
Several classes of minimal binary linear codes

violating the Aschikhmin-Barg’s bound
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Abstract

Minimal linear codes are a special class of codes which have important applications in
secret sharing and secure two-party computation. These codes are characterized by the
property that none of the codewords is covered by some other codeword. Denoting by
wmin and wmax minimal and maximal weight of the codewords respectively, such codes are
relatively easy to design when the ratio wmin/wmax > 1/2 (known as Aschikhmin-Barg’s
bound). On the other hand, there are few known classes of minimal codes violating
this bound, hence having the property wmin/wmax ≤ 1/2. In this article, we provide
several explicit classes of minimal binary linear codes violating the Aschikhmin-Barg’s
bound, at the same time achieving a great variety of the ratio wmin/wmax. Our first
generic method employs suitable characteristic functions of relatively low weight within
the range [n + 1, 2n−2]. The second approach addresses a specification of characteristic
functions covering the weights in [2n−2 + 1, 2n−2 + 2n−3 − 1] and containing a skewed
(removing one element) affine subspace of dimension n− 2. Finally, we also characterize
an infinite family of such codes that utilize the class of so-called root Boolean functions
of weight 2n−1 − (n− 1), which are useful in certain hardware testing applications. Con-
sequently, many infinite classes of minimal codes crossing the Aschikhmin-Barg’s bound,
with a wide range of the weight of their characteristic functions, are deduced. In certain
cases we also completely specify the weight distribution of resulting codes.

Keywords: Minimal linear codes, Aschikhmin-Barg’s bound, Characteristic functions,
Root Boolean functions.

1 Introduction

Error correcting codes have many applications in communication systems, data storage de-
vices and consumer electronics. The construction of linear codes with few weights has been
widely studied, see e.g. [11, 13, 17, 20, 24], since these codes have many applications in
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consumer electronics, secret sharing schemes [5, 11, 22], authentication codes, communica-
tion, data storage system, association schemes, and strongly regular graphs. Recently, Ding
[9] has published a valuable survey on the construction of binary linear codes from Boolean
functions, in particular efficiently utilizing some well-known classes of Boolean functions such
as bent and semi-bent functions.

On the other hand, apart from the standard properties of linear codes such as its length,
dimension and minimum distance, linear codes may have additional properties that are useful
in certain applications. In particular, minimal linear codes are characterized by the non-
covering property which means that none of the (nonzero) codewords is covered by some
other codeword. It was shown [2] by Aschikhmin and Barg that a sufficient condition for a
linear code over Fq to be minimal is that wmin/wmax >

q−1
q . Nevertheless, this condition is not

necessary and the problem of designing minimal linear codes with the property wmin/wmax ≤
q−1
q appears to be much harder compared to only satisfying the Aschikhmin-Barg’s ratio.

The pioneering work in this direction was commenced by Ding et al. [10], where three classes
of binary minimal linear codes were derived. These methods adjust standard construction
techniques of designing cryptographic Boolean functions, such as the Maiorana-McFarland
and partial spread method, for ensuring the desired properties of resulting codes.

This topic has later received attention in several works [6, 23, 19], where different ap-
proaches were considered for the same purpose. The use of non-binary alphabets, thus deriv-
ing minimal codes (satisfying wmin/wmax >

q−1
q ) from suitable mappings f : Fpn → Fp, was

addressed in [12] for the ternary case when p = 3. The design of minimal linear codes over
finite fields Fph in odd characteristic (including the case of using mapping f : Fpn → Fp since
h ≥ 1) is considered in [3] (extending the binary case by Ding et al. in [10]). Recently, the
use of so-called cutting blocking sets [4, 18] and a method that employs characteristic func-
tions [14] were considered. However, these methods primarily address the design of minimal
codes without treating the extra condition on violating the Aschikhmin and Barg bound. In
particular, the method based on cutting blocking sets [4] is quite general (since these induce
minimality) but nevertheless specifying these sets is considered hard and Bonini and Borello
in [4] only specified one family of minimal codes based on certain classes of homogenous poly-
nomials (without considering the case when the bound of Aschikhmin and Barg is violated).
We also mention some very recent contributions on this topic given in [1, 16].

In this article, we provide several classes of minimal binary linear codes with wmin/wmax ≤
1/2, which are for convenience called wide minimal codes. In general, employing an n-variable
Boolean function f , a binary linear code can be defined as Cf = {(af(x) ⊕ β · x)x∈Fn2 :
a ∈ F2, β ∈ Fn2}. We show that the property of Cf being wide, referring to the condition
wmin/wmax ≤ 1/2, can be explicitly stated in terms of the Walsh spectral values of f .
The derived condition, which is both necessary and sufficient, is quite simple and effective.
Assuming that Cf is wide, we also show that the nonlinearity of an n-variable characteristic
Boolean function cannot exceed 2n/3. To specify wide minimal codes, we firstly employ
suitable characteristic functions of relatively low weight within the range [n + 1, 2n−2]. To
increase the flexibility of using other weights of characteristic functions, we specify these
supports of cardinality in [2n−2+1, 2n−2+2n−3−1] which all contain (skewed) affine subspace
of dimension n− 2 with one element removed. This skewed affine subspace is then enlarged
through addition of a suitable set Γ so that such a characteristic function indeed specifies a
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linear code which is both minimal and wide. In the special case, when the characteristic set
is of cardinality 2n−2 + 2, we could specify the exact weight distribution of the resulting wide
minimal codes. Such a specification is nevertheless not always possible, since there are many
choices of the characteristic set and the relevant intersection estimates become hard to handle.
Furthermore, we also provide an infinite family of such codes utilizing the class of so-called
root Boolean functions of weight 2n−1 − (n− 1) which are useful in certain hardware testing
applications. To summarize, many infinite classes of minimal codes crossing the Aschikhmin-
Barg’s bound, with varying weight of characteristic functions and different ratio wmin/wmax,
are deduced. In certain cases the weight distribution of resulting minimal (and wide) codes
has also been specified. Essentially, using a direct connection between minimality and cutting
blocking sets given in [4], we specify different families of cutting blocking sets with additional
feature of satisfying the property of wideness which seems to be a non-trivial combinatorial
problem. In this context, in the first place the results given in Theorem 3.3 and Theorem 3.4
give an elegant and specific solution for specifying these sets.

The rest of this article is organized as follows. In Section 2, we give some basic definitions
related to Boolean functions and define linear codes that stem from these structures. Two
constructions of wide minimal binary linear codes, having different weight of their character-
istic functions are given in Section 3. In Section 4, we show that so-called root functions of
maximal weight can be used as characteristic functions for specifying wide minimal binary
linear codes. Some concluding remarks are given in Section 5.

2 Preliminaries

The vector space Fn2 is the space of all n-tuples x = (x1, . . . , xn), where xi ∈ F2. For
x = (x1, . . . , xn) and y = (y1, . . . , yn) in Fn2 , the usual scalar (or dot) product over F2 is
defined as x · y = x1y1 ⊕ · · · ⊕ xnyn. The support of a vector x is defined by sup(x) =
{xi : xi = 1} and the Hamming weight of x = (x1, . . . , xn) ∈ Fn2 is denoted and computed
as wt(x) =

∑n
i=1 xi. The cardinality of any set A is denoted by ||A||, and in particular we

sometimes use || sup(a)|| = wt(a) to specify the number of nonzero coordinates of a ∈ Fn2 . The
distance between two vectors is then defined as d(x, y) = wt(x⊕ y). By “

∑
”, we denote the

integer sum (without modulo evaluation), whereas “
⊕

” denotes the sum evaluated modulo
two.

