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Abstract

We introduce formal definitions for deniability in group
chats by extending a pre-existing model that did not have
this property. We then introduce “epochal signatures” as
an almost drop-in replacement for signatures, which can
be used to make certain undeniable group-chats deniable
by just performing that replacement. Following that we
provide a practical epochal signature scheme and prove
its security.

1. Introduction

In this work we take a formal look at deniability in group
chat applications and introduce a new primitive that al-
lows to turn many secure group chat protocols into deni-
able ones.

Deniability is a property of social conversation: As long
as nobody is recording a conversation it is generally not
possible to prove to someone not part of the conversation
what was said (or even if the conversation happened at
all). Recording a conversation without the consent of the
other person (or a judge) is generally considered illegal.

Nowadays, we are moving large parts of our social con-
versations into cyber space. In this setting we are facing
a dilemma. Communication tools that provide the tradi-
tional security properties of confidentiality, integrity, and
authentication, usually also provide a transferable proof of
authenticity for every message. This renders communica-
tion undeniable. This issue was probably first recognized
by Chaum and van Antwerpen in their work on “Undeni-
able Signatures” [CvA90] where they introduce signatures
that can only be verified by a chosen recipient. This idea
was further developed as chameleon signatures [KR98].
More explicitly, deniability of secure messages appeared
in the work on “deniable encryption” [CDNO97] which
considered the deniability of encrypted messages even if
the random coins, and possibly the secret key get cor-
rupted.

The notion of deniability gained new relevance in the
context of secure chat protocols. It first reappeared
as plausible deniability in the proposal of the “Off-the-
Record” protocol [BGB04] and was kept as an important
privacy property of secure chat ever since [UDB+15, tOt].
Consequently, the Signal-protocol [Mar13] that is now
widely deployed in chat-software such as Signal and
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WhatsApp provides (some form of) deniability. The
generic approach for two-party chat protocols to achieve
deniability is to use a deniable key-exchange to setup a
shared secret key. That shared secret key is then used
to encrypt messages with an authenticated encryption
scheme. Since everyone who can verify the authentic-
ity of the ciphertext has the key necessary to create it,
a ciphertext cannot serve as proof. While it is still not
known how to achieve extremely strong notions of denia-
bility efficiently [DKSW09], the above approach provides
a reasonable solution for deniability for two-party chat in
practice.

A similar solution does not exist for group-chats: Using
authenticated encryption with a shared group secret for
symmetric authentication is insecure for the same reason
for which it is deniable in the two-party case: All parties
that have the key could have created a message, but since
there are multiple parties, it could have come from any of
them. In addition to that deniable key-exchanges don’t
necessarily scale well with more than two parties: Using a
pairwise-approach works but requires a quadratic number
of key exchanges in the number of parties.

Because of this most protocols either sacrifice denia-
bility over authenticity (for example the current MLS-
draft [OBR+20]) or implement groups as essentially pair-
wise two-party-chats [LVH13, SVH18] which is inefficient
in terms of communication complexity. Consequently,
many protocols share further downsides, such as message-
sizes linear in the group-size [SH19, Mar14] or the require-
ment that there is at least one universally trusted user in
every group [BST07]. A partial exception is “Multi-Party
OTR” (mpOTR) [GUVGC09] which uses a shared secret
key for confidentiality but ephemeral signature keys for
authenticity. This leads an efficient protocol for message
exchange but the setup phase still has quadratic complex-
ity in the group size. While the setup cost alone might
be acceptable, there is a major downside to mpOTR.
Any join or leave of a party requires the setup of a new
chat. Given that for example MLS has the “aim to scale
to groups as large as 50,000 members” [OBR+20], con-
sidering frequent join and leave operations, this renders
mpOTR largely impractical for this scenario. A further
issue is that deniability is only guaranteed after a chat
ended which also requires to frequently re-initialize chats
even without join or leave operations.

Furthermore we note that most of the existing work on
deniability in chat protocols does not use formal models
with generally agreed upon formal security notions but
rather stay on an informal level. A noteable exception is
the work on online deniability [DKSW09] but the model

1

https://www.ams.org/profession/leaders/culture/CultureStatement04.pdf
https://www.ams.org/profession/leaders/culture/CultureStatement04.pdf


is limited to two parties. Hence, existing schemes often
just argue via the intractability of specific attacks [UG18]
in place of a formal security argument.

In summary, there neither exists any satisfying solution
for deniability in group chat nor a formal model that de-
scribes what deniability in a group chat setting actually
means.

Despite its very different goal, “Efficient Post-
Compromise Security Beyond One Group” [CHK19] is
probably the closest to our work. In it the authors for-
malize signatures that “heal” after a compromise and note
that this also allows some basic deniability. What they
are proposing is quite similar to the signature-chains that
we present in Appendix D.2, but does not extend beyond
that due to the different focus of the works as a whole.

1.1. Our Contribution

In this work we solve the above problem. First, we intro-
duce a formal framework for offline deniability in group-
chats (to our knowledge the first one). For this built on
the recent model for chats by Rösler et al. [RMS18] and
extend it (see Sections 3 and 5). Our notion is param-
eterized by a predicate that states at what point in the
execution deniability is achieved. Based on different such
predicates we introduce three notions of different strength
for offline deniability. We show that our notions form a
strict hierarchy and argue that the intermediate notion is
the best choice for practical applications. We argue that
our strongest notion, which asks for immediate deniability
of messages, is likely not achievable by practical protocols
and discuss attack scenarios not covered by our weakest
notion.

Second, we introduce the concept of epochal signatures
which can be used to easily convert many existing, non-
deniable protocols into deniable ones (Section 4). The
idea is somewhat similar to mpOTR but avoids the re-
quirement of pairwise exchange of temporary signature
keys. Instead, epochal signatures evolve over time and al-
low for efficient forgeries of old messages after a fixed pe-
riod of time. Essentially, they are the opposite of forward-
secure signatures: Publishing a secret key allows to forge
signatures valid in the past but not in the future.

Third, we present an efficient generic construction for
epochal signature schemes whose security we prove secure
in the standard model (Section 6). Our construction re-
lies only on well established primitives, namely forward
secure signatures, pseudorandom functions, and timelock
puzzels. Since our proof works in the standard-model
and does avoid problematic techniques like rewinding, an
instantiation with post-quantum schemes would immedi-
ately give us post-quantum epochal signatures.

In Appendix C we demonstrate that epochal signatures
can be used to convert a large class of non-deniable group-
chats into deniable group-chats by just using them as a
drop-in-replacement. Lastly we outline a few more tech-
niques that we believe to be potentially useful for denia-
bility in group-chats but are too specialized to be usable
for a generic drop-in replacement (Appendix D).

2. Security Model for Chats

The model we use for group chats is a slight extension of
that of Rösler, Mainka and Schwenk [RMS18]. To stay
consistent with our own conventions we adjust the names
of some variables slightly, but other than that the follow-
ing subsection is an almost verbatim copy of the original
description:

2.1. Base Model

The model assumes a central server, that receives mes-
sages from the respective senders, caches them, and for-
wards them as soon as the receivers are online. Hence the
protocols are executed in an asynchronous environment
in which only the server has to always be online.

Groups are defined as tuples

gr = (IDgr, Ggr, G
∗
gr, infogr), G

∗
gr ⊆ Ggr ⊆ U

where U is the set of all users of the protocol, Ggr is
the set of all members of the group gr, G∗gr is the set of
administrators of gr. The group is uniquely referenced by
IDgr. Additionally, a title and other usability information
can be configured in infogr.

We denote communicating users with uppercase letters
in the calligraphic font (. . . ,U ,V, · · · ∈ U) and adminis-
trators with an asterisk (U∗ ∈ G∗gr) where relevant. Every
user maintains long-term secrets for initial contact with
other users and a session state for each group in which
she is member. The session state contains housekeeping
variables and secrets for the exclusive usage in the group.
Messages delivered in a group are not stored in the session
state. By distinguishing between delivery and receiving
of messages, we want to emphasize that a received mes-
sage is first processed by algorithms before the result is
presented to the user.

In order to provide a precise security model for secure
group instant messaging, we define a group instant mes-
saging protocol as the tuple of algorithms

Π = ((snd, rcv),

(SndM,Add, Leave,Rmv,DelivM,ModG,Ack)).

The first two algorithms (snd, rcv) provide the applica-
tion access to the network (network interface). Thereby
snd out- puts ciphertexts and rcv takes and processes ci-
phertexts. The latter seven algorithms process actions of
the user or deliver remote actions of other users to the
user’s graphical interface (user interface). Each protocol
specifies these algorithms and the interfaces among them.
To denote that one algorithm algA has an interface to
another algorithm algB we write algBalgA.

Every algorithm has modifying access to the session
state of the calling party U for the communication in
group gr.

• snd→ ~c: Outputs a vector of ciphertexts, designated
to the central secer, to the network.

• rcvsnd,DelivM,ModG,Ack(c): Receives ciphertext c from
the central server and processes it by invoking one
of the delivery algorithms and possibly the snd algo-
rithm.
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Actions of user U are processed by the following algo-
rithms, which then invoke the snd algorithm for distribut-
ing the actions’ results to the members Vi ∈ Ggr of group
gr:

• SndM(gr,m)→ id: Processes the sending of content
message m to group gr.

• Add(gr,U)→ id: Processes adding of user V to gr.

• Leave(gr) Processes leaving of user U from gr.

• Rmv(gr,V) Processes removal of user V from gr.

Every algorithm that processes the calling user’s actions
outputs a unique reference string id. Actions initiated by
other users are first received as ciphertexts by the rcv
algorithm and then passed to the following algorithms,
which deliver the result to user U :

• DelivM → (id, gr,V,m): Stores m with reference
string id from sender V in group gr for displaying
it to user U .

• ModG → (id, gr′): Updates the description of group
gr with IDgr = IDgr′ to gr′ after the remote modi-
fication with reference string id.

• Ack→ id: Acknowledges that action with id was de-
livered and processed by all its designated receivers.

2.2. Our extensions

We note that all members of a group can perform SndM
and Leave, but only administrators can execute Add and
Rmv and refer to the original paper for security-definitions
besides deniability. For deniability we extend the model
in the following way. We denote the long-term secrets of
a user U as skU (or just sk , if unambiguous), any publicly
identifying information tied to skU as pkU . We call the
tuple (pkU , skU ) U ’s keypair and denote her session state
in a group gr as ssU,gr.

We introduce the notion of the state of a protocol. In-
tuitively a state st is a full snapshot of an execution of a
protocol; as such it contains the sets of the existing users
U and groups G, as well as all long-term key pairs and
session states. We also introduce a partial state that does
not contain the key pairs and session-states.

Definition 1 (State). A state st of our protocol consists
of:

• The set U of all users U .

• The set G of all groups gr as defined previously.

• The long-term public keys PK of all users in U.

• The long-term secret keys SK of all users in U.

• The session states ssU,gr of all groups gr ∈ G and all
users U ∈ gr .

The tuple (U,G) forms the partial state st .ps of a state
st . Two states st0, st1 are equivalent(st0 ≡ st1) if and
only if their partial states are identical (st0.ps = st1.ps).

From here on we use the following notational conven-
tion: If we define that a value x consists of multiple values
a, b, c, . . . , then x.a refers to the a-value of x. (For ex-
ample st .U refers to the set U that is part of a particular
state st .)

Given a state st , we also introduce the notion of a
group-state stgr , which contains all information regard-
ing a particular group gr . Intuitively it contains all ses-
sion states and long-term key pairs of any party in that
group, as well as the group description. We also define
the notion of a partial group-state, which only contains
the group-description however.

Definition 2 (Group State). Let st be a state and gr be
a group, then the group state stgr consists of:

• The group gr .

• The long-term public keys PK of all users in gr .

• The long-term secret keys SK of all users in gr .

• The session state ssU,gr of gr of each user U ∈ gr .

A partial group state stgr .ps consists only of gr .

For our formal notions of deniability judges have to
decide whether a transcript is real or not. In order to allow
them to choose interactions without having to provide
them with full oracle-access, we introduce the notion of
an instruction: An instruction is a tuple that tells the
challenger to perform some action in the name of some
user with some arguments and is marked with a type that
indicates the circumstances under which the challenger
shall execute the instruction. An instruction list is simply
an ordered list of instructions.

Definition 3 (Instruction List). An instruction i is a
tuple that contains:

• A party P,

• a user action act ∈ {SndM,Add, Leave,Rmv, rcv}
(with the respective arguments),

• a timepoint time and

• a type ∈ {exp, ch, ar, hid}.

An instruction list il is an ordered list of instructions.
For an instruction list il and X ∈ {ch, ar} we use ilX
to refer to the sublist of il that contains all tuples whose
type is in {exp, hid, X}. We call these two sublists the
executable sublists.

Intuitively the executable sublists represent the possi-
ble executions that the judge will have to distinguish as
illustrated in Figure 1. The typenames exp, ch, ar and
hid are shorthands for “exposed”, “challenge”, “alternate
reality” and “hidden”.

In order to prevent trivial attacks we furthermore in-
troduce the following notion of consistency for instruction
lists:

Definition 4 (Consistency). An instruction list il is con-
sistent with a starting state st if executing either of ilch
and ilar with st as starting state
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execution of ilch
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Figure 1: Alternative transcripts based on the type of an
instruction. The judge receives either an en-
tirely real transcript (bold red arrows) or a par-
tially simulated one (bold purple arrows).

• is compliant with the protocol and

• all intermediate states that directly precede an exp

action are equivalent between the executable sublists
with regards to the target-group of that action.

We define the predicate is consistent, which receives an
instruction list il and a starting state st , to return 1 if
and only if il and st are consistent.

