [GLSV14] block cipher
described in [YWP19] uses completely different family of weak keys than those related to a
distinguishing attack based on standard invariants.

A natural question, concerning the cardinality and structure of generalized invariants, is
whether similar results can be deduced using the cycle structure of a given bijective S-box.
More specifically, having g(x + a1) + g(S(x) + a2)) = c satisfied for all x ∈ Fm2 , which is
equivalent to g(x) = g(S(x + a1) + a2)) when c = 0, means that we look for cycles of the
form

x(1) → S(x(1) + a1) + a2x
(2) · · · → S(x(2) + a1) + a2x

(r−1) → S(x(r−1) + a1) + a2x
(1).

Since S(x+a1)+a2 is a permutation, the same reasoning applies as for standard invariants.
However, the cycle structure depends on the choice of a1, a2 and it is not necessarily identical
to the structure of S.

A trivial connection relating cryptographically (affine) equivalent S-boxes on Fm2 can be
easily deduced. Namely, defining affinely equivalent S-box of S as S′(x) = S(x + a1) + a2,
which is also a permutation, a generalized invariant g(x+ a1) + g(S(x) + a2)) = c gives rise
to a standard invariant of S′ since now we have g(xi) + g(S′(xi)) = c. Notice that S′ is a
unique S-box derived from S for a given a1, a2, indicating the equivalence of S and S′ with
respect to a fixed g and a1, a2. More formally, defining the translates πa(x) = x + a where
x, a ∈ Fm2 , this affine transform can be compactly written as S′(x) = πa2 ◦ S ◦ πa1(x). This
equivalence can be easily extended to the whole substitution layer S so that

S
a1,a2' S ′ ⇔ S ′ = S′1 × S′2 × · · · × S′t,

where S′i(x) = S(x+ a1) + a2, for i = 1, . . . , t, and a1 = (a1, . . . , a1), a2 = (a2, . . . , a2).

Given a permutation P on Fm2 , we will denote the set of standard invariants by U(P ) :=
{g ∈ Bm : g(x) + g(P (x)) = c, for all x ∈ Fm2 }. Note that for a, b ∈ Fm2 we have U(P, a, b) =
U(πb ◦ P ◦ πa). The set of generalized invariants of P will be denoted by GI(P ), thus

GI(P ) =
⋃

a,b∈Fm
2

U(πb ◦ P ◦ πa).

We will usually refer to elements of GI(P ) simply as invariants.

A further refinement of structural properties of generalized invariants can be deduced
by specifying a subset of permutations for which a fixed Boolean function g is a standard
invariant,

Pg := {P ∈ Sym(Fm2 ) : g ∈ U(P )}, (3)

where Sym(Fm2 ) denotes the set of all permutations on Fm2 . The following properties related
to Pg are then easily established.

Theorem 4. For a fixed Boolean function g ∈ Bm the set Pg is a group under composition.
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Proof. Firstly, id ∈ Pg since g(x) + g(x) = 0 for every x ∈ Fm2 . For P ∈ Pg and Q ∈ Pg
define y = Q−1(x), where x ∈ Fm2 . Then

g(x) + g(P ◦Q−1(x)) = g(Q(y)) + g(P (y)) = g(Q(y)) + g(y) + g(y) + g(P (y)) = c.

This proves that P ◦Q−1 ∈ Pg, thus Pg is a group under composition. ut

Corollary 2. Let P and Q be two permutations on Fm2 . Consider g ∈ Bm such that g ∈
U(Q ◦ P ). Then, it holds that g ∈ U(P ) ⇐⇒ g ∈ U(Q).