The set of all Boolean functions in n variables, which is the set of mappings from Fn2
to F2, is denoted by Bn. Especially, the set of affine functions in n variables is given by
An = {v · x ⊕ a | v ∈ Fn2 , a ∈ {0, 1}}, and similarly Ln = {v · x : v ∈ Fn2} ⊂ An denotes
the set of linear functions. For every v ∈ Fn2 , we will denote with Hv the support of linear
function v · x, that is, Hv represents the affine hyperplane sup(v · x) = {x ∈ Fn2 : v · x = 1}.
Additionally, for every v ∈ Fn2 , Hv is the complement of Hv, i.e., Hv = Fn2 \ Hv is the
orthogonal complement of v.

For an arbitrary function f ∈ Bn, the set of its values on Fn2 (the truth table) is defined
as Tf = (f(0, . . . , 0, 0), f(0, . . . , 0, 1), f(0, . . . , 1, 0), . . . , f(1, . . . , 1, 1)). The Walsh-Hadamard
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transform of f ∈ Bn, at any point β ∈ Fn2 , is defined by

Wf (β) =
∑
x∈Fn2

(−1)f(x)⊕β·x. (1)

The multiset {Wf (β) : β ∈ Fn2}, whose elements are Walsh coefficients, is called Walsh
spectrum of f . The nonlinearity of a Boolean function f ∈ Bn (measuring the distance to the
set of all affine functions), denoted by nl(f), can be determined as

nl(f) = 2n−1 − 1

2
max
u∈Fn2

|Wf (u)|. (2)

In general, there are two standard methods to define linear codes using mappings from Fnp
to Fp [9]. The first generic method, which has been greatly explored in many works, specifies
a code Cf using a mapping f : Fnp → Fp as:

Cf = {Taf(x)⊕β·x = (af(x)⊕ β · x)x∈Fnp : a ∈ Fp, β ∈ Fnp}, (3)

where p is any prime. The dimension of this code is at most n+ 1 and its length is pn. The
dual of Cf has dimension at least pn − n− 1.

On the other hand, the second generic method specifies a code by a subset Df =
{d1, d2, . . . , dm} ⊆ Fnp so that it has a variable length m and the properties of such a code
entirely depend on the choice of Df . More precisely, one can define

CDf = {(d1 · x), (d2 · x), . . . , (dm · x)) : x ∈ Fnp}. (4)

The set Df is called the defining set of code CDf whose dimension is at most n. Some good
codes (achieving the optimality of relevant parameters in certain cases) were derived in [8, 9]
using suitable classes of vectorial mappings from Fnp to Fnp . In particular, when Boolean
functions are considered so that f : Fn2 → F2, this method gives some excellent codes when
bent and semi-bent functions are employed.

The weight distribution of such codes is directly related to the Walsh spectrum of a given
Boolean function f : Fn2 → F2 through the following two fundamental results.

Theorem 2.1 [9] Let f be a function from Fn2 to F2. Consider the linear code Cf defined by
(3). If f is a nonlinear function (that is, for all v ∈ Fn2 it holds f(x) 6= v · x), then Cf has
dimension m+ 1. Its weight distribution is given by the following multiset:{

2n−1 −
Wf (β)

2
: β ∈ Fn2

}
∪
{

2n−1, 0
}
, (5)

Theorem 2.2 [8, 9] Let f : Fn2 → F2 and denote nf = ||supp(f)||, where supp(f) = {x ∈
Fn2 : f(x) = 1}. If 2nf+Wf (β) 6= 0 for all β ∈ Fn2 ∗, then CDf given by (4), where Df = sup(f),
is a binary linear code with length nf and dimension n. Its weight distribution is given by
the following multiset: {{2nf +Wf (β)

4
: β ∈ (Fn2 )∗

}}
∪
{{

0
}}
, (6)

It was later noticed [9, Theorem 2] that a slightly more precise statement related to the
dimension and weight distribution can be deduced.
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3 Minimal Linear Codes

Minimal linear codes are an important type of codes due to their applications in data com-
munication, storage, coding theory and cryptography. They have been successfully employed
in secret sharing and secure two-party computations.

Consider a linear code C ⊆ Fnq over the alphabet Fq. For any given u, v ∈ C, we say that
u covers v if and only if sup(v) ⊆ sup(u). We denote this relation by v � u. A codeword u is
called minimal if u covers only the elements in 〈u〉, i.e., for every v ∈ C if v � u then there
exists a ∈ Fq such that v = au. The linear code C is said to be minimal if every element
c ∈ C is minimal.

Ashikhmin and Barg [2] gave a sufficient condition to obtain minimal linear codes over
Fq through the following result.

Lemma 3.1 [2] Let C be a linear code over Fq. Denote by wmin and wmax the minimum and
maximum nonzero Hamming weights in C, respectively. If it holds that

wmin

wmax
>
q − 1

q
, (7)

then C is minimal.

There are plenty of examples of minimal linear codes constructed using Ashikhmin and
Barg’s condition ([5, 7, 8, 9, 13]), whereas some infinite families of minimal binary linear codes
satisfying wmin/wmax ≤ 1/2 can be found in [10, 12, 3, 23, 21]. Certain characterizations
of minimality have been given when considering binary codes. We will say that a binary
linear code is narrow if it satisfies the condition of Lemma 3.1, namely, wmin/wmax > 1/2.
Otherwise, the code is said to be wide.

3.1 Wide linear codes

Recently, three infinite families of wide minimal binary linear codes were constructed using
suitable Boolean functions in [10], where the code Cf is defined by means of (3). The property
of minimality is characterized through the following results of Ding.

Proposition 3.1 [10] Let C ⊂ Fn2 be a binary linear code. Then, C is minimal if and only if
for each pair of distinct nonzero codewords a and b in C,

wt(a⊕ b) 6= wt(a)− wt(b).

Theorem 3.1 [10] Let f : Fn2 → F2 be a Boolean function. Then, the code Cf in (3) is
minimal if and only if for every pair of distinct β1, β2 ∈ Fn2 it holds that

Wf (β1) +Wf (β2) 6= 2n, (8)

and
Wf (β1)−Wf (β2) 6= 2n. (9)
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The following fact is a quite straightforward consequence of the above results and it provides
a simple characterization of the property of being “wide”.

Proposition 3.2 For a given non-affine Boolean function f ∈ Bn, consider the code Cf given
by (3). Then, Cf is wide if and only if

2Wf (uM )−Wf (um) ≥ 2n, (10)

where uM (resp. um) is such that Wf (uM ) (resp. Wf (um)) is maximal (resp. minimal).

