
Karatsuba-based square-root Vélu’s formulas applied to
two isogeny-based protocols

Gora Adj ∗1, Jesús-Javier Chi-Domínguez †2, and Francisco
Rodríguez-Henríquez ‡2,3

1Departament de Matemàtica, Universitat de Lleida, Spain
2Cryptography Research Centre, Technology Innovation Institute, Abu Dhabi,

United Arab Emirates
3Computer Science Department, CINVESTAV-IPN, Mexico City, Mexico

September 4, 2021

Abstract
At a combined computational expense of about 6` field operations, Vélu’s for-

mulas are used to construct and evaluate degree-` isogenies in the vast majority of
isogeny-based cryptographic schemes. By adapting to Vélu’s formulas a baby-step
giant-step approach, Bernstein, De Feo, Leroux, and Smith presented a procedure
that can computes isogeny operations at a reduced cost of just Õ(

√
`) field oper-

ations. In this paper, we present a concrete computational analysis of these novel
procedure along with several algorithmic tricks that helped us to further decrease its
computational cost. We also report an optimized Python3-code implementation of
several instantiations of two isogeny-based key-exchange protocols, namely, CSIDH
and B-SIDH. Our software library uses a combination of the modified Vélu’s formu-
las and an adaptation of the optimal strategies commonly used in the SIDH/SIKE
protocols to produce significant speedups. Compared to a traditional Vélu constant-
time implementation of CSIDH, our experimental results report a saving of 5.357%,
13.68% and 25.938% base field operations for CSIDH-512, CSIDH-1024, and CSIDH-
1792, respectively. Additionally, we present the first optimized implementation of
B-SIDH ever reported in the open literature.

1 Introduction

Isogeny-based cryptography was independently introduced in 2006 by Couveignes [16],
Rostovtsev and Stolbunov in [31, 33]. Since then, an ever increasing number of isogeny-
based key-exchange protocols have been proposed. A selection of those protocols, espe-
cially relevant for this work, is briefly summarized below.
∗gora.adj@udl.cat
†jesus.dominguez@tii.ae
‡francisco@cs.cinvestav.mx, francisco.rodriguez@tii.ae

1

Operating with supersingular elliptic curves defined over the finite field Fp2 , with p
a prime, the Supersingular Isogeny-based Diffie-Hellman key exchange protocol (SIDH)
was presented by Jao and De Feo in [21] (see also [17]). In 2017, the Supersingular Isogeny
Key Encapsulation (SIKE) protocol, an SIDH variant, was submitted to the NIST post-
quantum cryptography standardization project [2]. On July 2020, NIST announced that
SIKE passed to the round 3 of this contest as an alternate candidate.

In 2018, the commutative group action protocol CSIDH was introduced by Castryck,
Lange, Martindale, Panny and Renes in [8]. Operating with supersingular elliptic curves
defined over a prime field Fp, CSIDH is a significantly faster version of the Couveignes-
Rostovtsev-Stolbunov scheme variant as it was presented in [18].

More recently, in 2019, Costello proposed a variant of SIDH named B-SIDH [13]. In
B-SIDH, Alice computes isogenies from a (p + 1)-torsion supersingular curve subgroup,
whereas Bob has to operate on the (p − 1)-torsion subgroup of the quadratic twist of
that curve. A remarkable feature of B-SIDH is that it can achieve similar classical
and quantum security levels as SIDH, but using significantly smaller public/private key
sizes. The single most important challenge in the implementation of B-SIDH is the high
computational cost associated to the large degree isogenies involved in its execution.

In general, performing isogeny map constructions and evaluations are the most ex-
pensive computational tasks of any isogeny-based protocol. This is especially true for
CSIDH and B-SIDH, where [exceedingly] large odd prime degree-` isogenies come into
play.

For decades now, Vélu’s formulas (cf. [22, §2.4] and [34, Theorem 12.16]) have been
widely used to construct and evaluate degree-` isogenies. Using several elliptic curve
and isogeny arithmetic optimization tricks reported in the last few years [26, 14, 9], the
construction and evaluation of degree-` isogenies via Vélu’s formulas can be obtained at
a computational cost of roughly 6` field multiplications (see a detailed discussion in §2).

Recently, Bernstein, De Feo, Leroux and Smith presented in [5] a new approach
for constructing and evaluating degree-` isogenies at a combined cost of just Õ(

√
`)

field operations. This improvement was obtained by observing that the main polynomial
product embedded in the isogeny computations, can be effectively accelerated via a baby-
step giant-step approach [5, Algorithm 2]. Due to its square root complexity reduction
(up to polylogarithm factors), in the remainder of this paper, we will refer to this variant
of Vélu’s formulas, as

√
élu formulas or simply

√
élu.

As we will see in this paper, and as it was already hinted in [5],
√
élu has a noticeable

impact on the performance of CSIDH, and even more so on B-SIDH. By way of illus-
tration, consider the combined cost of constructing and evaluating degree-` isogenies for
` = 587, which corresponds to an example highlighted in [5, Appendix A.3]. 1 For that
degree `, the authors report a cost of just 2296 ≈ 3.898(` + 2) field multiplications and
squaring operations. This has to be compared with the cost of a classical Vélu approach
that would take some 3544 ≈ 6.017(`+ 2) multiplications.

In spite of the groundbreaking result announced in [5], along with the high perfor-
1Note that ` = 587 is the largest prime factor of p+1

4
, where p is the prime used in the popular

CSIDH-512 instantiation of the CSIDH isogeny-based protocol.

2

mance achieved by its companion software library, the authors did not provide a practical
cost analysis of their approach, but rather, they focus their attention on its asymptot-
ical analysis. Moreover, their

√
élu implementation reported a rather modest 1% and

8% speedup over the traditional Vélu’s formulas when applied to the non constant-time
CSIDH-512 and CSIDH-1024 instantiations, respectively. Furthermore, the authors of [5]
left open the problem of assessing the practical impact of

√
élu on CSIDH and B-SIDH

constant-time implementations.

Our Contributions. We present a concrete computational analysis of
√
élu. From

this analysis, we conclude that for virtually all practical scenarios, the best approach
for performing the polynomial products associated to the isogeny arithmetic is achieved
by nothing more than carefully tailored Karatsuba polynomial multiplications. The
main practical consequence of this observation is that computing degree-` isogenies with√
élu has a concrete computational cost closer to O(blog2 (3)), where b =

√
`. We also

present several tricks that permit to save multiplications when performing products in-
volving the polynomials EJ0 and EJ1 as defined in §4. We additionally exploit the fact
that the polynomials EJ0 and EJ1 are the reciprocal of each other. These simple but
effective observations help us to construct and evaluate a degree-587 isogeny using only
2180M ≈ 3.701(`+2). This is about 5.3% cheaper than the same computation announced
in [5]. This improvement also pushes to ` = 89 the threshold where computing degree-`
isogenies with

√
élu becomes more effective than traditional Vélu.

In a nutshell, our main practical contributions can be summarized as follows:

1. We report the first constant-time implementation of the protocol B-SIDH intro-
duced in [13]. Using the framework of [11], optimal strategies à la SIDH are ap-
plied to B-SIDH while also taking advantage of

√
élu. The experimental results

for B-SIDH show a saving of up to 75% compared with an implementation of this
protocol using traditional Vélu.

2. We used the framework presented in [11] to apply optimal strategies to CSIDH,
while exploiting

√
élu. This allows us to present the first application of

√
élu to

constant-time implementations of the CSIDH-512, CSIDH-1024, and CSIDH-1792
instantiations. A comparison with respect to CSIDH using traditional Vélu, reports
savings of 5.357%, 13.68% and 25.938% field Fp-operations for CSIDH-512, CSIDH-
1024, and CSIDH-1792, respectively.

3. We prove that the computational cost of computing degree-` isogenies using
√
élu with

Karatsuba is of O(
√
`log2 3) field operations.

Our software library is freely available at

https://github.com/JJChiDguez/sibc .

3

https://github.com/JJChiDguez/sibc

Outline. The remainder of this paper is organized as follows. In §2, we give a descrip-
tion of traditional Vélu’s formulas. We include also a compact description of the B-SIDH
and CSIDH protocols. In §3, we briefly discuss the application of optimal strategies to
CSIDH and B-SIDH. In §4, we present an explicit description of

√
élu main building

blocks KPS, xEVAL, and xISOG. In addition, we discuss several
√
élu algorithmic improve-

ments in §4.2. We report the experimental results obtained from our software library
in §5, first in §5.1 for CSIDH and then in §5.2 for B-SIDH. Finally, our concluding remarks
are drawn in §6.

Notation. M, S, and a denote the cost of computing a single multiplication, squaring,
and addition (or subtraction) in the prime field Fp, respectively.

2 Background

Most if not all of the fastest isogeny-based constant-time protocol implementations, have
adopted for their schemes Montgomery and twisted Edwards curve models. A Mont-
gomery curve [25] is defined by the equation EA,B : By2 = x3+Ax2+x, such that B 6= 0
and A2 6= 4. For the sake of simplicity, we will write EA for EA,1 and will always consider
B = 1. Moreover, it is customary to represent the constant A in the projective space P1

as (A′ : C ′), such that A = A′/C ′ (see [15]).
Let q = pn, where p is a large prime number and n a positive integer. Let E be a

supersingular Montgomery curve E : y2 = x3 +Ax2 + x defined over Fq, and let ` be an
odd prime number. Given an order-` point P ∈ E(Fq), the construction of a degree-`
isogeny φ : E 7→ E′ of kernel G = 〈P 〉 and its evaluation at a point Q ∈ E(Fq)\G
consist of the computation of the Montgomery coefficient A′ ∈ Fq of the codomain curve
E′ : y2 = x3 + A′x2 + x and the image point φ(Q), respectively. In this paper, we will
refer to these two tasks as isogeny construction and isogeny evaluation computations,
respectively.

Vélu’s formulas (see [22, §2.4] and [34, Theorem 12.16]), have been generally used
to construct and evaluate degree-` isogenies by performing three main building blocks
known as, KPS, xISOG and xEVAL. The block KPS computes the first k multiples of the point
P , namely, the set {P, [2]P, . . . , [k]P}. Using KPS as a sort of pre-computation ancillary
module, xISOG finds the constants (A′ : C ′) ∈ Fq that determine the codomain curve E′.
Also, using KPS as a building block, xEVAL calculates the image point φ(Q) ∈ E′.

