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Abstract
We present succinct and adaptively secure attribute-based encryption (ABE) schemes

for arithmetic branching programs, based on 𝑘-Lin in pairing groups. Our key-policy ABE
scheme has ciphertexts of constant size, independent of the length of the attributes, and
our ciphertext-policy ABE scheme has secret keys of constant size. Our schemes improve
upon the recent succinct ABE schemes in [Tomida and Attrapadung, ePrint ’20], which
only handle Boolean formulae. All other prior succinct ABE schemes either achieve only
selective security or rely on 𝑞-type assumptions.

Our schemes are obtained through a general and modular approach that combines
a public-key inner product functional encryption satisfying a new security notion called
gradual simulation security and an information-theoretic randomized encoding scheme
called arithmetic key garbling scheme.

© IACR 2020. This is the full version of a paper with the same title in the proceedings of
Asiacrypt 2020 published by Springer-Verlag.
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1 Introduction

Attribute-based encryption (ABE) [SW05] is an advanced form of public-key encryption for en-
forcing ne-grained access control. In the key-policy version, an authority generates a pair of
master public and secret keys mpk,msk. Given mpk, everyone can encrypt a message 𝑚 with
an attribute 𝑥 to get a ciphertext ct𝑥 (𝑚). Using the master secret key msk, the authority can
issue a secret key sk𝑦 tied to a policy 𝑦. Decrypting a ciphertext ct𝑥 (𝑚) using sk𝑦 recovers the
encrypted message 𝑚 if the attribute 𝑥 satises the policy 𝑦. Otherwise, no information about
𝑚 is revealed. The security requirement of ABE mandates collusion resistance—no information
of 𝑚 should be revealed, even when multiple secret keys are issued, as long as none of them
individually decrypts the ciphertext (i.e., the attribute satises none of the associated policies).

Over the past decade, a plethora of ABE schemes have been proposed for dierent expressive
classes of policies, achieving dierent trade-os between eciency, security, and assumptions.
Meanwhile, ABE has found numerous cryptographic and security applications. A primary de-
sirata of ABE schemes is eciency, in particular, having fast encryption algorithms and small
ciphertexts. It turns out that the size of ABE ciphertexts can be independent of the length of the
attribute 𝑥, and dependent only on the length of the message 𝑚 and security parameter—we say
such ciphertexts are succinct or have constant size (in attribute length). Proposed rst in [EMN+09]
as a goal, succinct ciphertexts are possible because ABE does not require hiding the attribute 𝑥,
and the decryption algorithm can take 𝑥 as input in the clear. Consequently, ciphertexts only
need to contain enough information of 𝑥 to enforce the integrity of computation on 𝑥, which
does not necessitate encoding the entire 𝑥.

Succinct ABE are highly desirable. For practical applications of ABE where long attributes are
involved for sophisticated access control, succinct ciphertexts are muchmore preferable. From a
theoretical point of view, succinct ciphertexts have (asymptotically) optimal size, as dependency
on the message length and security parameter is inevitable. From a technical point of view,
succinct ABE provides interesting mechanism for enforcing the integrity of computation without
encoding the input. So far, several succinct ABE schemes have been proposed [ALdP11,YAHK14,
Tak14,Att16,AHY15,ZGT+16,TA20], but almost all schemes either rely on non-standard assumption
or provide only weak security, as summarized in Tables 1 and 2.

Our Results. In this work, we rst construct a succinct key-policy ABE (KP-ABE) simultaneously
satisfying the following properties.

(1) Expressiveness.Expressiveness. Support policies expressed as arithmetic branching programs (ABPs).

(2) Security.Security. Satisfy adaptive security, as opposed to selective or semi-adaptive security.

(3) Assumption.Assumption. Based on the standard assumptions as opposed to, e.g., 𝑞-type assumptions.
Specically, our scheme relies on the matrix decisional Die–Hellman (MDDH) assump-
tion over pairing groups.

(4) Eciency.Eciency. Have succinct ciphertext.
Concretely, each ciphertext consists of 5 group elements when assuming SXDH, and 2𝑘 + 3
elements for MDDH𝑘 (implied by 𝑘-Lin). Decryption involves the same number of pairing
operations. Additionally, our scheme can work with the more ecient asymmetric prime-
order pairing groups.

Next, we construct ciphertext-policy ABE (CP-ABE) with the same properties. Here, the secret
keys are tied to attributes and ciphertexts to policies, and succinctness refers to having constant-
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Table 1: KP-ABE schemes with succinct ciphertext.
reference policy assumption adaptive |mpk| |sk| |ct| Dec

[ALdP11] MSP 𝑞-type 2𝑛 + 1 𝑚(𝑛 + 1) 3 3
[YAHK14] MSP 𝑞-type 𝑛 + 2 𝑚(𝑛 + 1) 2 2
[Tak14] MSP 2-Lin X 18(2𝑛 + 1) 6𝑚(𝑛 + 1) 17 17
[Att16] MSP 𝑞-type X 6𝑛 + 42 3𝑚(𝑛 + 3) + 9 18 18
[ZGT+16] MSP 𝑘-Lin X 2𝑘2 (𝑛 + 1) 2𝑘𝑚(𝑛 + 1) 4𝑘 4𝑘
[TA20] NC1 MDDH𝑘 X X 𝑘(𝑘 + 1) (𝑛 + 3) (𝑘 + 1)𝑚(𝑛 + 2) 2𝑘 + 2 2𝑘 + 2

Section 5 ABP MDDH𝑘 X X 𝑘(𝑘 + 2) (𝑛 + 2) (𝑘 + 1)𝑚(𝑛 + 2)+ 𝑚 2𝑘 + 3 2𝑘 + 3

MSP: monotone span programs. NC1: Boolean formulae. ABP: arithmetic branching programs.
𝑛 = attribute length, 𝑚 = policy size, 𝑝 = group order.
|mpk|, |sk|, |ct| counts non-generator elements in source groups.
Dec counts the number of pairing operations in decryption.
Schemes based on 𝑘-Lin can be based on MDDH𝑘 at the cost of a few more elements in mpk.
ABE for arithmetic span programs can be obtained by reduction to MSP [AHY15].

Table 2: CP-ABE schemes with succinct secret key.
reference policy assumption adaptive |mpk| |sk| |ct| Dec

[Att16] MSP 𝑞-type X 6𝑛 + 54 24 3𝑚(𝑛 + 3) + 15 24
[AHY15] ASP 𝑞-type X 𝑂(𝑛 log 𝑝) 𝑂(1) 𝑂(𝑚𝑛 log 𝑝) 𝑂(1)
[TA20] NC1 MDDH𝑘 X X 𝑂(𝑘2𝑛) 𝑂(𝑘) 𝑂(𝑘𝑚𝑛) 𝑂(𝑘)

Section 6 ABP MDDH𝑘 X X
𝑘(𝑘 + 1) (𝑛 + 4)

+ 𝑘 3𝑘 + 4 (𝑘 + 1)𝑚(𝑛 + 2)+ 𝑚 + 𝑘 + 1 3𝑘 + 4

size secret keys. Our scheme has keys consisting of 7 group elements based on SXDH and 3𝑘 + 4
based on MDDH𝑘.

