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Abstract

Besides the well-known class of Koblitz curves over binary fields, the class

of Koblitz curves Eb : y2 = x3 + b/Fp over prime fields with p ≡ 1 (mod 3) is

also of some practical interest. By refining a classical result of Rajwade for the

cardinality of Eb(Fp), we obtain a simple formula of #Eb(Fp) in terms of the

norm on the ring Z[ω] of Eisenstein integers, that is, for some π ∈ Z[ω] with

N(π) = p and some unit u ∈ Z[ω],

#Eb(Fp) = N(π + u)

holds. This establishes an interesting relation between the number of points on

this class of curves and the number of elements of their underlying fields, they

are given by the norm of two integers of Z[ω] whose difference is just a unit. It

is also interesting to note that such relationship has already been derived for

the case of Koblitz curves over binary fields. Some tools that are useful in the

computation of cubic residues are also developed.
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1 Introduction

A widely known class of Koblitz curves are curves defined over Fq for q relatively

small, and a subgroup of the set of rational points over Fqn is of interest. This
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approach allows efficient scalar point multiplication as well as point counting via the

zeta function (e.g. [8, 9, 13, 2, 15]). Such curves can play an important role in certain

elliptic curve cryptographic systems. The curves over prime fields Fp with large p and

with a restricted set of coefficients are also of practical interest. This paper will focus

on the latter. More specifically, we discuss the class of curves over a prime field Fp
that take the form of

Eb : y2 = x3 + b/Fp,

where the prime p ≡ 1 (mod 3) and b ∈ F∗p1. This family of curves is referred to as

Koblitz curves because it is a special case of CM curves with simple expression. One

of such Koblitz curves described in the Standards for Efficient Cryptography Group

(SECG)[1] is

secp256k1: y2 = x3 + 7/Fp

where p = 2256−232−977 is a prime of 256 bits. This curve has been chosen by some

applications (e.g., digital signatures for blockchain platforms Bitcoin and Ethereum).

For a rational prime p ≡ 1 (mod 3), the efficient Lagrange-Gauss algorithm pro-

duces a pair of integers c, d such that p = c2 − cd + d2. In other words, p = N(π =

c+dω), the norm of prime π = c+dω in the ring Z[ω] of Eisenstein integers (we may

further require π to be primary in the sense that c ≡ 2 (mod 3) and d ≡ 0 (mod 3)

).

In 1969, Rajwade [11] (see also [6]) developed a point counting formula for the

curves Eb/Fp (p ≡ 1 (mod 3)) in terms of a primary factor π of p. We state the result

using notation from [14], where a very clean and short treatment of Rajwade’s result

was described by Williams:

#Eb(Fp) = p+ 1 +

(
b

p

){(
4b

π

)
3

π +

(
4b

π̄

)
3

π̄

}
, (1)

where
( ·
p

)
and

( ·
π

)
3

are the Legendre symbol and the cubic residue character respec-

tively. We note that some later work reported point counting formulas similar to that

of Rajwade’s, e.g., [10, 12]. Some partial results for the number of points of Eb/Fp
can also be found in [5, 7].

The main purpose of this note is to provide a refinement of Rajwade’s formula

by developing some tools for the computation of cubic residuosity. For prime p ≡ 1

1We note that when p ≡ 2 (mod 3), Eb/Fp is known to be a supersingular curve and the group
Eb(Fp) is a cyclic group of order p+ 1.
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(mod 3) with a primary factor π, we are able to derive a very elementary point

counting formula for Eb/Fp in terms π: the number of points of Eb(Fp) is in fact the

norm of the sum of π and a unit

#Eb(Fp) = N(π + u), (2)

where u is a unit in Z[ω]. This result is interesting in several aspects, for examples,

it has some applications to Koblitz curves over prime fields, including some new look

of their cardinalities and efficient scalar multiplication. Another interesting note is

that it establishes a close relationship between #Eb(Fp) and #Fp, they are given

by the the norms of two integers of Z[ω] whose difference is just a unit in Z[ω]. It

is remarked that such a relationship has already be derived for the class of Koblitz

curves over binary fields by using the zeta function, where the ring of integers involved

is Z(1−
√
−7

2
) (more detail is given later).