Proof. Since f is non-affine, then its Walsh spectrum contains at least one positive value
and at least one negative value, which implies that Wf (uM ) > 0 and Wf (um) < 0. The
existence of both positive and negative values in the Walsh spectrum can be easily confirmed
using Titsworth theorem, which states that

∑
u∈Fn2

Wf (u)W (u + s) = 0 for any s ∈ Fn2 ∗.
Therefore, using (5), we have

wmin = 2n−1 −
Wf (uM )

2
and wmax = 2n−1 −

Wf (um)

2
. (11)

Further,
wmin
wmax

≤ 1
2 ⇐⇒ 2wmin ≤ wmax

⇐⇒ 2(2n−1 − Wf (uM )
2 ) ≤ 2n−1 − Wf (um)

2 .

Hence, we have
wmin

wmax
≤ 1

2
⇐⇒ 2n ≤ 2Wf (uM )−Wf (um).

Remark 3.1 Throughout this article we use Wf (uM ) and Wf (um) to denote, respectively,
the maximal and minimal values in the Walsh spectrum of a given Boolean function f ∈ Bn.

The property of minimality of a code Cf , characterized by Theorem 3.1, can alternatively
be stated using only extremal Walsh spectral values of f .

Corollary 1 Consider the code Cf , where f ∈ Bn is non-affine. If f satisfies

Wf (uM )−Wf (um) < 2n and Wf (uM ) < 2n−1, (12)

then Cf is minimal.

Proof. Let β1, β2 ∈ Fn2 . Since Wf (uM ) ≥Wf (β1) and Wf (uM ) ≥Wf (β2), then

Wf (β1) +Wf (β2) ≤ 2Wf (uM ) < 2n. (13)

Now, as Wf (β2) ≥Wf (um) we have

Wf (β1)−Wf (β2) ≤Wf (uM )−Wf (um) < 2n, (14)

using the first condition in (12) in the last inequality. The minimality then follows easily
from Theorem 3.1 and equations (13) and (14).
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The following result gives an upper bound on the nonlinearity of a Boolean function
f ∈ Bn in the case the resulting linear code Cf is wide.

Proposition 3.3 Let f ∈ Bn be any non-affine Boolean function and Cf its associated code
defined by (3). Then nl(f) = min{wmin, 2

n−wmax}. Moreover, if Cf is wide then nl(f) ≤ 2n

3 .

Proof. Notice that either Wf (um) or Wf (uM ) achieves the maximum absolute value in the
Walsh spectrum of f . Then, using nl(f) = 2n−1 − 1

2 maxu∈Fn2 |Wf (u)|, we have that either

nl(f) = 2n−1 +
1

2
Wf (um)

or

nl(f) = 2n−1 − 1

2
Wf (uM ).

Employing (11), this gives that nl(f) = 2n−wmax or nl(f) = wmin, respectively. We conclude
that nl(f) = min{wmin, 2

n − wmax}.
If Cf is wide, then 2nl(f) ≤ 2wmin ≤ wmax ≤ 2n − nl(f). Thus, nl(f) ≤ 2n

3 .

Remark 3.2 According to the above results, we can observe that certain Boolean functions f
cannot be used when constructing wide minimal (binary) linear codes. For instance, assume
that (Wf (um),Wf (uM )) = (2−l, 2l) for l ∈ {n2 , . . . , n−2, n−1}. If l = n−1, then Cf is clearly
not minimal since Wf (uM ) + Wf (um) = 2n. On the other hand, when l ≤ n − 2 we have
2Wf (uM ) −Wf (um) = 3 · 2l ≤ 3 · 2n−2 < 2n and using Proposition 3.2 we conclude that Cf
is narrow (hence minimal). Notice that some well-known classes of Boolean functions such
as bent and semi-bent (characterized by Wf ∈ {±2n/2} and Wf ∈ {0,±2(n+1)/2} respectively)
cannot give rise to wide codes (this can also be inferred from the bound nl(f) ≤ 2n/3).

Very recently, a geometric approach for minimal codes was introduced in the literature
[4] using vectorial blocking sets. The authors showed a strong connection between these two
apparently non-related objects. We will not need to define these concepts in a general way
rather we will use the following very particular instances.

A set BS ⊆ Fn2 is a vectorial blocking set if it intersects nontrivially all (n−1)-dimensional
subspaces Hu, i.e. BS∗∩Hu 6= ∅. A vectorial blocking set BS ⊆ Fn2 is said to be d-dimensional
if its span is d-dimensional, that is, dim(〈BS〉) = d. A vectorial blocking set BS ⊆ Fn2 is
called a vectorial (1, n − 1)-blocking set if BS does not contain any (n − 1)-dimensional
subspace Hu. A vectorial blocking set BS is cutting if the intersection between B and every
(n− 1)-dimensional subspace is not contained in any other (n− 1)-dimensional subspace.

Lemma 3.2 [4] Let BS ⊆ Fn2 . The set BS is an n-dimensional cutting vectorial (1, n− 1)-
blocking set if and only if the following two conditions hold

• For every pair of distinct u, u′ ∈ (Fn2 )∗, it holds that BS∗ ∩Hu 6⊆ Hu′.

• For every u ∈ (Fn2 )∗ we have Hu 6⊆ BS.
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The previous lemma is a straightforward rephrasing of the definitions, however, it some-
what simplifies them and that is why it will be extremely useful in the sequel. Following [4],
given any Boolean function f : Fn2 → F2, we will denote the set of zeros of f as V (f), i.e.

V (f) = {x ∈ Fn2 : f(x) = 0}.

The following theorem provides the aforementioned connection between minimal codes and
vectorial blocking sets. More precisely, it gives a sufficient condition for the linear code Cf to
be minimal in terms of the geometry of V (f).

Theorem 3.2 [4] If f : Fn2 → F2 is a Boolean function such that:

1) V (f) is an n-dimensional cutting vectorial (1, n− 1)-blocking set;

2) For every nonzero u ∈ Fn2 , Hu ∪ V (f) 6= Fn2 ,

then the code Cf given by (3) is a minimal binary code.

Remark 3.3 A full characterization of minimality using vectorial blocking sets has been
given in [18] (cf. Theorem 13). Every minimal code induces a vectorial cutting blocking
set and vice versa, thus in principle one can track down the vectorial blocking set from any
minimal code and one can create a minimal code from certain vectorial blocking sets.

Let us recall that for every subset ∆ of Fn2 , the characteristic function f of ∆ is the
Boolean function defined as

f(x) =

{
1, x ∈ ∆,
0, x ∈ Fn2 \∆.

(15)

When f is the characteristic function of ∆ its set of zeros V (f) equals the complement of
∆, i.e. V (f) = Fn2 \∆. This simple observation allows us to deduce the following corollary
which will be more suitable for our purposes.

Corollary 2 Let ∆ be a subset of Fn2 . If for every u 6= u′ ∈ (Fn2 )∗ the following properties
hold:

1) Hu ∩∆ 6= ∅;

2) Hu ∩∆ 6= ∅,

3) Hu \Hu′ 6⊆ ∆ \Hu′;

then the code Cf given by (3), where f is the characteristic function of ∆, is a minimal binary
code.