After applying a number of elliptic curve arithmetic tricks [26, 14, 9], the compu-
tational expenses of KPS, xISOG and xEVAL have been found to be about 3`, ` and 2`
multiplications, respectively. This gives an overall cost of about 6` multiplications for
the combined cost of the isogeny construction and evaluation tasks. In §4, we give a
detailed discussion of how the

√
élu approach of [5] drastically reduces the timing costs

of traditional Vélu’s formulas.2

2This speedup is achieved as a time-memory trade-off: an optimized implementation of
√
élu requires

much more memory than traditional Vélu.

4

Public parameter:
E/Fp : By2 = x3 +Ax2 + x,

Alice

(e1, . . . , en)
$←− J−m . . mKn

EA = le11 ∗ · · · ∗ lenn ∗ E

EBA = le11 ∗ · · · ∗ lenn ∗ EB

Bob

(f1, . . . , fn)
$←− J−m . . mKn

EB = lf11 ∗ · · · ∗ lfnn ∗ E

EAB = lf11 ∗ · · · ∗ lfnn ∗ EA

EA

EB

Figure 1: CSIDH key-exchange protocol

In the remainder of this section, we briefly discuss the two isogeny-based protocols
implemented in this paper, namely, CSIDH and B-SIDH.

2.1 Overviewing the C-SIDH

Here, we give a simplified description of CSIDH. For more technical details, the interested
reader is referred to [8, 9, 23, 28].

CSIDH is an isogeny-based protocol that can be used for key exchange and encapsu-
lation [8], and other more advanced protocols and primitives. Figure 1 shows how CSIDH
can be executed analogously to Diffie–Hellman, to produce a shared secret between Alice
and Bob. Remarkably, the elliptic curves EBA and EAB computed by Alice and Bob at
the end of the protocol are one and the same.

CSIDH works over a finite field Fp, where p is a prime of the form

p = 4
n∏
i=1

`i − 1

with `1, . . . , `n a set of small odd primes. For example, the original CSIDH article [8]
defined a 511-bit p with `1, . . . , `n−1 the first 73 odd primes, and `n = 587. This instan-
tiation is commonly known as CSIDH-512.

The set of public keys in CSIDH is a subset of all supersingular elliptic curves in
Montgomery form, y2 = x3 + Ax2 + x, defined over Fp. Since the CSIDH base curve E
is supersingular, it follows that #E(Fp) = (p+ 1) = 4

∏n
i=1 `i.

The input to the CSIDH class group action algorithm is an elliptic curve E : y2 =
x3+Ax2+x, represented by its A-coefficient, and an ideal class a =

∏n
i=1 l

ei
i , represented

5

by its list of secret exponents (ei, . . . , en) ∈ J−m . . mKn. The output is the A-coefficient
of the elliptic curve EA defined as,

EA = a ∗ E = le11 ∗ · · · ∗ lenn ∗ E. (1)

Taking advantage of the commutative property of the group action, we can implement
the protocol shown in Figure 1, which closely resembles the flow of the classical Diffie-
Hellman protocol. Alice and Bob begin by selecting secret keys a and b, and producing
their corresponding public keys EA = a∗E and EB = b∗E, respectively. After exchanging
these public keys and taking advantage of the commutative property of the group action,
Alice and Bob compute a shared secret as,

a ∗ EB = (a · b)E = (b · a)E = b ∗ EA.

The computational cost of the group action described in Algorithm 4 of subsec-
tion A.1, is dominated by the calculation of n degree-`eii isogeny evaluations and construc-
tions plus a total of n(n+1)

2 scalar multiplications by the prime factors `i, for i = 1, . . . , n.
A similar multiplication-based approach for computing the group action algorithm was
proposed in the original CSIDH protocol of [8]. It was first stated in [6, §8] (see also [20])
that this multiplication-based procedure could possibly be improved by adapting to
CSIDH, the SIDH optimal strategy approach introduced by De Feo, Jao and Plût in [17].
We briefly discuss about the role of optimal strategies for large instances of CSIDH in §3,
where the framework presented in [11] was adopted.

2.2 Playing the B-SIDH

B-SIDH was proposed by Costello in [13], Alice and Bob work in the (p + 1)- and (p −
1)-torsion of a set of supersingular curves defined over Fp2 and their quadratic twist
set, respectively. B-SIDH is effectively twist-agnostic because optimized isogeny and
Montgomery arithmetic only require the x-coordinate of the points along with the A
coefficient of the curve.3 This feature implies that B-SIDH can be executed entirely à la
SIDH as shown in Figure 2.4

More concretely, as before let E : By2 = x3 + Ax2 + x denote a supersingular
Montgomery curve defined over Fp2 , so that#E(Fp2) = (p+1)2, and let Et/Fp2 denote the
quadratic twist of E/Fp2 . Then, Et/Fp2 can be modeled as, (γB)y2 = x3+Ax2+x, where
γ ∈ Fp2 is a non-square element and #E(Fp2) = (p − 1)2. Notice that the isomorphism
connecting these two curves is determined by the map ι : (x, y) 7→ (x, jy) with j2 = γ
(see [13, §3]).

Hence, for any Fp2-rational point P = (x, y) on Et/Fp2 it follows that Q = ι(P) =
(x, jy) is an Fp4-rational point on E, such that Q+π2(Q) = O. Here π : (x, y) 7→ (xp, yp)

3For efficiency purposes, in practice both, the x-coordinate of the points and the constant A of the
curve, are projectivized to two coordinates.

4Although we omit here the specifics of the operations depicted in Figure 2, they are completely
analogus to the ones corresponding to SIDH, a protocol that is carefully discussed in many papers such
as [17, 15, 1].

6

Public parameter:
E/Fp2 : By2 = x3 +Ax2 + x,

Pa, Qa ∈ E[p+ 1] of order M , and Pb, Qb ∈ E[p− 1] of order N

Alice

ska
$←− J0 . . M − 1K

Ra = Pa + [ska]Qa

φa : E → E/〈Ra〉
Ea = E/〈Ra〉

Eab = Eb/〈φb(Ra)〉

Bob

skb
$←− J0 . . N − 1K

Rb = Pb + [skb]Qb

φb : E → E/〈Rb〉
Eb = E/〈Rb〉

Eab = Ea/〈φa(Rb)〉

Ea, φa(Pb), φa(Qb)

Eb, φb(Pa), φb(Qa)

Figure 2: B-SIDH protocol for a prime p such that M |(p+ 1) and N |(p− 1).

is the Frobenius endomorphism. This implies that Q is a zero-trace Fp4-rational point
on E/Fp2 .

B-SIDH can thus be seen as a reminiscent of the CSIDH protocol [8], where the
quadratic twist is exploited to perform the computations using rational and zero-trace
points with coordinates in Fp2 . Although B-SIDH allows to work over smaller fields
than either SIDH or CSIDH, it requires the computation of considerably larger degree-`
isogenies.

As illustrated in Figure 2, B-SIDH can be executed analogously to the main flow of the
SIDH protocol. B-SIDH public parameters correspond to a supersingular Montgomery
curve E/Fp2 : By2 = x3 +Ax2 + x with #E(Fp2) = (p+ 1)2, two rational points Pa and
Qa on E/Fp2 , and two zero-trace Fp4-rational points Pb and Qb on E/Fp2 such that

• Pa and Qa are two independent order-M points with M | (p + 1), gcd(M, 2) = 2,
and

[
M
2

]
Qa = (0, 0);

• Pb and Qb are two independent order-N points with N | (p−1) and gcd(N, 2) = 1.

In practice, B-SIDH is implemented using projectivized x-coordinate points, and thus
the point differences PQa = Pa − Qa and PQb = Pb − Qb must also be exchanged.
Since the x-coordinates of Pa, Qa, PQa, Pb, Qb and PQb, all belong to Fp2 , a B-SIDH
implementation must perform field arithmetic on that quadratic extension field. As in
the case of SIDH, the protocol flow of B-SIDH must perform two main phases, namely,
key generation and secret sharing. In the key generation phase, the evaluation of the
projectivized x-coordinate points x(P), x(Q) and x(P−Q) is required. Thus for B-SIDH,
secret sharing is significantly cheaper than key generation.

We briefly discuss the role of optimal strategies for large instances of CSIDH and
B-SIDH, in the next section.

7

3 Optimal strategies for the CSIDH and the B-SIDH

In [17], optimal strategies were introduced to efficiently compute degree-`e isogenies at
a cost of approximately e

2 log2 e scalar multiplications by `, e
2 log2 e degree-` isogeny

evaluations, and e constructions of degree-` isogenous curves. Optimal strategies can be
obtained using dynamic programming (see [2, 11] for concrete algorithms).

In the context of SIDH, optimal strategies tend to balance the number of isogeny
evaluations and scalar multiplications to O(e log (e)). In the case of CSIDH, optimal
strategies are expected to be largely multiplicative, i.e., optimal strategies will tend
to favor the computation of more scalar multiplications over isogeny evaluations. This
is due to the fact that these operations are cheaper than large prime degree-` isogeny
evaluations.

Let L = [`1, `2, . . . , `74] be the list of small odd prime numbers such that p = 4 ·∏n
i=1 `i−1 is the prime number used in CSIDH. Here, we adopt the framework presented

in [11], where the authors heuristically assumed that an arrangement of the set L from
the smallest to the largest `i, is close to the global optimal. For this fixed ordering, the
authors of [11] reported a procedure that finds an optimal strategy with cubic complexity
with respect to n.

Optimal strategies can also be used to improve the performance of B-SIDH, although
in this case, we can see the resulting strategies as a hybrid between SIDH and CSIDH.
On the one hand, B-SIDH follows the same SIDH protocol flow. On the other hand,
B-SIDH must construct/evaluate several isogenies whose degrees are powers of large odd
primes, as in CSIDH.

Let us assume that we need to construct a degree-L isogeny with L = `1
e1 ·`2e2 · · · `nen ,

and let us write

L′ = [`1, . . . , `1︸ ︷︷ ︸
e1

, `2, . . . , `2︸ ︷︷ ︸
e2

, . . . , `n, . . . , `n︸ ︷︷ ︸
en

].
(2)

Then, in order to efficiently execute either the key generation or the secret sharing main
phases of B-SIDH, we must find an optimal strategy for the setting L′ as described
in Algorithm 5 of subsection A.1.

Notice that any B-SIDH strategy can be encoded as is customary in SIDH and CSIDH,
i.e., by a list of e−1 positive integers where e =

∑n
i=1 ei.Moreover, any such strategy can

be evaluated by executing the dynamic-programming procedure shown in Algorithm 5.