Besides succinctness (4), achieving the strong notion of adaptive security (2) based on stan-
dard assumptions (3) is also highly desirable from both a practical and a theoretical point of
view. Prior to this work, only the recent construction of (KP and CP) ABE schemes by Tomida and
Attrapadung [TA20] simultaneously achieves (2)–(4), and their scheme handles policies expressed
as Boolean formulae. Our construction expands the class of policies to arithmetic branching pro-
grams, which is a more expressive model of computation. Our succinct ABE is also the rst
scheme natively supporting arithmetic computation over large elds,1 whereas all prior succinct
ABE schemes (even ones relying on 𝑞-type assumptions and/or achieving only selective security)
only work natively with Boolean computation. Lastly, we note that even when relaxing the ef-
ciency requirement from having succinct ciphertext to compact ciphertext, whose size grows
linearly with the length of the attribute, only a few schemes [KW19,GW20,LL20] simultaneously
achieve (2)–(4), and the most expressive class of policies supported is also ABP, due to [LL20].

Our Techniques. The recent work of [LL20] presented a general framework for constructing
compact adaptively secure ABE from MDDH. In this work, we improve their general framework
to achieve succinctness. The framework of [LL20] yields linear-size ciphertexts because it crucially
relies on function-hiding inner-product functional encryption (IPFE) [DDM16,LV16]. IPFE allows
issuing secret keys and ciphertexts tied to vectors v,u respectively, and decryption reveals their

1One can always convert an arithmetic computation into a Boolean one, which we consider non-native.
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inner product 〈u, v〉. The function-hiding property guarantees that nothing about u, v beyond the
inner product is revealed, which entails that ciphertexts and secret keys must have size linear in
the length of the vectors.

Towards succinctness, our key idea is relaxing function-hiding to a new and weaker guarantee,
called gradual simulation security, where only the vectors encrypted in the ciphertexts are hidden.
Such IPFE can have succinct (constant-size) secret keys and can be public-key. We use new ideas
to modify the framework of [LL20] to work with the weaker gradual simulation security and
obtain succinct ciphertexts. Furthermore, we extend the framework to construct ciphertext-
policy ABE, which is not handled in [LL20]. In summary, our techniques give a general and
modular approach for constructing succinct and adaptively secure (KP and CP) ABE fromMDDH.

Organization. In Section 1.1, we give an overview of how we construct our ABE schemes using
inner-product functional encryption (IPFE) schemes with gradual simulation security and dual
system encryption. We discuss related works in Section 1.2. Aer introducing the preliminaries
in Section 2, we dene gradual simulation security of IPFE and construct such an IPFE scheme in
Section 3. In Section 4, we dene 1-ABE and construct CP-1-ABE for ABP with succinct keys from
gradually simulation-secure IPFE with succinct keys. In Section 5, we show how to construct
KP-ABE with succinct ciphertexts using our CP-1-ABE and dual system encryption. In Section 6,
we construct CP-ABE with succinct keys similarly to our KP-ABE construction.

1.1 Technical Overview

In this section, we give an overview of our construction of succinct ABE schemes, following the
roadmap shown in Figure 1.

gradually simulation-secure
IPFE

piecewise secure
AKGS

CP-1-ABE
dual system
encryption KP-ABE

trivial

KP-1-ABE
dual system
encryption CP-ABE

Figure 1: The roadmap of our constructions.

1-ABE. The core of many ABE schemes is a 1-key 1-ciphertext secure secret-key ABE, or 1-ABE
for short. Our construction improves the recent 1-ABE scheme for ABP by Lin and Luo [LL20],
which achieves adaptive security but not succinctness.

Suppose we want decryption to recover the message 𝜇 ∈ ℤ𝑝 if (and only if) 𝑓 (x) ≠ 0 for
policy function 𝑓 : ℤ𝑛

𝑝 → ℤ𝑝 and attribute x ∈ ℤ𝑛
𝑝. This is equivalent to computing 𝜇 𝑓 (x) upon

decryption. The basic idea of the LL 1-ABE is that when a key (tied to 𝑓 , 𝜇)2 and a ciphertext (tied
to x) are put together, one can compute a randomized encoding of 𝜇 𝑓 (x), denoted by �𝜇 𝑓 (x),
which reveals 𝜇 𝑓 (x) and hence 𝜇 if 𝑓 (x) ≠ 0. Since in ABE, we do not try to hide 𝑓 or x, the

2The reason why we put the message 𝜇 in the key will become clear later in the overview.

3



randomized encoding only needs to hide 𝜇 beyond the output 𝜇 𝑓 (x), referred to as the partially
hiding property, rst introduced by [IW14]. Due to the weak security guarantee, partially hiding
randomized encoding can have extremely simple structure. In particular, LL dened a rened
version of such randomized encoding, called arithmetic key garbling scheme (AKGS), with the
following properties:

Linear Encoding.Linear Encoding. The encoding is in the form of�𝜇 𝑓 (x) = (
𝐿1(x), . . . , 𝐿𝑚(x)

)
,

where 𝐿𝑗 ’s are ane functions of x and the coecients of 𝐿𝑗 ’s are linear in the message 𝜇 and
the garbling randomness. 𝐿𝑗 ’s are called label functions and �𝑗 = 𝐿𝑗 (x) are called labels.
Linear Evaluation.Linear Evaluation. There is a procedure Eval that can compute 𝜇 𝑓 (x) from 𝑓 , x and the labels:

Eval( 𝑓 , x, �1, . . . , �𝑚) = 𝜇 𝑓 (x).

Importantly, Eval is linear in the labels.3

The basic security of AKGS is simulation security. There needs to be an ecient simulator
Sim that can perfectly simulate the labels given 𝑓 , x, 𝜇 𝑓 (x):

Sim( 𝑓 , x, 𝜇 𝑓 (x)) → (�1, . . . , �𝑚) ≡
(
𝐿1(x), . . . , 𝐿𝑚(x)

)
.

Since the label functions are ane in x thus linear in (1, x), the labels �𝑗 = 𝐿𝑗 (x) can be securely
computed using a function-hiding IPFE. In IPFE, keys isk(v) and ciphertexts ict(u) are gener-
ated for vectors v,u, and decryption yields their inner product 〈u, v〉 but nothing else. More
precisely, function-hiding says two sets of keys and ciphertexts encoding dierent vectors are
indistinguishable as long as they yield identical inner products:(

{isk𝑗 (v𝑗)}, {ict𝑖 (u𝑖)}
)
≈

(
{isk𝑗 (v′𝑗)}, {ict𝑖 (u

′
𝑖)}

)
if 〈u𝑖, v𝑗〉 = 〈u′𝑖, v

′
𝑗〉 for all 𝑖, 𝑗.

That is, all vectors no matter encoded in keys or ciphertexts are protected. Moreover, function-
hiding should hold even when these vectors are chosen adaptively by the adversary, depending
on previously observed keys and ciphertexts.