Executing an instruction inst will (usually) cause mes-
sages to be sent over the network. The list of all these
messages, each together with their sender and receiver(s)
as well as the resulting session state form an instruction
transcript. Note in this context that a single user action,
such as sndM may cause multiple executions of snd and
rcv among different parties.

With this we define the transcript of an execution of an
executable sublist of an instruction list as the concatena-
tion of the instruction transcripts of all its actions. We
include the session-states in the transcript to model cor-
ruption. While this may seem excessively powerful, we
note that we mostly deal with unbounded judges in this
work, who would usually be able to extract most of this
information from the sent messages anyways; furthermore
we will present more specific rationales where appropriate.

Definition 5 (Transcript). Let instts be the instruc-
tion transcript of executing an instruction inst =:
(P, (act , args), time, type) in a state st . Then instts con-
tains:

• For each snd-operation that is performed as part of
executing inst :

– The party P that performed snd.

– The output ~c of snd.

• For each rcv-operation that is performed as part of
executing inst :

– The party P that performed rcv.

– The ciphertext c that rcv receives.

• the group-state stgr that results from executing inst .

The transcript ts of an execution of an executable sub-
list ilX of an instruction list il is the concatenation of the
instruction transcripts of all instructions in ilX .

For the actual execution we define the algorithm exec
that takes an executable sublist ilX of an instruction list
il and a starting state st and then executes the sequence
of instructions given by ilX , returning the resulting tran-
script and state.

Definition 6 (exec). The algorithm exec takes a starting
state st , and an executable sublist ilX of an instruction
list il and executes all actions listed in il with state as
starting state. It returns the complete transcript of the
execution as well as the updated state of all involved par-
ties. In the event that il orders an action that is not
compliant with the protocol, an abort is raised.

We also define a version that only considers partial
states and does not return a transcript but only the re-
sulting partial state:

Definition 7 (partial exec). The algorithm partial exec
takes a partial starting state ps and an executable sublist
ilX of an instruction list il . It returns the partial state ps ′

that would result from executing ilX with any starting
state whose partial state is ps. In the event that ilX
orders an action that is not compliant with the protocol,
an abort is raised.

Intuitively deniability means that every transcript
could have been generated by everybody. We model this
using a simulation-based definition, introducing a simu-
lator S that has the goal to produce a simulated tran-
script that is indistinguishable from the real transcript of
a group communication.

In order for S to be able to do its work, it needs to
know what it has to simulate, so it has to receive some
information about the instruction list il and the state st .
Giving him the entire instruction list appears quite un-
realistic to us however, which is why we introduce the
notion of the simulation instruction simil,s that contains
only the information that S needs: Which instructions it
has to simulate as well as the members of the group in
which that instruction occurs:

Definition 8 (Simulation Instruction). Let il be
an instruction list and st be a state so that
is consistent (il , st) = 1. Then the simulation instruction
simil,s for il and st is an ordered list that contains:

• All entries il [i] of ilch for which il [i].type = ch and

• if there is no ch-entry for the group gr in which
il [i] is performed in ilch that directly precedes
il [i] in gr : simil,s also contains the partial group
state of gr before instruction il [i]. (That is
partial exec (ilch[0 . . . , i− 1], st)

gr
).

Where il [i] refers to the i’th entry of il .
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We note that our definitions also introduce notation:
While deriving an executable sublist ilch from an instruc-
tion list il would for example strictly speaking require an
explicit algorithm, we will for the remainder of the work
just assume that if there is an instruction list il , then de-
riving ilch is possible and use it without introducing it as
a variable first. The same holds for other notation that
we used in this section, such as stgr for group-states or
simulation instructions simil,state.

3. Security Goals

There are many aspects to the security of group chats
and our model “inherits” most of the more commonly
requested from the original model [RMS18]. Here we only
outline authenticity (as it is directly relevant for our work)
and introduce deniability. For all other notions we refer
to the original paper.

3.1. Authenticity

The most basic definition of authenticity is message au-
thentication [RMS18]:

If a message m is delivered to V ∈ Ggr by DelivM →
(id, gr,U ,m), then it was indeed sent by user U by calling
SndM(gr,m).

3.2. Deniability

Deniability is the ability of a party Alice (A) to plausibly
deny towards a judge Judy (J ) that she sent a certain
message or participated in a certain channel, even if she
did do so. We model deniability as J not being able
to distinguish between the transcript of a real interaction
and a simulated transcript that was created by a simulator
Simon (S). If J is incapable of distinguishing between the
two cases then A can plausibly claim that a transcript
is not real. In our definitions we focus on the technical
aspects of deniability and ignore real life factors like trust
in the entity providing a transcript.

Of course deniability can trivially be achieved by sacri-
ficing authenticity: If no party has any identifying long-
term secrets then every transcript could have been gen-
erated by everyone. However, authenticity is critical in
practice: If A thinks that she is talking to a certain party
B but is really talking to J the outcomes may be very
unfortunate to say the least. Hence, the challenge is not
to achieve “deniability” but “deniability despite authen-
ticity”. This dichotomy is what makes designing deniable
chat-protocols hard in the first place.

Deniability is a very generic term which allows for dif-
ferent definitions depending on the treatment of certain
aspects. First of all one can consider judges with dif-
ferent capabilities. The most basic distinction here is
the amount of work that the judge can perform. The
typical options here are unbounded judges and asymp-
totically efficient judges, that is judges that are limited
to a runtime that is polynomial in a security-parameter
with either classical (J ∈ PPT) or quantum computers
(J ∈ QPT).

More specific to deniability is then the question of
whether the judges are online: The traditional notion here
are so-called offline-judges who receive the transcript after
the completion of the protocol execution. However, one
may also consider online-judges who exchange messages
with group-members while the communication is happen-
ing [DKSW09].

Next one has to decide whether parties should only
be capable of denying that they sent specific messages
or whether they can also deny that the interaction hap-
pened in the first place [UDB+15]. We call these message-
deniability and participation-deniability, the later of
which is strictly stronger.

Then there is the power of the simulator. Traditionally
deniability means that everyone is capable of simulating
transcripts but more restricted settings in which for exam-
ple only supposed participants are capable of simulating
interactions are thinkable as well. We are however not
aware of any previous work that treats this aspect explic-
itly instead of just targeting the former (stronger) notion,
which we will henceforth call universal deniability as op-
posed to non-universal deniability as a catch-all term for
everything that is weaker.

Lastly there is the question of corruption. That is how
much secret information the judge receives, there are two
major aspects to this, the first one being whether the
judge receives (or even chooses) the long-term secrets of
the involved parties. Given that unbounded judges can
compute matching secret keys for every public key them-
selves, this distinction is a lot less relevant to them, com-
pared to bounded judges.

The other aspect concerns state-reveals: Seized devices
may contain session-states that a realistic judge would
most likely accept as evidence and a strong deniability
notion should ensure that this evidence is useless. Con-
sidering our model of chats, the strongest notion in this
regard is to give the resulting session-states of all exp

and ch actions to the judge; this may seem very strong,
but reliably prevents most vulnerabilities with regards to
session state reveals. Giving the session-states of the ch

actions to the judge models the case where one or more
traitors try to betray an user U and hand their devices
to the Judge. We call the case where the judge chooses
the keypairs of all parties and receives all intermediate
session-states of exp and ch-actions full corruption. In
this context we would also like to mention the current
draft of OTRv4 [tOt] that even considers partial corrup-
tion of a party, meaning that J only learns parts of the
traitors secret. This is something that we don’t consider
here. In summary we consider the following dimensions:

• adversarial model: Whether the judge is un-
bounded or not and whether she has a quantum com-
puter.

• online judges vs. offline judges: Whether the
judge receives the transcript as it is generated or at
some (to be defined) later point in time.

• message-deniability vs. participation-
deniability: Whether only the messages of a
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communication or even the occurrence of the
communication can be plausibly denied.

• universal vs non-universal deniability: Whether
everyone is capable to simulate a transcript or just
participants.

• corruption: The degree to which the judge learns
the secrets of the involved parties. In the case of full
corruption the judge learns all longterm secrets of all
parties (for an unbounded judge this will rarely be
an advantage however) as well as the session-states
that succeed exp and ch actions.

We note that that spectrum is likely incomplete when
looking at online-judges. It is for example possible to
distinguish between adaptive and non-adaptive online-
judges, the former of which are capable of changing par-
ties behaviours on the fly, while the later are not. We only
consider offline-deniability in this work however but note
that formalizing online-deniability in a way that unifies
the existing notions would certainly be desirable.

In general we note that online judges seem to be mostly
interesting with corruption. While the notion also works
without, it essentially limits the judge to traffic-analysis;
while that may be very dangerous, it does not give the
judge a real advantage over offline-judges who receive
a transcript of the network (given that the network-
transcript will usually be from an independent party,
there is little reason to believe that the judge would not
trust it over testimonies). Online-judges with corruption
are in turn essentially shoulder-surfing a member of the
chat. Depending on the degree of the corruption this may
even mean that that corrupted party is running the chat
on a device that is fully controlled by the judge, at which
point it seems very doubtful to us that a real-world judge
would not consider any claim that the interaction was
simulated a reasonable doubt, even if it were theoreti-
cally possible. We also note that very few protocols target
online-deniability [UDB+15].

3.3. Naive Deniability

We can define a first notion of offline-deniability that at-
tempts to match the common intuition of what deniabil-
ity is that we call naive offline deniability. In this case
we allow the judge J to choose the instructions covered
in the challenge protocol execution, with the exception of
actions of type exp and hid. This models a case where
a judge is given a transcript of a conversation and has to
decide if this transcript is real or was prepared by a third
party. In our model the judge is allowed to choose the
key-pairs and the contents of the interaction in order to
model the worst case. An equivalent but harder to work
with definition would quantify over all possible key-pairs
and transcripts. We point out that in this work we treat
all adversaries in one game as using shared states.

Definition 9 (Naive Offline Deniability). A protocol Π
offers naive offline deniability or N-OfD if there is an effi-
cient simulator S ∈ PPT so that no judge J has a chance

of winning ExpN-OfD
S,J , defined in Experiment 1 with a prob-

ability greater than 1
2 :

∃S ∈ PPT : ∀J : Pr[ExpN-OfD
Π,S,J

(
1λ
)

= 1] ≤ 1
2

Experiment 1: ExpN-OfD
Π,S,J . Naive offline deni-

ability for chats.

1 b←$ B
2 il ,PK ,SK := J ()
3 st := (P, ∅,PK ,SK , ∅)
4 abort if(¬is consistent(il , st))
5 abort if(∃inst ∈ il : inst .type ∈ {hid, exp})
6 if b = 0:
7 , ts := exec (ilch, st)
8 else:
9 ts := S(PK , simil,st)

10 b′ := J (ts)
11 return b = b′

(Many definitions require that the probability of a
guessing game is 1/2 or negligibly close to it. In our pro-
tocols we model aborts to cause whatever experiment is
running to stop execution and return 0. This makes defin-
ing the adversarial advantage easier, but usually makes it
trivial to create adversaries with a success-probability of
zero by intentionally causing an abort, which is signifi-
cantly different from 1/2. We deal with this by requiring
that the success-probability is less than or equal to the
targeted 1/2, which treats these adversaries as unsuccess-
ful.)

We call this notion “naive” because J does not receive
access to any real transcript, even ones that are com-
pletely independent of the interaction in question. In par-
ticular this means that she won’t even learn about public
parameters of the server. Consider a protocol in which
the server will sample a random bitstring once and at-
tach it to any packet it sends from then on and where
all honest parties simply ignore this bitstring. The naive
deniability notion now allows S to sample this bitstring
from the same distribution and use that sampled value
in his simulation. Since J has no way to learn what bit-
string is used in this model, S is able to get away with
this technique. In the real world it would however be ex-
ceedingly unlikely, that J could not learn that bitstring
by setting up an account herself and checking whether
they match, implying that this notion would be too weak
in practice for most purposes. The problem here is that
this notion does not yet consider transcripts that are par-
tially trusted by J . Formally this manifests itself in the
limitation of the challenges to those that only contain ch-
and ar-actions (the later of which are never used, but are
required for is consistent).

A further issue, that is however relatively minor as J is
unbounded, is that she does not receive any session-states
as there are no exp actions, meaning that this model also
only considers corruptions of keys instead of full corrup-
tion.
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3.4. Strong Deniability

To protect against these kinds of attacks we consider the
entire system as a whole. The straightforward demand
here would be that the judge receives the real transcript
of everything that happens, except for the interactions
in question, which are either real as well or generated
by a simulator. (We refrain from formalizing this here,
as it will be a special case of our final notion.) While
extremely powerful, this notion causes its own problems,
specifically we conjecture that it is incompatible with all
efficient protocols, unless other highly desirable features
are sacrificed:

Conjecture 1. There is no chat-protocol that offers post-
compromise secrecy and strong offline deniability, without
requiring a trusted party or an interaction with all mem-
bers of a group after performing any non-rcv action in
that group.

Our rationale for this conjecture is as follows: At first
consider any protocol that encrypts consecutive messages
of a user with the same symmetric key. Let now m0 and
m1 be consecutive messages by the same user, so that
they are encrypted with such related keys and let m1 be
part of the challenge, but not m0. Let now k0 and k1

be the keys under which m0 and m1 are encrypted in
the transcript that the judge J receives. This allows the
following attack: If J is unbounded, she can extract k0

and k1 with at least high probability and check whether
they are equal. If the transcript is entirely real, then they
will be with probability 1. If m1 was encrypted by the
simulator however, this will almost certainly not be the
case, as the simulator would have to know k0 for that.