4 New Vélu’s formulas

In this section we present a more detailed discussion of the
√
élu algorithms and their ap-

plication to isogeny-based cryptography. We give several algorithmic tricks that slightly
improve the performance of

√
élu as it was presented in [5].

Let EA/Fq be an elliptic curve defined in Montgomery form by the equation y2 =
x3+Ax2+x, with A2 6= 4. Let P be a point on EA of odd prime order `, and φ : EA → EA′

a separable isogeny of kernel G = 〈P 〉 and codomain EA′/Fq : y2 = x3 +A′x2 + x.

8

Our main task here is to compute A′ and the x-coordinate φx(α) of φ(Q), for a
rational point Q = (α, β) ∈ EA(Fq)\G. As mentioned in [5] (see also [14], [24] and [27]),
the following formulas allow to accomplish this task,

A′ = 2
1 + d

1− d and φx(α) = α`
hS(1/α)

2

hS(α)2
, where

S = {1, 3, . . . , `− 2}, d =

(
A− 2

A+ 2

)`(hS(1)

hS(−1)

)8

, and

hS(X) =
∏
s∈S

(X − x([s]P)).

From the above, we see that the efficiency of computing A′ and φx(α) directly depends
on the cost of evaluating the polynomial hS(X) =

∏
s∈S(X−x([s]P)). A naive approach

would compute hS(X) by performing #S − 1 polynomial products. Alternatively, ex-
ploiting a baby-step giant-step strategy

√
élu obtains a square root complexity speedup

over a traditional Vélu approach. In the following, we briefly sketch this strategy.
Given EA/Fq an order-` point P ∈ EA(Fq), and some value α ∈ Fq we want to

efficiently evaluate the polynomial, hS(α) =
∏`−1
i (α− x([i]P)). From Lemma 4.3 of [5],

(X − x(P +Q))(X − x(P −Q)) = X2 +
F1(x(P), x(Q))

F0(x(P), x(Q))
X

+
F2(x(P), x(Q))

F0(x(P), x(Q))

where,

F0(Z,X) = Z2 − 2XZ +X2; (3)

F1(Z,X) = −2(XZ2 + (X2 + 2AX + 1)Z +X);

F0(Z,X) = X2Z2 − 2XZ + 1.

This suggests a rearrangement à la Baby-step Giant-step as,

h(α) =
∏
i∈I

∏
j∈J

(α− x([i+ s · j]P))(α− x([i− s · j]P))

Now h(α) can be efficiently computed by calculating the resultants of polynomials of
the form,

hI ←
∏
xi∈I

(Z − xi)) ∈ Fq[Z]

EJ(α)←
∏
xj∈J

(
F0(Z, xj)α

2 + F1(Z, xj)α+ F2(Z, xj)
)
.

9

The most demanding operations of
√
élu require computing four different resultants

of the form ResZ(f(Z), g(Z)) for polynomials f, g ∈ Fq[Z]. We compute these four
resultants using a remainder tree approach supported by carefully tailored Karatsuba
polynomial multiplications. In practice, the computational cost of performing degree-`
isogenies using

√
élu is close to K(

√
`)log2 3 field operations, with K a constant.

4.1 Construction and evaluation of odd degree isogenies

As in section 2, we consider the three building blocks KPS, xISOG, xEVAL, where KPS con-
sists of computing the x-coordinates of all the points in the kernel G, xISOG finds the
codomain coefficient A′, and xEVAL performs the computation of φx(α).

In line with the traditional approach, one could use the KPS procedure of traditional
Vélu for computing the x-coordinates of (#S = (`− 1)/2) points in the kernel G. This
will cost about 3` field multiplications. More efficiently,

√
élu only computes the x-

coordinates of points of G with indices in three subsets of S, each of size O(
√
`). Denote

by I, J and K those subsets of S. Then, I and J are chosen such that the maps
I × J → S defined by (i, j) 7→ i + j and (i, j) 7→ i − j are injective and their images
I + J , I − J are disjoint. We call (I,J) an index system for S and write I ± J
for (I + J) ∩ (I − J). The remaining indices of S are gathered in K = S\(I ± J).
Algorithm 1 states the required KPS computations.

Algorithm 1 Kernel points computation (KPS)

Require: An elliptic curve EA/Fq; P ∈ EA(Fq) of order an odd prime `.
Ensure: I = {x([i]P) | i ∈ I}, J = {x([j]P) | j ∈ J}, and K = {x([k]P) | k ∈ K} such

that (I, J) is an index system for S, and K = S\(I ± J)
1: b← b

√
`− 1/2c; b′ ← b(`− 1)/4bc

2: I ← {2b(2i+ 1) | 0 ≤ i < b′}
3: J ← {2j + 1 | 0 ≤ j < b}
4: K ← S\(I ± J)
5: I ← {x([i]P) | i ∈ I}
6: J ← {x([j]P) | j ∈ J}
7: K ← {x([k]P) | k ∈ K}
8: return I,J ,K

Let us recall that for the efficient computation of xISOG and xEVAL ,
√
élu uses the

biquadratic polynomials of Equation 3, which implies the computation of resultants of
the form ResZ(f(Z), g(Z)), for two polynomials f, g ∈ Fq[Z].

We are now ready to present in Algorithm 2 and Algorithm 3 the computation
of xISOG and xEVAL, respectively. Deriving the resultants in Algorithm 2 and Algo-
rithm 3 may turn out to be a cumbersome task if it is not carried out in an elab-
orated way. For polynomials f = a

∏
0≤i<n(Z − xi) and g in Fq[Z], their resultant

Res(f, g) = an
∏

0≤i<n g(xi) can be computed efficiently when the factorization of f is
known, which is exactly the case in the algorithms at hand. Employing a remainder tree

10

approach (an equivalent alternative being continued fractions), one evaluates the factors
g(xi) by computing g mod (Z − xi), 0 ≤ i < n, followed by their product.

One considerable advantage of using remainder trees here is that the subjacent prod-
uct tree of the (Z − xi) factors, can be shared among all the resultants in Algorithm 2
and Algorithm 3, since these linear polynomials depend only on the kernel 〈P 〉. In other
words, the four resultants in Algorithm 2 and Algorithm 3 show no dependencies among
them and therefore, they can be computed concurrently by a

√
élu parallel implementa-

tion.

Algorithm 2 Codomain curve construction (xISOG)

Require: An elliptic curve EA/Fq : y2 = x3 + Ax2 + x; P ∈ EA(Fq) of order an odd
prime `; I,J ,K from KPS.

Ensure: A′ ∈ Fq such that EA′/Fq : y2 = x3+A′x2+x is the image curve of a separable
isogeny with kernel 〈P 〉.

1: hI ←
∏
xi∈I(Z − xi)) ∈ Fq[Z]

2: E0,J ←
∏
xj∈J (F0(Z, xj) + F1(Z, xj) + F2(Z, xj)) ∈ Fq[Z]

3: E1,J ←
∏
xj∈J (F0(Z, xj)− F1(Z, xj) + F2(Z, xj)) ∈ Fq[Z]

4: R0 ← ResZ(hI , E0,J) ∈ Fq
5: R1 ← ResZ(hI , E1,J) ∈ Fq
6: M0 ←

∏
xk∈K(1− xk) ∈ Fq

7: M1 ←
∏
xk∈K(−1− xk) ∈ Fq

8: d←
(
A−2
A+2

)` (
M0R0
M1R1

)8
9: return 2 1+d

1−d

Algorithm 3 Isogeny evaluation (xEVAL)

Require: An elliptic curve EA/Fq : y2 = x3 + Ax2 + x; P ∈ EA(Fq) of order an odd
prime `; the x-coordinate α 6= 0 of a point Q ∈ EA(Fq)\〈P 〉; I, J , K from KPS.

Ensure: The x-coordinate of φ(Q), where φ is a separable isogeny of kernel 〈P 〉.
1: hI ←

∏
xi∈I(Z − xi)) ∈ Fq[Z]

2: E0,J ←
∏
xj∈J

(
F0(Z,xj)

α2 +
F1(Z,xj)

α + F2(Z, xj)
)
∈ Fq[Z]

3: E1,J ←
∏
xj∈J

(
F0(Z, xj)α

2 + F1(Z, xj)α+ F2(Z, xj)
)
∈ Fq[Z]

4: R0 ← ResZ(hI , E0,J) ∈ Fq
5: R1 ← ResZ(hI , E1,J) ∈ Fq
6: M0 ←

∏
xk∈K(1/α− xk) ∈ Fq

7: M1 ←
∏
xk∈K(α− xk) ∈ Fq

8: return (M0R0)
2/(M1R1)

2

Notice that the single most recurrent high level operation of Algorithm 2 and Algo-
rithm 3, is the polynomial multiplication on the ring Fq[X]. Thus, as in [5], it is essential
that we utilize fast tailor-made polynomial multiplication algorithms. These customized

11

algorithms are useful because for several required computations, only a segment of the
output product is actually needed.

The resultant ResZ(f(Z), g(Z)) of two polynomials f, g ∈ Fq[Z] can be computed
with an asymptotic runtime complexity of Õ(n) by using a fast polynomial multiplication.
Here fast means that this polynomial operation has a O(n log2(n)) field multiplication
complexity (see [4, p. 7, §3]). The degree of the polynomials used for CSIDH and even
B-SIDH, are sufficiently small so that Karatsuba polynomial multiplication (or related
approaches such as Toom-Cook), emerges as the most efficient solution. For example,
according to the implementation of [5], ` = 587 requires polynomials of degree #I = 16
and 2×#J = 18 (in the B-SIDH case this translates to #I,#J ≤ 150). It can be easily
verified that Karatsuba polynomial multiplication becomes a more efficient choice than
the Schönage-FFT approach (for a comprehensive analysis of these design options, see
Appendix A.2).

4.2 Implementation speedups

In this section we report several algorithmic techniques that are exploited in our imple-
mentation to obtain some modest, but noticeably savings over [5]. Our first refinement
affects xEVAL, and arises from the special shape of the biquadratic polynomials F0, F1,
F2. Considering either variable, one can see that F1 is symmetric and F0 is symmetric
to F2

5, that is, F1 = 1/Z2 F1(1/Z,X) and F2 = 1/Z2 F0(1/Z,X) by, for example, con-
sidering the first variable. Now, using a projective representation of the x-coordinate
α = x/z in xEVAL, we can write a quadratic polynomial factor in E0,J and a quadratic
polynomial factor in E1,J respectively as

E0,j = 1/x2
(
F0(Z, xj)z

2 + F1(Z, xj)xz + F2(Z, xj)x
2
)
;

E1,j = 1/z2
(
F0(Z, xj)x

2 + F1(Z, xj)xz + F2(Z, xj)z
2
)
.

