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Abstract. Superlight blockchain clients learn facts about the blockchain state while requir-
ing merely polylogarithmic communication in the total number of blocks. For proof-of-work
blockchains, two known constructions exist: Superblock and FlyClient. Unfortunately, none
of them can be deployed to existing blockchains, as they require consensus changes and at
least a soft fork to implement.

In this paper, we investigate how a blockchain can be upgraded to support superblock clients
without a soft fork. We show that it is possible to implement the needed changes without
modifying the consensus protocol and by requiring only a minority of miners to upgrade,
a process termed a “velvet fork” in the literature. While previous work conjectured that
superblock clients can be safely deployed using velvet forks as-is, we show that previous
constructions are insecure, and that using velvet techniques to interlink a blockchain can pose
insidious security risks. We describe a novel class of attacks, called “chain-sewing”, which
arise in the velvet fork setting: an adversary can cut-and-paste portions of various chains from
independent temporary forks, sewing them together to fool a superlight client into accepting
a false claim. We show how previous velvet fork constructions can be attacked via chain-
sewing. Next, we put forth the first provably secure velvet superblock client construction
which we show secure against adversaries that are bounded by 1/3 of the upgraded honest
miner population. Like non-velvet superlight clients, our approach allows proving generic
predicates about chains using infix proofs and as such can be adopted in practice for fast
synchronization of transactions and accounts.

1 Introduction

Blockchain systems such as Bitcoin [31] and Ethereum [4,36] have a predetermined ex-
pected rate of block production and maintain chains of blocks that are growing linearly
with time. A node synchronizing with the rest of the blockchain network for the first time
therefore has to download and validate the whole chain, if it does not wish to rely on a
trusted third party [17]. While a lightweight node (SPV) can avoid downloading and val-
idating transactions beyond their interest, it must still download the block headers that
contain the proof-of-work [12] of each block in order to determine which chain contains the
most work. The block headers, while smaller by a significant constant factor, still grow lin-
early with time. An Ethereum node synchronizing for the first time must download more
than 4 GB of block header data for the purpose of proof-of-work verification, even if it
does not download any transactions. This has become a central problem to the usability of
blockchain systems, especially for vendors who use mobile phones to accept payments and
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sit behind limited internet bandwidth. They are forced to make a difficult choice between
decentralization and the ability to start accepting payments in a timely manner.

Towards the goal of alleviating the burden of this download for SPV clients, a number
of superlight clients has emerged. These protocols give rise to Non-Interactive Proofs of
Proof-of-Work (NIPoPoW) [23], which are short strings that “compress” the proof-of-
work information of the underlying chain by sending a carefully selected sample of block
headers. The necessary security property of such proofs is that a minority adversary can
only convince a NIPoPoW client that a certain transaction is confirmed, only if they can
convince an SPV client, too.

There are two general directions for superlight client implementations: In the su-
perblock [23,18] approach, the client relies on superblocks, blocks that have achieved much
better proof-of-work than required for block validity. In the FlyClient [2] approach, blocks
are sampled and committed at random as in a Σ-protocol (e.g., Schnorr’s discrete-log
protocol [33]) and then using the Fiat–Shamir heuristic [13] a non-interactive proof is
calculated. The number of block headers that need to be sent then grows only logarith-
mically with time. The NIPoPoW client, which is the proof verifier in this context, still
relies on a connection to full nodes, who, acting as provers, perform the sampling of blocks
from the full blockchain. No trust assumptions are made for these provers, as the verifier
can check the veracity of their claims. As long as the verifier is connected to at least one
honest prover (an assumption also made in the SPV protocol [15,37]), they can arrive at
the correct claim.

In both approaches, the verifier must check that the blocks sampled one way or another
were generated in the same order as presented by the prover. As such, each block in the
proof must contain a pointer to the previous block in the proof. As blocks in these proofs are
far apart in the underlying blockchain, the legacy previous block pointer, which typically
appears within block headers, does not suffice. Both approaches require modifications
to the consensus layer of the underlying blockchain to work. In the case of superblock
NIPoPoWs, the block header must be modified to include, in addition to a pointer to the
previous block, pointers to a small amount of recent high-proof-of-work blocks. In the case
of FlyClient, each block must additionally contain pointers to all previous blocks in the
chain. Both of these modifications can be made efficiently by organizing these pointers into
Merkle Trees [30] or Merkle Mountain Ranges [27,34] whose root is stored in the block
header. The inclusion of extra pointers within blocks is termed interlinking the chain [22].

The modified block format, which includes the extra pointers, must be respected and
validated by full nodes and thus requires a hard or soft fork. However, even soft forks
require the approval of a supermajority of miners, and new features that are considered
non-essential by the community have taken years to receive approval [28]. Towards the goal
of implementing superlight clients sooner, we study the question of whether it is possible
to deploy superlight clients without a soft fork. We propose a series of modifications to
blocks that are helpful but untrusted. These modifications mandate that some extra data
is included in each block. The extra data is placed inside the block by upgraded miners
only, while the rest of the network does not include the additional data into the blocks and
does not verify its inclusion, treating them merely as comments. To maintain backwards
compatibility, contrary to a soft fork, upgraded miners must accept blocks that do not
contain this extra data that have been produced by unupgraded miners, or even blocks
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that contain invalid or malicious such extra data produced by a mining adversary. This
acceptance is necessary in order to avoid causing a chain split with the unupgraded part
of the network. Such a modification to the consensus layer is termed a velvet fork [39]. A
summary of our contributions in this paper is as follows:

1. We illustrate that, contrary to claims of previous work, superlight clients designed
to work in a soft fork cannot be readily plugged into a velvet fork and expected to
work. We present a novel and insidious attack termed the chain-sewing attack which
thwarts the defenses of previous proposals and allows even a minority adversary to
cause catastrophic failures.

2. We propose the first backwards-compatible superlight client. We put forth an interlink-
ing mechanism implementable through a velvet fork. We then construct a superblock
NIPoPoW protocol on top of the velvet forked chain and show it allows to build su-
perlight clients for various statements regarding the blockchain state via both “suffix”
and “infix” proofs.

3. We prove our construction secure in the synchronous static difficulty model against
adversaries bounded to 1/3 of the mining power of the honest upgraded nodes. As
such, our protocol works even if a constant minority of miners adopts it.

Previous work. Proofs of Proof-of-Work have been proposed in the context of superlight
clients [23,2], cross-chain communication [24,19,38], as well as local data consumption
by smart contracts [20]. Chain interlinking has been deployed in production both since
genesis [10,6] and using hard forks [35], and relevant verifiers have been implemented [7,8].
They have been conjectured to work in velvet fork conditions [23] (we show here that these
conjectures are ill-informed in the light of our chain-sewing attack). Velvet forks [39] have
been studied for a variety of other applications and have been deployed in practice [16]. In
this work, we focus on consensus state compression. Such compression has been explored
in the hard-fork setting using zk-SNARKS [29] as well as in the Proof-of-Stake setting [21].
Complementary to consensus state compression (i.e., the compression of block headers and
their ancestry) is compression of application state, namely the State Trie, the UTXO, or
transaction history. There is a series of works complementary and composable with ours
that discusses the compression of application state [5,25].
Organization. The structure of the paper is as follows. In Section 2, we give a brief
overview of the backbone model and its notation; as we heavily leverage the machinery of
the model, the section is a necessary prerequisite to follow the analysis. The rest of the
paper is structured in the form of a proof and refutation [26]. We believe this form is more
digestible. In Section 3, we discuss the velvet model and some initial definitions, and we
present a first attempt towards a velvet NIPoPoW scheme which was presented in previous
work. We discuss the informal argument of why it seems to be secure, which we refute with
an attack explored in Section 4 (we give simulation results and concrete parameters for our
attack in Appendix A). In Section 5, we patch the scheme and put forth our more elaborate
and novel Velvet NIPoPoW construction. We analyze it and formally prove it secure in
Section 6 (this technical section can be omitted without loss of continuity). Our scheme
at this point allows verifiers to decide which blocks form a suffix of the longest blockchain
and thus the protocol supports suffix proofs. We extend our scheme to allow any block of
interest within the blockchain to be demonstrated to a prover in a straightforward manner
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in Section 7, giving a full infix proof protocol. The latter protocol can be used in practice
and can be deployed today in real blockchains, including Bitcoin, to confirm payments
achieving both decentralization and timeliness, solving a major outstanding dilemma in
contemporary blockchain systems.