While many protocols will not actually use the same
key, but perform some form of ratcheting, minor changes
to the unbounded adversary (extracting all possible seeds
for k0 and using them to derive possible values of k1)
would still work. The underlying problem here is the use
of a cryptographic state that is at least partially derived
from older states. Getting rid of this property is how-
ever not without downsides: The first option would be
to design a protocol that avoids ephemeral secret states
entirely by only using longterm secrets. Such a protocol
is however trivially incapable of offering post-compromise
secrecy. The second option would be to remove the pos-
sibility of linking consecutive states; we are not aware of
methods to do this without interacting with all parties in
the group, performing essentially a fresh handshake.

Note that this argument does intentionally not make
any use of the session-states that are part of the tran-
script. This is done in order to show that the problem is
not a cause of our very strong notion of corruption that
could be circumvented by weakening that notion.

3.5. State Disassociation

Attacks like the one outlined in the previous section are
a consequence of correlations between successive group-
states. As such they become impossible, once two group-
states become fully disassociated with each other. The

precise condition of when and if that happens in a given
group will be the main parameter to our generic model.

A formal definition of a state disassociation is strictly
speaking not necessary for the definition of our model but
we expect that most proofs would end up defining some
form of this notion as a stepping-stone anyways. Because
of this we provide it here anyways, with the hope that
it will not only help with understanding the intentions
behind the following sections, but also to reduce redun-
dant work in proofs and the risk of multiple incompatible
definitions.

Intuitively a state disassociation in a group gr is any
sequence of actions that transforms a group-state st0 into
a group-state st1 in such a way that it ensures that stgr1

contains no information about stgr0 .
A state disassociation predicate sd pred intuitively

states if an instruction list achieves state disassociation
for a given starting state. More precisely, it takes an
instruction-list il , a partial starting-state ps and a group
gr and returns true if the group state in gr that re-
sults from executing il on ps is uncorrelated to ps, and
false otherwise. We formalize this, requiring that there
is no judge J that can output two consistent pairs of
starting states and instruction-lists which cause state-
disassociations and result in equivalent (Definition 1)
states, such that J can distinguish those states.

Definition 10 (State Disassociation Predicate). A pred-
icate sd pred is a state disassociation predicate if there is
no adversary J that can win Experiment 2 with proba-
bility > 1

2 :

∀J : Pr[ExpState-Disassoc
sd pred,J

(
1λ
)
] = 1] ≤ 1

2

Experiment 2: ExpState-Disassoc
sd pred,J . State Disasso-

ciation Predicate

1 st0, il0, st1, il1, gr ,SK := J (sd pred)
2 for b ∈ B:
3 abort if(¬is consistent(ilb, st1))
4 abort if(¬sd pred(ilb, stb.ps, gr))
5 , st ′b := exec (stb, ilbch)

6 abort if
(
st ′gr0 6≡ st ′gr1

)
7 b←$ B
8 b′ := J (st ′grb , st ′gr1−b)

9 return b = b′

3.6. Disjoined Instruction Lists

To prevent the aforementioned attacks, it is not merely
sufficient to define what a state disassociation is, but also
the circumstances under which it has to occur. The goal in
this regard is to cause a disassociation between all pairs of
longest consecutive sequences of actions in a group whose
type is either only exp or only ch and all such sequences
whose type is ch and the final resulting state.

For this we introduce the notion of disjoined instruction
lists to our framework. It has a parameter sd pred that has
to be filled with a state-disassociation-predicate. With
this we can now define that an instruction list il and a
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partial starting state ps are disjoined under a given state
disassociation predicate sd pred if:

For every group gr and every sublist il ′ of il that con-
tains an action a in gr , where actions a ′, a ′′ in gr that
directly precede/follow il have a different type from a and
their types are in {ch, exp}, then il ′ satisfies the state-
disassociation predicate for gr .

We remark that this bans partial changes to the states
between ch and exp actions. If that ban was dropped, the
simulator would require precise information about which
states have to be updated in what way. While possible,
this would vastly complicate the security notion, while
likely not resulting in a stronger notion (if enough infor-
mation is given to the simulator it can simply simulate
the hid-actions and remove them from the output). To
give a more formal definition:

Definition 11 (Disjoined). We say that an instruction
list il and a partial starting state st are disjoined under a
predicate sd pred if the predicate disjoined, as defined in
Algorithm 1, returns 1 when called with them.

Algorithm 1: Definition of disjoined for a state
disassociation predicate sd pred.

1 fun c index(il , n):
2 return n−

∣∣{x ∈ il [0, . . . , n]
∣∣x.type 6= ar

}∣∣
3 fun disjoinedsd pred (il , ps):
4 for i, j, k ∈ N3, i < j < k < |il |:
5 ti := il [i].type; tj := il [j].type;

tk := il [k].type
6 g := il [i].group
7 i′ := c index(il , i); k′ := c index(il , k)
8 ps ′ := partial exec (ilch[0, . . . , i

′], ps)
9 if ¬sd pred (ilch[i

′, . . . , k′], ps ′, g)
∧ti, tk ∈ {ch, exp} ∧tj /∈ {ti, tk}:

10 return 0

11 return 1

3.7. Full Interaction

In order to provide a predicate that may work as a state
disassociation predicate in many protocols while also be-
ing a plausible option for use in real-world protocols, we
introduce the notion of a hidden full interaction. Intu-
itively a full interaction occurs if every member of a group
performs an active action or is removed from the group. If
a full interaction occurs in hid actions with no other types
of actions in between, we call it a hidden full interaction.
For a more formal definition we refer to Definition 21 in
Appendix A.2.

Our suggestion for the state disassociation predicate is
therefore the predicate that returns true if and only if a
hidden full interaction occurs. We note that this mirrors
the usual requirements for establishing post-compromise-
secrecy, if we view pure key-updates as sending empty
messages. We note that whether HFI is a secure state dis-
association predicate remains a property of the protocol
in question and has to be proven on a case-by-case basis.

Experiment 3: ExpOfD
Π,S,J ,sd pred. The Experi-

ment used to define our notions of offline de-
niability for protocols Π. The specific notion
depends on the parameter sd pred which speci-
fies the way in which the operating instructions
has to be disjoined.

1 b←$ B
2 PK ,SK , il := J ()
3 st := (P, ∅,PK ,SK , ∅)
4 abort if

(
¬is consistent (il , st) ∨ ¬disjoinedsd pred (il , st)

)
5 if b = 0:
6 full transcript , st := exec (st , ilch)
7 judged transcript :=

(msg ∈ full transcript |msg .type ∈ {exp, ch})
8 else:
9 full transcript , st := exec (st , ilar)

10 simulated transcript := S(PK , simil,st)
11 judged transcript :=

merge((msg ∈ full transcript |msg .type = exp) ,
simulated transcript)

12 b′ := J (judged transcript)
13 return b = b′

3.8. Our Deniability Framework

In order to define the security notions that we actually
recommend, we will use the framework depicted in Exper-
iment 3. It follows the typical structure of a distinguishing
game in which a judge J has to guess a randomly sam-
pled bit b. The only ways for her to do this better than
just random guessing are to extract information about
the execution-history from the state and to distinguish
whether the transcript of an interaction of her choice is
either real (b = 0) or whether it was (partially) simulated
by a simulator S (b = 1).

The experiment starts with an empty state. This does
not really limit the power of J , since she can always start
il with hid actions that create a state whose partial state
is whatever she likes. It would alternatively have been
possible to let J output the starting state, but since she
would then know it, all groups would have to perform a
state-disassociation before executing ch or ar actions.

We allow J to pick the long-term keypairs of the in-
volved parties, as we would give that information to her
anyways in the end to deal with corruption and don’t
think that we should allow the existence of weak keys.
The only requirements that we enforce for the operat-
ing instruction il that J outputs are that it is consistent
with the empty starting state and properly disjoined un-
der a state disassociation predicate sd pred that is left as
model-parameter. Only giving the public keys and simil,st

to S means that all notions defined from this experiment
provide universal deniability. This could be weakened to
different forms of non-universal deniability by giving fur-
ther information such as secret keys to S, but as these
notions are rarely if ever targeted in the literature and by
no means standard we refrain from doing so here.

We note that the transcript that J receives contains
all session states that precede an exposed action in the
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respective group, which together with the adversarially
chosen keypairs means that all notions defined in this
model consider full corruption. We choose this notion not
because we believe that it models anything particularly
realistic, but because security against it implies security
against many weaker forms of corruption and because it
does not seem to cause any significant problems for pro-
tocol design compared to those weaker notions.

This entire experiment defines a family of security-
notions that differ on the used state-disassociation pred-
icate sd pred. That predicate essentially defines at what
point the communication in a group becomes deniable. As
such the members of that family will vary substantially
with the extreme cases being a predicate that always re-
turns 1, requiring deniability after every instruction, and
a predicate that always returns 0, meaning that no group
provides deniability if there is ever an exp action in it.
Any other predicate will provide something in between
these two notions. As such sd pred is a customization
point that has a major effect on the practical deniability
that a scheme provides and saying that a protocol pro-
vides offline-deniability in the sense that no judge can
win the above game better than by random guessing is a
statement of very limited use without specifying sd pred.

We remark that a state disassociation predicate p that
outputs 1 strictly more often than another predicate p′,
does not necessarily imply a stronger security notion:
Consider the case where both predicates accept the same
consistent instruction lists, but p also accepts all incon-
sistent ones, which are rejected by p′. The difference be-
tween p and p′ has no effect on the provided security-
notion because the security-game performs a consistency-
check anyways and aborts if it fails.

Because of the large effect that sd pred has on our no-
tion of OD-security, we will provide three concrete instan-
tiations of it, namely the extreme cases of strong and
weak offline-deniability, as well as a notion between the
two, that is efficiently instantiable under reasonable re-
quirements (compare Conjecture 1) while guaranteeing a
much stronger form of deniability than the weak notion.

With this we will now define our notion of strong offline
deniability:

Definition 12 (Strong Offline Deniability). A protocol
Π offers strong offline deniability or S-OfD if there is an
efficient simulator S ∈ PPT so that no judge J has a
chance of winning the OfD-game (Experiment 3), with
sd pred = (x 7→ 1) with a probability greater than 1

2 :

∃S ∈ PPT : ∀J :

Pr[ExpOfD
Π,S,J ,(x 7→1)

(
1λ
)

= 1] ≤ 1

2

This notion guarantees universal participation denia-
bility under full corruption for offline-judges and is the
strongest notion for offline deniability in chats that we
consider in this work, as it fully covers all the security
goals that we outlined for offline-deniability in subsec-
tion 3.2. We doubt however that it is efficiently achievable
(Conjecture 1).

Because of this we also introduce a weaker notion, that
we believe to be efficiently achievable in practice. Specifi-

cally we suggest to use the predicate HFI as defined in Def-
inition 21. The reasoning behind this is that this notion
still eventually achieves deniability in corrupted groups,
but does not require an update of the entire group state
after every operation. Instead the state can be updated as
a side-effect of regular messages, allowing for more practi-
cal protocols. Additionally this notion has the advantage
that it can be defined generically and therefore does not
rely on any specifics of the protocol.

Definition 13 (HFI Offline Deniability). A protocol Π
offers HFI offline deniability or HFI-OfD if there is an
efficient simulator S ∈ PPT so that no judge J has a
chance of winning the OfD-game (Experiment 3), with
sd pred = HFI with a probability greater than 1

2 :

∃S ∈ PPT : ∀J :

Pr[ExpOfD
Π,S,J ,HFI

(
1λ
)

= 1] ≤ 1

2

Theorem 1. S-OfD is strictly stronger than HFI-OfD.

Proof. (Sketch, for the full proof see Appendix B.1.)
“S-OfD ⇒ HFI-OfD”: This follows directly from the fact
that the only difference between the two notions is that
the judge has strictly more freedom in choosing il in
S-OfD.

“HFI-OfD 6⇒ S-OfD”: A HFI-OfD-secure chat-protocol
can be modified so that every user U appends a random
bitstring bs to successive messages in a group that does
not change as long as only she sends messages (no change
to group or messages by other users). The resulting
scheme is still HFI-OfD-secure, but not S-OfD-secure.

Next we define an even weaker notion for protocols that
have trouble achieving HFI-OfD:

Definition 14 (Weak Offline Deniability). A protocol
Π offers weak offline deniability or W-OfD if there is an
efficient simulator S ∈ PPT so that no judge J has a
chance of winning the OfD-game (Experiment 3), with
sd pred = (x 7→ 0) with a probability greater than 1

2 :

∃S ∈ PPT : ∀J :

Pr[ExpOfD
Π,S,J ,(x 7→0)

(
1λ
)

= 1] ≤ 1

2

Intuitively W-OfD forces the judge to only create three
kinds of groups: Fully corrupted ones in which all ac-
tions are exp, fully hidden ones in which all actions are
hid and “target”-groups that contain only ch- and ar.
This is because the definition of disjoined requires a state-
disassociation between any pair of actions that don’t fit
into any of the above groups, but the definition of W-OfD-
security means that there is no sequence of interaction
that causes one.

We also note that the fully exposed groups will be of
very little help for the judge in protocols in which sessions
states are independent from each other except for the
shared secret key (as long as that key is constant): Due
to the independence exp groups are not affected by the
challenge-bit b in any way and thus don’t contain any use-
ful information about it. As such the judge has to judge
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the ch-groups only on the provided transcripts, which is
why we consider the term “weak” justified, despite the
seemingly strong form of corruption.

Theorem 2. HFI-OfD is strictly stronger than W-OfD.