Thus, it becomes clear that the polynomials x2#JE0,J and z2#JE1,J are symmetric to
one another, allowing to save the computation of one of the two products E0,J , E1,J . This
gives us an expected saving of #J · log2 (#J) polynomial multiplications via product
trees.

Our next improvement is focused on the computation of E0,j required in xEVAL. Let
us write xj = Xj/Zj . Then,

(
F0(Z, xj)z

2 + F1(Z, xj)xz + F2(Z, xj)x
2
)
can be expressed

as aZ2 + bZ + c, where

a = C(xZj − zXj)
2;

2b =
[
C(X2 + Z2)

]
(−4XjZj)−

[
2(X2

j + Z2
j)
](
2[C(XZ)]

)
+
(
2[A′(XZ)]

)
(−4XjZj);

c = C(xXj − zZj)2.
5Consequently, all the quadratic factors of E0,J and E1,J in xISOG are symmetric. Bernstein et al. [5,

Appendix A.5] were aware of this fact and took advantage of it to speed up the computation of E0,J ,
E1,J .

12

The three equations above can be implemented (with the help of some extra pre-computations
required in xISOG) at a cost of 7M + 3S + 12a field operations. This cost should be com-
pared with the implementation of [5], which requires 11M + 2S + 13a field operations.
Assuming M= S, this implies that our proposed formulas save 3 field multiplications per
polynomial E0,j , 0 ≤ j < #J .

Let us now illustrate the improvements just described applied to the example ` =
587. Let us recall that in the implementation of [5], we have #I = 16 and #J = 9.
Consequently, our first improvement saves 9 log2(9) ≈ 28 polynomial multiplications via
product trees. On the other hand, our second improvement saves 3×#J = 3× 9 = 27
field multiplications.

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 0 200 400 600 800 1000 1200 1400

(m
ea

su
re

d
 c

o
st

)/
(e

x
p

ec
te

d
 c

o
st

)

Isogeny degree

(a) Asymptotic constant

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 200 400 600 800 1000 1200 1400

F
ie

ld
 m

u
lt

ip
li

ca
ti

o
n

s

Isogeny degree

measured cost
expected cost

(b) Running time

Figure 3: Measured and expected running time of KPS + xISOG + xEVAL for all the 207
small odd primes `i required in the group action evaluation of CSIDH-1792 (see [11]).
All computational costs are given in Fp-multiplications. The expected running time

corresponds to 1.5× Cost(b). Additionally, b ≈
√

(`−1)
2 .

4.3 Practical complexity analysis

In this section, we present the computational cost associated to the combined evaluation
of the KPS, xISOG, and xEVAL procedures.6

Let b = b
√
`−1
2 c as given in Step 1 of Algorithm 1. Note that KPS (see Algorithm 1),

can be performed at a cost of about 3b differential point additions (assuming #I ≈
#J ≈ #K ≈ b), which implies an expense of at most (18b)M field multiplications.

Observe also that the computation of the polynomial hI(Z) required at Step 1 of
both, xISOG (Algorithm 2) and xEVAL (Algorithm 3) procedures, can be shared and thus
must be computed only once. One interesting observation of [5], is that the computa-
tion of the polynomials E0,J and E1,J in xISOG (see Steps 2-3 of Algorithm 2), can be

6In the sequel,
√
élu computational costs are derived assuming a projective coordinate system and

M = S.

13

performed at a cost of only one product tree procedure. Furthermore, as it was already
discussed in subsection 4.2, this same trick can also be applied to xEVAL, i.e., Steps 2-3
of Algorithm 3 can be calculated by executing only one product tree. Hence, each poly-
nomial Ei,J , i = 0, 1, required by xISOG and xEVAL can be obtained at a cost of (3b)M
and (10b)M field operations, respectively.

Additionally, in Steps 4-5 of xISOG and xEVAL, the computation of two resultants
are required, implying that four resultants must be computed in total. Each Resultant
corresponds to the computation of ResZ(f(Z), g(Z)) such that f, g ∈ Fq[Z], deg f =
b′ ≈ b and deg g = 2b. We give in in Appendix A.3, a detailed description of the cost of
computing such a resultant in terms of b. This calculation is performed by computing the
product of the remainder tree leaves. In Appendix A.3, it is shown that the complexity
in terms of field operations associated to the computation of a resultant as described
in §4.2 is given as,

R(b) =

(
3blog2(3) + b log2(b)−

5

3
b+

5

6

)
. (4)

The constants M0 and M1 in Steps 6-7 of xISOG and xEVAL, have a cost of (2b)M
and (4b)M field operations, respectively. Lastly, the computations of the coefficient d
of xISOG and the output of xEVAL require about (3 log2(b) + 16) multiplications. All in
all and invoking Equation 4, the evaluation of KPS, xISOG, and xEVAL procedures have a
combined cost of approximately,

Cost(b) = 4

(
3blog2(3) + b log2(b)−

5

3
b+

5

6

)
+

(
blog2(3) − 2

3
b

)
+ 2

(
3blog2(3) − 2b

)
(5)

+ 37b+ 3 log2(b) + 16

= 19blog2(3) + 4b log2(b) +
77

3
b+ 3 log2(b) +

58

3
.

To verify the correctness of the cost predicted by Equation 5, the experiment de-
scribed next was implemented. We computed degree-` isogenies for all the odd prime
factors `1, `2, . . . , `207 of p+1, where p is the prime used in the CSIDH-1792 instantiation
proposed in [11]. Figure 3 shows an excellent approximation between the theoretical cost
of Equation 5 and the experimental results obtained from our Python3-code software,
where it was observed that (measured runtime) ≈ 1.5× (expected runtime).

Recall that the derivation of the expected cost of Equation 5 (See Appendix A.3), is
driven by the assumption that M = S, which is the typical case for CSIDH. For the
B-SIDH case on the other hand, since one is working on the quadratic extension field
Fq=p2 , it holds that MFq = 3MFp and SFq = 2MFp , and thus SFq = 2

3MFq . However, as
an upper bound (for the B-SIDH case), we can assume MFq = 3MFp and MFq = SFq ,
which gives an expected running-time of 3× Cost(b) Fp-multiplications.

14

A memory analysis of
√
élu reveals that less than 4b points, equivalent to 8b field

elements, are computed and stored in KPS. The computation of the trees determined by
the polynomial hI in Step 1 of xISOG and xEVAL, requires the storage of no more than
3b log2 b field elements. 7 All in all,

√
élu memory cost is of about 8b + 3b log2 b field

elements.
A quick inspection of Algorithm 1-Algorithm 3, reveals that it is straightforward to

concurrently compute many of the operations required by all three of those procedures.
Specifically, the calculation of the four resultants in Steps 4-5 of Algorithm 2-Algorithm 3
show no dependencies among them and can therefore be computed in parallel by a multi-
core processor. Since the four resultant calculations accounts for about 85% of the total
computational cost of

√
élu, the expected savings are substantial.

5 Experiments and discussion

In this section, we introduce the Python3-code constant-time library sibc (Supersingular
Isogeny-Based Cryptographic constructions), dedicated to isogeny-based primitives. The
sibc library aims to easily compare, test, and run SIDH-based primitives such as SIDH,
SIKE, CSIDH, and BSIDH.

We point that as CSIDH as B-SIDH make extensive usage of the
√
élu formulas

introduced in [5] boosted with the computational tricks presented in section 4. Further-
more, the optimal strategy framework presented in [11] is also exploited to maximize the
performance of both protocols. Our software library is freely available at

https://github.com/JJChiDguez/sibc .

In summary, our Python3-code software allows us to readily benchmark the total
number of additions, multiplications, and squarings required by the instantiations of
the two aforementioned protocols. To this end, we included counters inside the field
arithmetic function cores for adding, multiplying, and squaring field elements. Hence,
all the performance figures presented in this section correspond with our count of field
operations in the base field Fp. In the case of the B-SIDH experiments, using standard
arithmetic tricks the multiplication and squaring over Fp2 were performed at the cost of
3M + 5a and 2M + 3a base field operations, respectively.

All the experiments performed in this section are centered on comparing the following
configurations, which are based on tradicional Vélu’s formulas [14, 30] and

√
élu:

• Using tradicional Vélu (labeled as tvelu);

• Using
√
élu (labeled as svelu);

• Using a hybrid between traditional Vélu and
√
élu (labeled as hvelu).

7For this computation two remainder trees are constructed, requiring the storage of 2b log2 b field
elements. In addition, the recursivity procedure to build the trees may require storing in the heap space
another b log2 b field elements.

15

https://github.com/JJChiDguez/sibc

Notice that because of the nature of each protocol, the B-SIDH experiments are
randomness-free, which implies that the same cost is reported for any given instance.
In contrast, the CSIDH experiments have a variable cost determined by the randomness
introduced by the order of the torsion points sampled from its Elligator-2 procedure (for
a more detailed explanation see [9]).

5.1 Experiments on the CSIDH

Our Python3-code implementation of the CSIDH protocol includes a portable version for
the following CSIDH instantiations,

1. Two torsion point with dummy isogeny constructions (OAYT-style [28])

2. One torsion point with dummy isogeny constructions (MCR-style [23])

3. Two torsion point without dummy isogeny constructions (Dummy-free style [9])

Our software supports performing experiments with any prime field of p = 2e·(∏n
i=1 `i)−1

elements, for any e ≥ 1. Our experiments were focused on the CSIDH-512 prime proposed
in [8], the CSIDH-1024 prime proposed in [5], and the CSIDH-1792 prime proposed
in [11]. The required number of field operations for those CSIDH variants are reported
in Table 1, Table 2, and Table 3. In addition, each table presents a comparison between
the results of this work and the ones presented in [11]. It is worth mentioning that for
each configuration, we adopted optimal strategies and suitable bound vectors according
to [11, section 3.4, 4.4 and 4.5].

When comparing with respect to CSIDH constant-time implementations using tra-
ditional Vélu’s formulas, our experimental results report a saving of 5.357%, 13.68%
and 25.938% field Fp-operations for CSIDH-512, CSIDH-1024, and CSIDH-1792, respec-
tively. These results are somewhat more encouraging than the ones reported in [5], where
speedups of about 1% and 8% were reported for a non constant-time implementation of
CSIDH-512 and CSIDH-1024.