2 Preliminaries

We consider a setting where the blockchain network consists of two types of nodes: The
first kind, full nodes, are responsible for the verifying the chain and mining new blocks. The
second kind, verifiers, connect to full nodes and wish to learn facts about the blockchain
without downloading it, for example whether a particular transaction is confirmed. The
full nodes therefore also function as provers for the verifiers. Each verifier connects to
multiple provers, at least one of which is assumed to be honest.

We model full nodes according to the Backbone model [14]. There are n full nodes,
of which t are adversarial and n − t are honest. All t adversarial parties are controlled
by one colluding adversary A. The parties have access to a hash function H modelled as
a common Random Oracle [1]. To each novel query, the random oracle outputs κ bits of
fresh randomness. Time is split into distinct rounds numbered by the integers 1, 2, · · · . Our
treatment is in the synchronous model, so we assume messages diffused (broadcast) by an
honest party at the end of a round are received by all honest parties at the beginning of the
next round. This is equivalent to a network connectivity assumption in which the round
duration is taken to be the known time needed for a message to cross the diameter of the
network. The adversary can inject messages, reorder them, sybil attack [11] by creating
multiple messages, but not suppress messages.

Each honest full node locally maintains a chain C, a sequence of blocks. As we are
developing an improvement on top of SPV, we use the term block to mean a block header.
Each block contains the Merkle Tree root [30] of transaction data4 x, the hash s of the
previous block in the chain known as the previd, and a nonce ctr. Each block b = s‖x‖ctr
must satisfy the proof-of-work [12] equation H(b) ≤ T where T is a constant target, a
small value signifying the difficulty of proof-of-work. We assume T is constant throughout
the execution5. H(b) is known as the block id.

Blockchains are finite block sequences obeying the blockchain property : that in every
block in the chain there exists a pointer to its previous block. A chain is anchored if its
first block is genesis, denoted G, a special block known to all parties. This is the only node
the verifier knows about when it boots up. For chain addressing we use Python brackets
C[·]. A zero-based positive index indicates the indexed block. A negative index indicates a
block from the end, e.g., C[−1] is the chain tip. A range C[i:j] is a subarray starting from
i (inclusive) to j (exclusive). Given chains C1,C2 and blocks A,Z we concatenate them
as C1C2 or C1A (if clarity mandates it, we use ‖ to signify concatenation). Here, C2[0]
must point to C1[−1] and A must point to C1[−1]. We denote C{A:Z} the subarray of the
chain from block A (inclusive) to block Z (exclusive). We can omit blocks or indices from

4 The compression of x is beyond the scope of our work. Vendors verifying a small number of transactions
benefit exponentially from a superlight client even without compressing x.

5 A treatment of variable difficulty NIPoPoWs has been explored in the soft fork case [40], but we leave
the treatment of velvet fork NIPoPoWs in the variable difficulty model for future work.
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either side of the range to take the chain to the beginning or end respectively. As long
as the blockchain property is maintained, we freely use the set operators ∪, ∩ and ⊆ to
denote operations between chains, implying that the appropriate blocks are selected and
then placed in chronological order.

At every round, every honest party attempts to mine a block on top of its chain.
Each party is given q queries to the random oracle which it uses in attempting to mine.
The adversary has tq queries per round while the honest parties have (n − t)q queries
per round. When an honest party discovers a new block, they extend their chain and
broadcast it. Upon receiving a new chain C′ from the network, an honest party compares
its length |C′| against its currently adopted chain length |C| and adopts the new chain if it
is longer. The honest parties control the majority of the computational power. This honest
majority assumption states that there is some 0 < δ < 1 such that t < (1 − δ)(n − t).
The protocol ensures consensus among honest parties: There is a constant k, the Common
Prefix parameter, such that, at any round, chains belonging to honest parties share a
common prefix; the chains differ only up to k blocks at the end [14]. Concretely, if at some
round two honest parties have C1 and C2 respectively, then C1[:−k] is a prefix of C2 or
vice versa.

Some valid blocks satisfy the proof-of-work equation better than required. If a block b
satisfies H(b) ≤ 2−µT for some µ ∈ N we say that b is a µ-superblock or a block of level µ.
The probability of a new valid block achieving level µ is 2−µ. The number of levels in the
chain will be log |C| with high probability [22]. Given chain C, we denote C↑µ the subset
of µ-superblocks of C.

Non-Interactive Proofs of Proof-of-Work (NIPoPoW) protocols allow verifiers to learn
the most recent k blocks of the blockchain adopted by an honest full node without down-
loading the whole chain. The challenge lies in building a verifier who can find the suffix of
the longest chain between claims of both honest and adversarial provers, while not down-
loading all block headers. Towards that goal, the superblock approach uses superblocks
as proof-of-work samples. The prover sends superblocks to the verifier to convince them
that proof-of-work has taken place without actually presenting all this work. The proto-
col is parametrized by a constant security parameter m. The parameter determines how
many superblocks will be sent by the prover to the verifier and security is proven with
overwhelming probability in m.

The prover selects various levels µ and for each such level sends a carefully chosen
portion of its µ-level superchain C↑µ to the verifier. In standard blockchain protocols such
as Bitcoin and Ethereum, each block C[i + 1] in C points to its previous block C[i], but
each µ-superblock C↑µ [i + 1] does not point to its previous µ-superblock C↑µ [i]. It is
imperative that an adversarial prover does not reorder the blocks within a superchain,
but the verifier cannot verify this unless each µ-superblock points to its most recently
preceding µ-superblock. The proposal is therefore to interlink the chain by having each µ-
superblock include an extra pointer to its most recently preceding µ-superblock. To ensure
integrity, this pointer must be included in the block header and verified by proof-of-work.
However, the miner does not know which level a candidate block will attain prior to mining
it. Therefore, each block is proposed to include a pointer to the most recently preceding
µ-superblock, for every µ, as illustrated in Figure 1. As these levels are only log |C|, this
only adds log |C| extra pointers to each block header.
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Fig. 1. The interlinked blockchain. Each superblock is drawn taller according to its achieved level. Each
block links to all the blocks that are not being overshadowed by their descendants. The most recent
(right-most) block links to the four blocks it has direct line-of-sight to.

The exact NIPoPoW protocol works like this: The prover holds a full chain C. When
the verifier requests a proof, the prover sends the last k blocks of their chain, the suffix
χ = C[−k:], in full. From the larger prefix C[:−k], the prover constructs a proof π by
selecting certain superblocks as representative samples of the proof-of-work that took
place. The blocks are picked as follows. The prover selects the highest level µ∗ that has
at least m blocks in it and includes all these blocks in their proof (if no such level exists,
the chain is small and can be sent in full). The prover then iterates from level µ = µ∗ − 1
down to 0. For every level µ, it includes sufficient µ-superblocks to cover the last m blocks
of level µ+1, as illustrated in Algorithm 1. Because the density of blocks doubles as levels
are descended, the proof will contain in expectation 2m blocks for each level below µ∗. As
such, the total proof size πχ will be Θ(m log |C|+k). Such proofs that are polylogarithmic
in the chain size constitute an exponential improvement over traditional SPV clients and
are called succinct.