It should also be noted that standard nonlinear invariants always give rise to generalized
invariants whenever an S-box admits nonzero linear structures. More precisely, assuming
that there exist a 6= 0 ∈ Fm2 and b ∈ Fm2 such that S(x+ a) + S(x) = b for all x ∈ Fm2 , then
the existence of a non-constant function g ∈ Bm so that g(x) + g(S(x)) = 0, for all x ∈ Fm2 ,
implies that g(x+ a) + g(S(x+ a)) = 0 which consequently gives g(x+ a) + g(S(x) + b) =
0. Thus, assuming the existence of linear structures of S, a standard invariant induces a
generalized nonlinear invariant as:

g(x) + g(S(x)) = 0⇐⇒ g(x+ a) + g(S(x+ a)) = 0⇐⇒ g(x+ a) + g(S(x) + b) = 0.

Using these results we have the following connection between standard and generalized
invariants. We recall that linear structures of a Boolean function g ∈ Bm build a linear
subspace which is denoted by LS(g) = {a ∈ Fm2 : g(x) + g(x+ a) = c,∀x ∈ Fm2 }.

Theorem 5. Let S be a bijective S-box on Fm2 and g ∈ Bm. If a, b ∈ LS(g), then g ∈
U(S) ⇐⇒ g ∈ U(S, a, b). Also, if S(x) + S(x+ a) = b then g ∈ U(S) ⇐⇒ g ∈ U(S, a, b).

Proof. Suppose that g ∈ U(S). Since a ∈ LS(g), we have g(x)+g(x+a) = c1 and furthermore,
as g is an invariant, g(x + a) + g(S(x + a)) = c2. Now, because b ∈ LS(g) it holds that
g(S(x+ a)) + g(S(x+ a) + b) = c3. Putting this together gives

g(x)+g(S(x+a)+b) = g(x)+g(x+a)+g(x+a)+g(S(x+a))+g(S(x+a))+g(S(x+a)+b)

= c1 + c2 + c3,

thus U(S, a, b). Conversely, suppose that g ∈ U(S, a, b). We simply observe that

g(x) + g(S(x)) = g(x) + g(x+ a) + g(x+ a) + g(S(x) + b) + g(S(x) + b) + g(S(x)) = c.

If S(x) = S(x+a)+b, then the result comes from g(x)+g(S(x)) = g(x)+g(S(x+a)+b). ut

Corollary 3. Let S be a permutation on Fm2 . Suppose that g ∈ Bm is a standard invariant
of S, then α ∈ LS(g) if and only if g is a standard invariant of S ◦ πα.

Proof. The sufficiency is given by the first part of Theorem 5 with b = 0. Now suppose g(x)+
g(S(x+α)) = c1, for every x ∈ Fm2 . By hypothesis, we know that g(x+α)+g(S(x+α)) = c2
for all x ∈ Fm2 . Adding together the two equations we obtain that g(x) + g(x+α) = c1 + c2
for every x ∈ Fm2 , which proves the claim. ut

Another important and useful property regarding invariants is that translated permuta-
tions have the same set of invariants, which is the content of the following theorem.

Theorem 6. Let S and S′ be two permutations on Fm2 . If there exist a, b ∈ Fm2 such that
S = πb ◦ S′ ◦ πa, then GI(S) = GI(S′).
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Proof. Consider an arbitrary invariant g ∈ GI(S), by definition there exist α and β such
that g ∈ U(πβ ◦S ◦πα). The fact that S = πb ◦S′ ◦πa implies that for every element x ∈ Fm2 ,
we have that

g(x) + g(S′(x+ α+ a) + b+ β) = g(x) + g(S(x+ α) + β).

Since g ∈ U(πβ ◦S ◦πα) the latter is equal to a constant c for every x ∈ Fm2 . This means that
g ∈ U(πb+β ◦ S′ ◦ πα+a) therefore g ∈ GI(S′). The other inclusion follows by symmetry. ut

Example 1 We consider a permutation S on F4
2 specified as:

{0 1 2 3 4 5 6 7 8 9 A B C D E F} S7→ {0 3 C F 7 8 A E 1 5 6 B 4 2 D 9}.