Proof. The three conditions imply the hypotheses in Theorem 3.2 simply by considering the
complementary statements. Note that the statement “for every nonzero u ∈ Fn2 , Hu∩∆ 6= ∅”
is equivalent to “for every nonzero u ∈ Fn2 , Hu ∪ V (f) 6= Fn2 ” thus the first condition in
Corollary 2 is equivalent to the second condition in Theorem 3.2. Now we prove that V (f)
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is an n-dimensional cutting vectorial (1, n − 1)-blocking set. Indeed, suppose there is a
hyperplane Hu′ where u′ 6= 0n, such that the intersection V (f)∗ ∩Hu′ is contained in Hu for
some u ∈ (Fn2 )∗. Taking complements we have

Hu ⊆ ∆ ∪ {0n} ∪Hu′

which implies
Hu \Hu′ ⊆ ∆ \Hu′ ,

contradicting 3). This shows that V (f) is an n-dimensional cutting vectorial blocking set.
Finally observe that V (f) cannot contain any hyperplane Hv, otherwise

∆ ⊆ Hu,

a contradiction to 2). We conclude that V (f) is an n-dimensional cutting vectorial (1, n−1)-
blocking set.

3.2 Minimal codes from suitable characteristic functions of weight ≤ 2n−2

In what follows, based on Corollary 2 we give a general construction regarding the choice
of support of f which ensures both minimality and wideness of the resulting codes. Most
notably, this design of wide minimal linear codes only requires the inclusion of (any) basis
vectors of Fn2 and at least one element in its span for defining the support of f ∈ Bn.

Theorem 3.3 Let n ≥ 5 be a poitive integer. If ∆ ⊂ Fn2 , used to specify f ∈ Bn through
(15), satisfies the following conditions:

a) n+ 1 ≤ ||∆|| ≤ 2n−2;

b) ∆ includes at least one basis {a(1), . . . , a(n)} of Fn2 (with a(i) ∈ Fn2 ) and at least one vector
τ1a

(1) ⊕ · · · ⊕ τna(n), where (τ1, . . . , τn) ∈ Fn2 and wt(τ1, . . . , τn) is even;

then the code Cf given by (3) is a wide minimal binary linear code.

Proof. We first claim that for every nonzero u ∈ Fn2 we have Hu ∩∆ 6= ∅ and Hu ∩∆ 6= ∅,
i.e. there exist x(1), x(2) ∈ ∆ such that u · x(2) = 1 u · x(1) = 0. For any u ∈ Fn2 ∗, there are
two possibilities to consider.

i) If there exists one vector a(i) ∈ {a(1), . . . , a(n)} such that u · a(i) = 0, then there must
exist a(j) ∈ {a(1), . . . , a(n)} ⊆ ∆ such that u · a(j) = 1 since the dimension of the dual
(orthogonal) space of u equals n− 1.

ii) If u · a(i) = 1 for all i ∈ {1, . . . , n}, then we can define x(2) = τ1a
(1) ⊕ · · · ⊕ τna(n) ∈ ∆.

Consequently u · x(2) = 0, since wt(τ1, . . . , τn) is even.

Note that for every other u′, the set Hu \ Hu′ cannot be contained in ∆ \ Hu′ since
||Hu \ Hu′ || = 2n−2 and ||∆ \ Hu′ || < 2n−2. Using Corollary 2, we conclude that Cf is a
minimal code.

Finally, it is obvious that wmax ≥ 2n−1 since the Hamming weight of any linear function
equals 2n−1. We also know that || sup(f)|| = ||∆|| ≤ 2n−2, that is, wmin ≤ ||∆|| ≤ 2n−2. Thus
wmin
wmax

≤ 1
2 .
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Remark 3.4 The weights of the codes constructed using the previous theorem have a very
irregular distribution, nevertheless, their values rely completely on the cardinality of ∆ thus
we can prove that the maximum value in the Walsh spectrum of f is 2n−2||∆|| and the other
Walsh values belong to the set {2||∆|| − 4, 2||∆|| − 8, . . . , 2||∆|| − 4(||∆|| − 1)}.

Example 3.1 Set n = 6. Consider the canonical basis E = {e1, . . . , e6} and τ = (1, 0, 1, 1, 1, 0).
Selecting ∆ = E ∪ {τ} we have ||∆|| = 7. The code Cf is wide and minimal with weight enu-
merator given by

1 + z7 + 5z27 + 10z29 + 15z31 + 63z32 + 20z33 + 11z35 + 2z37,

thus its minimum distance is 7 and the maximum distance is 37, in other words, Cf is an
8-valued code with parameters [64, 7, 7].

If we select 9 additional random vectors, say, v1, . . . , v9 such that ∆ = E ∪ {τ, v1, . . . , v9}
then we obtain a wide minimal code with parameters [64, 7, 16].

3.3 Minimal codes from suitable characteristic functions of weight > 2n−2

In this section, we extend the approach presented above by specifying f , whose support has
cardinality greater than 2n−2, suitable for constructing wide minimal binary linear codes.

Recall that the symmetric difference of two sets A and B is defined as (A∪B) \ (A∩B),
equivalently, it can be defined as (A\B)∪(B \A), where the union is disjoint. We will denote
the symmetric difference of A and B by A	B. Observe that ||A	B|| = ||A||+||B||−2||A∩B||.
We recall a well-known result concerning the dimension of intersection of affine subspaces.

Lemma 3.3 Let A = a⊕ V and B = b⊕W be two affine subspaces of Fn2 whose dimension
is in the range [1, n− 1]. Then either

• A ∩B = ∅, or,

• A ∩B is an affine subspace and dim(A ∩B) ≥ dim(A) + dim(B)− n.

Remark 3.5 Lemma 3.3 is an easy consequence of the well-known similar result on the
intersection of linear subspaces. The bound is quite loose, giving no additional information
about the mentioned intersection when dim(A) + dim(B) ≤ n. When dim(A) + dim(B) > n,
which will be considered in our main theorem, the intersection bound becomes non-trivial.

The following lemma is useful for specifying wide minimal linear codes from characteristic
functions that contain an (n− 2)-dimensional affine subspace.

Lemma 3.4 Let V be an (n−2)-dimensional linear subspace of Fn2 . Let a /∈ V and A = a⊕V
be an (n−2)-dimensional affine space. There exists a unique u0 ∈ Fn2 ∗ such that A∩Hu0 = ∅,
where Hu0 represents the affine hyperplane sup(u0 · x) = {x ∈ Fn2 : u0 · x = 1}.

Proof. Let V = {v1, . . . , vn−2} be a basis of V . Since a 6∈ V , we have that V∪{a} is a linearly
independent set, therefore U = 〈V ∪ {a}〉 is an (n − 1)-dimensional subspace. This implies
that U = Hu0 , for a u0 ∈ Fn2 . Now, taking any a⊕ v ∈ A we have u0 · (a⊕ v) = 0 which also
implies A ⊆ Hu0 . In other words, A∩Hu0 = ∅ since Hu0 ∪Hu0 = Fn2 . Note that u0 is unique
because if there were another u′ ∈ Fn2 such that Hu′ ∩ A = ∅ then A ⊆ (Hu0 ∩Hu′) \ {0n}
which is impossible as ||(Hu0 ∩Hu′) \ {0n}|| = 2n−2 − 1.
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In what follows, we will use an (n − 2)-dimensional affine subspace A = a ⊕ V of Fn2
and select an element p0 ∈ A, so that S = A \ {p0} can be considered as a punctured affine
subspace of dimension n − 2. Adjoining a suitable disjoint set Γ ⊂ Fn2 to S, we will define
characteristic functions that give rise to linear codes which are both minimal and wide.