In the LL 1-ABE scheme, an ABE key consists of many IPFE keys encoding the coecients of
the label functions (also denoted by 𝐿𝑗), and an ABE ciphertext is an IPFE ciphertext encrypting
(1, x), as illustrated below in Real Algorithms. When they are put together, IPFE decryption
recovers exactly the labels �𝑗 = 𝐿𝑗 (x) = 〈𝐿𝑗 , (1, x)〉, from which we can recover 𝜇 𝑓 (x) using
the evaluation procedure. A technicality is that known IPFE are built from pairing groups, and
decryption only reveals 𝜇 𝑓 (x) in the exponent of the target group. Nevertheless, one can recover
𝜇 𝑓 (x) also in the exponent, thanks to the linearity of AKGS evaluation.

Intuitively, the LL scheme is secure since IPFE only reveals the labels, and AKGS security
guarantees only 𝜇 𝑓 (x) is revealed, given the labels. It is simple to formalize this idea in the se-
lective setting, where x is chosen before querying the key for 𝑓 . By the function-hiding property,
it is indistinguishable to hardwire the labels in the IPFE keys as follows.

REAL ALGORITHMS HYBRID{
ctx: ict ( 1, x )

sk𝑓 ,𝜇: {isk𝑗 ( 𝐿𝑗 )}𝑗∈[𝑚]

}
≈

{
ctx: ict ( 1 , x )

sk𝑓 ,𝜇: {isk𝑗 ( 𝐿𝑗 (x) , 0 )}𝑗∈[𝑚]

}
3In contrast, linear evaluation is impossible for fully hiding randomized encoding that hides x and 𝑓 .

4



Aer labels 𝐿𝑗 (x) are hardwired and label functions removed, AKGS security guarantees that the
labels only reveal 𝜇 𝑓 (x), and 𝜇 is hidden if 𝑓 (x) = 0. Observe that for selective security, we only
need hiding in the keys and not the ciphertext.

The above proof fails for adaptive security, in particular in the case where the secret key is
queried before the ciphertext (we will focus on this harder case below). At key generation time,
x is unknown and consequently the labels 𝐿𝑗 (x) are unknown. We also do not want to hardwire
all the labels in the ciphertext as that would make the ciphertext as large as the policy. LL solves
this problem by relying on a stronger security notion of AKGS called piecewise security:

• Themarginal distribution of �2, . . . , �𝑚 is uniformly random, and �1 can be reversely computed
from these other labels �2, . . . , �𝑚 and 𝑓 , x, by nding the unique �1 satisfying the constraint
of evaluation correctness.4

• The other labels are marginally random even given the coecients of all subsequent label
functions, i.e.,(

𝐿𝑗 (x), 𝐿𝑗+1, . . . , 𝐿𝑚

)
≡

(
𝑧, 𝐿𝑗+1, . . . , 𝐿𝑚

)
for 𝑧

$← ℤ𝑝, for all 𝑗 > 1.

The rst property implies a specic simulation strategy: Simply sample �2, . . . , �𝑚 as random,
then solve for �1 from the correctness constraint. This strategy is particularly suitable for the
adaptive setting, as only the simulation of �1 depends on the input x. Thus, a conceivable simu-
lation strategy for 1-ABE is to hardwire �2, . . . , �𝑚 in the secret key and �1 in the ciphertext. This
would not hurt the compactness of the ciphertext.

Proving the indistinguishability of the real and the simulated worlds takes two steps. In the
rst step, the rst label �1 = 𝐿1(x) is hardwired into the IPFE ciphertext ict, and then changed
to be reversely computed from the other labels and 𝑓 , x, which is possible since by the time we
generate ict, we know both 𝑓 and x. In the second step, each isk𝑗 for 𝑗 > 1 is, one by one, switched
from encoding the label function to encoding a random label. To do so, the 𝑗th label �𝑗 = 𝐿𝑗 (x) is
rst hardwired into ict, aer which it is switched to random relying on piecewise security, and
lastly moved back to isk𝑗. Observe that the proof uses two extra slots in the vectors (one for �1,
the other for each �𝑗 temporarily) and relies on hiding in both the keys and the ciphertext.

Lightweight Alternative to Function-Hiding. In a function-hiding IPFE, keys and ciphertexts
must be of size at least linear in the vector dimension. This means the resulting ABE scheme
can never be succinct. Our rst observation is that function-hiding IPFE is an overkill. Since in
ABE, x is not required to be hidden, it is quite wasteful to protect it inside an IPFE ciphertext.
Indeed, selective security of the LL scheme does not rely on hiding in the ciphertext.

Our idea to achieve succinctness is to use a non-function-hiding IPFE scheme instead, e.g.,
public-key IPFE. Usually the vector in the key is included verbatim as part of the key, and the
“essence” of the key (excluding the vector itself) could be signicantly shorter than the vector.
Indeed, many known public-key IPFE schemes [ABDP15,ALS16] have succinct keys.

Since the coecients of the label functions (which contains information about 𝜇 and the gar-
bling randomness)must be hidden for the 1-ABE to be secure, and x is public, we should encrypt
the coecients of the label functions in IPFE ciphertexts and use an IPFE key for (1, x) to compute
the garbling. Since the message 𝜇 is together with 𝑓 and the generation of IPFE ciphertexts is

4The original denition only requires �1 to be reversely sampleable. In [LL20], it is shown that the
two are equivalent for piecewise security, and we stick to the simpler denition in this overview. In the
full denition, �1 also depends on the computation result. For the purpose of this overview, the result is
always 𝜇 𝑓 (x) = 0 as the adversary is restricted to non-decrypting queries.
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public-key, the 1-ABE scheme is more like a public-key ciphertext-policy ABE than a secret-key ABE,
except we only consider security given a single key for some attribute x. Therefore, we redene
1-ABE as 1-key secure public-key CP-ABE,5 and the idea is to construct it from a public key IPFE
and AKGS as follows:

skx: isk ( 1, x )
ct𝑓 ,𝜇: {ict𝑗 ( 𝐿𝑗 )}𝑗∈[𝑚]

}
IPFE−−−−−−−−→

decryption
{〈𝐿𝑗 , (1, x)〉 = 𝐿𝑗 (x) = �𝑗}𝑗∈[𝑚]

AKGS−−−−−−−−→
evaluation

𝜇 𝑓 (x).

Our CP-1-ABE is x-selectively secure if the underlying IPFE is indistinguishability-secure, similar
to the selective security of LL scheme.

However, it is not immediate that we can prove adaptive security of this new scheme. The
LL adaptive security proof requires hardwiring �1 and one of �𝑗 ’s with x, which is now encoded
in the secret key without hiding property. Taking a step back, hardwiring a label is really about
removing its label function and only using the label, which is the inner product yielded by IPFE
decryption. Our idea is to use simulation security to achieve this goal. A simulator for a public-
key IPFE can simulate the master public key, the secret keys, and one (or a few) ciphertext,
using only the inner products, and the simulator can do so adaptively. Let us take simulating
one ciphertext as an example.