5.2 Experiments playing the B-SIDH

To the best of our knowledge, we present in this section the first implementation of
the B-SIDH protocol, which was designed to be a constant-time one. As in the case of
CSIDH, we report here the required number of Fp arithmetic operations. Similarly to
CSIDH, the B-SIDH implementation provided in this work, allows to perform experi-
ments with any prime field of p elements such that p ≡ 3 mod 4. The main contribution
provided in this subsection corresponds to a comparison of B-SIDH instantiations us-
ing the primes B-SIDHp253, B-SIDHp255,B-SIDHp247,B-SIDHp237 and B-SIDHp257,
as described in subsection A.4.

All the above primes were chosen considering the following features: i) p ≡ 3 mod 4,
ii) the isogeny degrees are as small as it was possible to find, and iii) 2210 < N,M . Our
Python3-code implementation uses the degree-4 isogeny construction and evaluation for-
mulas given in [12]. Additionally, the key generation does not perform xISOG calls, which

16

Configuration Group action evaluation M S a Cost Saving (%)

tvelu
OAYT-style 0.641 0.172 0.610 0.813

—MCR-style 0.835 0.231 0.785 1.066
dummy-free 1.246 0.323 1.161 1.569

svelu
OAYT-style 0.656 0.178 0.988 0.834 −2.583
MCR-style 0.852 0.219 1.295 1.071 −0.469
dummy-free 1.257 0.324 1.888 1.581 −0.765

hvelu
OAYT-style 0.624 0.165 0.893 0.789 2.952
MCR-style 0.805 0.204 1.164 1.009 5.347
dummy-free 1.198 0.301 1.696 1.499 4.461

Table 1: Number of field operation for the constant-time CSIDH-512 group action evaluation.
Counts are given in millions of operations, averaged over 1024 random experiments. For comput-
ing the Cost column, it is assumed that M = S and all addition counts are ignored. Last column
labeled Saving corresponds to

(
1− Cost

baseline

)
× 100 and baseline equals to tvelu configuration.

Configuration Group action evaluation M S a Cost Saving (%)

tvelu
OAYT-style 0.630 0.152 0.576 0.782

—MCR-style 0.775 0.190 0.695 0.965
dummy-free 1.152 0.259 1.012 1.411

svelu
OAYT-style 0.566 0.138 0.963 0.704 9.974
MCR-style 0.702 0.152 1.191 0.854 11.503
dummy-free 1.046 0.230 1.746 1.276 9.568

hvelu
OAYT-style 0.552 0.133 0.924 0.685 12.404
MCR-style 0.687 0.146 1.148 0.833 13.679
dummy-free 1.027 0.221 1.679 1.248 11.552

Table 2: Number of field operation for the constant-time CSIDH-1024 group action evaluation.
Counts are given in millions of operations, averaged over 1024 random experiments. For comput-
ing the Cost column, it is assumed that M = S and all addition counts are ignored. Last column
labeled Saving corresponds to

(
1− Cost

baseline

)
× 100 and baseline equals to tvelu configuration.

are expensive for large primes, it reconstructs the A-coefficient by using the three points
pushed under the isogeny being computed (that is, we implement a projective version of
get_A() procedure). The corresponding experimental results for the key generation and
secret sharing phases are presented in Table 4 and Table 5, respectively. It can be seen
that significant savings ranging from 24% up to 76% were obtained by B-SIDH combined
with

√
élu with respect to the same implementation of this protocol using traditional

Vélu’s formulas.
Notice that the best results were obtained when using the B-SIDHp253 configura-

tion, which seems to be faster than any CSIDH instantiation, mostly due to its small
256-bit field.

17

Configuration Group action evaluation M S a Cost Saving (%)

tvelu
OAYT-style 1.385 0.263 1.137 1.648

—MCR-style 1.041 0.239 0.911 1.280
dummy-free 1.557 0.327 1.336 1.884

svelu
OAYT-style 1.063 0.187 2.073 1.250 24.150
MCR-style 0.807 0.154 1.550 0.961 24.922
dummy-free 1.233 0.247 2.314 1.480 21.444

hvelu
OAYT-style 1.060 0.185 2.061 1.245 24.454
MCR-style 0.797 0.151 1.522 0.948 25.938
dummy-free 1.220 0.241 2.272 1.461 22.452

Table 3: Number of field operation for the constant-time CSIDH-1792 group action evaluation.
Counts are given in millions of operations, averaged over 1024 random experiments. For comput-
ing the Cost column, it is assumed that M = S and all addition counts are ignored. Last column
labeled Saving corresponds to

(
1− Cost

baseline

)
× 100 and baseline equals to tvelu configuration.

Configuration Alice’s side Bob’s side
M a Saving (%) M a Saving (%)

tvelu

B-SIDHp253 3.835 8.077

—

3.129 6.584

—
B-SIDHp255 3.874 8.144 2.639 5.552
B-SIDHp247 0.836 1.760 2.101 4.413
B-SIDHp237 0.079 0.169 9.523 19.988
B-SIDHp257 3.901 8.197 0.287 0.607

svelu

B-SIDHp253 0.951 3.469 75.212 0.788 2.950 74.805
B-SIDHp255 0.995 3.693 74.328 0.716 2.585 72.881
B-SIDHp247 0.380 1.225 54.577 0.827 2.774 60.644
B-SIDHp237 0.104 0.243 −32.701 2.236 8.480 76.523
B-SIDHp257 1.084 3.916 72.206 0.205 0.575 28.447

hvelu

B-SIDHp253 0.935 3.427 75.623 0.772 2.907 75.316
B-SIDHp255 0.994 3.689 74.356 0.705 2.558 73.277
B-SIDHp247 0.372 1.200 55.538 0.826 2.771 60.701
B-SIDHp237 0.081 0.176 -2.867 2.234 8.473 76.544
B-SIDHp257 1.074 3.892 72.469 0.194 0.548 32.403

Table 4: Number of base field operation in Fp for the public key generation phase of BSIDH.
Counts are given in millions of operations. Columns labeled Saving correspond to

(
1− Cost

baseline

)
×

100 and baseline equals to tvelu configuration.

5.3 Discussion

Table 6 presents the clock cycle counts for several isogeny-based protocols recently re-
ported in the literature. Rather than providing a direct comparison, the main purpose
of including this table here is that of providing a perspective of the relative timing costs
of several emblematic implementations of isogeny-based key-exchange primitives.

Clearly,
√
élu has a dramatic impact on the performance of B-SIDH, so much so that

one can claim confidently that B-SIDH outperforms any instantiation of CSIDH. For

18

Configuration Alice’s side Bob’s side
M a Saving (%) M a Saving (%)

tvelu

B-SIDHp253 1.838 3.948

—

1.534 3.285

—
B-SIDHp255 1.937 4.138 1.311 2.804
B-SIDHp247 0.439 0.938 1.118 2.379
B-SIDHp237 0.058 0.124 4.877 10.384
B-SIDHp257 1.969 4.202 0.164 0.351

svelu

B-SIDHp253 0.480 1.785 73.882 0.408 1.563 73.392
B-SIDHp255 0.513 1.961 73.521 0.378 1.374 71.198
B-SIDHp247 0.215 0.684 50.982 0.458 1.558 59.058
B-SIDHp237 0.076 0.175 −30.377 1.191 4.605 75.576
B-SIDHp257 0.569 2.111 71.078 0.124 0.343 24.502

hvelu

B-SIDHp253 0.470 1.757 74.449 0.397 1.533 74.101
B-SIDHp255 0.512 1.959 73.548 0.370 1.355 71.734
B-SIDHp247 0.210 0.668 52.121 0.457 1.556 59.132
B-SIDHp237 0.060 0.131 -3.878 1.190 4.601 75.603
B-SIDHp257 0.562 2.093 71.431 0.116 0.324 29.029

Table 5: Number of base field operation in Fp for the secret sharing phase of BSIDH. Counts
are given in millions of operations. Columns labeled Saving correspond to

(
1− Cost

baseline

)
× 100

and baseline equals to tvelu configuration.

Implementation Protocol Instantiation Mcycles
SIKE [2] SIKEp434 22

Castryck et al. [8] CSIDH-512 unprotected 4 × 155

Bernstein et al. [5] CSIDH-512 unprotected 4 × 153
CSIDH-1024 unprotected 4 × 760

Cervantes-Vázquez et al. [9] CSIDH-512 MCR-style 4 × 339
CSIDH-512 OAYT-style 4 × 238

Hutchinson et al. [20] CSIDH-512 OAYT-style 4 × 229

Chi-Domínguezet al. [11] CSIDH-512 MCR-style 4 × 298
CSIDH-512 OAYT-style 4 × 230

This work (estimated)
CSIDH-512 MCR-style 4 × 282
CSIDH-512 OAYT-style 4 × 223

B-SIDH-p253 119

Table 6: Skylake Clock cycle timings for a key exchange protocol for different instantiations of
the SIDH, CSIDH, and B-SIDH protocols.

19

example, using the B-SIDH configuration presented in example 2 of [13], Alice and Bob
will require about 1.620 × 220 and 1.343 × 220 base field multiplications in Fp, where p
is a 256-bit prime, respectively. In particular, making the conservative assumption that
a 256-bit field multiplication takes 40 clock cycles, then a key exchange using B-SIDH
would cost about 118.520× 220 clock cycles. On the other hand, the fastest CISDH-512
group action evaluation (see [20, 11]) takes about 230×220 clock cycles. Therefore, a key
exchange using CSIDH would take about 920× 220 clock cycles (considering four group
action evaluations). This implies that B-SIDH is expected to be about 8x faster than
the fastest CSIDH-512 C-code implementation.

Costello proposed in [13] that B-SIDH could be useful for key-exchange scenarios
executed in the context of a client-server session. Typically, one could expect that the
client has much more constrained computational resources than the server. In the case
that the prime B-SIDHp237 is chosen for performing a B-SIDH key exchange, Alice and
Bob would require about 0.13 × 220 and 3.953 × 220 base field multiplications in Fp.
Assuming once again that a 256-bit field multiplication takes 40 clock cycles, then a key
exchange using B-SIDH would cost about 5.20×220 and 158.12×220 clock cycles for Alice
and Bob, respectively. For comparison, a SIKEp434 key exchange costs about 10.73×220

and 12.04×220 clock cycles for Alice and Bob, respectively. Hence, Alice (the client) will
benefit with a B-SIDHp237 computation that is about twice as fast as the one required
in SIKEp434. This will come at the price that Bob’s computation (the server) would
become thirteen times more expensive. On the other hand, the B-SIDHp237 key sizes
are noticeably smaller than the ones required in SIKEp434. This feature is especially
valuable for highly constrained client devices.