Theorem 3.4 Let n ≥ 4 be a positive integer and A = a⊕V be an (n−2)-dimensional affine
subspace of Fn2 . Furthermore, fix an element p0 ∈ A and consider S = A \ {p0}. Suppose that
there is a set Γ ⊆ Fn2 \ (A ∪ {0n}) of cardinality 0 < ||Γ|| < 2n−3 with the property:

(?) Γ ∩Hu0 6= ∅, where u0 is the unique element of Fn2 ∗ such that A ∩Hu0 = ∅.

Let ∆ = S ∪ Γ ∪ {0n} and define f ∈ Bn to be the characteristic function of ∆. Then,
Cf given by (3) is a minimal binary linear code of length 2n, dimension n+ 1 and minimum

distance d ∈ {2n−2 − ||Γ|| + 2, . . . , 2n−2 + ||Γ||}. Moreover, if ||Γ ∩Hu0 || ≤ 2n−3 − ||Γ||2 then
Cf is wide.

Proof. According to Lemma 3.3, for every u ∈ (Fn2 )∗ different from u 6= u0 it must be that
either A ∈ Hu or ||A ∩ Hu|| = 2n−3. We will now verify the three conditions in Corollary
2 taking into account these possibilities. The condition (?) guarantees that ∆ ∩ Hu0 6= ∅.
Note that the difference A\∆ equals {p0}, hence Hu∩∆ contains at least 2n−3−1 elements.
Given that n ≥ 4, we see that for every u ∈ Fn2 it holds Hu ∩∆ 6= ∅. The second condition
in Corollary 2 readily holds since 0n ∈ Hu ∩∆.

Now we prove the third condition in Corollary 2, so that for every pair of distinct u, u′ ∈
(Fn2 )∗ we have Hu \Hu′ 6⊆ ∆\Hu′ . Suppose that Hu \Hu′ ⊆ ∆\Hu′ for some u 6= u′ ∈ (Fn2 )∗.
Recall that ||Hu \Hu′ || = 2n−2. We now consider the following three cases:

1) Consider the case when Hu′ ∩A = ∅, that is, u′ = u0. In this case either

||A ∩ (Hu \Hu0)|| = 2n−3 or ||A ∩ (Hu \Hu0)|| = 2n−2.

In the latter, p0 ∈ Hu \Hu0 while p0 6∈ ∆. In the former, we have

Hu \Hu0 ⊆ (∆ ∩Hu) \Hu0 .

However, ||(∆ ∩Hu) \Hu0 || < 2n−2 and ||Hu \Hu0 || = 2n−2, a contradiction. Therefore
Hu \Hu0 6⊆ ∆ \Hu0 .

2) When A ∈ Hu′ we have that ||∆ \Hu′ || < 2n−3 since S ⊂ Hu′ . Hence Hu \Hu′ cannot be
contained in ∆ \Hu′ .

3) Now consider u′ ∈ (Fn2 )∗ such that ||A ∩ Hu′ || = 2n−3. Observe that ||∆ \ Hu′ || <
2n−3 + 2n−3 = 2n−2 since S can only contribute with at most 2n−3 elements to this
difference. Therefore Hu \Hu′ cannot be contained in ∆ \Hu′ .
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These three cases show that for every pair of distinct u, u′ ∈ (Fn2 )∗ we have Hu\Hu′ 6⊆ ∆\Hu′ .
We have verified the conditions in Corollary 2 which establish the minimality of Cf .

We finally show that Cf is wide. By hypothesis, we have ||Γ∩Hu0 || ≤ 2n−3− ||Γ||2 . Letting
κ = ||Γ ∩Hu0 ||, we have ||Γ|| ≤ 2n−2 − 2κ.
Notice that ||∆ \Hu0 || = 2n−2 + ||Γ|| − κ and ||Hu0 \∆|| = 2n−1 − κ. Thus, the codeword
Tf(x)⊕u0·x has weight

2n−1 + 2n−2 + ||Γ|| − 2κ,

so that wmax ≥ 2n−1 + 2n−2 + ||Γ|| − 2κ. We also know that wmin ≤ 2n−2 + ||Γ||, since
||∆|| = 2n−2 + ||Γ||. Thus, we deduce

2wmin ≤ 2n−1 + 2||Γ|| ≤ 2n−1 + ||Γ||+ 2n−2 − 2κ ≤ wmax,

which means that wmin
wmax

≤ 1
2 .

A special case of this method, which applies when ||Γ|| ∈ {1, 2}, is given below.

Corollary 3 Let n ≥ 4 and B = {a(1), . . . , a(n)}, with a(i) ∈ Fn2 , be a basis of Fn2 such that
a(n) is of odd weight and orthogonal to all a(i), i.e, a(n) · a(i) = 0 for 1 ≤ i ≤ n − 1. Define
V = 〈a(1), . . . , a(n−2)〉 and assign A = a(n−1) ⊕ V . Let S = A \ {p0} for some p0 ∈ A. Fix
any (τ1, . . . , τn−1) ∈ Fn−1

2 \ {0n−1} and define Γ as follows:

Γ =

{
{a(n)} if n = 4,

{a(n), a(n) ⊕ τn−1a
(n−1) ⊕ · · · ⊕ τ1a

(1)} if n > 4.

Suppose ∆ and f are defined as in Theorem 3.4. Then Cf is a wide minimal code.

Proof. To prove minimality of Cf it is sufficient to verify the condition (?), for Γ specified
above. We now show that the unique hyperplane disjoint to A is Ha(n) , thus a(n) = u0 in the
context of Lemma 3.4. Indeed, since a(n) · a(i) = 0 for every i with 1 ≤ i ≤ n − 1, it holds
that

〈a(1), . . . , a(n−1)〉 ∩Ha(n) = ∅,

which implies that A∩Ha(n) = ∅. Since the weight of a(n) is odd by hypothesis, we have that
a(n) ∈ Ha(n) . Therefore, Γ ∩Ha(n) 6= ∅ and (?) is satisfied, thus the code Cf is minimal.

The property of being wide can also be confirmed using Theorem 3.4, thus verifying that

||Γ ∩Ha(n) || ≤ 2n−3 − ||Γ||
2
.

For n = 4, we easily confirm that ||Γ ∩Ha(n) || = 1 < 3
2 = 2− 1

2 , thus the code Cf is wide in

this case. For n ≥ 5, observe that a(n)⊕ τn−1a
(n−1)⊕ · · · ⊕ τ1a

(1) ∈ Ha(n) , since a(n) · a(i) = 0
for every i smaller than n and a(n) · a(n) = 1 (because the weight of a(n) is odd). Clearly, the
latter equality implies that a(n) ∈ Ha(n) . Hence,

||Γ ∩Ha(n) || = 2 < 2n−3 − 1 for n ≥ 5,

and therefore Cf is wide.
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The minimum distance d depends on the intersection of (n−2)-dimensional affine subspace
A with affine hyperplanes of the form Hu. The following examples illustrate this dependency.