REAL SIMULATION
mpk

{isk𝑗 ( v𝑗 )}𝑗≤𝐽∗
ict ( u )
{isk𝑗 ( v𝑗 )}𝑗>𝐽∗

 ≈


m̃pk
{ĩsk𝑗 ( v𝑗 | ∅ )}𝑗≤𝐽∗
ĩct ( ∅ | {〈u, v𝑗〉}𝑗≤𝐽∗ )
{ĩsk𝑗 ( v𝑗 | 〈u, v𝑗〉 )}𝑗>𝐽∗


(★)

𝐽∗ is the number of keys issued before ciphertext generation. On the le are the honestly gen-
erated master public key, secret keys, and ciphertext. On the right is their simulation. The ver-
tical bar separates what the real algorithms use and what the simulator (additionally) use. Since
public-key IPFE completely reveals the key vectors,6 they are always provided to the simulator.
As for the other values:

• Before ciphertext simulation, there is no additional information supplied.

• When the ciphertext is simulated, the vector u is not provided, but its inner products with
already simulated keys are provided to the simulator.7

• Aer ciphertext simulation, when simulating a key for v𝑗, the inner product 〈u, v𝑗〉 is pro-
vided with v𝑗.

Observe that the values aer the vertical bar are exactly those computable using the functionality
of IPFE at that time, so in simulation, anything about the encrypted vector not yet computable by
the functionality of IPFE, simply does not exist (information-theoretically) at all. In the setting of

5This denition has the advantage of automatically being multi-ciphertext secure (if secure at all) over
the secret-key denition. It is also more convenient to use in reductions for full ABE.

6Anyone can encrypt the standard basis vectors using mpk, and use decryption algorithm to obtain
each component of the vector in a secret key.

7Though the number 𝐽∗ of inner products with already simulated keys is unbounded, since the vectors
{v𝑗}𝑗≤𝐽∗ in the keys are public, these inner products are determined by those with any maximal subset
of linearly independent v𝑗 ’s, the number of which will not exceed the dimension. As such, the simulated
ciphertext can still be compact.
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our CP-1-ABE, we will simulate an IPFE ciphertext to remove its corresponding label function and
only retain the label. Looking from the perspective of hardwiring, when we issue skx = isk(1, x)
aer we have created the ciphertext ct𝑓 ,𝜇 (in which ict𝑗 has been simulated), the inner product
�𝑗 is supplied to the simulator when we simulate isk, aer the simulation of ict𝑗. This means the
label �𝑗 is hardwired into isk.

Let us exemplify the proof of adaptive security in the more dicult case where skx is queried
aer ct𝑓 ,𝜇. First, we simulate ict1 so that the rst label is hardwired into isk.

REAL ALGORITHMS �1 HARDWIRED
ct𝑓 ,𝜇: ict1( 𝐿1 )

{ict𝑗 ( 𝐿𝑗 )}𝑗>1
skx: isk ( 1, x )

 ≈

ct𝑓 ,𝜇: ĩct1( ∅ | ∅ )

{ict𝑗 ( 𝐿𝑗 )}𝑗>1
skx: ĩsk ( 1, x | �1 = 𝐿1(x) )


(We omitted the master public key for brevity.) Note that ict𝑗 ’s for 𝑗 > 1 do not use ciphertext sim-
ulation but are created using the master public key (honest or simulated). Once �1 is hardwired,
we can instead solve for it from the correctness equation.

The second step is to switch ict𝑗 (𝐿𝑗) to ict𝑗 (�𝑗 , 0) for �𝑗 $← ℤ𝑝 one by one, i.e., to simulate �𝑗 as
random. To do so, we rst simulate ict𝑗 (hardwiring �𝑗 = 𝐿𝑗 (x) into isk), then switch �𝑗 to random
(via piecewise security), and lastly revert ict𝑗 back to encryption (not simulated), but encrypting
(�𝑗 , 0) instead.

BEFORE/AFTER SIMULATING �𝑗 �1, �𝑗 HARDWIRED
ct𝑓 ,𝜇: ĩct1 ( ∅ | ∅ )

{ict𝑗′ ( �𝑗′, 0 )}1< 𝑗′< 𝑗

ict 𝑗 ( 𝐿𝑗 / (�𝑗 , 0) )
{ict𝑗′ ( 𝐿𝑗′ )}𝑗′> 𝑗

skx: ĩsk ( 1, x | �1 )


⇀⇀↽↽


ct𝑓 ,𝜇: ĩct1 ( ∅ | ∅ )

{ict𝑗′ ( �𝑗′, 0 )}1< 𝑗′< 𝑗

ĩct 𝑗 ( ∅ | ∅ )
{ict𝑗′ ( 𝐿𝑗′ )}𝑗′> 𝑗

skx: ĩsk ( 1, x | �1, �𝑗 )


�2, . . . , �𝑗−1, �𝑗

$← ℤ𝑝, SOLVE FOR �1 �𝑗 = 𝐿𝑗 (x) OR �𝑗
$← ℤ𝑝

During the proof, there are at most two simulated ciphertexts at any time, so it appears that we
can just use a simulation-secure IPFE capable of simulating at most two ciphertexts. This is not
the case. The tricky part is that the usual denition of simulation security in (★) only requires
the real world to be indistinguishable from simulation. However, in the step of simulating �𝑗 as
random, we need to switch ict𝑗 to simulation when ĩct1 is already simulated (and symmetrically,
reverting ĩct𝑗 back to encryption while keeping ĩct1 simulated). It is unclear whether this transi-
tion is indistinguishable just via simulation security, because the denition says nothing about
the indistinguishability of simulating one more ciphertext when there is already one simulated
ciphertext, i.e.,

(m̃pk, ĩct1, ict2, {ĩsk𝑗}𝑗) ≈ (m̃pk, ĩct1, ĩct2, {ĩsk𝑗}𝑗) ?

Note that when we want to simulate �𝑗, the computation of �1 has complicated dependency on
x,8 and we cannot hope to get around the issue by rst reverting ĩct1 back to normal encryption
then simultaneously simulating ict1, ict𝑗, because we do not know what to encrypt in ict1.

Gradually Simulation-Secure IPFE. To solve the problem above, we dene a stronger notion of
simulation security, called gradual simulation security. It bridges the gap by capturing the idea

8In fact, the computation is as complex as the computation of 𝑓 (x).
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that it is indistinguishable to simulate more ciphertexts even when some ciphertexts (and all the
keys) are already simulated, as long as the total number of simulated ciphertexts does not exceed
a preselected threshold. We show that the IPFE scheme in [ALS16] can be adapted for gradual
simulation security. The length of secret keys grows linearly in the maximum number of sim-
ulated ciphertexts, but not in the vector dimension. Plugging it into our CP-1-ABE construction,
we obtain a CP-1-ABE with succinct keys.

We remark that another way to get around the issue of simulation security is to notice that
there are at most two ciphertexts simulated at any time and one of them is ict1. Therefore, we can
simply prepare two instances of IPFE (with independently generated master public and secret
keys), one dedicated to ict1 and the other to ict𝑗 ’s (for 𝑗 > 1). During the proof, the instance for
ict1 is always simulated, and the other instance is switched between simulation and normal. The
downside of this method is that using two instances doubles 1-ABE key size. In contrast, the
solution using gradually simulation-secure IPFE only needs one more ℤ𝑝 element in CP-1-ABE
key.