The rest of our paper is arranged into three sections. Section 2 provides some

preliminaries and develops some tools. The main results and some discussions are

given in the section 3.

2 Preliminaries

This section develops some tools that are useful in the computation of cubic residues

and its applications.

Let ω = −1+
√
−3

2
. It is a basic fact that a prime p ≡ 1 (mod 3) is the norm of

π = c+ dω in the ring Z[ω] of Eisenstein integers [6]. One can use lattice method to

prove this fact constructively. We describe such a process below.

Lemma 2.1. Given prime p ≡ 1 (mod 3) and an integer 0 < U < p such that

U2 + U + 1 ≡ 0 (mod p)2, one can find c, d ∈ Z in polynomial time such that

p = c2 − cd+ d2.

Proof. Consider the lattice

Λ := {(x, y) ∈ Z× Z | Ux+ y ≡ 0 (mod p)}.
2Such U , which is a cubic root of unity in Fp, can be easily found for most cases. In general, one

can solve it in polynomial time under GRH.
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Note that vol(R2/Λ) = p, the classical Minkowski’s convex body theorem says that

one can find a nonzero shortest lattice vector v in the disc B
(
0, 2
√

p+0.1
π

)
of radius

2
√

p+0.1
π

centered at 0, as vol
(
B(0, 2

√
p+0.1
π

)
)
> 22p. This implies that ‖v‖2 ≤ 4(p+0.1)

π
.

Write v = (c, d), then there is an integer t such that cU + d = tp. We have

c2 + d2 − cd = c2 + (−Uc+ tp)2 − c(−Uc+ tp)

= c2(U2 + U + 1) + (tp− 2Uc− c)tp ≡ 0 (mod p).

On the other hand,

c2 + d2 − cd ≤ 3

2
(c2 + d2) ≤ 6(p+ 0.1)

π
< 2p.

Since c2 + d2 − cd is a nonzero multiple of p, we conclude that

c2 + d2 − cd = p.

Using the Lagrange-Gauss algorithm for two dimensional lattice [3], a shortest vector

v = (c, d) of Λ can be found in polynomial time (in log p).

2.1 Cubic residues

Fix a prime p ≡ 1 (mod 3). Let π = c + dω be a prime in Z[ω] such that p = N(π)

(i.e., p = c2− cd+ d2). We require π be primary in the sense that c ≡ 2 (mod 3) and

d ≡ 0 (mod 3). These extra requirements can always be achieved. In fact, one can

replace π by one of the elements in A = {±π,±ωπ,±ω2π}, as it is actually proved in

[6] (Prop. 9.3.5) that there is exactly one primary element in A.

Recall that the cubic residue character
( ·
π

)
3

is defined as(α
π

)
3

= α
N(π)−1

3 (mod π).

The value of
(
α
π

)
3

can be 1, ω or ω2, and
(
α
π

)
3

= 1 iff x3 = α (mod π) is solvable.

Our next result provides a criterion to determine cubic residue for a rational

integer in terms of rational integer operations.

Lemma 2.2. Let π = c+ dω be a primary prime with respect to p. Let 0 < b < p be
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an integer and denote V = b
p−1
3 (mod p). Then

(
b

π

)
3

=


1, if V = 1,

ω, if c+ dV ≡ 0 (mod p),

ω2, if c− d− dV ≡ 0 (mod p).

Proof. The condition for
(
b
π

)
3

= 1 is trivial as
(
b
π

)
3

= b
p−1
3 (mod π).

Now we assume that b is a cubic non-residue. Note that π = c− d− dω, we only

need to check for the condition for
(
b
π

)
3

= ω.

We will prove the following claim.

Claim.
(
b
π

)
3

= ω if and only if c+ dV ≡ 0 (mod p).

Suppose that
(
b
π

)
3

= ω. This is equivalent to

b
p−1
3 ≡ ω (mod π).