Example 3.2 Let n = 5 and assume ||Γ|| = 2. Consider the linear subspace

V = 〈(1, 1, 0, 0, 0), (1, 0, 1, 0, 1), (0, 0, 1, 0, 1)〉

and define A = (1, 1, 1, 1, 1) ⊕ V . Let p0 = (1, 1, 1, 1, 1) ⊕ (1, 1, 0, 0, 0) = (0, 0, 1, 1, 1) and
define S = A \ {p0} and Γ = {(0, 0, 1, 1, 0), (1, 1, 0, 1, 1)}. Suppose ∆ and f are defined as
in Theorem 3.4. Then, by using computer simulations, one can confirm that Cf is a wide
minimal code with wmin = 8 and wmax = 22. Indeed, the set U = sup((0, 0, 1, 0, 1) · x) is (the
unique) affine hyperplane disjoint to A and Γ ⊆ U .

Example 3.3 Let again n = 5 and ||Γ|| = 2. Consider the linear subspace

V = 〈(1, 1, 1, 1, 1), (1, 1, 0, 1, 0), (1, 1, 0, 1, 1)〉

and define A = (1, 0, 1, 1, 0) ⊕ V . Let p0 = (1, 0, 1, 1, 0) ⊕ (1, 1, 1, 1, 1) = (0, 1, 0, 0, 1) and
define S = A \ {p0} and Γ = {(0, 0, 1, 0, 1), (0, 0, 1, 1, 0)}. Again specifying ∆ and f as in
Theorem 3.4 one can verify that Cf is a wide minimal code with wmin = 10 (which is different
from Example 3.2) and wmax = 24. In this case, the set U = sup((1, 0, 0, 1, 0) · x) is (the
unique) affine hyperplane disjoint to A and ||Γ ∩ U || = ||{(0, 0, 1, 1, 0)}|| = 1.

When ||Γ|| = 2, there are a few possibilities for the cardinality of intersection Γ ∩ Hu.
Consequently, we can specify the weight distribution of the code described in Corollary 3
because their values only depend on the choice of the vector (τ1, . . . , τn−1). The weight
distributions are listed in descending order in Tables 1, 2 and 3.

Weight w Number of codewords Aw
2n−1 + 2n−2 − 2 1

2n−1 + 2 2n − 2n−2 − 3

2n−1 2n − 1

2n−1 − 2 2n−2 − 1

2n−2 + 2 3

Table 1: Weights of 5-valued wide minimal codes Cf when (τ1, . . . , τn−1) = (0, 0, . . . , 0, 1).
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Weight w Number of codewords Aw
2n−1 + 2n−2 − 2 1

2n−1 + 4 2n−3

2n−1 + 2 2n − 5 · 2n−3 − 3

2n−1 2n − 1 + 3 · 2n−3

2n−1 − 2 2n−3 − 1

2n−2 + 2 3

Table 2: Weights of 6-valued wide minimal codes Cf when (τ1, . . . , τn−1) is such that τn−1 = 1
and (τ1, . . . , τn−2) is nonzero.

Weight w Number of codewords Aw
2n−1 + 2n−2 − 2 1

2n−1 + 4 2n−3 − 1

2n−1 + 2 2n − 2n−3 − 3

2n−1 2n + 2n − 2n−3 − 4

2n−1 − 2 2n−3 − 1

2n−2 + 4 1

2n−2 + 2 1

2n−2 1

Table 3: Weights of 8-valued wide minimal codes Cf when (τ1, . . . , τn−1) is such that τn−1 = 0
and (τ1, . . . , τn−2) is nonzero.

4 Minimal linear codes from root functions

In this section we employ the so-called root functions analyzed in [15], useful for hardware
circuits testing, to derive minimal codes with the property that wmin/wmax ≤ 1/2. Firstly,
we will derive two general results similar to Theorem 3.4. The main difference is essentially
the cardinality of support, which is given as ||∆|| = 2n−1 − ||Γ|| + 1 for a suitably chosen Γ
with ||Γ|| ≤ 2n−2. Afterwards, we will use root functions to construct associated linear codes.
It is worth mentioning that the minimality of the codes constructed in this section is not a
consequence of Corollary 2.

Theorem 4.1 Let n ≥ 4 be a positive integer. Fix u0 ∈ Fn2 ∗ and select a point p0 ∈ Hu0.
Specify a nonempty set Γ ⊆ Hu0 satisfying the following two properties:

• ||Γ|| ≤ 2n−2.

• For every v ∈ Fn2 ∗, with v 6= u0 and such that p0 ∈ Hv, we have Γ ∩Hv 6= ∅.
Let now ∆ = (Hu0 \ Γ) ∪ {p0} and consider the code Cf given by (3), where f is the char-
acteristic function of ∆. Then, wmin = ||∆|| = 2n−1 − ||Γ|| + 1 and wmax = 2n − ||Γ|| − 1.
Furthermore, the code Cf is wide and minimal.
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Proof. Recall that the weight of a codeword ca,v = af(x)+v ·x in Cf is given by || sup(ca,v)||
where

sup(ca,v) =

{
∆	Hv if a 6= 0

Hv otherwise.
.

We will estimate the possible values for || sup(ca,v)||. Since || sup(c0,v)|| = 2n−1 for every
v ∈ Fn2 ∗, we assume that a = 1 and denote c1,v as cv. There are three cases to be considered.

(i) When v = 0n it holds that sup(c0n) = ∆ and ||∆|| = 2n−1 − ||Γ||+ 1.

(ii) If v = u0, then Hu0 ∩∆ = {p0} and consequently

wt(cu0) = ||∆	Hu0 || = ||∆||+ ||Hu0 || − 2 = 2n − ||Γ|| − 1.

(iii) Finally, suppose v 6= 0n and v 6= u0. We know that ||Hu0 ∩ Hv|| = 2n−2, therewith
we will estimate the cardinality of ∆ ∩ Hv. This cardinality completely depends on
the way Γ ∪ {p0} intersects Hv. It attains the smallest value when Γ is a subset of Hv

and p0 6∈ Hv, then ||∆ ∩ Hv|| ≥ 2n−2 − ||Γ||. On the other hand, by the definition of
Γ, we cannot have simultaneously that Γ is disjoint to Hv and p0 ∈ Hv. Therefore,
||∆ ∩Hv|| ≤ 2n−2 so that

2n−2 − ||Γ|| ≤ ||∆ ∩Hv|| ≤ 2n−2.

Since wt(cv) = ||∆	Hv|| = ||∆||+ ||Hv|| − 2||∆ ∩Hv||, we can now bound the weight
wt(cv) as follows,

2n−1 − ||Γ||+ 1 ≤ wt(cv) ≤ 2n−1 + ||Γ||+ 1.

Considering wt(cv) for different v ∈ Fn2 , we conclude that wmin = ||∆|| = 2n−1− ||Γ||+ 1.
Now, ||Γ|| ≤ 2n−2 if and only if 2n−1 + ||Γ|| + 1 ≤ 2n − ||Γ|| − 1, and therefore wmax =
2n − ||Γ|| − 1.

