
A cautionary note on the use of Gurobi for
cryptanalysis

Muhammad ElSheikh and Amr M. Youssef

Concordia Institute for Information Systems Engineering,
Concordia University, Montréal, Québec, Canada

{m elshei,youssef}@ciise.concordia.ca

Abstract. Mixed Integer Linear Programming (MILP) is a powerful
tool that helps to automate several cryptanalysis techniques for sym-
metric key primitives. Gurobi is one of the most popular solvers used by
researchers to obtain useful results from the MILP models corresponding
to these cryptanalysis techniques. In this report, we provide a cautionary
note on the use of Gurobi in the context of bit-based division property
integral attacks. In particular, we report four different examples in which
Gurobi gives contradictory results when solving the same MILP model by
just changing the number of used threads or reordering some constraints.

1 Introduction

Since Mouha et al. introduced the concept of using Mixed Integer Linear Pro-
gramming (MILP) to count of the minimum number of active S-boxes in dif-
ferential cryptanalysis [5], MILP has attracted attention of many cryptanalysis
researchers. Cui et al. [1] proposed MILP models for both impossible differential
attacks and zero-correlation attacks. Sasaki and Todo [6] developed a new search
tool for impossible differential using MILP. Moreover, Xiang et al. [10] defined a
systematic rules for constructing integral distinguisher using MILP. Later, Sun et
al. complement this work by handling ARX-based ciphers (modulo operations)
[7] and ciphers with non-bit-permutation linear layer[8]. Recently, Todo et al.
utilize MILP model of the division property to improve the cube attacks [9].

In the context of differential and linear cryptanalysis, one might be able to
manually verify the correctness of the differential/linear trail resulting from the
MILP solver. On the other hand, the useful results in the context of impossible
differential, zero-correlation, and division property based cryptanalysis, such as
integral and cube attacks, rely on the infeasibility of the MILP model under
consideration. Therefore, it is usually not possible to manually validate these
results.

2 MILP modeling for the bit-based division property

Let (a00, a
0
1, · · · , a0n) → · · · → (ar0, a

r
1, · · · , arn−1) denote a division trail from the

input division property to the output division property over r rounds of an n-bit

2 M. ElSheikh et al.

block cipher. We consider the i-th bit of the output after r rounds is balanced if
there is no division trail from the input division property to the output division
property ei (a unit vector whose i-th element is 1). Following [10], we can convert
the propagation of the bit-based division property through r-round block cipher
to a MILP model with an objective function (Obj) : minimize{ar0 + ar1 + · · ·+
arn−1}. For more details, we refer the reader to [10,8,2,3].

3 Examples for contradictory results from Gurobi

Throughout our experiments, we use Gurobi Optimizer version 9.0.2 build

v9.0.2rc0 (linux64) [4], to check if there are some balanced bits in four dif-
ferent models.

Algorithm 1 summarizes the steps we follow to test a given model. All the
models in LP format and the actual code can be found at https://github.com/
mhgharieb/GurobiOnCryptanalysis. We emphasize that the reported results are
based on the above mentioned version of Gurobi and we have not tested other
versions.

3.1 Example I

This example is for a 128-bit block cipher and its MILP model has the following
statistics:

a model with 3661 rows , 41443 columns and 111491 nonzeros
Model f i n g e r p r i n t : 0x67963de8
Var iab le types : 0 continuous , 41443 i n t e g e r (41443 binary)
C o e f f i c i e n t s t a t i s t i c s :

Matrix range [1 e+00, 6e +01]
Object ive range [1 e+00, 1e +00]
Bounds range [1 e+00, 1e +00]
RHS range [1 e+00, 5e +01]

We first set the parameter LazyConstraints to 1 for some reasons out of
scope of this report. Then, we solved the model twice, using numThreads = 48
threads and numThreads = 1 thread. The result from 48-thread running is
that the model is infeasible. This is an indication of balanced bits. In contrast,
the single-thread running gives a feasible solution with M.ObjV al == 1 which
means there is an unbalanced bit. Clearly one of these two results must be wrong.

We then checked if the solution from the single-thread satisfies all the in-
equalities in the model using a simple bash/python script and indeed it passed
the check. Thus, this is the correct result. Moreover, we have tried to figure
out why Gurobi produces this behavior by checking any numerical issues in the
model. Nonetheless, the coefficient statistics reported above informed us that
the coefficient ranges are suitable. Therefore, we exclude the numerical issues.