Proof. (Sketch, for the full proof see Appendix B.2.)
Analogous to the proof of Theorem 1, except that the
bitstring bs is constant within a group, not within con-
secutive messages of the same user in a group.

Corollary 2.1. S-OfD is strictly stronger than W-OfD.

Proof. This follows directly from the combination of The-
orem 1 and Theorem 2.

Theorem 3. W-OfD is strictly stronger than naive offline
deniability.

Proof. (Sketch, for the full proof see Appendix B.3.) The
main difference between the two notions is that W-OfD-
security allows exp groups. The proof is thus mostly anal-
ogous to that of Theorem 1, except that bs is the same
for all groups and never changed.

Given all of the above we conclude that while S-OfD is
clearly the strongest notion, it will usually be too expen-
sive to target in practical protocols. Because of this we
recommend HFI-OfD as the target-notion that will usually
be desirable, as it is still quite strong but also efficiently
achievable. W-OfD is a notion that is still weaker and that
we consider to be the minimum that a protocol aiming at
deniability should target outside of special circumstances.

We recommend against the use of N-OfD, despite the
initial appeal it may have because of its simplicity: The
assumptions it makes about judges are too optimistic for
practical use outside of special circumstances.

4. Epochal Signatures

We now introduce signatures that become deniable after
a certain amount of time but provide an unforgeability
notion that is essentially equivalent to the standard notion
of existential unforgeability under chosen message attacks
(EUF-CMA) before that. These allow adding deniability
to many efficient multi-party chats that use signatures for
their authentication, such as MLS [OBR+20]) by simply
replacing the used signature scheme:

Theorem 4. Let Π be a chat-protocol for which the fol-
lowing requirements hold:

1. A hidden full interaction (HFI) causes a perfect sate
disassociation.

2. Π only uses the secret key of a simple (EUF-CMA-
secure) signature-scheme as long-term secret.

3. Π works with every EUF-CMA-secure signature
scheme.

4. Π only uses the longterm secret key to create signa-
tures with the regular signing algorithm.

5. There exists a time period tΠ such that Π never ver-
ifies a signature more than t after its creation.

6. Π does not use any oracles that cannot be efficiently
simulated.

Then the protocol Π∗ that only differs from Π in that the
conventional signature-scheme is replaced with an epochal
signature-scheme Σ with parameters so that (V −1)·∆t ≥
tΠ is HFI-OfD-secure.

The theorem essentially states that if the protocol uses
generic EUF-CMA signatures and is HFI-OfD-secure when
these signatures are removed then the protocol obtained
by replacing the signatures with epochal signatures is
HFI-OfD-secure. The proof can be found in Appendix C.

4.1. Syntactic Definition

The main differences from a standard signature-scheme
are the use of epochs and addition of a per-epoch public
information pinfoe. Knowing pinfoe should be enough
to create arbitrary expired signatures; it must be made
public in such a way that everyone has easy access to it.
The reason for why we separate pinfoe from the signatures
is simply so that parties don’t have to have seen a real
signature in order to create an expired one.

Definition 15. An epochal signature scheme Σ is a tuple
of four algorithms: Σ.gen, Σ.evolve, Σ.sign and Σ.verify.

• Σ.gen: Takes a security-parameter 1λ, an epoch-
length ∆t, the maximum number of epochs E ∈
poly(λ) and the number of epochs V < E ∈ N for
which signatures are valid and returns a long-term
keypair (pk , sk).

• Σ.evolve: Takes the secret key sk and returns public
epoch information pinfoe and an updated secret key
sk ′ or ⊥ if sk has already been evolved E times.

• Σ.sign: Takes the secret-key and a message m ∈ M
and returns a signature σ.

• Σ.verify: Takes a public key pk , an epoch e, a signa-
ture σ and a message m and returns a boolean value
b that tells whether the signature is valid in epoch e.

We leave the message-space M as a parameter, define
the public/secret key space as the set of all possible values
that Σ.gen can generate as first/second output, the signa-
ture space as the output-space of Σ.sign and the space of
all public epoch informations pinfoe as the output-space
of Σ.evolve.

An epochal signature scheme is complete if all hon-
estly generated, unexpired signatures are accepted by the
verification algorithm. For a formal definition see Ap-
pendix A.3.

10



4.2. Unforgeability

Intuitively our notion of unforgeability is the epoch-based
equivalent of the standard notion of “Existential UnForge-
ability under Chosen Message Attacks” (EUF-CMA), the
only difference being that signatures expire and are no
longer accepted by the challenger afterwards. More For-
mally:

Definition 16 (Unforgability of Epochal Signatures
(EEUF-CMA)). An epochal signature-scheme Σ is un-
forgeable in the sense of Epochal Existential UnForgeabil-
ity under Chosen Message Attacks or EEUF-CMA if there
is no efficient forger F that has a non-negligible chance of
winning Experiment 4:

∀F ∈ QPT, λ ∈ N, E ∈ poly(λ), V ∈ {1, . . . ,E − 1} :

Pr[ExpEEUF-CMA
Σ,F

(
1λ,∆t,E ,V

)
] = 1]

=: AdvEEUF-CMA
Σ,E ,V ,F

(
1λ,∆t

)
≤ negl (λ)

Experiment 4: ExpEEUF-CMA
Σ,F

(
1λ,∆t,E ,V

)
.

The unforgeability game for epochal signatures.

1 pk , sk := Σ.gen
(
1λ, ∆t, E , V

)
2 t0 := now()
3 e := 0
4 queries := [∅, . . . , ∅]
5 fun Σ.evolve’():
6 abort if(t = E )
7 abort if(now() < t0 + e ·∆t)
8 e+ =1
9 pinfoe, sk := Σ.evolve (sk)

10 return pinfoe

11 fun Σ.sign’(m):
12 abort if(now() ≥ t0 + e ·∆t)
13 σ := Σ.sign (sk , m)
14 queries[e]∪={m}
15 return σ

16 σ,m := FΣ.evolve′,Σ.sign′(pk)
17 ret := Σ.verify (pk , e, σ, m)
18 for e′ ∈ {max (0, e−V ) , . . . , e}:
19 abort if((m, e′) ∈ queries[e′])

20 return ret

The restrictions on the points in time at which the ad-
versary may perform which actions may appear unneces-
sary, as it is would easily be possible to define schemes
that just consider the epoch-counter. We add them any-
ways, as they allow among others the release of informa-
tion encapsulated in time-lock puzzles to strengthen deni-
ability, which would lead to trivial vulnerabilities without
these restrictions. We note that while the requirement
to check whether the signature in question is expired is
not explicit in the game, it is implied by the way signa-
tures are checked for freshness: Since only signatures cre-
ated in the last V epochs are considered in the freshness-
check, Σ.verify accepting any signature older than that

could trivially be used to win the game, implying that the
scheme in question does not provide EEUF-CMA-security.

We note that by prepending the epoch to the message
and checking that it during verification, every EUF-CMA
secure scheme can be turned into a EEUF-CMA secure
one. On the other hand every EEUF-CMA secure scheme
can be turned into an EUF-CMA secure by setting ∆t to
a very high value and only using the first epoch.

4.3. Deniability

We say that an epochal signature-scheme is deniable if
there is a simulator S that can create arbitrary expired
signatures that are indistinguishable from real ones. In
order to do so S receives the public epoch information
pinfoe of an epoch in which the simulated signature was
already expired.

Definition 17 (Deniability of Epochal Signatures). An
epochal signature Σ scheme is deniable if there is an ef-
ficient simulator S ∈ PPT, so that no judge J can win
Experiment 5 with a probability > 1

2 :

∀λ ∈ N, E ∈ poly(λ), V ∈ {1, . . . ,E − 1} : ∃S ∈ PPT :

∀J ∈ TM : Pr[ExpDeniability
Σ,S,J

(
1λ,∆t,E ,V

)
] = 1] ≤ 1

2

Experiment 5: ExpDeniability
Σ,S,J

(
1λ,∆t,E ,V

)
.

The deniability game for epochal signatures.

1 pk , sk := Σ.gen
(
1λ, ∆t, E , V

)
2 b←$ B
3 m, e0, e1 := J (pk , sk)
4 σ := ⊥
5 abort if(∨e0 + e1 ≥ E ∨ e0 < 0 ∨ e1 < V )
6 for e ∈ {1, . . . , e0}:
7 pinfoe, sk := Σ.evolve (sk)

8 if b = 0:
9 σ := Σ.sign (sk , m)

10 for e ∈ {e0 + 1, . . . , e0 + e1}:
11 pinfoe, sk := Σ.evolve (sk)

12 if b = 1:
13 σ := S(m, e, pinfoe0+e1)

14 b′ := J (σ, sk)
15 return b = b′

We give the secret key to J because we consider un-
bounded judges in the first place and it should not help
her in distinguishing signatures. This essentially prevents
the inclusion of information about previously generated
signatures in the secret key, which we consider desirable.

5. Proposed Techniques

In this section we describe how we build an efficient
epochal signature scheme that satisfies the security no-
tions that we defined in the previous section. We do this
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by starting with a naive and inefficient scheme that we
then modify.

This starting point is the scheme that simply layers
two signatures on top of each other, where the lower one
is replaced with each epoch updates, while the public key
of the upper one serves as longterm identity. Once the
signatures created within an epoch expire, the secret key
of the lower level is published and can be used to create
expired signatures. We remark that this is so far very
similar to how CAs work, with the main difference being
that we publish expired secret keys intentionally. The
resulting scheme works as follows:

Key-Generation is identical to the key-generation of the

scheme used for the top-layer, giving (p̂k , ŝk). At the
start of an epoch e the signer generates a new bottom
layer key-pair (pke, ske), signs pke and e with ŝk , giving
σ̂e and publishes (e, pke, σ̂, [(sk0, σ̂0) . . . , (ske−V , σ̂e−V ])
as pinfoe.

Signing is done by signing the message m with sk , giv-
ing σ and outputting (σ, pinfoe) as signature. Verification
works by checking that pinfoe.e is less than V epochs in
the past and verifying σ and pinfoe.σ̂. The simulation of
expired signatures works by using the expired secret key
for the bottom layer from and the signature on it’s public-
key from pinfoe to recreate the signature in question.

5.1. Deterministic Bottom-Layer

The main problem with the above solution is the size of
the public epoch information pinfoe which is caused by
the need to include the bottom-layer secret-keys and top-
layer signatures for all expired epochs. A simple method
to remove the former is to deterministically generate them
based on a seed that can be derived from the seeds of later
epochs.

Assume that we want to use E epochs. Then during
key-generation we sample a random bitstring rE and ap-
ply a Pseudo Random Function (PRF) H on it E times,
storing all intermediate values in the secret key. More
precisely, we use re as the key to a pseudorandom func-
tion H that we call with an independent fixed value m
as message (H(re,m)) and use the resulting value as re−1.
Whenever we use a probabilistic algorithm during the e’th
key-evolution (most notably Σ.gen

(
1λ
)
), we use H(re,m

′)
instead of the randomness, where m′ 6= m is a different
message from the one used for computing re−1. This way
all bottom layer-secret keys can be removed from pinfoe
by adding re−V to it, which drastically decreases its size.
The main disadvantage of this method is that the size of
the secret key becomes linear in E , which we will deal
with further below by using a pebbling algorithm.

5.2. Reversed Forward-Secure Signatures

While the previous subsection goes a long way in reducing
the size of pinfoe, that size is still linear in the number of
expired epochs, due to the toplevel signatures for all past
epochs. To solve this we again use pebbling but this time
with forward secure signatures. Forward secure signatures
were introduced as an answer to the problem that if an at-
tacker receives the key of a signature-scheme, he can forge

arbitrary signatures and were first formalised by Bellare
and Miner[BM99] in 1999. They add epochs and key-
updates to regular signatures: Every signature is marked
as having been created in a certain epoch; epoch-updates
are performed by the signer by updating the secret key so
that it can no longer be used to sign messages for previ-
ous epochs. In the case of a key-compromise the adver-
sary can then only create valid signatures for the current
and later epochs, but the signatures for previous epochs
stay secure. The previously mentioned paper doesn’t give
an explicit name for its unforgeability notion, but it is
colloquially known as “Forward Secure Existential Un-
Forgeability under adaptive Chosen Message Attacks” or
FS-EUF-CMA, which is what we will use henceforth.

Forward-secure signatures provide the guarantees that
we want, except backwards in time: Instead of all sig-
natures in the past remaining secure in the event of a
compromise, we want all future ones to remain secure.
We resolve this in the same way as in the previous sub-
section: Assume that we want to use E epochs. Then
during key-generation we evolve the initial secret key
of the forward-secure scheme E times and store all de-
rived keys as secret keys of our epochal signature scheme.
To sign a message for the i’th epoch with the epochal
scheme, we then use the secret key of the forward-secure
scheme that resulted from (E − i) evolutions. Since
we store the secret keys of all epochs of the forward-
secure signature scheme, this works with constant time-
complexity. With this we can then modify pinfoe to only
include the (E − (e − V ))’th secret key of the forward
secure scheme, as the secret keys of all previous epochs
can be derived from it via the key-evolution function of
the forward secure scheme. Given that there are effi-
cient, hash-based forward-secure-signatures with reason-
ably small state, such as XMSS[BDH11] we can even get
efficient post-quantum-security.

5.3. Pebbling

The main-problem with the previous two solutions is that
they require either a very large secret key or a very high
amount of computations per epoch-update (both linear in
the number of remaining epochs). We solve this problem
by using pebbling schemes which allow us to compute
the same values in logarithmic time and space. For a
detailed description of how they work we refer to the work
of Schoenmakers [Sch17] and only note that they reduce
the size of the secret key to be logarithmic in E at a low
computational overhead.