To show the minimality and wideness of Cf , we use the expressions for wmin and wmax.
Since

2wmin = 2n − 2||Γ||+ 2 ≤ 2n − ||Γ|| − 1 = wmax,

we have wmin
wmax

≤ 1
2 and Cf is wide. To prove the minimality of Cf , we compute the maximum

and minimum Walsh values as

W (um) = 2n − 2wmax = −2n + 2||Γ||+ 2

and
W (uM ) = 2n − 2wmin = 2||Γ|| − 2.

Since ||Γ|| ≤ 2n−2 then W (uM ) = 2||Γ|| − 2 < 2n−1. Similarly, one easily deduces that

W (uM )−W (um) = (2||Γ|| − 2)− (−2n + 2||Γ||+ 2) = 2n − 4 < 2n.

By applying Corollary 1, we conclude that Cf is minimal as well.
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The results similar to Theorem 4.1 can be proved using the same lines of reasoning in
a complementary setting. This particularly means that the selection of p0 and Γ can be
performed using orthogonal complements of the relevant hyperplanes. Observe that the
method described below is indeed almost verbatim compared to Theorem 4.1 .

Theorem 4.2 Let n ≥ 4 be a positive integer. Fix u0 ∈ Fn2 ∗ and select a point p0 ∈ Hu0.
Specify a nonempty set Γ ⊆ Hu0 satisfying the following three properties:

• n ≤ ||Γ|| < 2n−2.

• For every v ∈ Fn2 ∗, where v 6= u0, if p0 ∈ Hv then we have Γ ∩Hv 6= ∅.

• For every v ∈ Fn2 ∗, where v 6= u0, if p0 6∈ Hv then we have Γ ∩Hv 6= ∅.

Let ∆ = (Hu0 \Γ)∪{p0} and consider the code Cf given by (3), where f is the characteristic
function of ∆. Then, wmin = ||Γ||+1 and wmax ≤ 2n−1+||Γ||−1 for the code Cf . Furthermore,
the code Cf is wide and minimal.

Proof. Similarly to the proof of Theorem 4.1, we estimate || sup(ca,v)|| for different v ∈ Fn2 .
We again assume that a = 1 and consider three cases.

(i) When v = 0n, it holds that sup(c0n) = ∆ and ||∆|| = 2n−1 − ||Γ||+ 1.

(ii) Suppose v = u0. In this case, using the fact that Γ ⊆ Hu0 and definition of ∆, we have

||Hu0 ∩∆|| = 2n−1 − ||Γ||,

and thus
wt(cu0) = ||∆	Hu0 || = ||Γ||+ 1.

(iii) Now, assume v 6= 0n and v 6= u0. Using that ||Hu0 ∩Hv|| = 2n−2, we will estimate the
cardinality of ∆ ∩ Hv. The cardinality of this intersection is determined by the way
Γ∪{p0} intersects Hv. By the third property of Γ, it is impossible that Γ is a subset of
Hv and p0 6∈ Hv at the same time, therefore it holds that

||∆ ∩Hv|| ≥ 2n−2 − ||Γ||+ 1.

On the other hand, by the second property of Γ, we cannot have simultaneously that Γ
is disjoint to Hv and p0 ∈ Hv. Therefore, ||∆ ∩Hv|| ≤ 2n−2 implying that

2n−2 − ||Γ||+ 1 ≤ ||∆ ∩Hv|| ≤ 2n−2.

As before, since wt(cv) = ||∆ 	 Hv|| = ||∆|| + ||Hv|| − 2||∆ ∩ Hv|| we can bound the
weight wt(cv) as follows,

2n−1 − ||Γ||+ 1 ≤ wt(cv) ≤ 2n−1 + ||Γ|| − 1.
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Obviously, wmax ≤ 2n−1 + ||Γ|| − 1. Now, ||Γ|| + 1 is the minimum weight of the code Cf
because ||Γ||+ 1 < 2n−1 − ||Γ||+ 1 if and only if ||Γ|| < 2n−2.

To show the minimality and wideness we notice that 2n−1 ≤ wmax ≤ 2n−1 + ||Γ|| − 1 and
wmin = ||Γ||+ 1. Since 2wmin = 2||Γ||+ 2 ≤ 2n−1 ≤ wmax, we have wmin

wmax
≤ 1

2 and therefore
Cf is wide. Now, we will prove minimality of Cf . Theorem 4.2 and equation (11) give

Wf (um) = 2n − 2wmax ≥ −2||Γ||+ 2

and
Wf (uM ) = 2n − 2wmin = 2n − 2||Γ|| − 2.

In this case one cannot apply Corollary 1, since Wf (uM ) is always larger or equal than
2n−1. Instead, we will prove it using a different approach that uses the second largest Walsh
coefficient as well.

From the proof of Theorem 4.2, we can observe that the minimum weight is attained by
a single codeword and the next weight (in increasing order) is 2n−1 − ||Γ|| + 1. Hence, the

largest Walsh value is attained once and the second one is Wf (u
(2)
M ) := 2||Γ||− 2 (again using

(11)). Notice that

Wf (uM ) +Wf (u
(2)
M ) = 2n − 2||Γ|| − 2 + 2||Γ|| − 2 = 2n − 4 < 2n.

Since Wf (uM ) for Cf is attained exactly once, for every distinct u, v ∈ Fn2 ∗ it holds that

Wf (u) +Wf (v) ≤Wf (uM ) +Wf (u
(2)
M ) < 2n,

and

Wf (u)−Wf (v) ≤Wf (uM )−Wf (um) ≤ (2n − 2||Γ|| − 2)− (−2||Γ||+ 2) = 2n − 4 < 2n.

According to Theorem 3.1, Cf is minimal.

4.1 Root functions and derived linear codes

A Boolean function f ∈ Bn is called a root function if for every x ∈ Fn2 we have that f(x) = 0
if and only if there is a y ∈ Fn2 such that f(y) = 1 and d(x, y) = 1. A family of non-affine
root functions of maximal weight was constructed in [15] using the following procedure.

Construction A

• Consider the affine function ln(x) = xn ⊕ · · · ⊕ x1 ⊕ ε, where ε ∈ F2. It is readily seen
that ln is a root function of weight 2n−1.

• Select p0 6∈ sup(ln) and flip up the value of ln at p0, i.e., define l
(1)
n such that for every

x 6= p0 it holds l
(1)
n (x) = ln(x) and l

(1)
n (p0) = 1.

• Define a function rεn(x) characterized by the property that: for every x ∈ Fn2 such that

d(x, p0) = 1, we have rεn(x) = 0; and rεn(x) = l
(1)
n (x) otherwise.
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Theorem 4.3 [15] The function rεn(x) ∈ Bn described above is a root function of weight
2n−1 − n + 1. For n > 3, there are exactly 2n root functions having this weight, and when
n = 3, there are 2n−1 such functions.

Theorem 4.4 Let n ≥ 4 and consider the root function rεn with weight 2n−1−n+1 described
in Construction A, where ε ∈ F2. The code Crεn is a wide minimal code.

Proof. Denote with ∆ the support of rεn. The construction of rεn gives that

∆ = (sup(ln) \ {x ∈ Fn2 : d(x, p0) = 1}) ∪ {p0}.