Taking a1 = a2 = 0001, the equivalent mapping S′(x) = S(x+ a1) + a1 is given by

{0 1 2 3 4 5 6 7 8 9 A B C D E F} S
′

7→ {2 1 E D 9 6 F B 4 0 A 7 3 5 8 C},

and its cycle structure is given by:

(0, 2, E, 8, 4, 9), (1), (3, D, 5, 6, F, C), (7, B), (A),

whose cycle structure remains unchanged compared to S. This can be deduced by noting that
πa1 has order two in Sym(F4

2) and S′ is the composition S′ = πa1 ◦ S ◦ πa1 . Then, S′ is a
conjugate of S having the same cycle structure as S. Both S-boxes have 25 = 32 standard
and 2146 generalized invariants.

Now, taking for instance a permutation T on F4
2 to be a cyclic shift of its inputs

{0 1 2 3 4 5 6 7 8 9 A B C D E F} T7→ {1 2 3 4 5 6 7 8 9 A B C D E F 0},

the degree distribution of GI(T ) is given by: 2 constant, 2 linear, 104 quadratic, 2976 cubic
and 4680 quartic Boolean functions.

Remark 4 It is important to notice that none of the 106 quadratic invariants of T in
Example 1 is a standard invariant. Moreover, all of these quadratic invariants admit non-
trivial linear structures, in fact, for every such quadratic invariant g it holds that |LS(g)| = 4.

4.1 Specifying cardinality of generalized invariants

We now address the problem of deriving the exact cardinality of triples (g, a, b) such that
g ∈ U(πb ◦ S ◦ πa) based on the cycle structure of a given bijective permutation S on Fm2 .

Lemma 2. Let S and T be two permutations on Fm2 . The set

CT := { (a, b) ∈ Fm2 × Fm2 : πb ◦ S ◦ πa has the same cycle structure as T }

has 2ml elements, where l is the size of the set B := { b ∈ Fm2 : πb ◦S is a conjugate of T }.

Proof. Since conjugacy is a transitive relation we have

πb ◦ S ◦ πa is a conjugate of T ⇐⇒ πa ◦ πb ◦ S ◦ πa ◦ πa = πa+b ◦ S is a conjugate of T.
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This in turn implies that
(a, b) ∈ CT ⇐⇒ a+ b ∈ B (4)

In particular, CT = ∅ if and only if B = ∅, therefore if B = ∅ the result follows. Thus, we
may suppose that B 6= ∅.

Consider the function F :CT → Fm2 × B defined by (a, b) 7→ (a, a + b). Using (4), we
see that F is well-defined. Now we will prove that F is bijective. First, we show that F is
injective. Indeed, taking (a, b) 6= (a′, b′) ∈ CT such that a 6= a′ we obviously have F ((a, b)) 6=
F ((a′, b′)). Now, assuming a = a′ and b 6= b′ we clearly have a+ b 6= a+ b′ hence F ((a, b)) 6=
F ((a′, b′)), proving that F is injective. To show that F is surjective, let y = (a, d) ∈ Fm2 ×
B and use (4) to deduce that x ∈ CT for which F (x) = y. Thus, F is a bijection and
consequently |CT | = 2ml. ut

Remark 5 The previous lemma also gives an efficient method for finding all the elements
of the set CT provided that l < 2m: compute the elements of the set B, then for every b ∈ B
and a ∈ Fm2 obtain the element (a, a+ bi) ∈ CT .

We extend this approach for the purpose of an exact specification of the cardinality of
generalized invariants. Consider a relation v over Fm2 × Fm2 defined by

(a, b) v (a′, b′) ⇐⇒ πa ◦ S ◦ πb has the same cycle structure of πa′ ◦ S ◦ πb′ .

It can be readily seen verified that this is an equivalence relation. Let us denote with s the
number of elements in Fm2 ×Fm2 /∼. To specify a set of representatives, let R denote a subset
of Fm2 which is maximal with respect to the following property,

for every b, b′ ∈ R it holds that πb ◦ S 6v πb′ ◦ S. (5)

Then a set of representatives for this equivalence relation is given by { (0, b) }b∈R. Let
b1, . . . , bs denote the distinct elements in R. In the light of the previous lemma, we note that
each equivalence class has 2mli elements, where

li = |{b ∈ Fm2 : πb ◦ S is a conjugate of πbi ◦ S}|.