5.4. Undeniable Deniability

One of the issues with publishing the secret-keys once they
are no longer needed is that doing so requires the ability
to publish; if Alice looses internet-access before doing so
and there are witnesses that this happened, she looses
some deniability. As a countermeasure we target “un-
deniable deniability” which means that every transcript
already contains enough information to be fully deniable.
The way we achieve this is through the use of time-lock-
puzzles.
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Time-lock puzzles (introduced by Rivest, Shamir and
Wagner[RSW96]) allow the encryption of a value such
that it can be recovered by anyone after performing a
certain amount of sequential computation. Before the
computation finishes the puzzle only reveals trivial in-
formation. For reasons of space we only give an intuitive
overview here and refer to Appendix A.1 for more formal
definitions.

Definition 18 (Time Lock Puzzle). A time-lock puz-
zle TL is a tuple of two PPT-algorithms TL.lock and
TL.unlock.

• TL.lock takes three parameters: The security-
parameter 1λ, a duration ∆t and a message m and
returns a ciphertext c.

• TL.unlock takes the ciphertext c as only parameter
and returns a message m.

We require that TL.unlock returns the encapsulated
value:

Definition 19 (Correctness for Time Lock Puzzles). A
time-lock puzzle is correct if:

Pr
[
TL.unlock

(
TL.lock

(
1λ, ∆t, m

))
= m

]
= 1

Furthermore we require that no adversary can distin-
guish encapsulated values without performing sequential
work for at least ∆t. We call this notion INDistinguisha-
bility under No-Message-Attacks or IND-NMA for short.
For a formal definition we refer to Definition 20 in Ap-
pendix A.1. The important part here is that parallelism
cannot be used to extract the information faster. This
means that a consumer PC with a high-end CPU may
even be able to overtake super computers. As such the
largest thread would be adversaries with very high se-
quential speed, which could for example be achieved by
dedicated implementations in hardware and extreme over-
clocking. Compared to a simple increase in parallelism,
these approaches are much more limited in what they can
achieve and how they scale with their cost.

In order to protect our protocol from the attack that we
outlined at the start of this subsection, we add time-lock
puzzles to it as follows: Instead of just signing pk and
its expiration-date with ŝk , we encapsulate sk in a time-
lock puzzle and only sign pk and the expiration-date in
combination with that puzzle. This way signatures cannot
be verified without knowledge that is sufficient to simulate
them after expiration, making them unconvincing to every
judge. We note that we don’t intend for the puzzle to
replace the publication of the key, but to supplement it.

We emphasize that we avoid the most common criticism
of time-lock-puzzles, namely that they pointlessly waste
huge amounts of energy: No honest party in our protocol
will attempt to break any puzzle, we only need to ensure
that they are capable of doing so in principle; the creation
of the puzzles on the other hand is usually efficient enough
to not be a major concern in that regard.

6. Proposal

We propose the scheme depicted in Algorithms 2–5 which,
as we will proof, satisfies the security notions that we
defined in Section 4. In addition to that it actually ex-
ceeds our deniability-notion in that a public epoch infor-
mation pinfoe can be used to simulate signatures of even
the epoch it was released in, as long as enough time has
passed.

The core-idea uses the techniques described in the pre-
vious section:

• A forward-secure signature scheme Σ̂ that is reversed
via pebbling as the top-layer.

• A regular signature scheme Σ that is used as the
bottom-layer and is replaced with each epoch.

• A pseudorandom value re for each epoch that is used
to derandomize all non-deterministic algorithms in
Σ.evolve (.)

• A timelock-puzzle as part of pinfoe that is used to
ensure the reveal of the secret keys after they expire.

We note that all entities that are part of the top-level
scheme will be marked with a “hat”-symbol (such as Σ̂)
that can be thought of as a symbol for “above”, whereas
all parts of the bottom layer will be marked with an over-
bar (such as Σ) that signifies the opposite.

We use H(r, p̂k ||e||n) with n ∈ {0, 1, 2} as seeds for the
generation of the timelock-puzzles as well as the bottom
layer keys. For this we assume that these algorithms just
take a constant-length seed and stretch it out themselves

if necessary. We add p̂k and the epoch e to the message
to prevent multi-target attacks.

Our public key pk consists simply of the public key p̂k of
the top level signature-scheme Σ̂. The secret key sk on the
other hand is a six-tuple that contains the public key pk ,
the pebbling-states for both the pseudorandom-seed skr
and the secret key for the top level scheme ŝk , the number
e of evolutions that have been performed (initially 0), the
current secret key sk of the lower level signature scheme
Σ and the public epoch-information pinfoe of the current
epoch. The last two values are initially set to ⊥ until
Σ.evolve is executed for the first time. We remark that our
pseudo-code does not make use of pebbling for the sake
of simplicity; we expect that an actual implementation
would do this for ŝk and skr.

Our Σ.evolve-algorithm (Algorithm 3) is completely de-
terministic since all required randomness is derived from
the pseudorandom value rnew.

Signing messages (Algorithm 4) works by simply sign-
ing the message and the public epoch information pinfoe
with the sk . We mostly sign pinfoe to ensure that verifi-
cation only works for parties who know it, which aims at
increasing the deniability.

Our verification algorithm (Algorithm 5) checks
whether the signature is not yet expired and whether it
was valid in the epoch in which it was generated. If and
only if both of these requirements are fulfilled, the signa-

ture is accepted. The reason for why we prepend p̂k ||t
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Algorithm 2: Σ.gen

1 fun Σ.gen
(
1λ, ∆t, E , V

)
:

2 p̂k , ŝkE := Σ̂.gen
(
1λ
)

3 rE ←$ Bλ
4 for e ∈ {E − 1, . . . , 0}:
5 ŝke := Σ̂.update

(
ŝke+1

)
6 re := H(re+1, p̂k ||e+ 1||0)

7 skr := [r0, . . . , rE ]

8 ŝk := [ŝk0, . . . , ŝkE ]
9 t0 := now()

10 pk := (p̂k , t0,∆t,E ,V )

11 sk := (pk , skr, ŝk , 0,⊥,⊥)
12 return pk, sk

Algorithm 3: Σ.evolve

1 fun Σ.evolve (sk):

2 pk , skr, ŝk , e, , := sk

3 p̂k , t0,∆t,E ,V := pk
4 enew := e+ 1; eexp := e−V
5 sleep until(t0 + enew ·∆t)
6 rnew := skr[enew]; rexp := skr[eexp]

7 ŝknew := ŝk [enew]; ŝk exp := ŝk [eexp]

8 rpk := H(rnew, p̂k ||enew||1)

9 pknew, sknew := Σ.gen
(

1λ; rpk

)
10 rtl := H(rnew, p̂k ||enew||2)

11 tl := TL.lock
(

1λ, V ·∆t, rnew||ŝknew; rtl

)
12 ŝk

′
, σ̂ := Σ̂.sign

(
ŝk , pk ||enew||rexp||ŝk exp||tl

)
13 pinfoenew

:= (pknew, enew, rexp, ŝk exp, tl, σ̂)

14 sk ′ := (skr, p̂k , ŝk
′
, enew, sk , pinfoenew

)
15 return pinfoenew

, sk ′

to the arguments of all calls to H is simply to prevent
multi-target attacks. While our proof does not make use
of this and as such there is no effect on our final security-
statement, we consider it good practice to do so anyways.

Theorem 5. Σ is complete in the sense of Definition 22.

For a proof we refer to Appendix B.4.

Theorem 6. Σ is unforgeable in the sense of Defini-
tion 16 with:

AdvEEUF-CMA
Σ,E ,V ,F

(
1λ, ∆t

)
≤E ·


E · AdvPRFH,APRF

(
1λ
)

+ V · AdvIND-NMA
TL,AIND-NMA

(
1λ, V ·∆t

)
+ AdvFS-EUF-CMA

Σ̂,E ,A4

(
1λ
)

+ AdvEUF-CMA
Σ,A5

(
1λ
)


Proof. (Sketch, for the full proof see Appendix B.5.)

We use game-hopping, with the regular EEUF-CMA-
game as starting-point.

Algorithm 4: Σ.sign

1 fun Σ.sign (sk , m):

2 , , , , sk , pinfoe := sk

3 σ := Σ.sign
(
sk , pinfoe||m

)
4 σ := (σ, pinfoe)
5 return σ

Algorithm 5: Σ.verify

1 fun Σ.verify (pk , e, σ, m):

2 p̂k , t0,∆t,E ,V := pk
3 σ, pinfoe′ := σ

4 pke′ , e
′, re′−V , ŝke′−V , tle′ , σ̂ := pinfoe′

5 if e ≤ 0∨ e′ ≤ 0∨ e′+ V ≤ e∨ e′ > e∨ e > E :
6 return 0

7 b0 :=

Σ̂.verify
(

p̂k , σ̂, pke′ ||e′||re′−V ||ŝke′−V ||tle′
)

8 b1 := Σ.verify
(
pk , σ, pinfoe′ ||m

)
9 return b0 ∧ b1

In the first hop we guess the epoch e for which F will
present a forgery and abort the execution after e+ V − 1
epochs (loss-factor of 1

E ).
In the next hop we replace the random seeds re as well

as the pseudorandom random-tapes used for TL.lock and
Σ.gen of all epochs including and after e with random
values, which works because of the PRF-security of H (loss
≤ E · AdvPRFH,A

(
1λ
)
).

In the next hop we encapsulate random values in all
timelock-puzzles that are generated in and after epoch e.
This works because of their hiding-property and because
the game enforces that F doesn’t have enough time to
unlock them (loss ≤ V · AdvIND-NMA

TL,A
(
1λ, V ·∆t

)
).

In the next hop we check whether the forged signa-

ture contains a fresh signature under p̂k , present it to an
FS-EUF-CMA-challenger and abort the game if it is (loss
≤ AdvFS-EUF-CMA

Σ̂,E ,A

(
1λ
)
).

In the last hop we note that the forged signature must
contain a fresh signature under pk and we present it to
an EUF-CMA-challenger (loss ≤ AdvEUF-CMA

Σ,A
(
1λ
)
).

Theorem 7. Σ is deniable in the sense of Definition 17.

Proof. Our simulator S uses the information in pinfoe to
create a secret key that is equivalent to the real one for
all expired epochs and then simply executes the signing
algorithm as an honest party would. We first introduce
Algorithm 6 which extracts a suitable secret key from the
public epoch information pinfoe.

With this the actual simulation (Algorithm 7) essen-
tially just executes Σ.sign. If the sk that is computed
by the simulator is indeed equivalent to the real secret
key, the deniability of our scheme follows immediately
from the remaining definition of the simulator and the
fact that Σ.evolve is deterministic. To see that sk is in
fact equivalent it is enough to see that the only difference
between it and the real key is that the pebbling datastruc-
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Algorithm 6: The key-extractor

1 fun extract sk(pk , pinfoe):

2 p̂k := pk

3 , e, re−V , ŝke−V , , := pinfoe
4 for i ∈ {e− 1, . . . , 0}:
5 ŝk i := Σ̂.update

(
ŝk i+1

)
6 ri := H(ri+1, p̂k ||i+ 1||0)

7 ŝk
∗

:= [ŝk0, . . . , ŝke]
8 sk∗r := [r0, . . . , re]

9 return (sk∗r , p̂k , ŝk
∗
, 0,⊥,⊥)

Algorithm 7: Our simulator S
1 fun S(pk , pinfoe, ts):
2 sk∗ := extract sk(pk , pinfoe)
3 ts ′ := [ ]
4 e′ := 0
5 for (e,m) ∈ ts:
6 e− e′ times : , sk∗ := Σ.evolve (sk∗)
7 ts ′|| = Σ.sign (sk∗, m)

8 return ts ′

ture doesn’t go back as many key/randomness evolutions,
preventing the use in future epochs. By the structure of
the game, this information is however not needed at the
point at which S runs. Therefore the only difference is
one that does not make a difference for the generated
signatures because sign does not use that information.
Therefore the keys are equivalent for all past epochs and
the simulated signatures are distributed exactly as they
would be if they were honestly generated. Since pinfoe
and the relevant parts of ske are identical to the ones
an honest party would have used and since Σ is assumed
to be stateless, this means that the resulting signature is
clearly information-theoretically indistinguishable from a
real one. Because this perfect indistinguishability holds
even if S is called more than once there is no way for J
to learn b, limiting her to guessing a random bit, which
has a success-probability of 1

2 .

Therefore Σ is perfectly offline deniable.

Corollary 7.1. If Σ is a deterministic signature-scheme,
the simulated signatures are identical and not just indis-
tinguishable from real ones.

We would like to add the following strengthening to
Theorem 7: Even if the simulator only receives pinfoe
when it should also create a signature for epoch e, it is still
possible to create a perfectly indistinguishable signature.
To do so, S starts by opening the time-lock puzzle tle
(part of pinfoe) and will after performing computations

for roughly V ∆t time receive re and ŝke. With those
he can execute Algorithm 7 as before and the resulting
signatures will be perfectly indistinguishable for the same
reason presented above as well.

7. Considerations

7.1. Offline Users

Given that our protocol offers deniability by releasing se-
crets that can be used to forge transcripts of past commu-
nication, achieving message authenticity with offline-users
is inherently difficult. Given that part of the motivation
for deniability is the desire to have online-chats behave
similarly to chats in the real-world, we considered what
the equivalent for offline-users might be and did indeed
find a sensible counterpart: Imagine that there is sup-
posed to be a group-meeting between Alice, Bob, Carol
and Dave; Alice is however held up elsewhere and cannot
attend in person.