We consider two cases according to the values of ε.

(i) Suppose ε = 1. In this case, by setting u0 = 1n we have sup(ln) = Hu0 and p0 ∈ Hu0 .
Define Γ = {x ∈ Fn2 : d(x, p0) = 1} and observe that Γ ⊆ Hu0 and ||Γ|| = n ≤ 2n−2.
With this notation, we can write ∆ = (Hu0 \ Γ) ∪ {p0}. Therefore, in order to apply
Theorem 4.1, it is enough to show that for every v ∈ Fn2 ∗ (with v 6= u0) such that
p0 ∈ Hv, we have Γ ∩ Hv 6= ∅. In fact, we will prove the stronger statement that
Γ ∩Hv 6= ∅, for every v ∈ Fn2 ∗ such that v 6= u0.
Choose an ordering of the elements in Γ, say Γ = {x(1), . . . , x(n)}, in such a way that
x(1), . . . , x(wt(p0)) have weight equal to wt(p0) − 1 and x(wt(p0)+1), . . . , x(n) have weight
wt(p0) + 1. Moreover, if 0n ∈ Γ we set x(1) = 0n. Since wt(p0) is odd (recall that
p0 6∈ sup(ln)), the set {x(2), . . . , x(n)} is linearly independent over F2. Thus, we have
n−1 linearly independent vectors in Hu0 , which is a space of dimension n−1, implying
that

〈x(2), . . . , x(n)〉 = Hu0 .

Let now v ∈ Fn2 ∗ with v 6= u0. If Γ ∩ Hv = ∅, then 〈x2, . . . , xn〉 ∩ Hv = ∅ which
contradicts the fact that ||Hu0 ∩Hv|| = 2n−2. Using Theorem 4.1, we conclude that Cr1n
is a wide minimal code.

(ii) Suppose ε = 0. This case is similar to (i) with the only difference that we apply
Theorem 4.2. By setting u0 = 1n we have sup(ln) = Hu0 and p0 ∈ Hu0 . Define
Γ = {x ∈ Fn2 : d(x, p0) = 1} and observe that Γ ⊆ Hu0 and ||Γ|| = n < 2n−2. With this
notation we can write ∆ = (Hu0 \ Γ) ∪ {p0}. In order to apply Theorem 4.2, we must
prove two conditions, namely,

• For every v ∈ Fn2 ∗ with v 6= u0, if p0 ∈ Hv then we have Γ ∩Hv 6= ∅,
• For every v ∈ Fn2 ∗ with v 6= u0, if p0 ∈ Hv then we have Γ ∩Hv 6= ∅.

In fact, we will prove the stronger statement that Γ intersects every affine hyperplane
Hv and every (n− 1)-dimensional subspace Hv, for v ∈ Fn2 ∗ different from u0. To show
this, notice that the elements of Γ are linearly independent since wt(p0) is even now,
hence we have a basis of Fn2 consisting of elements of Hu0 .

Now, for every nonzero v ∈ Fn2 we must have Γ ∩Hv 6= ∅, as otherwise we would have
Γ ⊆ Hv and then 〈Γ〉 ⊆ Hv. This contradicts the fact that 〈Γ〉 = Fn2 .
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Furthermore, for every nonzero v ∈ Fn2 , with v 6= u0, we must have Γ∩Hv 6= ∅. Suppose
on the contrary, there is a v ∈ Fn2 ∗ such that Γ ⊆ Hv. Let Γ = {γ1, . . . , γn} and select
a point x0 ∈ Hu0 \ Hv. Since Γ is a basis for Fn2 , there exist a positive integer k and
γi1 , . . . , γik ∈ Γ such that x0 = γi1⊕· · ·⊕γik . By selection of x0, we know that u0 ·x0 = 1
and v · x0 = 0. On the one hand, we have that

1 = u0 · x0 = u0 · (γi1 ⊕ · · · ⊕ γik) = (u0 · γi1)⊕ · · · ⊕ (u0 · γik). (16)

From equation (16), we deduce that k must be odd since Γ ⊆ Hu0 . On the other hand,
we have that

0 = v · x0 = v · (γi1 ⊕ · · · ⊕ γik) = (v · γi1)⊕ · · · ⊕ (v · γik). (17)

Therefore, k must be even since Γ ⊆ Hv. This is a contradiction which establishes the
result.

4.2 Weight distribution and asymptotic behaviour

For every n ≥ 4, we have seen the code Crεn is wide and minimal. The asymptotic behaviour
of the ratio wmin

wmax
can be easily established.

Corollary 4 Let Crεn be the linear code described in Theorem 4.4. Denoting by aεn = wmin
wmax

,
where ε ∈ {0, 1}, we have

lim
n→∞

a1
n =

1

2
and lim

n→∞
a0
n = 0.

Proof. When ε = 1, we have wmin = 2n−1 − n+ 1 and wmax = 2n − n− 1. Thus,

lim
n→∞

a1
n =

2n−1 − n+ 1

2n − n− 1
=

1

2
.

Similarly, for ε = 0, we have wmin = n+ 1 and wmax = 2n−1 + n− 1 and therefore

lim
n→∞

a0
n = lim

n→∞

n+ 1

2n−1 + n− 1
= 0.

The weight distribution, directly related to the Walsh spectrum of root functions of max-
imal weight, is given in Tables 4–7 below.

Case Walsh spectrum

n even ±2,±6,±10, . . . ,±2n− 2, −2n + 2n+ 2

n odd 0,±4,±8, . . . ,±2n− 2, −2n + 2n+ 2

Table 4: Walsh spectral values of r1
n w.r.t. the parity of n.
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Case Weights

n even 2n−1 ± (n− 1), 2n−1 ± (n− 2), . . . , 2n−1 ± 1, 2n−1, 2n − (n+ 1)

n odd 2n−1 ± (n− 1), 2n−1 ± (n− 2), . . . , 2n−1 ± 2, 2n−1, 2n − (n+ 1)

Table 5: Nonzero weights of codewords of Cr1n .

Case Walsh spectrum

n even ±2,±6,±10, . . . ,±(2n− 2), 2n − 2n− 2

n odd 0,±4,±8, . . . ,±(2n− 2), 2n − 2n− 2

Table 6: Walsh spectral values of r0
n w.r.t. the parity of n.

Case Weights

n even 2n−1 ± (n− 1), 2n−1 ± (n− 2), . . . , 2n−1 ± 1, 2n−1, n+ 1

n odd 2n−1 ± (n− 1), 2n−1 ± (n− 2), . . . , 2n−1 ± 2, 2n−1, n+ 1

Table 7: Nonzero weights of codewords of Cr0n .

5 Conclusions

In this article, three different classes of binary minimal codes satisfying the inequality wmin
wmax

≤
1
2 have been presented. Our methods cover a wide range of the weight of characteristic func-
tions used and in many cases the exact specification of linear codes and their relevant pa-
rameters could be provided. Nevertheless, the employment of more sophisticated choices of
the set Γ, with respect to its intersection with affine hyperplanes Hu, might provide further
explicit classes of wide minimal linear codes. Another interesting research challenge is to
possibly extend the approaches in this article to nonbinary alphabets.
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