Algorithm 1 The Prove algorithm for the NIPoPoW protocol in a soft fork
1: function Provem,k(C)
2: B ← C[0] . Genesis
3: for µ = |C[−k − 1].interlink| down to 0 do
4: α← C[:−k]{B:}↑µ
5: π ← π ∪ α
6: if m < |α| then
7: B ← α[−m]
8: end if
9: end for

10: χ← C[−k:]
11: return πχ
12: end function

Upon receiving two proofs π1χ1, π2χ2 of this form, the NIPoPoW verifier first checks
that |χ1| = |χ2| = k and that π1χ1 and π2χ2 form valid chains. To check that they are
valid chains, the verifier ensures every block in the proof contains a pointer to its previous
block inside the proof through either the previd pointer in the block header, or in the
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interlink vector. If any of these checks fail, the proof is rejected. It then compares π1
against π2 using the ≤m operator, which works as follows. It finds the lowest common
ancestor block b = (π1 ∩ π2)[−1]; that is, b is the most recent block shared among the
two proofs. Subsequently, it chooses the level µ1 for π1 such that |π1{b:}↑µ1 | ≥ m (i.e., π1
has at least m superblocks of level µ1 following block b) and the value 2µ1 |π1{b:}↑µ1 | is
maximized. It chooses a level µ2 for π2 in the same fashion. The two proofs are compared
by checking whether 2µ1 |π1{b:}↑µ1 | ≥ 2µ2 |π2{b:}↑µ2 | and the proof with the largest score
is deemed the winner. The comparison is illustrated in Algorithm 2.

Algorithm 2 The implementation of the ≥m operator to compare two NIPoPoW proofs
parameterized with security parameter m. Returns true if the underlying chain of party
A is deemed longer than the underlying chain of party B.
1: function best-argm(π, b)
2: M ← {µ: |π↑µ {b:}| ≥ m} ∪ {0} . Valid levels
3: return maxµ∈M{2µ|π↑µ {b:}|} . Score for level
4: end function
5: operator πA ≥m πB
6: b← (πA ∩ πB)[−1] . LCA
7: return best-argm(πA, b) ≥ best-argm(πB , b)
8: end operator

Blockchain protocols can be upgraded using hard or soft forks [3]. In a hard fork, blocks
produced by upgraded miners are not accepted by unupgraded miners. It is simplest to
introduce interlinks using a hard fork by mandating that interlink pointers are included in
the block header. Unupgraded miners will not recognize these fields and will be unable to
parse upgraded blocks. To ensure the block header is of constant size, instead of including
all these superblock pointers in the block header individually, they are organized into a
Merkle Tree of interlink pointers and only the root of the Merkle Tree is included in the
block header. In this case, the NIPoPoW prover that wishes to show a block b in their
proof is connected to its more recently preceding µ-superblock b′, also includes a Merkle
Tree proof proving that H(b′) is a leaf in the interlink Merkle Tree root included in the
block header of b. The verifier must additionally verify these Merkle proofs.

In a soft fork, blocks created by unupgraded miners are not accepted by upgraded
miners, but blocks created by upgraded miners are accepted by unupgraded miners. Any
additional data introduced by the upgrade must be included in a field that is treated like
a comment by an unupgraded miner. To interlink the chain via a soft fork, the interlink
Merkle Tree root is placed in the coinbase transaction instead of the block header. Up-
graded miners include the correct interlink Merkle Tree root in their coinbase and validate
the Merkle Tree root of incoming blocks. This root is easily validated because it is calcu-
lated deterministically from the previous blocks in the chain. Unupgraded miners ignore
this data and accept the block regardless. The fork is successful if the majority of min-
ers upgrade. Whenever the prover wishes to show that a block b in the proof contains a
pointer to its most recently preceding µ-superblock b′, it must accompany the block header
of b = s ‖ x ‖ ctr with the coinbase transaction txcb of b as well as two Merkle Tree proofs:
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One proving txcb is in x, and one proving H(b′) is in the interlink Merkle Tree whose root
is committed in txcb.

3 Velvet Interlinks

Velvet forks were recently introduced [39]. In a velvet fork, blocks created by upgraded
miners (called velvet blocks) are accepted by unupgraded miners as in a soft fork. Addi-
tionally, blocks created by unupgraded miners are also accepted by upgraded miners. This
allows the protocol to upgrade even if only a minority of miners upgrade. To maintain
backwards compatibility and to avoid causing a permanent fork, the additional data in-
cluded in a block is advisory and must be accepted whether it exists or not. Even if the
additional data is invalid or malicious, upgraded nodes (in this context also called velvet
nodes) are forced to accept the blocks. The simplest approach to interlink the chain with a
velvet fork is to have upgraded miners include the interlink pointer in the coinbase of the
blocks they produce, but accept blocks with missing or incorrect interlinks. As we show in
the next section, this approach is flawed and susceptible to unexpected attacks. A surgical
change in the way velvet blocks are produced is necessary to achieve security.

In a velvet fork, only a minority of honest parties needs to support the protocol changes.
We refer to this percentage as the “velvet parameter”.

Definition 1 (Velvet Parameter). The velvet parameter g is defined as the percentage
of honest parties that have upgraded to the new protocol. The absolute number of honest
upgraded parties is denoted nh and it holds that nh = g(n− t).

Unupgraded honest nodes will produce blocks containing no interlink, while upgraded
honest nodes will produce blocks containing truthful interlinks. Therefore, any block with
invalid interlinks is adversarial. However, such blocks cannot be rejected by the upgraded
nodes, as this gives the adversary an opportunity to cause a permanent fork. A block
generated by the adversary can thus contain arbitrary interlinks and yet become honestly
adopted. Because the honest prover is an upgraded full node, it determines what the correct
interlink pointers are by examining the whole previous chain, and can deduce whether a
block contains invalid interlinks. In that case, the prover can simply treat such blocks as
unupgraded. In the context of the attack presented in the following section, we examine
the case where the adversary includes false interlink pointers. We distinguish blocks based
on whether they follow the velvet protocol rules or they deviate from them.

Definition 2 (Smooth and Thorny blocks). A block in a velvet upgrade is called
smooth if it contains auxiliary data corresponding to the honest upgraded protocol. A block
is called thorny if it contains auxiliary data, but the data differs from the honest upgraded
protocol. A block is neither smooth nor thorny if it contains no auxiliary data.

In the case of velvet forks for interlinking, the auxiliary data consists of the interlink
Merkle Tree root.
A näıve velvet scheme. In previous work [23], it was conjectured that superblock
NIPoPoWs remain secure under a velvet fork. We call this scheme the Näıve Velvet
NIPoPoW protocol. It is not dissimilar from the NIPoPoW protocol in the soft fork

8



case. The näıve velvet NIPoPoW protocol works as follows. Each upgraded honest miner
attempts to mine a block b that includes interlink pointers in the form of a Merkle Tree
included in its coinbase transaction. For each level µ, the interlink contains a pointer to
the most recent among all the ancestors of b that have achieved at least level µ, regardless
of whether the referenced block is upgraded or not and regardless of whether its interlinks
are valid. Unupgraded honest nodes will keep mining blocks on the chain as usual; because
the status of a block as superblock does not require it to be mined by an upgraded miner,
the unupgraded miners contribute mining power to the creation of superblocks.