Thereby, we deduce the following formula to count the number of triples (g, a, b) where
g ∈ U(πb ◦ S ◦ πa).

Theorem 7. Let S be a permutation on Fm2 and let ki denote the number of disjoint cycles
of πbi ◦ S, where {bi}1≤i≤s are elements of R ⊂ Fm2 which is maximal w.r.t. the property
given in (5). Let us also define εi = 1 if there are no cycles of odd length and εi = 0
otherwise. The cardinality of distinct non-trivial (g being a non-constant function) triples
(g, a, b) satisfying g(x) + g(S(x+ a) + b) = c for all x ∈ Fm2 , equals

2m
s∑
i=1

li(2
ki+εi − 2).

Proof. For every choice of (a, b), g has to be a standard invariant of πb ◦ S ◦ πa. As there
exists i such that πb ◦ S ◦ πa has the same cycle structure as πbi ◦ S, then the number of
non-constant standard invariants of πb ◦ S ◦ πa is 2ki+εi − 2. Since there are 2mli possible
pairs with the same cycle structure, we have 2mli(2

ki+εi − 2) invariants coming from the
elements in the class of (0, bi). The same argument applies to every equivalence class, so
there are in total

∑s
i=1 2mli(2

ki+εi − 2) distinct triples. ut
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Corollary 4. The size of the subspace of linear structures of S is less than or equal to li,
where li is defined as before and (0, bi) ∼ (0, 0).

Proof. Every linear structure a of S satisfies πb ◦S ◦πa = S so (a, b) is related to (0, 0) thus
with (0, bi), but also this equation uniquely determines a for a given b. Therefore, there can
be at most li linear structures of S. ut

Example 2 We consider the same permutation S on F4
2 as in Example 1 specified as:

{0 1 2 3 4 5 6 7 8 9 A B C D E F} S7→ {2 1 E D 9 6 F B 4 0 A 7 3 5 8 C},

By letting R be the set {0, 1, 2, 5, 6, 8, 9, B,C,E, F}, computer simulations verify that R
indeed satisfies (5), therefore s = 11 and the parameters li and ki can be determined.

Rep. Cycle structure ki li
S (0, 2, E, 8, 4, 9), (1), (3, D, 5, 6, F, C), (7, B), (A) 5 2

π1 ◦ S (0, 1, 2, D, 3, E, C, 5, 9, 4, 6, B,A, 7, F, 8) 1 4
π2 ◦ S (0, 2, E, F,B, 9, 7, C, 6, 8, 3, D), (1), (4, 5, A) 3 2
π5 ◦ S (0, 5, D, 7, B,E, 8, 4, 2, 9), (1, 6, F, C), (3, A) 3 1
π6 ◦ S (0, 6, C, 2, A), (1, 5, E,B,D, 4), (3, 9), (7, 8), (F ) 5 1
π8 ◦ S (0, 8, 9, D,A,E, 5), (1, B, 3, 7, 6, 2, 4, F ), (C) 3 1
π9 ◦ S (0, 9, C,D,B, 2, 5, 1, A, F ), (3, 6), (4, E), (7), (8) 5 1
πB ◦ S (0, B), (1, 8, A,D, 9, E, 6), (2, 7, 5, 3, 4, C, F ) 3 1
πC ◦ S (0, C, 8, D,E, 1, F, 5, 4, B, 7, 2), (3), (6), (9), (A) 5 1
πE ◦ S (0, E, 3, 1, D,C,A, 8, F, 7), (2), (4, 9, B, 5, 6) 3 1
πF ◦ S (0, F, 6, 5, 7, 1, C,B, 4, 8, E, 2, 3), (9, A), (D) 3 1

By Theorem 7, the number of non-constant triples (g, a, b) where g ∈ U(πb ◦S ◦πa) is exactly

24(2 · 30 + 4 · 0 + 2 · 6 + 1 · 6 + 1 · 30 + 1 · 6 + 1 · 30 + 1 · 6 + 1 · 30 + 1 · 6 + 1 · 6) = 3072.