Comparison with Previous Techniques.Comparison with Previous Techniques. Previous works constructing succinct ABE only natively sup-
port Boolean computations, whereas our method natively supports arithmetic computations.
In [ALdP11,YAHK14,Tak14,Att16,AHY15], succinct ABE schemes are constructed from a special
succinct ABE for set-membership policies (keys are tied to a set 𝑆 and ciphertexts are tied to an
element 𝑥; decryption succeeds if 𝑥 ∈ 𝑆). Based on ABE for set-membership policies, one can
obtain ABE for monotone span programs, or policies admitting linear secret sharing schemes.
Those ingredients (the special ABE, MSP, LSS) are inherently only native to Boolean computa-
tions. Among them, the work of [AHY15] constructs succinct ABE for arithmetic span programs
by reduction to MSP at the cost of a Θ(log 𝑝) blow-up in key sizes.

In [ZGT+16,TA20], succinct ABE schemes are implicitly based on IPFE with succinct keys. The
IPFE is only used to compute linear secret sharing schemes, and is used in a non-black-box way.
In contrast, our 1-ABE can be constructed from any IPFE in a modular and black-box fashion,
and we use it for arithmetic branching programs.

Dual System Encryption for Full ABE. To li our CP-1-ABE to full KP-ABE, we need to ip the
position of attributes and policies. Our idea is to use CP-1-ABE as a key encapsulationmechanism.
More specically, a KP-ABE key for policy 𝑓 is a CP-1-ABE ciphertext cpct( 𝑓 , 𝜇), where 𝜇 is the
message in CP-1-ABE and encapsulated key in KP-ABE. A KP-ABE ciphertext for attribute x and
message 𝑚 consists of a CP-1-ABE key cpsk(x) and the masked message 𝜇 + 𝑚. If decryption
is authorized, CP-1-ABE decryption will give us 𝜇, which can be used to unmask the message.
Observe that the security of KP-ABE aligns with the security of CP-1-ABE, namely, in the KP-ABE
security game:

• We only need to handle one ciphertext, for which we rely on 1-key security of CP-1-ABE.

• We need to handle multiple keys, which corresponds to multi-ciphertext security of CP-
1-ABE. Since our CP-1-ABE is public-key, it indeed satises multi-ciphertext security given
only one key.

However, we need to resolve the issue that encryption of KP-ABE is now secret-key, since we
need to know both the master secret key of CP-1-ABE and 𝜇 (part of the master secret key of
KP-ABE) to generate KP-ABE ciphertext.
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We observe that our CP-1-ABE is linear, i.e., the spaces of cpmsk, cpsk, cpct, messages are
vector spaces over ℤ𝑝, and9

𝑘1cpsk(cpmsk1, x) + 𝑘2cpsk(cpmsk2, x) = cpsk(𝑘1cpmsk1 + 𝑘2cpmsk2, x),
𝑘1cpct(cpmsk1, 𝑓 , 𝜇1) + 𝑘2cpct(cpmsk1, 𝑓 , 𝜇2) = cpct(𝑘1cpmsk1 + 𝑘2cpmsk2, 𝑓 , 𝑘1𝜇1 + 𝑘2𝜇2).

Here, cpsk(cpmsk, x) and cpct(cpmsk, 𝑓 , 𝜇) represent that they are generated in the CP-1-ABE in-
stance whose master secret key is cpmsk. We instantiate our CP-1-ABE with an IPFE such that
the keys are linear in the master secret key and the ciphertexts are linear in both the master
secret key and the encrypted vector. CP-1-ABE master secret key and keys are IPFE master secret
key and keys, so cpsk’s are linear in cpmsk. CP-1-ABE ciphertexts are IPFE ciphertexts for the
label functions of AKGS, and AKGS is linear with respect to the message 𝜇, so cpct’s are linear in
msk, 𝜇.

Let𝐺 be an additive prime-order group generated by 𝑃 and write È𝑎É = 𝑎𝑃. Concretely, cpmsk
and cpsk’s will be ℤ𝑝 elements. Now if we encode cpmsk in 𝐺, by linearity we can compute cpsk
in 𝐺, and we denote this fact by

Ècpsk(cpmsk, x)É = cpsk(ÈcpmskÉ, x).

Assume for the moment that this can also be done for cpct’s and decryption still works.10 Given
the linearity, we can employ dual system encryption [Wat09] to make the scheme public-key. In
prime-order groups, the classic dual system encryption can be regarded as hash proof systems
based on MDDH𝑘 [CS02,EHK+13].11

Take MDDH1 (DDH assumption) for example. KP-ABE prepares two instances of CP-1-ABE and
two messages, and publishes the projection of them along a randomly sampled vector (𝑏1, 𝑏2) in
the exponent:

kpmpk = È𝑏1, 𝑏2, 𝑏1cpmsk1 + 𝑏2cpmsk2, 𝑏1𝜇1 + 𝑏2𝜇2É for 𝑏1, 𝑏2 $← ℤ𝑝,

kpmsk = (cpmpk1, cpmpk2, cpmsk1, cpmsk2, 𝜇1, 𝜇2).

Encryption is now public-key. A KP-ABE ciphertext simply uses a random CP-1-ABEmaster secret
key in the projected space (a.k.a. normal space in dual system encryption) and use the projected
𝜇 to mask the message. A KP-ABE key consists of two CP-1-ABE ciphertexts, one in each instance
encrypting the corresponding encapsulated key.

kpct(x, 𝑚) =
(
𝑠È𝑏1, 𝑏2É, cpsk(𝑠È𝑏1cpmsk1 + 𝑏2cpmsk2É, x), 𝑚 + 𝑠È𝑏1𝜇1 + 𝑏2𝜇2É

)
for 𝑠 $← ℤ𝑝,

kpsk( 𝑓 ) =
(
cpct(cpmsk1, 𝑓 , 𝜇1), cpct(cpmsk2, 𝑓 , 𝜇2)

)
.

To decrypt, we rst use linearity to combine the two CP-1-ABE ciphertexts into

cpct(È𝑠𝑏1cpmsk1 + 𝑠𝑏2cpmsk2É, 𝑓 , È𝑠𝑏1𝜇1 + 𝑠𝑏2𝜇2É)
= È𝑠𝑏1Écpct(cpmsk1, 𝑓 , 𝜇1) + È𝑠𝑏2Écpct(cpmsk2, 𝑓 , 𝜇2).

9The randomness in key generation/encryption should also take part in the linear homomorphism,
but we omit it in this overview for brevity.

10In our case, cpct’s are already group-encoded, and this is where pairing comes in.
11A few examples are [Wee17,ALS16,KW19,GW20]. Wee [Wee14] also notices that certain usage of dual

system encryption in composite-order groups is reminiscent of hash proof systems. There are other ways
to use dual system encryption that are not captured by hash proof systems.
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The master secret key of the combined cpct matches that of the cpsk in the KP-ABE ciphertext,
and CP-1-ABE decryption will recover È𝑠𝑏1𝜇1 + 𝑠𝑏2𝜇2É, using which we can unmask to obtain the
message 𝑚.