What would happen in practice is that one of the at-
tending people, say Bob, would tell the actual contents to
Alice after the meeting is over. While Bob could in prin-
ciple lie to Alice, she can confirm Bobs story with Dave
and Carol. If all of them agree, their story is not only
very likely, but even equivalent to the truth: In principle
the three could always meet before the meeting, discuss
what they want to happen during the meeting and then
act that out during the actual meeting; since Alice is by
assumption not in the meeting, she has also no way of
detecting their farce by behaving in an unexpected way.

In our digital setting, this already gives us a manual
of how to proceed: When Alice comes back online, Bob
will send her the transcript of the chat since Alice went
offline and Dave and Carol will confirm it by sending her
a hash of it. Alice computes the hash of the transcript as
well and if they all match, she knows that Bob, Dave and
Carol all agree that this is the story that Alice is supposed
to learn.

7.2. Expiring Authorisation

Our epochal signature scheme has the ability to create se-
cret keys that can be used for a predetermined number of
epochs in a way that is entirely transparent for the verifier.
(This is done by simply removing all information about
the later epochs from the secret key.) For a possible use
case consider a user U who plans to enter another country
and is worried that her device might be seized. Using an
entirely fresh key for this could leak to her communica-
tion partners that she is traveling. Using a reduced key
on the other hand would prevent that information leak-
age while still limiting impersonation-attacks in case her
device is seized to the epochs in which the reduced key
is valid. We remark that this is clearly just a measure to
reduce damage instead of preventing it and that the use
of a fresh key is preferable if the aforementioned leakage is
acceptable. However, in case it is not, the use of a reduced
key is better than using the full key. While not fully pre-
venting impersonation, it allows to warn communication
partners that the key has been corrupted but will become
“uncorrupted” again after the last compromised epoch.
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A. Definitions

A.1. IND-NMA-security

Intuitively a time lock puzzle is IND-NMA-secure if no
PPT-adversary can distinguish encapsulated values of its
choice faster than ∆t:

Definition 20 (IND-NMA-Security). A timelock-puzzle
is IND-NMA-secure, if no PPT-adversaries A has a chance
non-negligibly better than 1/2 of winning in Experiment 6:

∀A ∈ PPT, λ ∈ N,∆t ∈ T :

Pr
[
ExpIND-NMA

TL,A
(
1λ,∆t

)
= 1
]
− 1

2

=: AdvIND-NMA
TL,A

(
1λ,∆t

)
≤ negl (λ)

Experiment 6: ExpIND-NMA
TL,A

(
1λ,∆t

)
1 m0,m1 := A(1λ,∆t)
2 abort if(|m0| 6= |m1|)
3 b←$ B
4 c := TL.lock

(
1λ, ∆t, mb

)
5 t0 := now()
6 b′ := A(mb)
7 t1 := now()
8 abort if(t1 − t0 ≥ ∆t)
9 return b = b’

Note also that our definition uses two security parame-
ters: ∆t and 1λ; the later is a regular security parameter
that limits the total amount of (potentially parallel) work
an attacker may perform. This is necessary because most
time lock puzzles can be broken in a very short amount
of time as long as the total work is unbounded (for exam-
ple by searching for the message and the randomness via
parallel brute force).

We note that this definition is simplified over pre-
existing ones such as the one from Bitansky et

al.[BGJ+16], but sufficient for our purposes: Given the
complications of the entire security model that the intro-
duction of the circuit-depth of the adversary would mean,
and that an instantiation would have to translate that into
real-time anyways a higher-level approach appears to be
a better choice for us in our particular use-case.

A.2. Hidden Full Interaction

Definition 21 (Hidden Full Interaction). Let il be a con-
sistent instruction list as defined in section 2 with starting
state st . We say that il causes a hidden full interaction
in a group gr ∈ st .G, if there is a consecutive sublist il ′

in il , in which every action concerning gr is hid and for
every party P ∈ gr at least one of the following holds:

• P successfully sends a (valid) message m:

1. P executes SndM(gr,m) for any valid message
m, getting the identifier id

2. All parties P ′ ∈ gr,P ′ 6= P execute rcv(gr)

3. P successfully executes Ack(id)

• P successfully leaves the group:

1. P executes Leave(gr), getting the identifier id.

2. All parties P ′ ∈ gr,P ′ 6= P execute rcv(gr)

3. P successfully executes Ack(id)

• P is successfully removed from the group:

1. An administrator V∗ executes Rmv(gr,P), get-
ting the identifier id.

2. All parties P ′ ∈ gr,P ′ /∈ {V∗,P} execute
rcv(gr)

3. V∗ successfully executes Ack(id)

We define the predicate HFI that takes an instruction
list il , a starting state st and a group-identifier gr and
returns 1 if and only if executing il with starting-state st
causes a hidden full interaction in the group identified by
gr .

A.3. Completeness of Epochal Signatures

Definition 22 (Completeness of Epochal Signatures).
An epochal signature Σ scheme is complete if:

∀λ ∈ N, E ∈ poly(λ), V ∈ {1, . . . ,E − 1},
pk , sk ← Σ.gen

(
1λ, ∆t, E , V

)
, e ∈ {1, . . . ,E − 1},

e′ ∈ {e, . . . ,min (e+ V , E )} :

Σ.verify (pk , e′, Σ.sign (ske, e)m, m) = 1

Where ske is the secret key returned from the e’th exec-
tion of Σ.evolve.

B. Proofs

B.1. Proof of Theorem 1

Theorem 1. S-OfD is strictly stronger than HFI-OfD.
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Proof. “S-OfD ⇒ HFI-OfD”: This follows directly from
the fact that the only difference between the two notions is
that the judge has strictly more freedom in choosing il in
S-OfD. Therefore any successful judge against a protocol
Π in the HFI-OfD setting is also successful against Π in the
S-OfD setting with exactly the same runtime and success-
probability.

“HFI-OfD 6⇒ S-OfD”: Our core idea here is to define
a protocol in which every user P appends a random bit-
string bs to successive messages in a group that does not
change as long as only she sends messages (no change to
group or messages by other users). In a fully real tran-
script all values of bs of her consecutive messages are then
equal, but since the simulator does not receive that value,
he cannot simulate them in a consistent way.

Let Π be a HFI-OfD-secure chat-protocol. Then we de-
fine a protocol Π′ which only differs from Π in that every
party P samples a random bitstring bs before perform-
ing a SndM-action and appends it to all packages that
she sends over the network for messages in the respective
group. She resamples bs before her next message if and
only if she is either the only member of the group, another
party performs any active action or any party is removed
from the group. All other parties ignore bs.

Π′ is not S-OfD-secure since the judge J can output
an operating instruction that creates this situation and
in which a party sends an exp message, directly followed
by a ch-message. Upon receiving the transcript, J can
simply look at these two messages and check whether the
bitstrings match. If b = 0 than the entire transcript is real
and given the construction, the bitstrings match. If b = 1
the simulator has no way of knowing which bitstring was
used in the real execution and therefore has to guess; this
guess will be wrong with a probability that is exponen-
tially close to 1 in the length of the bitstring. Thus any
judge that outputs 0 if the bitstrings match and 1 oth-
erwise, will win the distinction game with a probability
greater than 1/2.

Π′ is however still HFI-OfD-secure: If P is the only
member in a given group, then Π′ is constructed to not
repeat bs, which means that S can sample it from the
same distribution without problem. Otherwise, given the
definitions of disjoined and HFI as well as the OfD game,
any pair of messages in the operating instruction that J
outputs in which one message is exp and the other is in
{ch, ar} must have a hidden action by at least one other
party between them; in that case P also samples a fresh
and independent bs, meaning that it too can simply be
simulated by S sampling it from the same distribution
as P. Because Π is HFI-OfD-secure all other parts of Π′

can also be simulated by S, meaning that Π′ is HFI-OfD-
secure.

Given this, the existence of a HFI-OfD-secure protocol
implies the existence of a HFI-OfD-secure protocol that
is not S-OfD-secure, therefore HFI-OfD-security does not
imply S-OfD-security.

B.2. Proof of Theorem 2

Theorem 2. HFI-OfD is strictly stronger than W-OfD.

Proof. “HFI-OfD ⇒ W-OfD”: This follows directly from
the fact that the only difference between the two no-
tions is that the judge has strictly more freedom in
choosing il , therefore any valid W-OfD-attacker is also
a valid HFI-OfD-attacker with exactly the same runtime
and success-probability.

“W-OfD 6⇒ HFI-OfD”: Our core idea here is to define
a protocol in which every user P appends a random bit-
string bs to all her messages in the same group. In a fully
real transcript all values of bs in the same group are then
equal, but since the simulator does not receive that value,
he cannot simulate it in a consistent way.

Let Π be a W-OfD-secure chat-protocol. Then we define
a protocol Π′ which only differs from Π in that every party
P samples a random bitstring bs whenever she joins a
group for the first time and appends it to all packages that
she sends over the network for messages in that group. All
other parties ignore bs.

Π′ is not HFI-OfD-secure since the judge J can output
an operating instruction in which P has to execute both
an exp and a ch SndM-action in the same group, by sep-
arating it with a hidden full interaction. Upon receiving
the transcript, J can simply look at these two messages
and check whether the bitstrings match. If b = 0 than
the entire transcript is real and given the construction,
the bitstrings match. If b = 1 the simulator has no way
of knowing which bitstring was used in the real execution
and therefore has to guess; this guess will be wrong with
a probability that is exponentially close to 1 in the length
of the bitstring. Thus any judge that outputs 0 if the
bitstrings match and 1 otherwise, will win the distinction
game with a probability greater than 1/2.

Π′ is however still W-OfD-secure: Given the definitions
of disjoined and the OfD game, any operating instruction
that contains both ch- and exp-actions in the same group
causes an abort. Therefore any bs that S has to generate
will be in a different group and independent of those that
P generates. Because of this S can simply sample his
bitstrings from the same distribution. Since S can also
simulate the remaining parts of the protocol (since they
are identical to Π), Π′ is W-OfD-secure.

Given this, the existence of a W-OfD-secure protocol
implies the existence of a W-OfD-secure protocol that is
not HFI-OfD-secure, therefore W-OfD-security does not
imply HFI-OfD-security.

B.3. Proof of Theorem 3

Theorem 3. W-OfD is strictly stronger than naive offline
deniability.

Proof. “W-OfD ⇒ N-OfD ”: We can convert every judge
J that attacks N-OfD-security into a judge J ’ that at-
tacks W-OfD-security with the same success probability
and essentially the same runtime. The judge J ’ simply
forwards all messages between J and the W-OfD game.

The instruction-list il that J outputs is disjoined be-
cause it only contains ch and ar-actions: Given the def-
inition of disjoined, state-disassociations are only ever re-
quired if actions of two different types are performed in
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the same group. With il this is never the case; thus il is
properly disjoined and accepted by the W-OfD-challenger.

Following that the challenge-transcripts ts are gener-
ated in exactly the same way and J ′ has to output the
exact same value as J . As such this translation between
the games is perfect, has only a tiny (clearly polynomial)
overhead and J ′ wins exactly when J is a successful judge
in the weak offline deniability game. Therefore W-OfD-
security implies N-OfD-security.

“N-OfD 6⇒ W-OfD ”: Our core idea here is to define
a protocol in which every user P appends a random bit-
string bs to all her messages in all groups. In a fully real
transcript all values of bs are then equal, but since the
simulator does not receive that value, he cannot simulate
the groups with ch actions in a consistent way.

Let Π be an N-OfD-secure chat-protocol.
We define a protocol Π′ which only differs from Π in

that every party P samples a random bitstring bs and
appends it to the package of each SndM-action she per-
forms. All other parties ignore bs.

Π′ is not W-OfD-secure since the judge J can output
an operating instruction in which P has to execute both
an exp and a ch SndM-action.

Upon receiving the transcript, J can simply look at any
two such messages of the same user and check whether the
bitstrings match. If b = 0 than the entire transcript is real
and given the construction, the bitstrings match. If b = 1
the simulator has no way of knowing which bitstring was
used in the real execution and therefore has to guess; this
guess will be wrong with a probability that is exponen-
tially close to 1 in the length of the bitstring. Thus any
judge that outputs 0 if the bitstrings match and 1 oth-
erwise, will win the distinction game with a probability
greater than 1/2.

Π′ is however still N-OfD-secure: Given the definition
of N-OfD-security, the transcript that J receives is either
entirely simulated or entirely real. Because of this S can
simply sample bs from the same distribution as P. Since
S can also simulate the remaining parts of the protocol
(since they are identical to Π) Π′ is N-OfD-secure.

Given this, the existence of a W-OfD-secure protocol
implies the existence of a N-OfD-secure protocol that is
not W-OfD-secure, therefore N-OfD-security does not im-
ply W-OfD-security.

B.4. Proof of Theorem 5

Theorem 5. Σ is complete in the sense of Definition 22.

Proof. Given the structure of the completeness-game and
the conditions of its abort-case, the challenge-signature is
less than V epochs old and the current epoch e is not
past the lifetime of the key (e < E ). Furthermore the
structure of the game also implies that the epoch of the
challenge-signature is not a future one.

Given that the game can only be won if either b0 or b1
is set to false.
b0 is the result of the verification of σ̂ under p̂k . σ̂

was honestly generated for the exact message that is now
being verified. The completeness of Σ̂ therefore implies
that b0 = 1.

b1 is the result of the verification of σ under pk . σ
was honestly generated for the exact message that is now
being verified. The completeness of Σ therefore implies
that b1 = 1.

Combined this means that ¬(b0 ∧ b1) is always false,
therefore there is no adversary with a higher chance than
0 of winning the completeness-game, therefore Σ is com-
plete.