We stress that the quantum security level offered by the CSIDH instantiations re-
ported in this work have been recently call into question in [29, 7, 10].

In terms of security, the B-SIDH instantiations reported in this paper should achieve
the same classical and quantum security level than a SIDH instantiations using the
SIKEp434 prime. However, B-SIDH is susceptible to the active attack described in [19].
To offer protection against this kind of attacks, B-SIDH should incorporate a key encap-
sulation mechanism (KEM) such as the one included in [2]. Essentially, in B-SIDH with
KEM (B-SIKE) inherits the same SIKE protocol flow: i) KeyGen performs one degree-M
isogeny, ii) Encaps computes two ephemeral degree-N isogenies, and iii) Decaps executes
one degree-M isogeny and one ephemeral degree-N isogeny. To illustrate the impact of a
KEM in B-SIDH, Table 7 compares SIKE and B-SIKE instantiations. In particular, we
focus on our best B-SIDH instantiation: B-SIDHp253 with KEM (B-SIKEp253). Assum-
ing once again that a 253-bit field multiplication takes 40 clock cycles, then a B-SIKEp253
would cost (0.772 + 1.404 + 1.332)× 40.0 ≈ 140.32 Millions of clock cycles, which is still
faster than any CSIDH-512 instantiation (or even compared with CTIDH-512 [3], which
is about twice as fast as CSIDH-512) 8.

8Our python-code implementation of SIDH is based on the SIDH specifications [2]

20

Algorithm Security KeyGen Encaps Decaps
M a M a M a

SIKEp434 NIST LEVEL 1 0.043 0.096 0.074 0.159 0.077 0.170
SIKEp503 NIST LEVEL 2 0.051 0.114 0.087 0.188 0.092 0.200
SIKEp610 NIST LEVEL 3 0.063 0.140 0.118 0.254 0.118 0.258
SIKEp751 NIST LEVEL 5 0.080 0.177 0.136 0.292 0.143 0.312
B-SIKEp253 NIST LEVEL 1 0.772 2.907 1.404 5.185 1.332 4.960

Table 7: Number of base field operation in Fp of both SIKE and B-SIKE (B-SIDH with
KEM) protocol. Counts are given in millions of operations. Encaps and Decaps denote the key
encapsulation and decapsulation, respectively.

6 Conclusions

In this paper, we presented a concrete analysis of the
√
élu procedure introduced in [5].

From our analysis, we conclude that for most practical scenarios, the best approach for
performing the polynomial products associated to

√
élu, is Karatsuba polynomial multi-

plication. The main concrete consequence of this observation is that computing degree-`
isogenies with

√
élu has a practical computational complexity essentially proportional to

blog2 (3), where b =
√
`.

We introduced several algorithmic tricks that permit to save multiplications when per-
forming the polynomial products involving the computation of the resultants included
in Algorithm 2-Algorithm 3. The combination of these improvements allows us to con-
struct and evaluate degree-` isogenies with a slightly lesser number of arithmetic opera-
tions than the ones employed in [5].

We applied
√
élu and optimal strategies to several instantiations of the CSIDH and

B-SIDH protocols, producing the very first constant-time implementation of the latter
protocol for a selection of primes taken from [13, 5].

Our future work includes C constant-time single-core and multi-core implementations
of the two protocol instantiations studied in this work. We would also like to study more
efficient selections of the sets I,J and K as defined in §4.1, which could yield more
economical computations of

√
élu.

7 Acknowledgements

We thank the anonymous reviewers for their comments to improve the quality of the
paper and Amalia Pizarro and Odalis Ortega for pointing a missed factor in the prod-
uct tree cost analysis. This project started when J. Chi-Domínguez was a postdoctoral
researcher at Tampere University and initially received funding from the European Com-
mission through the ERC Starting Grant 804476 (SCARE). It also received funds from
the Mexican Science council CONACyT project 313572, while F. Rodríguez-Henríquez
was visiting the University of Waterloo. Additionally, this work was partially supported

21

by the Spanish Ministerio de Ciencia, Innovación y Universidades, under the reference
MTM2017-83271-R.

References

[1] Gora Adj, Daniel Cervantes-Vázquez, Jesús-Javier Chi-Domínguez, Alfred Menezes,
and Francisco Rodríguez-Henríquez. On the cost of computing isogenies between
supersingular elliptic curves. In Carlos Cid and Michael J. Jacobson Jr., editors,
Selected Areas in Cryptography - SAC 2018 - 25th International Conference, volume
11349 of Lecture Notes in Computer Science, pages 322–343. Springer, 2018.

[2] Reza Azarderakhsh, Matthew Campagna, Craig Costello, Luca De Feo, Basil Hess,
Amir Jalali, David Jao, Brian Koziel, Brian LaMacchia, Patrick Longa, Michael
Naehrig, Geovandro Pereira, Joost Renes, Vladimir Soukharev, and David Urbanik.
Supersingular isogeny key encapsulation. second round candidate of the nist’s post-
quantum cryptography standardization process, 2017. Available at: https://sike.
org/.

[3] Gustavo Banegas, Daniel J. Bernstein, Fabio Campos, Tung Chou, Tanja Lange,
Michael Meyer, Benjamin Smith, and Jana Sotáková. CTIDH: faster constant-time
CSIDH. IACR Cryptol. ePrint Arch., 2021:633, 2021.

[4] D. J. Bernstein. Fast multiplication and its applications. Algorithmic Number The-
ory, 44:325–384, 2008.

[5] Daniel J. Bernstein, Luca De Feo, Antonin Leroux, and Benjamin Smith. Faster com-
putation of isogenies of large prime degree. IACR Cryptol. ePrint Arch., 2020:341,
2020.

[6] Daniel J. Bernstein, Tanja Lange, Chloe Martindale, and Lorenz Panny. Quantum
circuits for the CSIDH: optimizing quantum evaluation of isogenies. In Yuval Ishai
and Vincent Rijmen, editors, Advances in Cryptology - EUROCRYPT 2019, Part
II, volume 11477 of Lecture Notes in Computer Science, pages 409–441. Springer,
2019.

[7] Xavier Bonnetain and André Schrottenloher. Quantum security analysis of CSIDH.
In Anne Canteaut and Yuval Ishai, editors, Advances in Cryptology - EUROCRYPT
2020, Proceedings, Part II, volume 12106 of Lecture Notes in Computer Science,
pages 493–522. Springer, 2020.

[8] Wouter Castryck, Tanja Lange, Chloe Martindale, Lorenz Panny, and Joost Renes.
CSIDH: an efficient post-quantum commutative group action. In Thomas Peyrin and
Steven D. Galbraith, editors, Advances in Cryptology - ASIACRYPT 2018, Part III,
volume 11274 of Lecture Notes in Computer Science, pages 395–427. Springer, 2018.

22

https://sike.org/
https://sike.org/

[9] Daniel Cervantes-Vázquez, Mathilde Chenu, Jesús-Javier Chi-Domínguez, Luca De
Feo, Francisco Rodríguez-Henríquez, and Benjamin Smith. Stronger and faster side-
channel protections for CSIDH. In Peter Schwabe and Nicolas Thériault, editors,
Progress in Cryptology - LATINCRYPT 2019, volume 11774 of Lecture Notes in
Computer Science, pages 173–193. Springer, 2019.

[10] Jorge Chávez-Saab, Jesús-Javier Chi-Domínguez, Samuel Jaques, and Francisco
Rodríguez-Henríquez. The SQALE of CSIDH: sublinear Vélu quantum-resistant
isogeny action with low exponents. J Cryptogr Eng, 2021.

[11] Jesús-Javier Chi-Domínguez and Francisco Rodríguez-Henríquez. Optimal strategies
for CSIDH. Advances in Mathematics of Communications, 2020. Preprint version:
https://eprint.iacr.org/2020/417.

[12] Deirdre Connolly. Code for sidh key exchange with optional public key compres-
sion. Github, April 2017. available at: https://github.com/dconnolly/msr-sidh/
tree/master/SIDH-Magma.

[13] Craig Costello. B-SIDH: supersingular isogeny diffie-hellman using twisted tor-
sion. In Shiho Moriai and Huaxiong Wang, editors, Advances in Cryptology - ASI-
ACRYPT 2020 - Proceedings, Part II, volume 12492 of Lecture Notes in Computer
Science, pages 440–463. Springer, 2020.

[14] Craig Costello and Hüseyin Hisil. A simple and compact algorithm for SIDH with
arbitrary degree isogenies. In Tsuyoshi Takagi and Thomas Peyrin, editors, Ad-
vances in Cryptology - ASIACRYPT 2017, Part II, volume 10625 of Lecture Notes
in Computer Science, pages 303–329. Springer, 2017.

[15] Craig Costello, Patrick Longa, and Michael Naehrig. Efficient algorithms for super-
singular isogeny Diffie-Hellman. In Matthew Robshaw and Jonathan Katz, editors,
Advances in Cryptology – CRYPTO 2016, pages 572–601, Berlin, Heidelberg, 2016.
Springer Berlin Heidelberg.

[16] Jean-Marc Couveignes. Hard homogeneous spaces. Cryptology ePrint Archive, Re-
port 2006/291, 2006. http://eprint.iacr.org/2006/291.

[17] Luca De Feo, David Jao, and Jérôme Plût. Towards quantum-resistant cryptosys-
tems from supersingular elliptic curve isogenies. J. Math. Cryptol., 8(3):209–247,
2014.

[18] Luca De Feo, Jean Kieffer, and Benjamin Smith. Towards practical key exchange
from ordinary isogeny graphs. In Thomas Peyrin and Steven D. Galbraith, editors,
Advances in Cryptology - ASIACRYPT 2018, Part III, volume 11274 of Lecture
Notes in Computer Science, pages 365–394. Springer, 2018.

[19] Steven D. Galbraith, Christophe Petit, Barak Shani, and Yan Bo Ti. On the security
of supersingular isogeny cryptosystems. In Jung Hee Cheon and Tsuyoshi Takagi,

23

https://eprint.iacr.org/2020/417
https://github.com/dconnolly/msr-sidh/tree/master/SIDH-Magma
https://github.com/dconnolly/msr-sidh/tree/master/SIDH-Magma
http://eprint.iacr.org/2006/291

editors, Advances in Cryptology - ASIACRYPT 2016, Proceedings, Part I, volume
10031 of Lecture Notes in Computer Science, pages 63–91, 2016.