The prover in the näıve velvet NIPoPoWs works as follows. The honest prover con-
structs the proof πχ as in Algorithm 2. The outstanding issue is that π does not form
a chain because some of its blocks may not be upgraded and they may not contain any
pointers (or may contain invalid pointers). Suppose π[i] is the most recent µ-superblock
preceding π[i + 1]. The prover must provide a connection between π[i + 1] and π[i]. The
block π[i+1] is a superblock and exists at some position j in the underlying chain C of the
prover, i.e., π[i+ 1] = C[j]. If C[j] is smooth, then the interlink pointer at level µ within it
can be used. Otherwise, the prover uses the previd pointer of π[i+ 1] = C[j] to repeatedly
reach the parents of C[j], namely C[j− 1],C[j− 2], · · · until a smooth block b between π[i]
and π[i+1] is found in C, or until π[i] is reached. The block b contains a pointer to π[i], as
π[i] is also the most recent µ-superblock ancestor of b. The blocks C[j − 1],C[j − 2], · · · , b
are then included in the proof to illustrate that π[i] is an ancestor of π[i+ 1].

The argument for why the above scheme work is as follows. First of all, the scheme does
not add many new blocks to the proof. In expectation, if a fully honestly generated chain is
processed, after in expectation 1

g blocks have been traversed, a smooth block will be found
and the connection to π[i] will be made. Thus, the number of blocks needed in the proof
increases by a factor of 1

g . Security was argued as follows: An honest party includes in their
proof as many blocks as in a soft forked NIPoPoW, albeit by using an indirect connection.
The crucial feature is that it is not missing any superblocks. Even if the adversary creates
interlinks that skip over some honest superblocks, the honest prover will not utilize these
interlinks, but will use the “slow route” of level 0 instead. The adversarial prover, on the
other hand, can only use honest interlinks as before, but may also use false interlinks in
blocks mined by the adversary. However, these false interlinks cannot point to blocks of
incorrect level. The reason is that the verifier looks at each block hash to verify its level
and therefore cannot be cheated. The only problem a fake interlink can cause is that it can
point to a µ-superblock which is not the most recent ancestor, but some older µ-superblock
ancestor in the same chain, as illustrated in Figure 2. However, the adversarial prover can
only harm herself by using such pointers, as the result will be a shorter superchain.

We conclude that the honest verifier comparing the honest superchain against the
adversarial superchain will reach the same conclusion in a velvet fork as he would have
reached in a soft fork: Because the honest superchain in the velvet case contains the same
amount of blocks as the honest superchain in the soft fork case, but the adversarial super-
chain in the velvet case contains fewer blocks than in the soft fork case, the comparison
will remain in favor of the honest party. As we will see in the next section, this conclusion
is incorrect.
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Fig. 2. A thorny pointer of an adversarial block, colored black, in an honest party’s chain. The thorny block
points to a 1-superblock which is an ancestor 1-superblock, but not the most recent ancestor 1-superblock.

4 The Chainsewing Attack

We now make the critical observation that a thorny block can include interlink pointers
to blocks that are not its own ancestors in the 0-level chain. Because it must contain a
pointer to the hash of the block it points to, they must be older blocks, but they may
belong to a different 0-level chain. This is shown in Figure 3.

G

Fig. 3. A thorny block, colored black, in an honest party’s chain, uses its interlink to point to a fork chain.

In fact, as the interlink vector contains multiple pointers, each pointer may belong to a
different fork. This is illustrated in Figure 4. The interlink pointing to arbitrary directions
resembles a thorny bush.

G

Fig. 4. A thorny block appended to an honest party’s chain. The dashed arrows are interlink pointers.
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We now present the chainsewing attack against the näıve velvet NIPoPoW protocol.
The attack leverages thorny blocks in order to enable the adversary to usurp blocks be-
longing to a different chain and claim it as her own. Taking advantage of thorny blocks,
the adversary produces suffix proofs containing an arbitrary number of blocks belonging
to several fork chains. The attack works as follows.

Let CB be a chain adopted by an honest party B and CA, a fork of CB at some point,
be maintained by the adversary. After the fork point b = (CB ∩CA)[−1], the honest party
produces a block extending b in CB containing a transaction tx. The adversary includes a
conflicting (double spending) transaction tx′ in a block extending b in CA. The adversary
produces a suffix proof to convince the verifier that CA is longer. In order to achieve
this, the adversary needs to include a greater amount of total proof-of-work in her suffix
proof, πA, in comparison to that included in the honest party’s proof, πB, so as to achieve
πA ≥m πB. Towards this purpose, she miners intermittently on both CB and CA. She
produces some thorny blocks in both chains CA and CB which will allow her to usurp
selected blocks of CB and present them to the light client as if they belonged to CA in her
suffix proof.

The general form of this attack for an adversary sewing blocks to one forked chain
is illustrated in Figure 5. Dashed arrows represent interlink pointers of some level µA.
Starting from a thorny block in the adversary’s forked chain and following the interlink
pointers, jumping between CA and CB, a chain of blocks crossing forks is formed, which
the adversary claims as part of her suffix proof. Blocks of both chains are included in this
proof and a verifier cannot distinguish the non-smooth pointers participating in this proof
chain and, as a result, considers it a valid proof. Importantly, the adversary must ensure
that any blocks usurped from the honest chain are not included in the honest NIPoPoW
to force the NIPoPoW verifier to consider an earlier LCA block b; otherwise, the adversary
will compete after a later fork point, negating any sewing benefits.

G

CA

CB

Fig. 5. Generic Chainsewing Attack. CB is the chain of an honest party and CA the adversary’s chain.
Thorny blocks are colored black. Dashed arrows represent interlink pointers included in the adversary’s
suffix proof. Wavy lines imply one or more blocks.

This generic attack is made concrete as follows. The adversary chooses to attack at
some level µA ∈ N (ideally, if the honest verifier does not impose any succinctness limits,
the adversary sets µA = 0). As shown in Figure 6, she first generates a block b′ in her
forked chain CA containing the double spend, and a block a′ in the honest chain CB which
thorny-points to b′. Block a′ will be accepted as valid in the honest chain CB despite the
invalid interlink pointers. The adversary also chooses a desired superblock level µB ∈ N
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that she wishes the honest party to attain. Subsequently, the adversary waits for the
honest party to mine and sews any blocks mined on the honest chain that are of level
below µB. However, she must bypass blocks that she thinks the honest party will include
in their final NIPoPoW, which are of level µB (the blue block designated c in Figure 6).
To bypass a block, the adversary mines her own thorny block d on top of the current
honest tip (which could be equal to the block to be bypassed, or have progressed further),
containing a thorny pointer to the block preceding the block to be bypassed and hoping d
will not exceed level µB (if it exceeds that level, she discards her d block). Once m blocks
of level µB have been bypassed in this manner, the adversary starts bypassing blocks of
level µB − 1, because the honest NIPoPoW will start including lower-level blocks. The
adversary continues descending in levels until a sufficiently low level minµB has been
reached at which point it becomes uneconomical for the adversary to continue bypassing
blocks (typically for a 1/4 adversary, minµB = 2). At this point, the adversary forks off
of the last sewed honest block. This last honest block will be used as the last block of the
adversarial π part of the NIPoPoW proof. She then independently mines a k-long suffix
for the χ portion and creates her NIPoPoW πχ. Lastly, she waits for enough time to pass
so that the honest party’s chain progresses sufficiently to make the previous bypassing
guesses correct and so that no blocks in the honest NIPoPoWs coincide with blocks that
have not been bypassed. This requires to wait for the following blocks to appear in the
honest chain: 2m blocks of level µB; after the mth µB-level block, a further 2m blocks of
level µB − 1; after the mth such block, a further 2m blocks of the level µB − 2, and so on
until level 0 is reached.

b
b’

a’ c d

Fig. 6. A portion of the concrete Chainsewing Attack. The adversary’s blocks are shown in black, while the
honestly generated blocks are shown in white. Block b′ contains a double spend, while block a′ sews it in
place. The blue block c is a block included in the honest NIPoPoW, but it is bypassed by the adversary by
introducing block d which, while part of the honest chain, points to c’s parent. After a point, the adversary
forks off and creates k = 3 of their own blocks.