The degree distribution of GI(S) consists of 2 constant, 0 linear, 32 quadratic, 1088 cubic
and 1024 quartic invariants, thus giving 2146 invariants altogether. Once again, none of the
quadratic ones being a standard invariant. By Theorem 5, every affine translate of S will
have the same set of generalized invariants hence the same degree distribution.

Remark 6 Notice that the number of standard invariants for the S-box in Example 2 is

given as #g = 2(# cycles of F ) = 25 = 32 which is negligible compared to the number of
generalized invariants!

As already demonstrated, every permutation admits a large number of generalized in-
variants which entirely depends on its cycle structure. Nevertheless some permutations do
not admit quadratic invariants at all. Two such examples are the 8-bit AES S-box and the
4-bit PRESENT S-box [BKL+07].

Example 3 The PRESENT cipher uses as S-box the following permutation:

{0 1 2 3 4 5 6 7 8 9 A B C D E F} S7→ {C 5 6 B 9 0 A D 3 E F 8 4 7 1 2}.

Based on computer simulations its set of generalized invariants GI(S) is of size |GI(S)| =
2178 and none of these is a quadratic one. The inverse S-box (Rijndael S-box) of AES, as a
permutation on F8

2, only admit generalized invariants of degree at least 6.
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4.2 Finding generalized invariants - an application to AES

We have already remarked that there are no quadratic generalized invariants for the S-box
of AES, neglecting the fact that their exact specification is computationally infeasible due
to a large search space for the triples (g, a1, a2), when g ∈ B8 and a1, a2 ∈ F8

2. In what
follows, we describe an efficient search algorithm which exploits certain regularities in the
spectrum of cycle decompositions of the translates of a given S-box. The succeeding analysis
is performed on the S-box of AES but it might be applied to other S-boxes which exhibit
similar regularities.

For a given bijective S-box S on Fm2 let T denote the set of all translates of S, i.e,
elements of the form πb ◦ S ◦ πa for some a, b ∈ Fn2 . Define the sets Pδ consisting of all
elements of T whose cycle decomposition has exactly δ disjoint cycles. Let ∆ be a subset of
the natural numbers such that {Pδ}δ∈∆ is a partition of T .

As an invariant must also be a standard invariant of some element in T , we are searching
for standard invariants through all the elements in T . An initial approach might be simply
to compute U(T ) for every T ∈ T using the cycle decomposition of T and then calculat-
ing the algebraic degree of every element g ∈ U(T ). However, this procedure has a time
complexity of O(m26m) operations. We propose a slightly modified version of this approach
which induces a time memory trade-off.

Let us identify Fm2 with the set {1, . . . , 2m} via the lexicographical ordering of its elements
and suppose that ∆ = {δ1, . . . , δ|∆|}. In order to find the invariants of a permutation S on
Fm2 we carry out the steps detailed in Algorithm 1.

Algorithm 1: Finding invariants and their degree distribution of bijective S-box

Input: A permutation S on Fm2 .
Output: The set GI(S) and its degree distribution
1. Initialize a 2m × 2m−matrix M containing all the information regarding the cycle

structure of elements in T , namely, Mij is the cycle decomposition of πj ◦ S ◦ πi.
2. Create a second matrix I with |∆| columns whose k-th column contains a list of

positions (i, j) with the property that the translate πj ◦ S ◦ πi lies in Pδk .
3. For every k such that 1 ≤ k ≤ |∆| and for every (i, j) ∈ Ik compute each element
g ∈ U(πi ◦ S ◦ πj) using the information in Mij and then calculate its algebraic degree.