Finally, we have reported this issue to Gurobi and received the following reply:
“ ... was able to reproduce this behavior. ... It looks like Gurobi is generating an

https://github.com/mhgharieb/GurobiOnCryptanalysis
https://github.com/mhgharieb/GurobiOnCryptanalysis

A cautionary note on the use of Gurobi for cryptanalysis 3

Algorithm 1: Pseudocode of our steps to check Gurobi

Input: Model.lp, numThreads// the model in LP format and some Gurobi
parameter values

1 begin
/* read the model from a file */

2 M=read(Model.lp)
/* Set some Gurobi parameters such as number of threads */

3 M.setParam(”Threads”, numThreads)
/* Solve the model */

4 M.optimize()
/* Check the model status after optimization */

5 if M.Status == 2 // M has a feasible solution

6 then
/* if M.ObjV al == 1, there is a division trail from the

input division property to ei for an i bit */

7 print(”Find a solution”)
/* Export the solution to a file */

8 M.write(”Solution.sol”)

9 else if M.Status == 3 // M is infeasible and this is the

indication of some blanaced bits

10 then
11 print(”the model is infeasible”)
12 else
13 print(”Unkown Error”)
14 end

15 end

invalid cut. Our developers are currently working on fixing the issue. ... We will
reach out to you if this issue is fixed in a future Gurobi release.”

3.2 Example II

This example is for a 288-bit permutation. Its MILP model has the following
statistics:

a model with 10882 rows , 38880 columns and 175220 nonzeros
Model f i n g e r p r i n t : 0 x87fb94b0
Var iab le types : 0 continuous , 38880 i n t e g e r (38880 binary)
C o e f f i c i e n t s t a t i s t i c s :

Matrix range [1 e+00, 6e +01]
Object ive range [1 e+00, 1e +00]
Bounds range [1 e+00, 1e +00]
RHS range [1 e+00, 3e +02]

We first set the parameters MIRCuts and CliqueCuts to 2 for some reasons
out of scope of this report. Like in the first example, we solved the model twice,
using numThreads = 80 threads and numThreads = 1 thread. The result from

4 M. ElSheikh et al.

80-thread running is that the model is infeasible. In contrast, the single-thread
running gives a feasible solution with M.ObjV al == 1. We have checked that
the single-thread solution satisfies all the inequalities in the model. Also, the
coefficient statistics excludes any numerical issues.

3.3 Example III

This is the most important and serious example because, unlike the previous
examples, we keep all the default values of Gurobi parameters without any change
except the number of used threads. Nevertheless, Gurobi still gives contradictory
results.

This example is for a 288-bit permutation. Its MILP model has the following
statistics:

a model with 10711 rows , 38880 columns and 175049 nonzeros
Model f i n g e r p r i n t : 0 x9f913e7e
Var iab le types : 0 continuous , 38880 i n t e g e r (38880 binary)
C o e f f i c i e n t s t a t i s t i c s :

Matrix range [1 e+00, 6e +01]
Object ive range [1 e+00, 1e +00]
Bounds range [1 e+00, 1e +00]
RHS range [1 e+00, 3e +02]

Similar to the previous example, we solve the model twice, using numThreads =
80 threads and numThreads = 1 thread. The result from 80-thread running is
that the model is infeasible. In contrast, the single-thread running gives a fea-
sible solution with M.ObjV al == 1. We have checked that the single-thread
solution satisfies all the inequalities in the model. We have included 13 other
models which follow this behavior at our github repository.

3.4 Example IV

This is another example that illustrates the odd behavior of Gurobi. In this
example, we show that by just reordering some constraints in the MILP model,
rerunning the solver using the same hardware, in terms of number of threads,
and using the same default values of Gurobi parameters, the solver may still give
contradictory results.