In this attack the adversary uses thorny blocks to “sew” portions of the honestly
adopted chain to her own forked chain. This justifies the name given to the attack. In
order to make this attack successful, the adversary needs only produce few superblocks,
but she can arrogate a large number of honestly produced blocks. Thus the attack succeeds
with non-negligible probability.

We illustrate simulation results6 for the success rate of our attack in Appendix A.
Our experiments find the attack with parameters µB = 10, µA = 0, t = 1, n = 5, k = 15

6 The simulation implementation is available for reproduction purposes under an MIT license at https:

//github.com/decrypto-org/nipopow-velvet/tree/master/chainsew
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succeeds with a constant rate of success of approximately 0.26, when the security parameter
m ranges from 3 to 15. This is in contrast to the best previously known attack (which does
not make use of thorny blocks), which succeeds with probability less than 0.01. Previous
work recommends m = 15 for a 1/3 adversary for a probability of failure bounded by
0.001.

5 Velvet NIPoPoWs

In order to eliminate the Chainsewing Attack we propose an update to the velvet NIPoPoW
protocol. The core problem is that, in her suffix proof, the adversary was able to claim not
only blocks of shorter forked chains, but also arbitrarily long parts of the chain generated
by an honest party. Since thorny blocks are accepted as valid, the verifier cannot distinguish
blocks that actually belong in a chain from blocks that only seem to belong in the same
chain because they are pointed to from a thorny block.

The idea for a secure protocol is to distinguish the smooth from the thorny blocks, so
that smooth blocks can never point to thorny blocks. In this way we can make sure that
thorny blocks acting as passing points to fork chains, as block a′ does in Figure 6, cannot
be pointed to by honestly generated blocks. Therefore, the adversary cannot utilize honest
mining power to construct a stronger suffix proof for her fork chain. Our velvet construction
mandates that honest miners create blocks that contain interlink pointers pointing only to
previous smooth blocks. As such, newly created smooth blocks can only point to previously
created smooth blocks and not thorny blocks. Following the terminology of Section 3, the
smoothness of a block in this new construction is a stricter notion than smoothness in the
näıve construction.

In order to formally describe the suggested protocol patch, we define smooth blocks in
our patched protocol recursively by introducing the notion of a smooth interlink pointer.

Definition 3 (Smooth Pointer). A smooth pointer of a block b for a specific level µ is
the interlink pointer to the most recent µ-level smooth ancestor of b.

We describe a protocol patch that operates as follows. The superblock NIPoPoW pro-
tocol works as usual but each honest miner constructs smooth blocks whose interlink
contains only smooth pointers; thus it is constructed excluding thorny blocks. In this way,
although thorny blocks are accepted in the chain, they are not taken into consideration
when updating the interlink structure for the next block to be mined. No honest block
could now point to a thorny superblock that may act as a passage to the fork chain in an
adversarial suffix proof. Thus, after this protocol update, the adversary is only able to in-
ject adversarially generated blocks from an honestly adopted chain to her own fork. At the
same time, thorny blocks cannot participate in an honestly generated suffix proof except
for some blocks in the proof’s suffix (χ). Consequently, as far as the blocks included in a
suffix proof are concerned, we can think of thorny blocks as belonging in the adversary’s
fork chain for the π part of the proof, which is the critical part for proof comparison. Fig-
ure 7 illustrates this remark. The velvet NIPoPoW verifier is also modified to only follow
interlink pointers, and never previd pointers (which could be pointing to thorny blocks,
even if honestly generated).
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G b

CA

CB G b

CA

CB

I. II.

Fig. 7. The adversarial fork chain CA and chain CB of an honest party. Thorny blocks are colored black.
Dashed arrows represent interlink pointers. Wavy lines imply one or more blocks. After the protocol
update, when an adversarially generated block is sewed from CB into the adversary’s suffix proof the
verifier perceives CA as longer and CB as shorter. I: The real picture of the chains. II: Equivalent picture
from the verifier’s perspective considering the blocks included in the corresponding suffix proof for each
chain.

With this protocol patch we conclude that the adversary cannot usurp honest mining
power for use in her fork chain. This change has an undesired side effect: the honest prover
cannot utilize thorny blocks belonging in the honest chain. Thus, contrary to the näıve
protocol, the honest prover can only depend on honestly mined blocks in the honestly
adopted chain. Due to this fact, to ensure security in the velvet model, we introduce the
assumption that the adversary is bound by 1/3 of the honest upgraded mining power.

Definition 4 (Velvet Honest Majority). Let nh be the number of upgraded honest

miners. Then t out of total n parties are corrupted such that
t

nh
<

1− δv
3

, for some

δv > 0.

The following Lemmas come as immediate results from the suggested protocol update.

Lemma 1. A velvet suffix proof constructed by an honest party cannot contain any thorny
block.

The following lemma discusses the structure of valid adversarial proofs, i.e., adversar-
ial proofs that pass the honest verifier validation process. The structure is illustrated in
Figure 8.

G

smooth prefix thorny suffix

Fig. 8. General case of the adversarial velvet suffix proof PA = (πA, χA) consisting of an initial part of
smooth blocks followed by thorny blocks.

Lemma 2. Any valid adversarial proof PA = (πA, χA) containing both smooth and thorny
blocks consists of a prefix smooth subchain followed by a suffix thorny subchain.
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Proof. Suppose for contradiction that there was a thorny block immediately preceding a
smooth block. Then the smooth block would contain a pointer to a thorny block, contra-
dicting the definition of smoothness. ut

Algorithm 3 Smooth chain for suffix proofs
1: function smoothChain(C)
2: CS ← {G}
3: k ← 1
4: while C[−k] 6= G do
5: if isSmoothBlock(C[−k]) then
6: CS ← CS ∪ C[−k]
7: end if
8: k ← k + 1
9: end while

10: return CS
11: end function
12: function isSmoothBlock(B)
13: if B = G then
14: return true
15: end if
16: for p ∈ B.interlink do
17: if ¬isSmoothPointer(B, p) then
18: return false
19: end if
20: end for
21: return true
22: end function
23: function isSmoothPointer(B, p)
24: b← Block(B.prevId)
25: while b 6= p do
26: if level(b) ≥ level(p) ∧ isSmoothBlock(b) then
27: return false
28: end if
29: if b = G then
30: return false
31: end if
32: b← Block(b.prevId)
33: end while
34: return isSmoothBlock(b)
35: end function