The outcome of the algorithm will be a set of generalized invariants of S and their de-
gree distribution. The running time of the algorithm depends upon how large the spaces of
standard invariants U(T ) of elements T ∈ T are, which in turn depends on the permutation
S. Running the algorithm in |∆| parallel processes is a plausible option for the purpose of
saving both time and memory. Additionally, assuming that for every δ ∈ ∆ the sizes |Pδ|2δ+1

are approximately equal to 22m, we can estimate the number of steps of the algorithm for a
fixed δ ∈ ∆ to be O(m24m).

In the case of AES, the algorithm can be efficiently applied since ∆ = {1, 3, 5, 7, 9, 11},
moreover, the following facts are easily obtained.

– S ∈ P5;
– |P1| = 512; |P3| = 7936; |P5| = 26112; |P7| = 18432; |P9| = 10496; |P11| = 2048.

Table 2 shows the running time of the algorithm in the case of AES for every δ ∈ ∆.
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δ 1 3 5 7 9 11

log2(ns(δ)) 22.4594 27.4136 32.1319 32.6294 33.817 33.4594

Table 2. Binary logarithm of the time complexity of Algorithm 1 for finding the generalized
invariants and their degree spectrum of the Rijndael S-box for a fixed δ ∈ {1, 3, 5, 7, 9, 11}.

Remark 7 Using the cycle decomposition of translates of a given permutation S on F8
2 one

can compute the degree distribution GI(S) much faster than using a brute-force approach.

5 Nonlinear invariant through active cycle sets

In this section, we introduce the concept of an active cycle set which gives us the possibility
to specify nonlinear invariants of the round function for AES-like ciphers.

5.1 The concept of active cycle set and induced invariants

To investigate the cycle structure of two concatenated S-boxes, we introduce the concept of
an active cycle set as follows.

Definition 1. Let S1 and S2 be two bijective S-boxes defined on the spaces Fn1
2 and Fn2

2 ,

respectively. For a fixed element x0 ∈ Fn2
2 , let Cx0

:= { Sj2(x0) : 1 ≤ j ≤ d} be its
corresponding cycle of length d. We call the set Γ = {(x1, x2), x1 ∈ Fn1

2 , x2 ∈ Cx0
} an active

cycle set with respect to S∗(x1, x2) = (S1(x1), S2(x2)).

Remark 8 If Γ is an active cycle set then |Γ | = 2n1d. Notice also that for every α =
(α1,0) ∈ Fn1

2 × Fn2
2 and β ∈ Γ , we have α+ β ∈ Γ . Additionally, an active cycle set can be

regarded as a union Γ =
⋃
x∈Fn1

2
(Cx × Cx0).

It was pointed out in [TLS18] that the characteristic functions of cycles form a basis of
the space of standard invariants. We make this statement more precise and establish the
relation between active cycle sets and nonlinear invariants of two concatenated S-boxes.

Observation 1 Let x0 be a fixed element in Fn2
2 and Γ = {(x1, x2), x1 ∈ Fn1

2 , x2 ∈ Cx0
}

be an active cycle set with respect to S∗(x1, x2) = (S1(x1), S2(x2)). Let g ∈ Bn1+n2
be the

characteristic function of Γ so that g(x1, x2) = 1 if (x1, x2) ∈ Γ and g(x1, x2) = 0 otherwise.
Then, g is a standard nonlinear invariant of S∗.