Therefore, there are integers x, y such that V − ω = (c+ dω)(x+ yω) = (cx− dy) +

(dx+ (c− d)y)ω. This gives {
cx− dy = V

dx+ (c− d)y = −1.

From this, we see that

c+ dV = (−c2 + cd− d2)y = −py ≡ 0 (mod p).

Conversely, if c + dV ≡ 0 (mod p) but
(
b
π

)
3
6= ω. Since b is a cubic non-residue

modulo π, so
(
b
π

)
3

= ω2 = −1 − ω. Using a similar argument as above, we can find

integers x′, y′ such that {
cx′ − dy′ = V + 1

dx′ + (c− d)y′ = 1.

But this gives us py′ = (c− d)− dV which would force p|(2c− d). This is impossible

as p = ππ and (2c− d) = π + π.

Corollary 2.1. Let g be a primitive root g modulo p. If
(
g
π

)
3

= ω2, then
(
g
π

)
3

= ω.

Proof. This is simply because π = (c− d)− dω, so lemma 2.2 gives the result.

In some applications (as we shall see in the next section), one chooses a fixed and

small primitive root g modulo p and wishes that
(
g
π

)
3

= ω to make discussion and
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calculation cleaner, where π is a primary prime such that ππ̄ = p. If
(
g
π

)
3

= ω2,

then
(
g
π

)
3

= ω. Note that if π is primary, so is π. Therefore, by switching π to π if

necessary, we can always assume
(
g
π

)
3

= ω.

We also need to compute the precise value of
(
2
π

)
3
. It is a well-known result

that
(
2
π

)
3

= 1 iff c = 1 (mod 2) and d = 0 (mod 2) [6] (Prop.9.6.1). However, it is

different from the quadratic case as one is not able to get the exact information for

the case that 2 is not a cubic residue modulo π. It would be beneficial to have the

whole spectrum of
(
2
π

)
3
, in order to perform certain computational tasks. Here we

derive such a computational tool.

Lemma 2.3. Let π = c + dω be a primary prime with respect to p. Let s = c

(mod 2), t = d (mod 2) (with s, t ∈ {0, 1}), then(
2

π

)
3

= ω(s+1)t. (3)

Proof. Note that in Z[ω], N(2) = 22 = 4. Since N(π) 6= 3 and N(π) 6= N(2), the law

of cubic reciprocity applies. So (
2

π

)
3

=

(
π

2

)
3

.

By definition,
(
π
2

)
3
≡ π

N(2)−1
3 (mod 2), namely,

(
π
2

)
3
≡ π (mod 2). This means that(

π

2

)
3

≡ s+ tω (mod 2).

This is equivalent to saying that

(
π

2

)
3

=


1 if c is odd, d is even

ω if c is even, d is odd

ω2 if c is odd, d is odd.

Turn this to a single expression, we have proved our lemma.

6



3 The Main Results

For the curve Eb : y2 = x3+b/Fp with prime p ≡ 1 (mod 3), there are many results on

its point counting in the literature, some of them can be found in [5, 6, 7, 11, 12, 14].

The approaches are mainly based on cubic character sum as it is a CM curve and the

number of points is governed by a Hecke character. The first result of this section

shows that #Eb(Fp) also has a clean formula in terms of the norm function.

An early study on the equation y2 = x3 + b mod p with p ≡ 1 (mod 3) can be

found in [11]. In that paper, Rajwade derived a formula for points on Eb/Fp based

on cubic character sum. The following statement of Rajwade’s theorem is taken from

[14].

Theorem (Rajwade). Let p ≡ 1 (mod 3) be a prime number and π be primary such

that p = N(π). Then

#Eb(Fp) = p+ 1 +

(
b

p

){(
4b

π

)
3

π +

(
4b

π̄

)
3

π̄

}
.

Remarks. From the theorem, we see that #Eb(Fp) = p+ 1 + 2
(
b
p

)
<
((

4b
π

)
3
π
)
. This

indicates that there are 6 possible different cardinalities for the groups Eb(Fp) with p

fixed. In fact, it was proved in [7] that for a prime p ≡ 1 (mod 3), there are exactly 6

classes of isomorphic groups for all Eb(Fp) with b 6= 0. More precisely, let F∗p = 〈g〉,
then any Eb(Fp) is isomorphic to one of the following groups

E1(Fp), Eg(Fp), Eg2(Fp), Eg3(Fp), Eg4(Fp), Eg5(Fp).