We now describe the algorithms needed by the upgraded miner, prover and verifier. In
order to construct an interlink containing only the smooth blocks, the miner keeps a copy
of the “smooth chain” (CS) which consists of the smooth blocks in his adopted chain C.
The algorithm for extracting the smooth chain out of C is given in Algorithm 3. Function
isSmoothBlock(B) checks whether a block B is smooth by calling isSmoothPointer(B, p)
for every pointer p in B’s interlink. Function isSmoothPointer(B, p) returns true if p is a
valid pointer, i.e., a pointer to the most recent smooth block for the level denoted by the
pointer itself. The updateInterlink algorithm is given in Algorithm 4. It is the same as in
the case of a soft fork, but works on the smooth chain CS instead of C.
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Algorithm 4 Velvet updateInterlink
1: function updateInterlinkVelvet(CS)
2: B′ ← CS [−1]
3: interlink← B′.interlink
4: for µ = 0 to level(B′) do
5: interlink[µ]← id(B′)
6: end for
7: return interlink
8: end function

Algorithm 5 Velvet Suffix Prover
1: function ProveVelvetm,k(CS)
2: B ← CS [0]
3: for µ = |CS [−k].interlink| down to 0 do
4: α← CS [:− k]{B:}↑µ
5: π ← π ∪ α
6: B ← α[−m]
7: end for
8: χ← CS [−k:]
9: return πχ

10: end function

The construction of the velvet suffix prover is given in Algorithm 5. Again it deviates
from the soft fork case by working on the smooth chain CS instead of C. Lastly, the Verify
algorithm for the NIPoPoW suffix protocol remains the same as in the case of a hard or
soft fork, keeping in mind that no previd links can be followed when verifying the ancestry
of the chain to avoid hitting any thorny blocks.

6 Analysis

In this section, we prove the security of our scheme. Before we delve in detail into the
formal details of the proof, let us first observe why the 1/4 bound is necessary through a
combined attack on our construction.

After the suggested protocol update the honest prover cannot include any thorny blocks
in his suffix NIPoPoW even if these blocks are part of his chain CB. The adversary may
exploit this fact as follows. She tries to suppress high-level honestly generated blocks in
CB, in order to reduce the blocks that can represent the honest chain in a proof. This can
be done by mining a suppressive block on the parent of an honest superblock on the honest
chain and hoping that she will be faster than the honest parties. In parallel, while she mines
suppressive thorny blocks on CB she can still use her blocks in her NIPoPoW proofs, by
chainsewing them. Consequently, even if a suppression attempt does not succeed, in case
for example a second honestly generated block is published soon enough, she does not lose
the mining power spent but can still utilize it by including the block in her proof.

In more detail, consider the adversary who wishes to attack a specific block level µB
and generates a NIPoPoW proof containing a block b of a fork chain which contains a
double spending transaction. Then she acts as follows. She mines on her fork chain CA but
when she observes a µB-level block in CB she tries to mine a thorny block on CB in order
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to suppress this µB block. This thorny block contains an interlink pointer which jumps
onto her fork chain, but a previd pointer to the honest chain. If the suppression succeeds
she has managed to damage the distribution of µB-superblocks within the honest chain, at
the same time, to mine a block that she can afterwards use in her proof. If the suppression
does not succeed she can still use the thorny block in her proof. The above are illustrated
in Figure 9.

G

b

double spending

Fig. 9. The adversary suppresses honestly generated blocks and chainsews thorny blocks in CB . Blue
blocks are honestly generated blocks of some level of attack. The adversary tries to suppress them. If the
suppression is not successful, the adversary can still use the block she mined in her proof.

The described attack is a combined attack which combines both superblock suppression
(initially described in [23]) and chainsewing (introduced in this work). This combined
attack forces us to consider the Velvet Honest Majority Assumption of (1/4)-bounded
adversary, so as to guarantee that the unsuppressed blocks in CB suffice for constructing
winning NIPoPoW proofs against the adversarial ones.

For the analysis, we use the techniques developed in the Backbone line of work [14].
Towards that end, we follow their definitions and call a round successful if at least one
honest party made a successful random oracle query during the round, i.e., a query b such
that H(b) ≤ T . A round in which exactly one honest party made a successful query is
called uniquely successful (the adversary could have also made successful queries during a
uniquely successful round). Let Xr ∈ {0, 1} and Yr ∈ {0, 1} denote the indicator random
variables signifying that r was a successful or uniquely successful round respectively, and
let Zr ∈ N be the random variable counting the number of successful queries of the
adversary during round r. For a set of consecutive rounds U , we define Y (U) =

∑
r∈U Yr

and similarly define X and Z. We denote f = E[Xr] < 0.3 the probability that a round is
successful.

Let λ denote the security parameter (the output size κ of the random oracle is taken
to be some polynomial of λ). We make use of the following known [14] results. It holds

that pq(n − t) <
f

1− f
. For the Common Prefix parameter, it holds that k ≥ 2λf .

Additionally, for any set of consecutive rounds U , it holds that E[Z(U)] < t
n−t ·

f
1−f |U |,

E[X(U)] < pq(n−t)|U |, E[Y (U)] > f(1−f)|U |. An execution is called typical if the random
variables X,Y, Z do not deviate significantly (more than some error term ε < 0.3) from
their expectations. It is known that executions are typical with overwhelming probability
in λ. Typicality ensures that for any set of consecutive rounds U with |U | > λ it holds
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that Z(U) < E[Z(U)] − εE[X(U)] and Y (U) > (1 − ε)E[Y (U)]. From the above we can

conclude to Y (U) > (1− ε)f(1− f)|U | and Z(U) <
t

n− t
· f

1− f
|U |+ εf |U | which will be

used in our proofs. We consider f <
1

20
a typical bound for parameter f . This is because

in our (1/4)-bounded adversary assumption we need to reach about 75% of the network,
which requires about 20 seconds [9]. Considering also that in Bitcoin the block generation

time is in expectation 600 seconds, we conclude to an estimate f =
18

600
or f = 0.03.

The following definition and lemma are known [40] results and will allow us to argue
that some smooth superblocks will survive in all honestly adopted chains. With foresight,
we remark that we will take Q to be the property of a block being both smooth and having
attained some superblock level µ ∈ N.

Definition 5 (Q-block). A block property is a predicate Q defined on a hash output
h ∈ {0, 1}κ. Given a block property Q, a valid block with hash h is called a Q-block if Q(h)
holds.

Lemma 3 (Unsuppressibility). Consider a collection of polynomially many block prop-
erties Q. In a typical execution every set of consecutive rounds U has a subset S of uniquely
successful rounds such that

– |S| ≥ Y (U)− 2Z(U)− 2λf(
t

n− t
· 1

1− f
+ ε)

– for any Q ∈ Q, Q-blocks generated during S follow the distribution as in an unsup-
pressed chain

– after the last round in S the blocks corresponding to S belong to the chain of any honest
party.

We now apply the above lemma to our construction. The following result lies at the
heart of our security proof and allows us to argue that an honestly adopted chain will have
a better superblock score than an adversarially generated chain.

Lemma 4. Consider Algorithm 4 under velvet fork with parameter g and (1/4)-bounded
velvet honest majority. Let U be a set of consecutive rounds r1 · · · r2 and C the chain of
an honest party at round r2 of a typical execution. Let CSU = {b ∈ C : b is smooth ∧
b was generated during U}. Let µ, µ′ ∈ N. Let C′ be a µ′ superchain containing only ad-

versarial blocks generated during U and suppose |CSU↑µ| > k. Then for any δ3 ≤
3λf

5
it

holds that 2µ
′ |C′| < 2µ(|CSU↑µ|+ δ3).

Proof. From the Unsuppressibility Lemma we have that there is a set of uniquely successful

rounds S ⊆ U , such that |S| ≥ Y (U) − 2Z(U) − δ′, where δ′ = 2λf(
t

n− t
· 1

1− f
+ ε).