To argue security, we rst replace È𝑠𝑏1, 𝑠𝑏2É used in the challenge ciphertext by È𝑎1, 𝑎2É for
random 𝑎1, 𝑎2

$← ℤ𝑝 (using DDH), which is not co-linear with (𝑏1, 𝑏2) with overwhelming proba-
bility. Ciphertexts in this form are said to be semi-functional in dual system encryption.

By the linearity, we can look at the ABE scheme from a new basis, namely (𝑏1, 𝑏2), (𝑎1, 𝑎2).
We denote the CP-1-ABE components and 𝜇’s in this basis with prime, e.g., cpmsk′1 = 𝑏1cpmsk1 +
𝑏2cpmsk2 and cpmsk′2 = 𝑎1cpmsk1 + 𝑎2cpmsk2. The KP-ABE master public key reveals cpmsk′1 but
not cpmsk′2. A KP-ABE secret key for policy 𝑓 is essentially cpct(cpmsk′1, 𝑓 , 𝜇′1) and cpct(cpmsk

′
2, 𝑓 , 𝜇

′
2).

The challenge ciphertext has cpsk(cpmsk′2, x), and the message is masked by 𝜇′2. By CP-1-ABE se-
curity, 𝜇′2 (in cpct’s) should be hidden, which means the message in the challenge ciphertext is
hidden by 𝜇′2.

The proof completes by replacing 𝜇′2 in all the KP-ABE keys by random. ABE keys in this form
are said to be semi-functional in dual system encryption.

Lastly, to base the scheme on MDDH𝑘, we use 𝑘 + 1 instances of CP-1-ABE, publish a 𝑘-
dimensional projection (normal space), and reserve the unpublished dimension for the security
proof (semi-functional space).

CP-ABE from KP-1-ABE. By symmetry, we can apply the transformation to obtain CP-ABE from
KP-1-ABE.Moreover, our KP-ABE trivially serves as a KP-1-ABE. Therefore, the scheme is (ignoring
group encoding)

cpmpk = (𝑑1, 𝑑2, 𝑑1kpmsk1 + 𝑑2kpmsk2, 𝑑1𝜈1 + 𝑑2𝜈2) for 𝑑1, 𝑑2
$← ℤ𝑝,

cpmsk = (kpmpk1, kpmpk2, kpmsk1, kpmsk2, 𝜈1, 𝜈2),
cpsk =

(
kpct(kpmsk1, x, 𝜈1), kpct(kpmsk2, x, 𝜈2)

)
,

cpct =
(
𝑡𝑑1, 𝑡𝑑2, kpsk(𝑡(𝑑1msk1 + 𝑑2msk2), 𝑓 ), 𝑚 + 𝑡(𝑑1𝜈1 + 𝑑2𝜈2)

)
for 𝑡 $← ℤ𝑝.

Again, KP-1-ABE is used to encapsulate keys 𝜈1, 𝜈2, whose projection masks the message in CP-
ABE. Dual system encryption or hash proof system is used to obtain public-key encryption by
publishing a random projection of KP-1-ABE master secret keys (in this case, along (𝑑1, 𝑑2)).

One nal observation is that only 𝜇1, 𝜇2 in KP-(1-)ABE need to be duplicated and projected,
yielding only a small overhead in CP-ABE compared to KP-ABE. We leave the details to the main
content.

We note that once we obtain KP-ABE from CP-1-ABE, going to CP-ABE using the same method
is natural and simple.

1.2 Related Works

Succinct ABE. We compare our scheme with previous KP-ABE schemes with constant-size ci-
phertexts in Table 1 and CP-ABE schemes with constant-size secret keys in Table 2.

Compact ABE. Previous schemes achieving compactness (linear-size keys and ciphertexts, also
known as “unbounded multi-use of attributes”) and adaptive security based on standard assump-
tions are [KW19,TA20] for Boolean formulae, [GW20] for Boolean branching programs, and [LL20]
for arithmetic branching programs. Among them, only [TA20] achieves succinctness.

ABE with Succinct 𝒇 -Part. From pairing, we know several ABE schemes with succinct x-part (ci-
phertexts in KP-ABE and keys in CP-ABE) and compact 𝑓 -part (linear in the size of 𝑓 ), including
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ones in this work. One can also investigate succinctness in 𝑓 -part (keys in KP-ABE and cipher-
texts in CP-ABE). So far, the only schemes with succinct 𝑓 -part are KP-ABE for polynomial-sized
circuits based on LWE [BGG+14] and CP-ABE schemes for NC1 based on LWE and pairing [AY20],
in which the size of 𝑓 -part depends on the depth but not the size of the circuit. Yet these schemes
have compact but non-succinct x-part.

Unbounded ABE.Our succinct ABE schemes havemaster public key of size linear in the attribute
length. In general, one can further improve the size of master keys to be a constant, which
requires the scheme to be able to handle attributes of any polynomial length. Such schemes are
called unbounded ABE. So far, there are unbounded and compact ABE schemes (e.g., [KW19] for
NC1). It remains an interesting open problem to construct unbounded succinct schemes.

In summary, to the best of our knowledge, our schemes achieve one of the currently best
trade-os in terms of master key/secret key/ciphertext sizes.

2 Preliminaries

Let 𝜆 be the security parameter that runs through ℕ. Except in the denitions, we suppress the
security parameter for convenience. Ecient algorithms are probabilistic polynomial-time (PPT)
Turing machines. Ecient adversaries are non-uniform PPT Turing machines, or equivalently
families of polynomial-sized circuits. We denote by H0 ≈ H1 (resp. ≈𝑠 and ≡) for the computa-
tional indistinguishability (resp. statistical indistinguishability, identity) of two distributions or
experiments.

We write [𝑛] for the set {1, 2, . . . , 𝑛}. Vectors and matrices are written in boldface, and are
always indexed using [·], i.e., A[𝑖, 𝑗] is the (𝑖, 𝑗)-entry of A. Let A be an 𝑚 × 𝑛 matrix and B
an 𝑚′ × 𝑛′ matrix. The tensor product A ⊗ B is a block matrix of shape 𝑚𝑚′ × 𝑛𝑛′:

©«
A[1, 1]B A[1, 2]B · · · A[1, 𝑛]B
A[2, 1]B A[2, 2]B · · · A[1, 𝑛]B

...
...

. . .
...

A[𝑚, 1]B A[𝑚, 2]B · · · A[𝑚, 𝑛]B

ª®®®®¬
.

We note that AB ⊗ CD = (A ⊗ B) (C ⊗ D) holds as long as the multiplications are compatible. An
ane function 𝑓 : ℤ𝑛

𝑝 → ℤ𝑝 over prime eld ℤ𝑝 is conveniently associated with its coecient

vector f ∈ ℤ𝑛+1
𝑝 (the same letter in boldface) such that 𝑓 (x) = f T

( 1
x

)
.

2.1 Arithmetic Branching Programs and Arithmetic Key Garbling

In this paper, we consider the class of decryption policies dened by arithmetic branching pro-
grams [Nis91].