Proof. Suppose that x = (x1, x2) ∈ Γ so that g(x) = 1. It easily follows that y = (y1, y2) =
(S1(x1), S2(x2)) ∈ Γ implying that g(y) = 1. Similarly, for any x 6∈ Γ we have that g(x) = 0.
The fact that x 6∈ Γ implies that x2 6∈ Cx0

, which means S2(x2) 6∈ Cx0
and consequently

g(y) = 0. Therefore, g(x) is a nonlinear invariant of S∗. ut

In a similar fashion, one can construct other invariants of S∗(x1, x2) = (S(x1), S(x2)).
Indeed, instead of using an active cycle set containing a single cycle one can consider a union
of disjoint cycles C so that Γ ∗ = {(x1, x2), x1 ∈ Fn1

2 , x2 ∈ C}, and accordingly define h to be
the characteristic function of Γ ∗. It can be readily verified that h is also a nonlinear invariant
of S∗. In particular, h is a balanced Boolean function on Fn1+n2

2 when |Γ ∗| = 2n1+n2−1.
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The above discussion implies the possibility of deriving a general method of designing
nonlinear invariants by combining the active bytes and cycles rather than the traditional
usage of algebraic normal form (ANF) of Boolean function (or only the cycle structure of a
given S-box). Moreover, it also indicates that the support of a nonlinear invariant is closely
related to the active cycle set with respect to S∗.

5.2 Cycle structure of the entire S-box layer for AES-like ciphers

In this section, we propose an algorithm for determining the exact number of cycles (and
their lengths) of two concatenated bijective S-boxes which can be used iteratively for spec-
ifying the cycle structure of the entire S-box layer.

Observation 2 Let S1 and S2 be two permutations defined over Fm2 . Let x1 and x2 be
two fixed elements in Fm2 and consider the cycles Cx1

= { Si1(x1) : 1 ≤ i ≤ d1} and
Cx2

= { Si2(x2) : 1 ≤ i ≤ d2} of lengths d1 and d2, respectively. Consider the permuta-
tion S : F2m

2 → F2m
2 given as a parallel application (or concatenation) of S1 and S2, i.e.,

S(x1, . . . , x2m) = (S1(x1, . . . , xm), S2(xm+1 . . . , x2m)). Then, there are exactly gcd(d1, d2)
cycles of S induced by the elements in Cx1 and Cx2 . In particular, if gcd(d1, d2) = 1, then
there is only one cycle stemming from Cx1

and Cx2
in the cycle decomposition of S.

Proof. We claim that the length l of the cycle Cz = {Si(z) : 1 ≤ i ≤ l}, for z := (x, y) ∈
Cx1 × Cx2 , is equal to lcm(d1, d2). Indeed, it is obvious that l ≤ lcm(d1, d2). Now, as
Sl(x, y) = (Sl1(x), Sl2(y)) we infer that Sl1(x) = x and Sl2(y) = y. Therefore, d1| l and d2| l
and thus lcm(d1, d2) ≤ l. Hence, l = lcm(d1, d2). Since there are d1d2 elements in Cx1

×Cx2
,

we observe that there will be d1d2
lcm(d1,d2)

= gcd(d1, d2) different cycles in the cycle structure

of S, coming from elements in Cx1
× Cx2

. The case gcd(d1, d2) = 1 easily follows. ut

Remark 9 In general, the above result is also valid when bijective S-boxes S1 and S2 are
not defined on the same variable space.

Example 4 Let A := {a1, a2, a3, a4} and B := {b1, b2, . . . , b6} be two cycles in the cycle
structure of the S-boxes S1 and S2, respectively. From Observation 2, we conclude there are
gcd(4, 6) = 2 cycles for S(x, y) = (S1(x), S2(y)), induced by A and B, given by:

D0 = {(a1, b1), (a2, b2), (a3, b3), (a4, b4), (a1, b5), (a2, b6), (a3, b1), (a4, b2),

(a1, b3), (a2, b4), (a3, b5), (a4, b6)},

D1 = {(a2, b1), (a3, b2), (a4, b3), (a1, b4), (a2, b5), (a3, b6), (a4, b1), (a1, b2),

(a2, b3), (a3, b4), (a4, b5), (a1, b6)}.

Notice that the length of each cycle is lcm(4, 6) = 12.