We also know that Q-blocks generated during S are distributed as in an unsuppressed
chain. Therefore considering the property Q for blocks of level µ that contain smooth
interlinks we have that |CSU↑µ| ≥ (1− ε)g2−µ|S|. We also know that for the total number
of µ′-blocks the adversary generated during U that |C′| ≤ (1 + ε)2−µ

′
Z(U). Then we have

to show that (1− ε)g(Y (U)− 2Z(U)− δ′) > (1 + ε)Z(U) or ((1 + ε) + 2g(1− ε))Z(U) <

18



g(1− ε)(Y (U) + δ′). But it holds that (1 + ε) + 2g(1− ε) < 3, therefore it suffices to show
that 3Z(U) < g(1− ε)(Y (U) + δ′)− 2µδ3.

Substituting the bounds of X, Y , Z discussed above, it suffices to show that

3[
t

n− t
· f

1− f
|U |+ εf |U |] < (1− ε)g[(1− ε)f(1− f)|U | − δ′]− 2µδ3

or
t

n− t
<

(1− ε)g[(1− ε)f(1− f)− δ′

|U |
]− 3εf − 2µδ3

|U |

3
f

1− f

.

But ε(1− f)� 1 thus we have to show that

t

n− t
<
g

3
·

(1− ε)2f(1− f)− (1− ε)δ′

|U |
− 2µδ3
|U |

f

1− f

− ε′ (1)

In order to show Equation 1 we use f ≤ 1

20
which is a typical bound for our setting as

discussed above. Because all blocks in C were generated during U and |C| > k, |U | follows
negative binomial distribution with probability 2−µpq(n − t) and number of successes k.

Applying a Chernoff bound we have that |U | > (1−ε) k

2−µpq(n− t)
. Using the inequalities

k ≥ 2λf and pq(n− t) < f

1− f
, we deduce that |U | > (1− ε)2µ2λ(1− f). So we have that

δ′

|U |
<

2λf(
t

n− t
1

1− f
+ ε)

(1− ε)2µ2λ(1− f)
or

δ′

|U |
<

t

n− t
· f

(1− ε)(1− f)2
+ ε < 0.01 + ε. We also know

that δ3 ≤
3λf

5
, so

2µδ3
|U |

<
2µ

3λf

5
2µ2λ(1− f)

or
2µδ3
|U |

<
3f

10(1− f)
< 0.01 + ε. By substituting

the above and the typical f parameter bound in Equation (1) we conclude that it suffices

to show that
t

n− t
<

1− ε′′

3
g which is equivalent to

t

n− t
<

1− δv
3

g for ε′′ = δv, which is

the (1/4) velvet honest majority assumption, so the claim is proven.

Lemma 5. Consider Algorithm 4 under velvet fork with parameter g and (1/4)-bounded
velvet honest majority. Consider the property Q for blocks of level µ. Let U be a set of
consecutive rounds and C the chain of an honest party at the end of U of a typical execution
and CU = {b ∈ C : b was generated during U}. Suppose that no block in CU is of level µ.

Then |U | ≤ δ1 where δ1 =
(2 + ε)2µ + δ′

(1− ε)f(1− f)− 2
t

n− t
f

1− f
− 3εf

.

Proof. The statement results immediately form the Unsuppressibility Lemma. Suppose for
contradiciton that |U | > δ1. Then from the Unsuppressibility Lemma we have that there
is a subset of consecutive rounds S of U for which it holds that |S| ≥ Y (U)− 2Z(U)− δ′
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where δ′ = 2λf(
t

n− t
· 1

1− f
+ ε). By substituting Y (U) > (1− ε)f(1− f)|U | and Z(U) <

t

n− t
f

1− f
+εf |U | we have that |S| > (2+ε)2µ but Q-blocks generated during S follow the

distribution as in a chain where no suppression attacks occur. Therefore at least one block
of level µ would appear in CU , thus we have reached a contradiction and the statement is
proven. ut

Theorem 1 (Suffix Proofs Security under velvet fork). Assuming honest majority

under velvet fork conditions (4) such that t ≤ (1− δv)
nh
3

where nh the number of upgraded

honest parties, the Non-Interactive Proofs of Proof-of-Work construction for computable
k-stable monotonic suffix-sensitive predicates under velvet fork conditions in a typical ex-
ecution is secure.

Proof. By contradiction. Let Q be a k-stable monotonic suffix-sensitive chain predicate.
Assume for contradiction that NIPoPoWs under velvet fork on Q is insecure. Then, during
an execution at some round r3, Q(C) is defined and the verifier V disagrees with some
honest participant. V communicates with adversary A and honest prover B. The verifier
receives proofs πA, πB which are of valid structure. Because B is honest, πB is a proof
constructed based on underlying blockchain CB (with πB ⊆ CB), which B has adopted
during round r3 at which πB was generated. Consider C̃A the set of blocks defined as
C̃A = πA ∪ {

⋃
{Crh{:bA} : bA ∈ πA,∃h, r : bA ∈ Crh}} where Crh the chain that the honest

party h has at round r. Consider also CSB the set of smooth blocks of honest chain CB. We
apply security parameter

m = 2k +
2 + ε+ δ′

t

n− t
f

1− f
[f(1− f)− 2

3

f

1− f
]

Suppose for contradiction that the verifier outputs ¬Q(CB). Thus it is necessary that
πA≥mπB. We show that πA≥mπB is a negligible event. Let the levels of comparison decided
by the verifier be µA and µB respectively. Let b0 = LCA(πA, πB). Call αA = πA↑µA {b0:},
αB = πB↑µB {b0:}.

From Lemma 2 we have that the adversarial proof consists of a smooth interlink sub-
chain followed by a thorny interlink subchain. We refer to the smooth part of αA as αSA
and to the thorny part as αTA.

Our proof construction is based on the following intuition: we consider that αA consists
of three distinct parts α1

A, α
2
A, α

3
A with the following properties. Block b0 = LCA(πA, πB)

is the fork point between πA↑µA , πB↑µB . Let block b1 = LCA(αSA,C
S
B) be the fork point

between πSA↑µA ,CB as an honest prover could observe. Part α1
A contains the blocks between

b0 exclusive and b1 inclusive generated during the set of consecutive rounds S1 and |α1
A| =

k1. Consider b2 the last block in αA generated by an honest party. Part α2
A contains

the blocks between b1 exclusive and b2 inclusive generated during the set of consecutive
rounds S2 and |α2

A| = k2. Consider b3 the next block of b2 in αA. Then α3
A = αA[b3:] and

|α3
A| = k3 consisting of adversarial blocks generated during the set of consecutive rounds
S3. Therefore |αA| = k1 + k2 + k3 and we will show that |αA| < |αB|.
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Fig. 10. I. the three round sets in two competing proofs at different levels, II. the corresponding 0-level
blocks implied by the two proofs, III: blocks in CB and block set C̃A from the verifier’s perspective.

The above are illustrated, among other, in Parts I, II of Figure 10.

We now show three successive claims: First that α1
A contains few blocks. Second, α2

A
contains few blocks. And third, the adversary can produce a winning aA with negligible
probability.

Claim 1: α1
A = (αA{b0 : b1} ∪ b1) contains only a few blocks. Let |α1

A| = k1. We have
defined the blocks b0 = LCA(πA, πB) and b1 = LCA(αSA,C

S
B). First observe that because

of the Lemma 2 there are no thorny blocks in α1
A since α1

A[−1] = b1 is a smooth block.
This means that if b1 was generated at round rb1 and αSA[−1] in round r then r ≥ rb1 .
Therefore, α1

A contains smooth blocks of CB. We show the claim by considering the two
possible cases for the relation of µA, µB.