[20] Aaron Hutchinson, Jason T. LeGrow, Brian Koziel, and Reza Azarderakhsh. Fur-
ther optimizations of CSIDH: A systematic approach to efficient strategies, permu-
tations, and bound vectors. In Mauro Conti, Jianying Zhou, Emiliano Casalicchio,
and Angelo Spognardi, editors, Applied Cryptography and Network Security - 18th
International Conference, ACNS 2020, Part I, volume 12146 of Lecture Notes in
Computer Science, pages 481–501. Springer, 2020.

[21] David Jao and Luca De Feo. Towards quantum-resistant cryptosystems from super-
singular elliptic curve isogenies. In Bo-Yin Yang, editor, Post-Quantum Cryptogra-
phy - 4th International Workshop, PQCrypto 2011, volume 7071 of Lecture Notes in
Computer Science, pages 19–34. Springer, 2011.

[22] David R. Kohel. Endomorphism rings of elliptic curves over finite fields. PhD thesis,
University of California at Berkeley, The address of the publisher, 1996. Available
at:http://iml.univ-mrs.fr/~kohel/pub/thesis.pdf.

[23] Michael Meyer, Fabio Campos, and Steffen Reith. On lions and elligators: An
efficient constant-time implementation of CSIDH. In Jintai Ding and Rainer Stein-
wandt, editors, Post-Quantum Cryptography - 10th International Conference, vol-
ume 11505 of Lecture Notes in Computer Science, pages 307–325. Springer, 2019.

[24] Michael Meyer and Steffen Reith. A faster way to the csidh. In INDOCRYPT 2018,
volume 11356 of Lecture Notes in Computer Science, pages 137–152. Springer, 2018.

[25] Peter L Montgomery. Speeding the pollard and elliptic curve methods of factoriza-
tion. Mathematics of computation, 48(177):243–264, 1987.

[26] Dustin Moody and Daniel Shumow. Analogues of vélu’s formulas for isogenies on
alternate models of elliptic curves. Math. Comput., 85(300):1929–1951, 2016.

[27] Dustin Moody and Daniel Shumow. Analogues of vélu’s formulas for isogenies on
alternate models of elliptic curves. Mathematics of computation, 85(300):1929–1951,
2016.

[28] Hiroshi Onuki, Yusuke Aikawa, Tsutomu Yamazaki, and Tsuyoshi Takagi. (short
paper) A faster constant-time algorithm of CSIDH keeping two points. In Nuttapong
Attrapadung and Takeshi Yagi, editors, 14th International Workshop on Security,
IWSEC 2019, volume 11689 of Lecture Notes in Computer Science, pages 23–33.
Springer, 2019.

[29] Chris Peikert. He gives c-sieves on the CSIDH. In Anne Canteaut and Yuval Ishai,
editors, Advances in Cryptology - EUROCRYPT 2020 - Proceedings, Part II, volume
12106 of Lecture Notes in Computer Science, pages 463–492. Springer, 2020.

24

http://iml.univ-mrs.fr/~kohel/pub/thesis.pdf

[30] Joost Renes. Computing isogenies between montgomery curves using the action of
(0, 0). In Tanja Lange and Rainer Steinwandt, editors, Post-Quantum Cryptography
- 9th International Conference, PQCrypto 2018, volume 10786 of Lecture Notes in
Computer Science, pages 229–247. Springer, 2018.

[31] Alexander Rostovtsev and Anton Stolbunov. Public-key cryptosystem based on
isogenies. IACR Cryptology ePrint Archive, 2006:145, 2006.

[32] Arnold Schönhage. Schnelle multiplikation von polynomen über körpern der charak-
teristik 2. Acta Informatica, 7:395–398, 1977.

[33] Anton Stolbunov. Constructing public-key cryptographic schemes based on class
group action on a set of isogenous elliptic curves. Adv. in Math. of Comm., 4(2):215–
235, 2010.

[34] L. Washington. Elliptic Curves: Number Theory and Cryptography, Second Edition.
Chapman & Hall/CRC, 2 edition, 2008.

25

A Appendix

A.1 Algorithms

Algorithm 4 Simplified constant-time CSIDH class group action for supersingular curves over Fp p = 4
∏n

i=1 `i−
1. The ideals li = (`i, π − 1), where π maps to the p-th power Frobenius morphism. This algorithm computes
exactly m isogenies for each ideal li (Adapted from [11]).

Require: A supersingular curve EA over Fp, an integer vector (e1, . . . , en) ∈ J0 . . mKn, m > 0.
Ensure: EB = le11 ∗ · · · ∗ l

en
n ∗ EA.

1: E0 ← E // Initializing to the base curve
2: // Outer loop: Each `i is processed m times
3: for i← 1 to m do
4: T ← GetFullTorsionPoint(E0) // T ∈ En[π − 1]
5: T ← [4]T // Now T ∈ En

[∏
i `i
]

6: // Inner loop: processing each prime factor `i|(p+ 1)
7: for j ← 0 to (n− 1) do
8: Gj ← T
9: for k ← 1 to (n− 1− j) do

10: Gj ← [`k]Gj

11: end for
12: if en−j 6= 0 then
13: 〈Gj〉 ← KPS(Gj)
14: E(j+1) mod n ← xISOG(Ej , `n−j , 〈Gj〉)
15: T ← xEVAL(T, 〈Gj〉)
16: en−j ← en−j − 1
17: else
18: 〈Gj〉 ← KPS(Gj)
19: xISOG(Ej , `n−j , 〈Gj〉) // Dummy operations
20: T ← [`n−j]T
21: Ej+1 mod n ← Ej

22: end if
23: end for
24: end for
25: return E0

A.2 Schönage-FFT vs Karatsuba

Karatsuba multiplication is a well-known and complete tool for multiplying polynomials
of degree n over a commutative ring at the subquadratic cost of O(nlog2 3). However,
an asymtotically faster family of algorithms based on the fast Fourier transform (FFT)
exists. In this section, we consider Schönage’s algorithm [32] blended with the FFT
multiplication, as described in [4], and give an accurate estimate of the running time of
this algorithm in order to make practical comparatives with Karatsuba multiplication.

Let A be a commutative ring where 2 in invertible. For n > 1 a power of 2, c a
square in A and ζ ∈ A a square root of −1, let f, g be two polynomials in A[x]/(xn +
c). To multiply f and g, one can split the problem into two smaller ones by reducing
f, g to f−, g− ∈ A[x]/(xn/2 − ζc1/2) and to f+, g+ ∈ A[x]/(xn/2 + ζc1/2)g. Then, the
products f−g−, f+g+ are computed, and subsequently embedded into A[x]/(xn + c)
wherein (f−g− + f+g+) and (f−g− − f+g+) are calculated to finally recover 2fg.

Note that when c is an nth root in A, which in addition contains an nth root of
−1, then the above procedure can be applied recursively to compute the product nfg at

26

Algorithm 5 Large composite degree isogeny construction

Require: a supersingular Montgomery curve E/Fp2 : By
2 = x3 +Ax2 +x, a kernel point generator R on E/Fp2

of order L = `1
e1 · `2e2 · · · `nen , and a strategy S

Ensure: the degree-L isogenous curve E/〈R〉
1: Set L′ as in Equation 2 // S must be determined by L′
2: ramifications← [R] // list of points to be evaluated
3: moves← [0]; k ← 0
4: e← #L′ // e must be equal to #S + 1
5: // Outer loop: Each `i is processed ei times
6: for i← 0 to #S − 1 do
7: prev ← sum(moves)
8: // Inner loop: computing the kernel point generator
9: while prev < (e− 1− i) do

10: moves.append(Sk)
11: V ← last element of ramifications
12: for j ← prev to prev + Sk do
13: V ← [L′j]V
14: end for
15: ramifications.append(V) // New point to be evaluated
16: prev ← prev + Sk; k ← k + 1
17: end while
18: G← last element of ramifications
19: 〈G〉 ← KPS(G)
20: E ← xISOG(E, `e−1−i, 〈G〉)
21: // Inner loop: evaluating points
22: for j ← 0 to #moves− 1 do
23: ramificationsj ← xEVAL(ramificationsj , 〈G〉)
24: end for
25: moves.pop(); ramifications.pop()
26: end for
27: G← the unique element of ramifications
28: 〈G〉 ← KPS(G)
29: E ← xISOG(E, `0, 〈G〉)
30: return E

27

a cost of k multiplications in A and 3
2n log2(n) easy multiplications in A by constants.

This is essentially the FFT multiplication.
Suppose now that A does not contain an nth root of −1, with n = 2s > 8, then

Schönage’s method can be employed to multiply f =
∑

0≤i<n fi and g =
∑

0≤i<n gi in
A[x]/(xn+1). First, define n1 = 2s1 , with s1 = bs/2c, B = A[x]/(xn1 +1), and consider
the ring B[y]/(y2n/n1 + 1). The goal here is to reduce the computation of fg into one
multiplication in B[y]/(y2n/n1 + 1). Note that xn2

1/2n is a (2n/n1)th root of −1 in B,
and hence the FFT can be used to multiply polynomials in B[y]/(y2n/n1 + 1). We start
by sending f, g to F,G ∈ A[x, y]/(y2n/n1 + 1), respectively, where

F =
∑

0≤j< 2n
n1

∑
0≤i<n1

2

fi+n
2
jx
iyj and

G =
∑

0≤j< 2n
n1

∑
0≤i<n1

2

gi+n
2
jx
iyj ,

are such that φ(F) = f and φ(G) = g, the map φ : A[x, y]/(y2n/n1 +1)→ A[x]/(xn+
1) being the A[x]-algebra morphism that sends y to xn1 . Thus, since F and G have
x-degree < n1/2, their product can be computed in B[y]/(y2n/n1 + 1), and then passed
through φ to recover (2n/n1)fg.