This example is for a 288-bit permutation. The original MILP model has the
following statistics:

a model with 10969 rows , 38880 columns and 175307 nonzeros
Model f i n g e r p r i n t : 0x7ba61e9a
Var iab le types : 0 continuous , 38880 i n t e g e r (38880 binary)
C o e f f i c i e n t s t a t i s t i c s :

Matrix range [1 e+00, 6e +01]
Object ive range [1 e+00, 1e +00]
Bounds range [1 e+00, 1e +00]
RHS range [1 e+00, 3e +02]

A cautionary note on the use of Gurobi for cryptanalysis 5

The reordered MILP model has the same statistics except:
Model f i n g e r p r i n t : 0 xa52a2fd8. The mismatch between the two finger-
prints is due to the reordering. One can easily verify that the two models are
the same by sorting the constraints of each then compare digest hash of them.
This can be done by a single line command on Linux:
md5sum <<< $(sort model.lp)

md5sum <<< $(sort model reoredered.lp)

We solved the two models using numThreads = 80. The result of the original
model is that the model is infeasible. On the other hand, the reordered model
has a feasible solution with M.ObjV al == 1. In the same manner as in the
previous examples, we have verified that the the feasible solution satisfies all the
constraints in both the original and the reordered model. We have included 5
other models which follow this behavior at our github repository.

4 Conclusion

Mixed Integer Linear Programming is a powerful technique in cryptanalysis and
Gurobi is a widely utilized optimization solver that makes it applicable. However,
at least for the time being, we should not take the result from automated solvers,
including Gurobi, as it is because as we have shown in examples III and IV, just
changing the used hardware in term of number of threads or reordering the
constraints, the result may give false balanced bits which may lead to invalid
attacks. In the case of an infeasible model. We have to determine why the model
is infeasible. To this end, one can compute the Irreducible Infeasible Subsystem
(IIS) which is a minimal subset of constraints and variable bounds that if any
one of them is removed from the subsystem, the resulting subsystem is feasible.

References

1. Cui, T., Jia, K., Fu, K., Chen, S., Wang, M.: New Automatic Search Tool for Impos-
sible Differentials and Zero-Correlation Linear Approximations. IACR Cryptology
ePrint Archive 2016, 689 (2016)

2. ElSheikh, M., Tolba, M., Youssef, A.M.: Integral Attacks on Round-Reduced Bel-
T-256. In: Cid, C., Jacobson Jr., M.J. (eds.) Selected Areas in Cryptography –
SAC 2018. LNCS, vol. 11349, pp. 73–91. Springer International Publishing, Cham
(2019)

3. ElSheikh, M., Youssef, A.M.: Integral Cryptanalysis of Reduced-Round Tweakable
TWINE . Accepted, Cryptology and Network Security 2020 (CANS 2020)

4. Gurobi Optimization, L.: Gurobi Optimizer Reference Manual (2020), http://www.
gurobi.com

5. Mouha, N., Wang, Q., Gu, D., Preneel, B.: Differential and linear cryptanalysis us-
ing mixed-integer linear programming. In: International Conference on Information
Security and Cryptology. pp. 57–76. Springer (2011)

6. Sasaki, Y., Todo, Y.: New impossible differential search tool from design and crypt-
analysis aspects. In: Annual International Conference on the Theory and Applica-
tions of Cryptographic Techniques. pp. 185–215. Springer (2017)

http://www.gurobi.com
http://www.gurobi.com

6 M. ElSheikh et al.

7. Sun, L., Wang, W., Liu, R., Wang, M.: MILP-Aided Bit-Based Division Prop-
erty for ARX-Based Block Cipher. Cryptology ePrint Archive, Report 2016/1101
(2016), https://eprint.iacr.org/2016/1101

8. Sun, L., Wang, W., Wang, M.: MILP-Aided Bit-Based Division Property for Prim-
itives with Non-Bit-Permutation Linear Layers. Cryptology ePrint Archive, Report
2016/811 (2016), https://eprint.iacr.org/2016/811

9. Todo, Y., Isobe, T., Hao, Y., Meier, W.: Cube attacks on non-blackbox polynomials
based on division property. IEEE Transactions on Computers 67(12), 1720–1736
(2018)

10. Xiang, Z., Zhang, W., Bao, Z., Lin, D.: Applying MILP Method to Searching Inte-
gral Distinguishers Based on Division Property for 6 Lightweight Block Ciphers. In:
Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 648–678.
Springer (2016)

https://eprint.iacr.org/2016/1101
https://eprint.iacr.org/2016/811

	A cautionary note on the use of Gurobi for cryptanalysis