Observation 2 induces the following algorithm for determine the exact number of cycles
in the cycle structure of two concatenated S-boxes.
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Algorithm 2: Finding the exact number of cycles in the cycle structure of two
concatenated S-boxes

Input: Two permutations S1 and S2.
Output: The exact number of cycles for the concatenation S = (S1, S2)
1. Calculate the lengths of each cycle in the cycle decompositions of both S1 and S2.
2. For each pair of these lengths, compute the corresponding length of the cycle in the

cycle decomposition of S via Observation 2.
3. Return the sum of the numbers obtained in the previous step.

Example 5 Let S1 be the 4-bit S-box used in PRINCE [BCG+12] block cipher. It is easily
checked that its cycle structure consists of four cycles. More precisely,

– A1 = {0, 11},
– A2 = {1, 15, 4, 10, 8, 6, 9, 7},
– A3 = {2, 3},
– A4 = {5, 12, 14, 13}.

The cardinalities of these cycles are |A1| = 2, |A2| = 8, |A3| = 2 and |A4| = 4. Using
Algorithm 2, we can determine the exact number of cycles in the cycle structure of two
concatenated Prince S-boxes S = (S1, S1), i.e., 4× 2 + 2 + 8 + 2 + 4 + 4× 2 + 2 + 4 + 2 + 4 =
44. Moreover, we can also determine the specific lengths of these cycles. We can further
apply Algorithm 2 to other concatenated S-boxes, for instance, the number of cycles in the
cycle decomposition of two concatenated Skinny [BKL+16] S-boxes is 30 (Skinny’s cycle
decomposition contains 4 cycles) and the number of cycles in the cycle structure of two
concatenated AES S-boxes is 336.

In fact, using Algorithm 2 iteratively, one can in general calculate the exact number of
cycles in the decomposition of the permutation consisting of l parallel applications of (not
necessarily) identical bijective S-boxes. We illustrate this in Table 3 below, by considering
S-boxes of LED cipher [GPPRM] of size 4× 4.

Number l of parallel applications of S 2 4 8

Number of cycles 30 2928 82695528

Table 3. Number of cycles for l parallel applications of LED S-box

Remark 10 The complexity of Algorithm 2 entirely depends on the cycle structure of in-
volved S-boxes. In the worst case scenario, when the number of cycles is very large, the
advantage of this approach may be insignificant compared to the basic method of considering
S = (S1, S2) as a bijective superbox and finding the cycles of S directly. Nevertheless, the
case of having many small cycles seems not to be common which is also confirmed when
analyzing the cycle structure of the S-boxes of AES and LED cipher for instance. Moreover,
large cycles can also be identified in the MC(SB(x)) operation typical for AES-like ciphers,
where MC and SB stand for the mix column and substitute byte operation, respectively.
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One can calculate the length of the cycles corresponding to MC(SB(x)) operation via
Algorithm 2. For instance, when considering the LED cipher, the number of cycles referring
to one column of MC(SB(x)) nonlinear operation (corresponding to a superbox which maps
F4×4
2 to F4×4

2 ) is very small, namely it equals 10. The number of cycles for two columns
of MC(SB(x)) operation, viewing these two columns as a superbox consisting of eight
concatenated S-boxes and thus mapping F4×8

2 to F4×8
2 , for LED cipher is 65740. These cycles

could be obtained on a standard PC in less than 1 minute. The exact number of cycles can
also be deduced using Algorithm 2 for the full permutation MC(SB(x)) consisting of 16
concatenated S-boxes, which can be performed efficiently (due to a small number of cycles
for MC(SB(x)) columns) on dedicated platforms.

6 Conclusions

A detailed theoretical analysis of generalized and closed loop invariants, the concepts in-
troduced in [YWP19], in terms of their cardinality and structure has been provided. The
generalized concept of nonlinear invariants seems to be fully justified since in many cases
real-life lightweight block ciphers do not admit quadratic invariants while having many
quadratic generalized ones. A novel concept of active cycle set also appears to be useful
when defining nonlinear invariants of concatenated S-boxes. Practical applications of this
theory (in particular the use of active cycle set for specifying invariants) are currently in-
vestigated and these look quite promising.
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