To estimate the cost of this computation, notice that transforming f, g to F,G and
(2n/n1)FG to (2n/n1)fg requires no multiplications in A. Moreover, when computing
(2n/n1)FG in B[y]/(y2n/n1 + 1) using the FFT, the multiplications by constants can be
ignored since these will be just multiplications by powers of x in B. Therefore, the cost
of multiplying polynomials in A[x]/(xn + 1) boils down to the 2n/m multiplications in
B arising from the FFT application. Now, since B = A[x]/(xn1 + 1), the above strategy
can be applied recursively until reaching multiplications in A[x]/(x8 + 1), where more
conventional methods can be used. Hence, the total cost of multiplying two polynomials
in A[x]/(xn + 1) will be

C(n) =
2n

n1
× 2n1

n2
× · · · × 2nk−1

nk
× C8 = 2k

n

nk
C8,

where ni = 2si , with si = bsi−1/2c for i ∈ {2, . . . , k}, k is such that nk = 8, and C8 is
the cost of multiplying two polynomials in A[x]/(x8 + 1). An easy analysis then shows
that k = dlog2(s− 1)e − 1 = dlog2(log2(n)− 1)e − 1. Thus, we have

C(n) =
C8

16
enn(log2(n)− 1),

where log2(en) = dlog2(log2(n)− 1)e − log2(log2(n)− 1). Notice that 1 ≤ en < 2.
Finally, to compute the product of degree-n polynomials f, g ∈ A[x] (n ≥ 4), we

define N = 2blog2(n)c+2 and compute fg in A[x]/(xN + 1) at a cost of

Cost(n) =
C8

4
Enn(blog2(n)c+ 1),

28

where log2(En) = blog2(n)c− log2(n)+dlog2(blog2(n)c+1)e− log2(blog2(n)c+1). Notice
that 1

2 < En < 2.
In order to illustrate the performance of Schönage-FFT polynomial multiplication,

Figure 4 compares it with the cost of Karatsuba-style method. Anyhow, we did not focus
on improving Schönage-FFT method and our experiments are centered on asymtoptic
costs. Whichever the case, it looks that Karatsuba-style polynomial multiplication is the
more suitable approach to be used in the new

√
élu formulas for both as CSIDH and

B-SIDH implementations.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 200 400 600 800 1000 1200

F
ie

ld
 m

u
lt

ip
li

ca
ti

o
n

s

degree-n polynomial

Karatsuba
Schonage-FFT

Figure 4: Comparison between the Schönage-FFT and Karatsuba style polynomial mul-
tiplications. The x-axis corresponds with the degree of both polynomials to be multi-
plied, while y-axis shows the expected cost required in the polynomial multiplication
method. In particular, the karatsuba and Schönage-FFT costs are taken as nlog2(3) and
27
8 n(blog2(n)c + 1), respectively. Schönage-FFT method assumes that En = 1/2, and
karatsuba multiplication is required in its base case, which implies C8 = 27.

A.3 Cost of computing resultants via remainder trees

In this section we focused on the computational cost associated to a resultant compu-
tation via remainder trees. Resultants are required by the

√
élu procedures xISOG and

xEVAL.
Formally, each one of the two resultants required by Algorithm 2 and Algorithm 3,

corresponds to the computation of ResZ(f(Z), g(Z)) such that f, g ∈ Fq[Z], deg f = b′ ≈
b and deg g = 2b. Our goal in this appendix is that of deriving the cost of the resultant
computation in terms of b. For the sake of simplicity, let us assume deg f = b.

It is important to highlight that the modular polynomial reduction required at each
node in the remainder tree, can be performed via reciprocal computations (for more
details see [4, p. 27, §17]). For example, the modular polynomial reduction g mod f
requires two degree-b polynomial multiplications modulo xb, one constant multiplication
by a degree-b polynomial, and the reciprocal computation modulo xb (that is, 1/f mod

29

xb). In turn, the cost of a reciprocal computation modulo xb can be estimated by the
expenses associated to two degree-(b/2) polynomial multiplications modulo xb/2, one
constant multiplication by a degree-(b/2) polynomial, and another reciprocal, but this
time modulo x(b/2). The above implies that a reciprocal modulo xb should be computed
recursively. Its associated running time complexity equation is given as,

T (b) = T

(
b

2

)
+ 2t

(
b

2

)
+
b

2
,

where t(b) denotes the polynomial multiplication cost of two degree-b polynomials modulo
xb. Now, assuming that a Karatsuba polynomial multiplication is used, it follows that

T (b) ≈ T
(
b

2

)
+ 2

(
b

2

)log2(3)

+
b

2

= T

(
b

2

)
+

2

3
blog2(3) +

b

2

=

log2(b)∑
i=0

(
2

3

(
b

2i

)log2(3)

+
b

2i+1

)

=

(
2

3
blog2(3)

) log2(b)∑
i=0

1

3i
+

(
b

2

) log2(b)∑
i=0

1

2i

=

(
1− 1

3log2(b)+1

)
blog2(3) +

(
1− 1

2log2(b)+1

)
b

=

(
1− 1

3blog2(3)

)
blog2(3) +

(
1− 1

2b

)
b

= blog2(3) + b− 5

6
.

Hence, the polynomial reduction g mod f is expected to have a running time of(
blog2(3) + b− 5

6

)
field multiplications.

Now, the remainder tree of f and g is constructed going from its root all the way to
its leaves. To do this, at the i-th level of the remainder tree 2i modular reductions of
the form g mod f such that deg f ≈ b

2i
and deg g ≈ 2 deg f, must be performed. Their

combined cost is given as,

R(b, i) = 2i

((
b

2i

)log2(3)

+
b

2i
− 5

6

)

= blog2(3)
(
2

3

)i
+ b−

(
5

6

)
2i .

Furthermore, the cost of the remainder tree construction can be done with about
R(b) =

∑log2(b)
i=0 R(b, i) field multiplications. In particular,

30

R(b) = blog2(3)
log2(b)∑
i=0

(
2

3

)i
+ b(log2(b) + 1)− 5

6

log2(b)∑
i=0

2i

= 3blog2(3)

(
1−

(
2

3

)log2(b)+1
)

+ b(log2(b) + 1)

− 5

6

(
2log2(b)+1 − 1

)
= 3blog2(3)

(
1− 2b

3blog2(3)

)
+ b(log2(b) + 1)

− 5

6
(2b− 1)

= 3blog2(3) − 2b+ b log2(b) + b− 5

3
b+

5

6

= 3blog2(3) + b log2(b)−
8

3
b+

5

6
.

Finally, once the remainder tree has been constructed, the next step is to multiply
all its leaves, which has an extra cost of b field multiplications, and produces that the
Resultant ResZ(f(Z), g(Z)) computation requires a total of

(
3blog2(3) + b log2(b)−

5

3
b+

5

6

)
field multiplications.

Now, the polynomial hI(X), which splits into b linear polynomials, is computed via
product trees at a cost of

T (b) ≈ 2T

(
b

2

)
+

(
b

2

)log2(3)

=

log2(b)∑
i=0

2i
(

b

2i+1

)log2(3)

=
blog2(3)

3

log2(b)∑
i=0

(
2

3

)i
=

(
1−

(
2

3

)log2(b)+1
)
blog2(3)

=

(
1− 2b

3blog2(3)

)
blog2(3) =

(
blog2(3) − 2

3
b

)
multiplications, while Ei,J (the product of b quadratic polynomials), requires about

31

T (b) ≈ 2T

(
b

2

)
+ blog2(3) =

log2(b)∑
i=0

2i
(
b

2i

)log2(3)

= blog2(3)
log2(b)∑
i=0

(
2

3

)i
=
(
3blog2(3) − 2b

)
.

A.4 B-SIDH primes

Example 2. of [13, section 5.2], we named it as B-SIDHp253:

p = 0x1935BECE108DC6C0AAD0712181BB1A414E6A8AAA6B510FC29826190FE7EDA80F,

M = 42 · 3 · 716 · 179 · 318 · 311 · 571 · 1321 · 5119 · 6011 · 14207 · 28477 · 76667,
N = 1118 · 19 · 2313 · 47 · 79 · 83 · 89 · 151 · 3347 · 17449 · 33461 · 51193.

Example 3. of [13, section 5.2], we named it as B-SIDHp255:

p = 0x76042798BBFB78AEBD02490BD2635DEC131ABFFFFFFFFFFFFFFFFFFFFFFFFFFF

M = 455 · 5 · 72 · 67 · 223 · 4229 · 9787 · 13399 · 21521 · 32257 · 47353,
N = 334 · 11 · 17 · 192 · 29 · 37 · 532 · 97 · 107 · 109 · 131 · 137 · 197 · 199 · 227 · 251 · 5519 · 9091 · 33997 · 38201.

Example 5. of [13, section 5.3], we named it as B-SIDHp247:

p = 0x46B27D6FAE96ED4A639E045B7D2C3CA33F476892ADAFF87B9B6EAE5EE1FFFF

M =
(
42 · 52 · 7 · 23 · 79 · 107 · 307 · 2129

)4 · 79012,
N = 3 · 11 · 17 · 241 · 349 · 421 · 613 · 983 · 1327 · 1667 · 2969 · 3769 · 4481 · 4649 · 4801 · 4877 · 5527 · 6673 · 7103 · 7537 · 7621.

Example 6. of [13, section 5.3], we named it as B-SIDHp237:

p = 0x1B40F93CE52A207249237A4FF37425A798E914A74949FA343E8EA487FFFF

M = 43 ·
(
4 · 34 · 17 · 19 · 31 · 37 · 532

)6
,

N = 7 · 13 · 43 · 73 · 103 · 269 · 439 · 881 · 883 · 1321 · 5479 · 9181 · 12541 · 15803 · 20161 · 24043 · 34843 · 48437 · 62753 · 72577.
Lucky proposal of [5, appendix A], we named it as B-SIDHp257:

p = 0x1E409D8D53CF3BEB65B5F41FB53B25EBEAF37761CD8BA996684150A40FFFFFFFF

M = 416 · 521 · 7 · 11 · 163 · 1181 · 2389 · 5233 · 8353 · 10139 · 11939 · 22003 · 25391 · 41843,
N = 356 · 31 · 43 · 59 · 271 · 311 · 353 · 461 · 593 · 607 · 647 · 691 · 743 · 769 · 877 · 1549.

32

	Introduction
	Background
	Overviewing the C-SIDH
	Playing the B-SIDH

	Optimal strategies for the CSIDH and the B-SIDH
	New Vélu's formulas
	Construction and evaluation of odd degree isogenies
	Implementation speedups
	Practical complexity analysis

	Experiments and discussion
	Experiments on the CSIDH
	Experiments playing the B-SIDH
	Discussion

	Conclusions
	Acknowledgements
	References
	Appendix
	Algorithms
	Schönage-FFT vs Karatsuba
	Cost of computing resultants via remainder trees
	B-SIDH primes