Claim 1a: If µB ≤ µA then k1 = 0. In order to see this, first observe that every block
in αA would also be of lower level µB. Subsequently, any block in αA{b0:} would also be
included in proof αB but this contradicts the minimality of block b0.
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Claim 1b: If µB > µA then k1 ≤
δ12
−µA

(1 + ε)
t

n− t
f

1− f

. In order to show this we consider

block b the first block in αB. Now suppose for contradiction that k1 >
δ12
−µA

(1 + ε)
t

n− t
f

1− f

.

Then from lemma 5 we have that block b is generated during S1. But b is of lower level µA
and α1

A contains smooth blocks of CB. Therefore b is also included in α1
A, which contradicts

the minimality of block b0.

Consequently, there are at least |αA|−k1 blocks in αA which are not honestly generated
blocks existing in CB. In other words, these are blocks which are either thorny blocks
existing in CB either don’t belong in CB.

Claim 2. Part α2
A = (αA{b1 : b2} ∪ b2) consists of only a few blocks. Let |α2

A| = k2.
We have defined b2 = α2

A[−1] to be the last block generated by an honest party in αA.
Consequently no thorny block exists in α2

A, so all blocks in this part belong in a proper
zero-level chain C2

A. Let rb1 be the round at which b1 was generated. Since b1 is the
last block in αA which belongs in CB, then C2

A is a fork chain to CB at some block b′

generated at round r′ ≥ rb1 . Let r2 be the round when b2 was generated by an honest
party. Because an honest party has adopted chain CB at a later round r3 when the proof πB
is constructed and because of the Common Prefix property on parameter k2, we conclude
that k2 ≤ 2−µAk.

Claim 3. The adversary may submit a suffix proof such that |αA| ≥ |αB| with negligible
probability. Let |α3

A| = k3. As explained earlier part α3
A consists only of adversarially

generated blocks. Let S3 be the set of consecutive rounds r2...r3. Then all k3 blocks of
this part of the proof are generated during S3. Let α3

B be the last part of the honest proof
containing the interlinked µB superblocks generated during S3. Then by applying lemma

4
m

k
times we have that 2µA |α3

A| < 2µB (|αS3
B ↑µB |+

mδ3
k

). By substituting the values from

all the above Claims and because every block of level µB in aαB is of equal hashing power
to 2µB−µA blocks of level µA in the adversary’s proof we have that: 2µB |α3

B| − 2µA |α3
A| >

2µA(k1 + k2) or 2µB |α3
B| > 2µA |α1

A + α2
A + α3

A| or 2µB |αB| > 2µA |αA| Therefore we have
proven that 2µB |πB↑µB | > 2µA |πµAA |. ut

7 Infix Proofs

NIPoPoW infix proofs answer any predicate which depends on blocks appearing anywhere
in the chain, except for the k suffix for stability reasons. For example, consider the case
where a client has received a transaction inclusion proof for a block b and requests an
infix proof so as to verify that b is included in the current chain. Because of the described
protocol update for secure NIPoPoW suffix proofs, the infix proofs construction has to be
altered as well. In order to construct secure infix proofs under velvet fork conditions, we
patch the protocol as follows: each upgraded miner constructs and updates an authenti-
cated data structure for all the blocks in the chain. We propose the use of Merkle Mountain
Ranges (MMR) for this structure (as was done in practice for, e.g., ZCash [35]). Now a
velvet block’s header additionally includes the root of this MMR.
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After this additional protocol change, the notion of a smooth block changes as well.
Smooth blocks are now considered the blocks that contain truthful interlinks and a valid
MMR root too. A valid MMR root denotes the MMR that contains all the blocks preceding
the newly generated block in the chain. Note that a valid MMR contains both smooth and
thorny blocks. An invalid MMR constructed by the adversary may contain a block of a
fork chain. Consequently, an upgraded prover has to maintain a local copy of this MMR
locally, in order to construct correct proofs. This is crucial for the security of infix proofs,
since keeping the notion of a smooth block unaltered would allow an adversary to produce
a block b in an honest party’s chain, with b containing a smooth interlink but invalid
MMR, so she could succeed in providing an infix proof about a block of a fork chain.

Algorithm 6 Function isSmoothBlock’() for infix proof support

1: function isSmoothBlock’(B)
2: if B = G then
3: return true
4: end if
5: for p ∈ B.interlink do
6: if ¬isSmoothPointer(B, p) then
7: return false
8: end if
9: end for

10: return containsValidMMR(B)
11: end function

Considering this addtional patch we can now define the final algorithms for the honest
miner, infix and suffix prover, as well as for the infix verifier. Because of the new notion
of smooth block, the function isSmoothBlock() of Algorithm 3 needs to be updated, so
that the validity of the included MMR root is also checked. The updated function is
given in Algorithm 6. Considering that input CS is computed using Algorithm 3 with
the updated isSmoothBlock’() function, Velvet updateInterlink and Velvet Suffix Prover
algorithms remain the same as described in Algorithms 4 and 5 respectively. The velvet
infix prover and infix verifier algorithms are given in Algorithms 7, 8 respectively. Details
about the construction and verification of an MMR and the respective inclusion proofs
can be found in the technical report introducing them [27]. Note that equivalent solution
could be formed by using any authenticated data structure that provides inclusion proofs
of size logarithmic to the length of the chain. We suggest MMRs because of they come
with efficient update operations.

Algorithm 7 Velvet Infix Prover
1: function ProveInfixVelvet(CS , b)
2: (π, χ)← ProveVelvet(CS)
3: tip← π[−1]
4: πb ← MMRinclusionProof(tip, b)
5: return (πb, (π, χ))
6: end function
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Algorithm 8 Velvet Infix Verifier
1: function VerifyInfixVelvet(b, (πb, (π, χ)))
2: tip← π[−1]
3: return VerifyInclProof(tip.rootMMR, πb, b)
4: end function
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Appendix

A Chainsewing Attack Simulation

To measure the success rate of the chainsewing attack against the näıve NIPoPoW con-
struction described in Section 4, we implemented a simulation to estimate the probability
of the adversary generating a winning NIPoPoW against the honest party. Our experi-
mental setting is as follows. We fix µA = 0 and µB = 10 as well as the required length of
the suffix k = 15. We fix the adversarial mining power to t = 1 and n = 5 which gives
a 20% adversary. We then vary the NIPoPoW security parameter for the π portion from
m = 3 to m = 30. We then run 100 Monte Carlo simulations and measure whether the
adversary was successful in generating a competing NIPoPoW which compares favourably
against the adversarial NIPoPoW.
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Fig. 11. The measured probability of success of the Chainsewing attack mounted under our parameters
for varying values of the security parameter m. Confidence intervals at 95%.

For performance reasons, our model for the simulation slightly deviates from the Back-
bone model on which the theoretical analysis of Section 6 is based and instead follows the
simpler model of Ren [32]. This model favours the honest parties, and so provides a lower
bound for probability of adversarial success, which implies that our attack efficacy is in
reality better than estimated here. In this model, block arrival is modelled as a Poisson
process and blocks are deemed to belong to the adversary with probability t/n, while they
are deemed to belong to the honest parties with probability (n−t)/n. Block propagation is
assumed instant and every party learns about a block as soon as it is mined. As such, the
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honest parties are assumed to work on one common chain and the problem of non-uniquely
successful rounds does not occur.

We consistently find a success rate of approximately 0.26 which remains more or less
constant independent of the security parameter, as expected. We plot our results with
95% confidence intervals in Figure 11. This is in contrast with the best previously known
attack in which, for all examined values of the security parameter, the probability of
success remains below 1%.
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