B.5. Proof of Theorem 6

Theorem 6. Σ is unforgeable in the sense of Defini-
tion 16 with:

AdvEEUF-CMA
Σ,E ,V ,F

(
1λ, ∆t

)
≤E ·


E · AdvPRFH,APRF

(
1λ
)

+ V · AdvIND-NMA
TL,AIND-NMA

(
1λ, V ·∆t

)
+ AdvFS-EUF-CMA

Σ̂,E ,A4

(
1λ
)

+ AdvEUF-CMA
Σ,A5

(
1λ
)


Proof. Let E be the total number of epochs. We will show
that our scheme is secure using game-hopping:

Let Game 0 be the original EEUF-CMA-game and
Pr [break0] be the probability that a forger F succeeds
in presenting a forgery.

For Game 1 we guess the epoch e for which the forger
will be successful in creating a forgery and abort if this is
not the case. Since signatures are valid for V epochs, this
means that this abort will happen by the end of epoch
e + V . Our guess will be correct with probability E−1,
giving us:

Pr [break0] ≤ E · Pr [break1]

In Game 2 we replace the results of all evaluations of
H(re, ·) with random values. In order to do this, we have
to replace all later values of r as well in reverse order,
using the PRF-assumption for H.

Let Game 2.E := Game 1. For all i in {E − 1, . . . , e}
perform the following replacement: (Note that the second
number in the game labels identifies the epoch that is
modified and is thus counting down instead of up.)

In Game 2.i we replace the results of all evaluations of
H(ri+1, ·) with random values. To show that this replace-
ment is sound we initialize a PRF-challenger and use the
oracle it provides instead of computing H directly. This
replacement is sound as by Game 2.i + 1 ri+1 is a truly
random value. If the challengers internal bit is 0 than we
are in Game 2.(i+ 1), otherwise we are in Game 2.i. We
can therefore convert any adversary capable of detecting
this change into an adversary A2.i capable of breaking the
PRF-security of H:

Pr [break2.i+1] ≤ Pr [break2.i] + AdvPRFH,A2.i

(
1λ
)

Since there are at most E hops like this, we conclude
that:

Pr [break1] ≤ Pr [break2] + E · AdvPRFH,A2

(
1λ
)

In Game 3 we encapsulate random strings in
tle, . . . , tle+V−1 instead of the secrets in question. To
do this we need V almost identical sub-hops. Let
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Game 3.V := Game 2. For all i in {V −1, . . . , 0} perform
the following replacement: (Note that the second number
in the game labels is again counting down.)

In Game 3.i we replace the value encapsulated in tle+i
with a random string. This is a sound replacement due
to the temporal hiding property of the time lock puzzle:
To show this we initialize a hiding-challenger and query it
with rt||ŝk t as m0 and a random string of the same length
as m1. This replacement is sound since the randomness
used to generate the time lock puzzle is actually random
by Game 3.(i + 1) and since the overall security-game
ensures that the puzzle is not older than V · ∆t. If the
challengers internal bit is 0 then we are in Game 3.(i+1).
Otherwise the output is the encapsulation of a random
value and we are in Game 3.i. Any adversary capable of
distinguishing these two games can therefore be turned
into an adversary A3.i against the hiding property of the
time lock puzzle and we have:

Pr
[
break3.(i+1)

]
≤ Pr [break3.i]+AdvIND-NMA

TL,A3.i

(
1λ, V ·∆t

)
By defining Game 3 := Game 3.0 and combining these

sub-hops, we get:

Pr [break2] ≤ Pr [break3] + V · AdvIND-NMA
TL,A3

(
1λ, V ·∆t

)
In Game 4 we modify the key-generation as follows:

After setting up r and skr we compute re′ , pke′ , ske′ ,
tle′ for all epochs e′ ∈ {e − V + 1, . . . , e + V } directly.
After that we initialize a FS-EUF-CMA-challenger for the
forward-secure signature scheme and receive its public key

p̂k which we will use instead of generating our own. Then
we request the signatures on our bottom level public keys.
For this we first ask the challenger to perform E−e−V +1
key-updates. For each i ∈ {V − 1, . . . , 0} we then

• request a signature σ̂e+i on pke+i ||e + i ||re+i−V
||tle+i−V and then

• request a key-update.

Then we request the updated secret key ŝke−1. Using this

key we can set up ŝk for the first e−1 epochs and complete
the key-generation as normal. For the first e − 1 epochs
we leave Σ.evolve and Σ.sign unchanged. From the e’th
epoch onwards we modify Σ.evolve to use the respective
σ̂e′ and tle′ that we prepared during the key-generation
instead of computing them honestly and set ŝk ’ to ⊥ as it
is no longer needed: By Game 1 no more evolutions are
performed after the e + V ’th epoch and Σ.sign does not
use that key. All values that are given to the adversary are
still sampled from the same distributions as in Game 4,
therefore this part of the change is perfectly undetectable.
If the adversary presents a valid forgery for epoch e, we
check whether the top-level signature is equal to σ̂e. If it
is not, we can forward it to the FS-EUF-CMA-challenger
and win the FS-EUF-CMA-game and abort. Otherwise we
proceed as before. The difference between the games is
therefore perfectly indistinguishable unless F manages to
forge a top-level signature. In other words any adversary
capable of detecting this change can be converted into
an adversary A5 capable of breaking the FS-EUF-CMA-
security of Σ̂:

Pr [break3] ≤ Pr [break4] + AdvFS-EUF-CMA
Σ̂,E ,A4

(
1λ
)

In Game 5 we lastly consider the case in which the ad-
versary attacks the bottom-level scheme: When it is time
to compute pke and ske we instead initialize an EUF-CMA
challenger for the bottom signature-scheme and use the
challenge public key as pke. This replacement is sound
as the randomness used for the key-generation algorithm
is true randomness by Game 2. Whenever we need to
sign a message using ske we instead request the signature
from the challenger. Once the forger presents us with a
valid forgery the top-level signature is by Game 4 the
one that we created during the key-generation phase and
therefore not new. Since the new signature is by assump-
tion fresh this means by the structure of the scheme, that
the bottom-level signature is fresh. Therefore it can be
forwarded to the EUF-CMA challenger who will accept
it. Therefore any adversary capable of winning Game 5
can be converted into an adversary A6 that has the same
probability of breaking the bottom-level signature scheme
and we find:

Pr [break5] = AdvEUF-CMA
Σ,A5

(
1λ
)

Combining these, we get that for all forgers F :

AdvEEUF-CMA
Σ,E ,V ,F

(
1λ, ∆t

)
≤E ·


E · AdvPRFH,APRF

(
1λ
)

+ V · AdvIND-NMA
TL,AIND-NMA

(
1λ, V ·∆t

)
+ AdvFS-EUF-CMA

Σ̂,E ,A4

(
1λ
)

+ AdvEUF-CMA
Σ,A5

(
1λ
)


Where APRF is the adversary with the highest advan-

tage among all A2.i and AIND-NMA is the adversary with
the highest advantage among all A3.i. This means that if
H, TL, Σ̂ and Σ provide the respective security notions,
then Σ is unforgeable in the sense of EEUF-CMA.

C. Epochal Group Chat

Theorem 4. Let Π be a chat-protocol for which the fol-
lowing requirements hold:

1. A hidden full interaction (HFI) causes a perfect sate
disassociation.

2. Π only uses the secret key of a simple (EUF-CMA-
secure) signature-scheme as long-term secret.

3. Π works with every EUF-CMA-secure signature
scheme.

4. Π only uses the longterm secret key to create signa-
tures with the regular signing algorithm.

5. There exists a time period tΠ such that Π never ver-
ifies a signature more than t after its creation.

6. Π does not use any oracles that cannot be efficiently
simulated.

Then the protocol Π∗ that only differs from Π in that the
conventional signature-scheme is replaced with an epochal
signature-scheme Σ with parameters so that (V −1)·∆t ≥
tΠ is HFI-OfD-secure.
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We need Requirements 1 and 2 to ensure that nothing
besides the signatures prevents Π from being deniable.

The purpose of Requirement 3 is to ensure that the
signature is not used in a way that requires more structure
than is guaranteed by EUF-CMA. A protocol that assumes
that the signature has the form of a group element, that is
then used as such in further computations can for example
not be generically replaced with any epochal signature
scheme and is therefore excluded by this requirement.

This is similar to Requirement 4, which exists to ensure
that no entropy of the secret key, that may be unaccessible
to the simulator is used to modify behaviour that differs
from the simulator who does not know that key.

Requirement 5 is necessary to ensure that the protocol
keeps working with epochal signatures, as their expira-
tion would otherwise mean that signatures that should
be successfully verified would fail in that verification.

Requirement 6 is necessary to allow the undetected
modification of the game during the proof: In some in-
stances it may be necessary to call those oracles at dif-
ferent times than in a real execution which might allow
the judge to detect changes. We don’t believe that this
will cause problems for most protocols, and expect that
it might be possible to weaken this requirement, but it is
a necessary restriction.

C.1. Completeness

Since Requirement 5 ensure that all signatures are veri-
fied before they are expired and since EEUF-CMA is es-
sentially identical to EUF-CMA before that and since Re-
quirement 3 ensures that replacing the signature scheme
will not cause breakage in other parts of the protocol, Π∗

retains the completeness of Π.

C.2. Authenticity

The authenticity of Π∗ follows from the authenticity of
Π and Requirement 5: Since all epochal signatures are
verified within their validity-period during which their
unforgeability-notion is essentially identical to EUF-CMA
every security-argument for authenticity works com-
pletely analogous.

C.3. Deniability

Intuitively the deniability of the scheme is primar-
ily a consequence of the deniability of the epochal
signature-scheme, Requirement 2 that all other secrets are
ephemeral and can thus be sampled by a simulator and
Requirement 1 that demands that Π is disjoined under
hidden full interactions. Most of the other requirements
boil down to “the protocol does nothing weird or unusual”
and are therefore less important for a first intuition.

In order to define our simulator S we first introduce
the utility-algorithm update group (Algorithm 8) that S
will use to separate different ch-segments and disassociate
the state. Intuitively it has every party that stays in the
group send an empty message (ε) and adds and removes
all other users as needed.

We note that update group does not use the secret keys
that are provided as part of the state but instead receives
them as an explicit argument. This is in order to allow the
use of keys that are, for the purposes of the simulation,
equivalent to the real ones but not necessarily identical.

Algorithm 8: update group updates a group
to a new partial group state and causes a full
interaction.

1 fun update group(st , gr′,SK ):
2 gr := st .G[gr′.IDgr]
3 A ←$ G

∗
gr

4 il := []
5 for U ∈ Ggr′ \Ggr:
6 il ||=(A, (Add, gr,U), time, hid)

7 for U ∈ Ggr \Ggr′ :
8 il ||=(U , (Leave, gr), time, hid)

9 for U ∈ Ggr ∩Ggr′ :
10 il ||=(U , (SndM, gr, ε), time, hid)

11 , st ′ := exec (st , il)
12 return st ′

We add as Lemma 1 that update group causes a sate
disassociation in the target-group:

Lemma 1. The algorithm update group, as defined in Al-
gorithm 8, when called with a starting state st, an update-
group-description gr′, a list of secret-keys SK and a time-
point time, causes a sate disassociation in the group iden-
tified by IDgr′ .

Proof. It follows directly from the definitions that
update group causes a hidden full interaction in that
group.

With that the statement follows directly from Require-
ment 1.

This leads to our main-theorem of this section:

Theorem 8. Π∗ offers HFI-OfD-deniability under the fol-
lowing conditions, where e is the last epoch for which the
challenge instruction list contains an action:

• The simulator has access to pinfoe for all parties.

• The last ch-action that S has to simulate occurs in
epoch e−V or earlier.

Proof. We define S as depicted in Algorithm 9, where we
summarize the pinfoe’s of all parties in the set PIe that
contains them in tuples with the matching public-keys.

The only information that S receives beyond what he
is given in the deniability game is PIe , which is in line
with Condition 8. We consider this condition plausible,
as we require that all public epoch information is made
publicly available. Formally this could be modelled as
putting it onto a global bulletin-board with unrestricted
read-access.

As exec is the only black-box algorithm that S exe-
cutes and since we exec is efficiently computable (for-
mally: exec ∈ PPT) S clearly runs in polynomial time
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Algorithm 9: The simulator S for Π∗.

1 fun S(PK , simil,st ,PIe):
2 SK ∗ := {extract sk(pk , pinfoe)|(pk , pinfoe) ∈

PIe}
3 U := list of all users mentioned in simil,st

4 st := (U, ∅,PK ,SK ∗, ∅)
5 ts := ε
6 for x ∈ simil,:
7 if x is instruction:
8 ts ′, st := exec (st , [x])
9 ts || = ts ′

10 else:
11 st := update group(st , x,SK , )

12 return ts

with regards to max (λ, |simil,st |) and is thus itself a PPT-
algorithm.

With this we now show that the transcript generated
by S is information-theoretically indistinguishable from a
real one. For this we will use game-hopping: We start by
looking at the output-distribution of J at the end of the
game, starting with the case where the entire transcript
that she receives is real (b = 0). After this we will modify
the game that J plays in a way that is undetectable by
her, until the transcript she receives is partially generated
by S (b = 1). Since J is unaware of any of these changes,
her output-distribution is unchanged, which means that it
is independent of b. This in turn implies that her chance
of answering with the correct value of b cannot be higher
than achievable by random guessing and that Π∗ is there-
fore HFI-OfD-secure. We remark here that looking at J ’s
outputs instead of the return-value of the experiment may
appear unusual but is intentional.

Let Game 0 be the HFI-OfD-game with b = 0, aka the
game in which the entire transcript is real. Let further-
more OutDistJ ,0 be the distribution of the judge’s guess
for b.