Denition 1 (ABP). An arithmetic branching program (ABP) 𝑓 = (𝑉, 𝐸, 𝑠, 𝑡, 𝑝, 𝑛, 𝑤) consists of a
directed acyclic graph (𝑉, 𝐸), two distinguished vertices 𝑠, 𝑡 ∈ 𝑉, a prime eld order 𝑝, an arity 𝑛,
and a weight function 𝑤 : 𝐸 × ℤ𝑛

𝑝 → ℤ𝑝 that is ane in the second input. It computes the function
𝑓 : ℤ𝑛

𝑝 → ℤ𝑝 (written as the same letter) dened by

𝑓 (x) =
∑︁

𝑠-𝑡 path
𝑒1 · · ·𝑒𝑖

𝑖∏
𝑗=1

𝑤(𝑒𝑗 , x).
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Its size (denoted by | 𝑓 |) is |𝑉 |. It induces two zero-test predicates:

𝑓≠0(x) =
{
0, if 𝑓 (x) = 0;
1, if 𝑓 (x) ≠ 0;

𝑓=0(x) = ¬𝑓≠0(x).

Denote by ABP (resp. ABP𝑛𝑝) the class of all ABPs (resp. of eld order 𝑝 and arity 𝑛), and by ztABP𝑛𝑝 the
set of zero-test predicates induced by ABPs in ABP𝑛𝑝.

We rely on an arithmetic key garbling scheme for ABP.

Denition 2 (AKGS). Let F = {𝑓 } be a class of functions 𝑓 : ℤ𝑛
𝑝 → ℤ𝑝. An arithmetic key garbling

scheme (AKGS) for F consists of two ecient algorithms:

• Garble( 𝑓 ,𝛼,𝛽; r) takes a function 𝑓 : ℤ𝑛
𝑝 → ℤ𝑝 ∈ F and two secrets 𝛼,𝛽 ∈ ℤ𝑝 as input, and

uses uniform randomness r ∈ ℤ𝑚′
𝑝 . It outputs coecient vectors L1, . . . , L𝑚 ∈ ℤ𝑛+1

𝑝 of 𝑚 ane
functions 𝐿1, . . . , 𝐿𝑚 : ℤ𝑛

𝑝 → ℤ𝑝 (called label functions). The vectors L𝑗 are linear in (𝛼,𝛽, r).
The amount of randomness 𝑚′ and the number 𝑚 of label functions are solely determined by 𝑓 ,
and 𝑚 is called the garbling size of 𝑓 .

• Eval( 𝑓 , x, �1, . . . , �𝑚) takes as input a function 𝑓 : ℤ𝑛
𝑝 → ℤ𝑝 ∈ F , an input x ∈ ℤ𝑛

𝑝, and 𝑚 labels
�1, . . . , �𝑚 ∈ ℤ𝑝. It outputs 𝛾 ∈ ℤ𝑝 that is linear in �1, . . . , �𝑚.

The scheme is required to be correct, i.e., for all 𝑓 : ℤ𝑛
𝑝 → ℤ𝑝 ∈ F ,𝛼,𝛽 ∈ ℤ𝑝, x ∈ ℤ𝑛

𝑝, it holds that

Pr

[
(L1, . . . , L𝑚) $← Garble( 𝑓 ,𝛼,𝛽)
∀ 𝑗 ∈ [𝑚], �𝑗 ← 𝐿𝑗 (x)

: Eval( 𝑓 , x, �1, . . . , �𝑚) = 𝛼𝑓 (x) + 𝛽
]
= 1.

We rely on the strong notion of piecewise security recently introduced in [LL20].

Denition 3 (piecewise security). Let (Garble, Eval) be an AKGS for some function class F . The
scheme is piecewise secure if it satises the following two properties:

• The rst label is reversely sampleable given the input, the output, and the other labels. That is,
there is an ecient algorithm RevSamp such that for all 𝑓 : ℤ𝑛

𝑝 → ℤ𝑝 ∈ F ,𝛼,𝛽 ∈ ℤ𝑝, x ∈ ℤ𝑛
𝑝, the

following distributions are identical:{
(L1, . . . , L𝑚) $← Garble( 𝑓 ,𝛼,𝛽)

�1 ← 𝐿1(x)
: (�1, L2, . . . , L𝑚)

}

≡


(L1, . . . , L𝑚) $← Garble( 𝑓 ,𝛼,𝛽)

�𝑗 ← 𝐿𝑗 (x) for 𝑗 ∈ [𝑚], 𝑗 > 1
�1 ← RevSamp

(
𝑓 , x,𝛼𝑓 (x) + 𝛽, �2, . . . , �𝑚

) : (�1, L2, . . . , L𝑚)

.
• The other labels are marginally random even given all the subsequent label functions. That
is, for all 𝑓 : ℤ𝑛

𝑝 → ℤ𝑝 ∈ F ,𝛼,𝛽 ∈ ℤ𝑝, x ∈ ℤ𝑛
𝑝, suppose the garbling size of 𝑓 is 𝑚, then for all

𝑗 ∈ [𝑚], 𝑗 > 1, the following distributions are identical:{
(L1, . . . , L𝑚) $← Garble( 𝑓 ,𝛼,𝛽)

�𝑗 ← 𝐿𝑗 (x)
: (�𝑗 , L𝑗+1, . . . , L𝑚)

}
≡

{
(L1, . . . , L𝑚) $← Garble( 𝑓 ,𝛼,𝛽)

�𝑗
$← ℤ𝑝

: (�𝑗 , L𝑗+1, . . . , L𝑚)
}
.
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A piecewise secure AKGS is known for ABPs:

Lemma 4 ([IW14,LL20]). There exists a piecewise secure AKGS for ABP, for which the garbling size of
an ABP is the same as its size.

Throughout the paper, we will use a vectorized version of the garbling algorithm. Let 𝜶,𝜷 ∈ ℤ𝑘
𝑝,

then Garble( 𝑓 ,𝜶,𝜷) is executed component-wise with independent randomness and the output
are concatenated:

for 𝑡 ∈ [𝑘]: (L(𝑡)1 , . . . , L(𝑡)𝑚 ) $← Garble( 𝑓 ,𝜶[𝑡],𝜷[𝑡]);

for 𝑗 ∈ [𝑚]: L𝑗 =

©«
L(1)
𝑗
...

L(𝑘)
𝑗

ª®®®¬ =
𝑘∑︁
𝑡=1

e𝑗 ⊗ L(𝑡)𝑗 ;

output (L1, . . . , L𝑚).

Here, e𝑗 ∈ ℤ𝑘
𝑝 are the standard basis vectors and L𝑗 ’s are column vectors of length 𝑘(𝑛 + 1). In

the vectorized version, the randomness is a matrix and each row of the matrix is used for one
invocation of the non-vectorized garbling. This notation is compatible with tensor products:

Lemma 5 (mixing and stitching). Suppose 𝑓 : ℤ𝑛
𝑝 → ℤ𝑝.