What we would like to emphasize is that the isomorphism is concrete and efficiently

computable. Suppose b = gk and let r = k (mod 6) and q = k−r
6

. Then (x, y) 7→(
x
g2q
, y
g3q

)
extends to an isomorphism Eb(Fp) ∼= Egr(Fp).

With those tools developed in Section 2 and Rajwade’s theorem, we are able to

describe an explicit formula for the number of points in Eb(Fp) in a very simple form.

Theorem 3.1. Let p ≡ 1 (mod 3) be a prime number and π = c + dω be primary

such that p = N(π). Denote s = c (mod 2), t = d (mod 2). Then for a primitive

root g modulo p with
(
g
π

)
3

= ω, we have for each j = 0, 1, · · · , 5,

#Egj(Fp) = N
(
π + u

)
,
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where u = (−1)jω(s+1)t−j is a unit in Z[ω].

Proof. We shall prove the theorem by using the formula:

#Egj(Fp) = p+ 1 + 2

(
gj

p

)
<
((

4gj

π

)
3

π

)
.

Note that gj is a quadratic residue iff 2|j, so
(
gj

p

)
= (−1)j. Lemma 2.3 is crucial

in our proof, it tells us that
(
2
π

)
3

= ω(s+1)t. Together with the fact that
(
g
π

)
3

= ω, we

have (
4gj

π

)
3

=

(
2

π

)2

3

(
gj

π

)
3

= ω2(s+1)t+j.

Thus we have derived the formula for #Egj(Fp):

#Egj(Fp) = p+ 1 + 2(−1)j<
(
ω2(s+1)t+jπ

)
.

On the other hand

N
(
π + (−1)jω(s+1)t−j) = (π + (−1)jω(s+1)t−j)(π + (−1)jω(s+1)t−j)

= p+ (−1)j(πω(s+1)t−j + πω(s+1)t−j) + 1

= p+ 1 + 2(−1)j<
(
ω2(s+1)t+jπ

)
.

Thus the theorem is proved.

Remarks. 1. This result is for Koblitz curves Eb over prime field Fp, for π ∈ Z[ω]

with p = N(π), there is a unit u of Z[ω] such that

#Eb(Fp) = N(π + u).

Recall that a different family of Koblitz curves over binary field Fq with q = 2m,

one of the earliest families of CM curves used in cryptography, is defined as

Ea : y2 + xy = x3 + ax2 + 1/Fq, a ∈ F2.

Let τ = (−1)1−a+
√
−7

2
(it corresponds to the Frobenius map on Ea(Fq)), then

q = N(τm) in the ring Z[τ ]. It is interesting to note that the above result for

Eb/Fp is comparable to that of Ea/Fq for binary case. In fact, by using zeta
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function, it is proved that for the unit u = −1 in Z[τ ]

#Ea(Fq) = N(τm + u)

holds [9].

2. Certain sums of #Egr(Fp) have been studied in literature. For example, the

following were reported in [5, 7]:

p−2∑
r=0

#Egr(Fp) =

p−2∑
r=0

#Eg3r(Fp) = p2 − 1.

We would like to remark that this can be actually derived in a straightforward
manner by using our explicit formula, e.g.,

(#E1(Fp) + #Eg3 (Fp)) = (#Eg(Fp) + #Eg4 (Fp)) = (#Eg2 (Fp) + #Eg5 (Fp)) = 2(p+ 1).

In fact, more finer formulas can be produced.

3. Finally, we remark that with a minor modification, the primitive root g in the-

orem 3.1 can be replaced by z defined below. Let nq and nc be the least primes

that are quadratic non-residue and cubic non-residue modulo p respectively, let

z =


nq if nq is not a cube

nc if nc is not a square

nqnc otherwise.

Under GRH, z can be found in polynomial

time.
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