Let e be the epoch in which il contains the last ch-
action. In Game 1 we delay the execution of all ac-
tions in the HFI-OfD-game until e’th epoch, then per-
forms them all without delays. This can be done as Re-
quirement 6 allows the challenger to simulate any oracles
that the protocol might use efficiently. As the actual out-
put of the protocol is not affected by this change, we get
OutDistJ ,1 = OutDistJ ,0.

In Game 2 we execute ilch twice in parallel. We will
henceforth call these the “left” and the “right” execu-
tion. Initially only the left execution is used in the actual
game, that is both the exp- and the ch-transcript that J
gets are taken from its execution. Over the next game
hops we will modify these executions so that the left one
becomes an honest execution of ilar and that the right
one becomes the simulator. So far this is however a per-
fectly undetectable change from J ’s perspective and we
get OutDistJ ,2 = OutDistJ ,1 = OutDistJ ,0.

In Game 3 we modify the game so that the transcript
of the ch actions is taken from the right execution of il ,
whereas the transcript of the exp actions is still taken from

the left. We perform this change on a per-group basis,
with one sub-game per group. Let Game 3.0 := Game 2,
then for each group gri we define Game 3.i as follows:

Let n be the number of longest segments in il , in
which group gri contains only ch actions. We will now
call each of these segments a ch-segment. With this we
now perform n sub-sub-games to replace the left tran-
scripts of these ch-segments with the right transcripts.
Let Game 3.i.n = Game 3.(i− 1).0 and Game 3.1.n =
Game 3.0.

In Game 3.i.j we replace the left transcript of the j’th
ch-segment with the right transcript. We point out that
by the definition of the HFI-OfD-game every ch-segment
is embraced by hid-segments that contain hidden full in-
teractions. Intuitively we will flip the left and the right
thread of execution twice, so that the right one is on the
left side during the ch segment and the points of contact
are in the hid segments.

We will use two essentially identical sub-sub-sub-hops
to show that this change is undetectable: First we use the
left thread of execution as the right one (and the other
way around) after the completion of the i’th ch segment
(this changes there roles from then on). To show that this
replacement is sound we initialize a state disassociation
challenger C and give it the states that result on the left
and the right from executing the ch segment as well as
the instruction sub list of following hid segment, gri and
SK and proceed the execution using C’s first output for
the left side and the second output for the right side.

This replacement is sound because both states are by
the definition of the game equivalent and the instruction-
lists are identical and consistent. If C samples b = 0
then this we are in Game 3.i.(j − 1), otherwise in Game
3.i.j.1, getting OutDistJ ,3.i.j.1 = OutDistJ ,3.i.(j−1) =
OutDistJ ,0.

We repeat the exact some replacement for the hid seg-
ment before the ch segment and get OutDistJ ,3.i.j =
OutDistJ ,3.i.j.1 = OutDistJ ,0 We remark that the first
and the last ch segment might not be preceded/succeeded
by a hid segment; in that case we simply leave out the
respective sub-sub-sub-hop, which does exactly what we
want in that case.

Let |st .G| =: m, then we define Game 3 :=
Game 3.m.0 and get: OutDistJ ,3 = OutDistJ ,2 =
OutDistJ ,0.

In Game 4 we reconnect the ch-segments in the right
execution by using update group (Algorithm 8) instead of
the non-ch-actions. We do this on a per-group basis, with
one sub-game per group. Let Game 4.0 := Game 3, then
for each group gri we define Game 4.i as follows:

Let n be the number of ch-segments in group gri. We
perform n sub-sub-games to connect these directly with
each other. Let Game 4.i.n = Game 4.(i− 1).0 and
Game 4.1.n = Game 4.0 and note that we again count
the last variable downwards.

Let st be the state that results from executing the last
instruction of the j − 1’th ch-segment of gr or the empty
state if no such state exists. Let st ′ be the state before
the first instruction of the j’th ch-segment. In Game 4.i.j
we replace st ′ with st ′′ which we define to be the result
of executing update group(st , st ′gri .ps,SK )

22



To show that this replacement is sound, we initialize a
state disassociation challenger C and call it with st , il0,
st , il1 and gri , where il0 and il1 are defined as follows:
The instruction list il0 contains all non-ar instructions
between st and st ′. The instruction list il1 is the output
of update group when called with the arguments stated
above. We then replace st ′ with the first state that C out-
puts. This replacement is sound as il0 contains a hidden
full interaction by the definition of the HFI-OfD game,
il1 contains a hidden full interaction by the definition
of update group, both are consistent with their starting
states and result by construction in equivalent states. If
C’s bit b is 0, then the resulting first state was generated
like the one in Game 4.i.(j − 1) and we are in that game.
If C’s bit b is 1, then the resulting first state was generated
like st ′′ and we are in Game 4.i.j. Since Π∗ is by Require-
ment 1 perfectly separated under hidden full interactions,
we get: OutDistJ ,4.i.j = OutDistJ ,4.i.j−1 = OutDistJ ,0.

Let |st .G| =: m, then we define Game 4 :=
Game 4.m.0 and get: OutDistJ ,4 = OutDistJ ,3 =
OutDistJ ,0.

In Game 5 we modify the left execution to perform
the ar-actions instead of the ch-actions. We do this on
a per-group basis, with one sub-game per group. Let
Game 5.0 := Game 4, then for each group gri we define
Game 5.i as follows:

Let n be the number of exp-segments in group gri.
We perform n sub-sub-games to connect these directly
with each other. Let Game 5.i.n = Game 5.(i− 1).0 and
Game 5.1.n = Game 5.0 and note that we again count
the last variable downwards.

Let st be the state that results from executing the last
instruction of the j−1’th exp-segment of gr or the empty
state if no such state exists. Let st ′ be the state before
the first instruction of the j’th exp-segment. Let il∗ be
the instruction list between st and st ′ (→at the moment
the game executes il∗ch). In Game 5.i.j we replace the st ′

with st ′′ which we define to be the result of executing il∗ar
instead of il∗ch.

To show that this replacement is sound, we initialize a
state disassociation challenger C and call it with st , il∗ch,
st , il∗′ar and gri , where il∗′ar is identical to il∗ar, except that
the types of the ch- and ar-instructions are switched. We
then replace st ′ with the state that C outputs. This re-
placement is sound as both executable instruction lists
contain a hidden full interaction by the definition of the
HFI-OfD game, both are consistent with their starting
states and result by construction in equivalent states. If
C’s bit b is 0, then the resulting state was generated like
the one in Game 5.i.(j−1) and we are in that game. If C’s
bit b is 1, then the resulting state was generated like st ′′

and we are in Game 5.i.j. Since Π∗ is by Requirement 1
perfectly separated under hidden full interactions, we get:
OutDistJ ,5.i.j = OutDistJ ,5.i.j−1 = OutDistJ ,0.

Let |st .G| =: m, then we define Game 5 :=
Game 5.m.0 and get: OutDistJ ,5 = OutDistJ ,4 =
OutDistJ ,0.

In Game 6 we extract secret keys from the final pub-
lic epoch information PI e using extract sk (Algorithm 6).
The resulting secret keys are equivalent for the first e−V
epochs, which are by assumption the only epochs in which

secret keys are used as a result of ch-statements.

To show that this replacement is sound, we use multiple
sub-games: Let Game 6.0 be equal to Game 5.

In Game 6.i we replace the i’th signature σ that the
challenger has to generate with for the ch-transcript with
a simulated one. To do so we extract a secret key from
the public epoch information pinfoe of the signer and use
extract sk (Algorithm 6 to acquire a secret key that is
equivalent to the real one for the first e − V epochs.)
To show that this replacement is sound, we initialize a
deniability-challenger C (running at regular time) against
Σ and request a key-pair that we will use for the party
P issuing that signature instead of generating a fresh it
ourselves. Let m be the message that σ has to sign and
e′ the epoch in which it has to be generated. We give the
tuple (m, e′,V ) to C who will output a challenge-signature
just in time for its use in the protocol execution (as that
execution is delayed by V epochs). If C’s challenge-bit is
0, then the signature is real and we are in Game 6.i− 1,
otherwise it is simulated and we are in Game 6.i. Since
Σ offers perfect deniability, distinguishing these cases is
impossible and we get OutDistJ ,6.i = OutDistJ ,6.(i−1) =
OutDistJ ,0.

By defining Game 6 := Game 6.n we therefore get
OutDistJ ,6 = OutDistJ ,5 = OutDistJ ,0.

In Game 7 we note that the simulation at this point
only uses the long-term public-keys PK , the public epoch-
informations of the last epoch PI e, the ch-instructions
and the partial groups states that precede them if they are
preceded by a non-ch-instruction in the group in question.
The later of these are exactly equivalent to the simulation
instruction based on the starting state and the overall in-
struction list. By separating this part from the rest of
the HFI-OfD-challenger, we get exactly the simulation-
algorithm S that we defined in Algorithm 9. This is
just a conceptual change, so OutDistJ ,7 = OutDistJ ,6 =
OutDistJ ,0.

Finally, in Game 8 we note that the final state that is
given to J is generated by running ilar. This means that
this game is in fact identical to the original HFI-OfD-game
when b = 1. Since this is again just a conceptual change
we get OutDistJ ,8 = OutDistJ ,7 = OutDistJ ,0.

From this we conclude that the distribution of J ’s out-
puts in the HFI-OfD-game is independent of the value of
b and that Π∗ is therefore HFI-OfD-secure.

D. Further Techniques

Our epochal signatures are designed to work as drop-in
replacement for regular signatures. Aside from the ease
of the conversion of the protocol in question, this also has
the advantage that they are usable in other settings than
just chats, such as explicitly authenticated key-exchanges.

This generic approach comes at the cost of not being
able to exploit the properties that many chat-schemes
have. In this section we will present further techniques
that can be used to improve deniability in specialized set-
tings.
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D.1. Three-Level Signatures

Consider the most basic version of epochal signatures,
namely a two-level signature-chain for which the keys of
the second level get published after expiration. Naturally
this scheme can be extended to a three levels. In real-
time settings this can allow for extremely short validity-
durations of the second level: Once the verifier is con-
vinced the key-pair of the bottom-layer belongs to its
owner, there is no more need to verify the medium layer.

D.2. Bottom-Level Signature-Chains

Consider the relatively short validity of the bottom level
signatures and their use in a context in which all intended
receivers see all created signatures. The first aspect means
that the main disadvantage of stateful signatures is not re-
ally meaningful in this scenario. The second aspect means
that we can use linear signature chains with one-time sig-
natures where every signature signs the message and the
next public-key. Normally this would be too inefficient,
but in the specific circumstances that we consider here
this is not a problem: Each receiving party just has to
maintain a trusted, “current” public key per other party
and update it whenever she verifies a message successfully.

The first big advantage of this change is that one-time-
signatures can often be much more efficient then regular
signatures, especially in a post-quantum setting.

The second one is that old private keys can be published
immediately after all intended receivers received and suc-
cessfully verified the new key. If the publication is per-
formed as an active action and not bound to time, this can
even provide some protection against some online-judges:
Since only members of a group know whether a bottom-
layer key is expired, forwarding messages to people not in
the group does not provide proof that the keys are still
valid.

D.3. Signing Commitments

If we use the above solution with signature-chains in com-
bination with few-times signatures, which might be desir-
able for efficient post-quantum security, there is a small
risk that re-authenticating the bottom-level could require
more signatures than safely available: If a user U is a
very active writer in multiple channels with a high num-
ber of users joining within en epoch, all these users need
to verify U ’s latest public key; this means that they either
have to verify the entire signature-chain, which would re-
quire them to receive all sent messages or to get a fresh
signature from the mid-level key.

Given all messages of the current epoch to a user may
however be very undesirable for confidentiality; One way
to resolve this is with the use of commitments. Instead of
signing the messages themselves, U signs a perfectly hid-
ing commitment on the message and publishes the signa-
ture together with the opening-information for that com-
mitment. Since the commitment is perfectly hiding it
can be given to everyone, including parties who joined
late without revealing anything about the content of U ’s
past communication. We point out that the signature

still provides unforgeability, as the ability to present a
fresh plaintext-opening-information-pair for the commit-
ment would by definition break the binding-property of
the commitment-scheme.

In our opinion this technique is probably only useful if
the goal is to instantiate epochal signatures with purely
hash-based signature-schemes for reliable post-quantum-
security, which is one of the reasons why we did not look
into it further.

D.4. MAC in the Middle

Consider the actions performed on the middle-layer:

1. A user U signs the p̃k and sends the signatures to the
other users.

2. Those other parties verify the signatures.

3. U publishes the secret key for deniability.

It turns out that there is no reason why the last two steps
cannot be swapped: As long as the verifiers receive the
signature before the publication of the secret key, it re-
mains convincing even if it is only verified later.

This allows the following change: Instead of signing the
public-key of the bottom-layer with a signature-scheme,
a user can simply sign it with a MAC-scheme, share the
public-key together with the MAC, wait for confirmation
of all intended receivers that they received these values
and share the MAC-key.

This change has two main advantages: Firstly MACs
are usually a much more efficient primitive than signa-
tures, especially in a post-quantum setting. Secondly it
improves deniability since everyone who can verify the
MAC is also capable of forging it.

While it is in principle possible to use this technique
at the bottom-layer, we believe that it is not practical
for chats to do so, as it would cause possibly long delays
between the time when a message is received and the time
when it is verified. Outside of chats the efficiency-gain
may however be a valid trade-off.

In summary we consider this a very interesting tech-
nique for the middle-layer in chat-protocols, though it is
not suitable for a generic drop-in replacement for signa-
tures.
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