Let 𝜶,𝜷 ∈ ℤ𝑘
𝑝,R ∈ ℤ𝑘×𝑚′

𝑝 , c ∈ ℤ𝑘
𝑝, and dene

(L1, . . . , L𝑚) ← Garble( 𝑓 ,𝜶,𝜷;R), (L′1, . . . , L′𝑚) ← Garble( 𝑓 , cT𝜶, cT𝜷; cTR),

then LT
𝑗
(c ⊗ I𝑛+1) = (L′𝑗)

T for all 𝑗 ∈ [𝑚].
Now let 𝛼,𝛽 ∈ ℤ𝑝, r ∈ ℤ𝑚′

𝑝 ,d ∈ ℤ𝑘
𝑝, and dene

(L′1, . . . , L′𝑗) ← Garble( 𝑓 ,𝛼,𝛽; r), (L1, . . . , L𝑗) ← Garble( 𝑓 ,𝛼d,𝛽d;drT),

then d ⊗ L′
𝑗
= L𝑗 for all 𝑗 ∈ [𝑚].

2.2 Attribute-Based Encryption

In the denition below, we explicitly take the description of policy/attribute out of the secret
key/ciphertext so that we can characterize succinctness.

Denition 6 (ABE). Let M = {𝑀𝜆}𝜆∈ℕ be a sequence of message sets and P = {P𝜆}𝜆∈ℕ a sequence
of predicate families with P𝜆 =

{
𝑃 : 𝑋𝑃 ×𝑌𝑃 → {0, 1}

}
. An attribute-based encryption (ABE) scheme

for message spaceM and predicate space P consists of four ecient algorithms:

• Setup(1𝜆, 𝑃) takes as input the security parameter 1𝜆 and a predicate 𝑃 ∈ P𝜆, and outputs a pair
of master public/secret keys (mpk,msk).

• KeyGen(msk, 𝑦) takes as input a policy 𝑦 ∈ 𝑌𝑃 and outputs a secret key sk.

• Enc(mpk, 𝑥, 𝑔) takes as input an attribute 𝑥 ∈ 𝑋𝑃 and a message 𝑔 ∈ 𝑀𝜆, and outputs a ciphertext
ct.

• Dec(sk, 𝑦, ct, 𝑥) takes as input a secret key, the policy of the key, a ciphertext, and the attribute of
the ciphertext, and is supposed to recover the message if 𝑃(𝑥, 𝑦) = 1.
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The scheme is required to be correct, i.e., for all 𝜆 ∈ ℕ, 𝑔 ∈ 𝑀𝜆, 𝑃 ∈ P𝜆, 𝑥 ∈ 𝑋𝑃, 𝑦 ∈ 𝑌𝑃 s.t. 𝑃(𝑥, 𝑦) = 1,

Pr


(mpk,msk) $← Setup(1𝜆, 𝑃)

sk $← KeyGen(msk, 𝑦)
ct $← Enc(mpk, 𝑥, 𝑔)

: Dec(sk, 𝑦, ct, 𝑥) = 𝑔

 = 1.

Denition 7 (ABE for ABP). Let 𝑝 = 𝑝(𝜆) be a sequence of prime numbers. A key-policy ABE (KP-
ABE) for ABP over ℤ𝑝(𝜆) is dened for the following predicate family:

P = {P𝜆}, P𝜆 =
{
𝑃𝜆,𝑛 : ℤ𝑛

𝑝(𝜆) × ztABP
𝑛
𝑝(𝜆) → {0, 1}

}
, 𝑃𝜆,𝑛(x, 𝑦) = 𝑦(x).

In a ciphertext-policy ABE (CP-ABE) for ABP over ℤ𝑝(𝜆) , the predicates are

𝑃𝜆,𝑛 : ztABP𝑛𝑝(𝜆) × ℤ
𝑛
𝑝(𝜆) → {0, 1}, (𝑦, x) ↦→ 𝑦(x).

Denition 8 (succinct ABE). An ABE scheme has succinct ciphertext if the length of ct is a xed
polynomial in security parameter 𝜆 (independent of the length of 𝑥, 𝑦 and the choice of 𝑃). Similarly,
the scheme has succinct secret key if the length of sk is a xed polynomial in 𝜆.

The above denition does not rule out trivially succinct schemes, e.g., one only supporting 𝑥, 𝑦

of length at most 𝜆. In this work, we construct KP-ABE for ABP with succinct ciphertexts and
CP-ABE for ABP with succinct secret keys. These constructions are non-trivial because Setup can
be run with any predicate 𝑃𝜆,𝑛 for attribute length 𝑛, the scheme works with policies of arbi-
trary size, and the ciphertexts in KP-ABE and the secret keys in CP-ABE have xed size poly(𝜆),
independent of 𝑛.

Security. We consider the standard IND-CPA security of ABE.

Denition 9 (IND-CPA of ABE [LOS+10]). Adopt the notations in Denition 6. The scheme is IND-CPA
secure if Exp0CPA ≈ Exp

1
CPA, where Exp

𝑏
CPA with adversary A proceeds as follows:

• Setup. LaunchA(1𝜆) and receive from it a predicate 𝑃 ∈ P𝜆. Run (mpk,msk) $← Setup(1𝜆, 𝑃)
and send mpk to A.

• Query I. Repeat the following for arbitrarily many rounds determined byA: In each round,
A submits a policy 𝑦𝑞 ∈ 𝑌𝑃 for a secret key. Upon this query, run sk𝑞 $← KeyGen(msk, 𝑦) and
send sk𝑞 to A.

• Challenge. The adversary submits the challenge attribute 𝑥∗ ∈ 𝑋𝑃 and two messages 𝑔0,

𝑔1 ∈ 𝑀𝜆. Run ct $← Enc(mpk, 𝑥, 𝑔𝑏) and return ct to A.

• Query II. Same as Query I.

• Guess. The adversary outputs a bit 𝑏′. The outcome of the experiment is 𝑏′ if 𝑃(𝑥∗, 𝑦𝑞) = 0
for all 𝑦𝑞 queried in Query I/II. Otherwise, the outcome is set to 0.

2.3 Pairing Groups and Matrix Die–Hellman Assumption

Throughout the paper, we use a sequence of pairing groups

G = {(𝐺𝜆,1, 𝐺𝜆,2, 𝐺𝜆,T, 𝑔𝜆,1, 𝑔𝜆,2, 𝑒𝜆)}𝜆∈ℕ,

where 𝐺𝜆,1, 𝐺𝜆,2, 𝐺𝜆,T are groups of prime order 𝑝 = 𝑝(𝜆), and 𝐺𝜆,1 (resp. 𝐺𝜆,2) is generated by
𝑔𝜆,1 (resp. 𝑔𝜆,2). The maps 𝑒𝜆 : 𝐺𝜆,1 × 𝐺𝜆,2 → 𝐺𝜆,T are
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• bilinear: 𝑒𝜆
(
𝑔𝑎
𝜆,1, 𝑔

𝑏
𝜆,2

)
=

(
𝑒𝜆 (𝑔𝜆,1, 𝑔𝜆,2)

)𝑎𝑏 for all 𝑎, 𝑏 ∈ ℤ𝑝(𝜆) ; and

• non-degenerate: 𝑔𝜆,T
def
== 𝑒𝜆 (𝑔𝜆,1, 𝑔𝜆,2) generates 𝐺𝜆,T.

The group operations as well as the pairing 𝑒𝜆 must be eciently computable.
When we talk about one group without thinking about pairing, the subscripts 1, 2,T are

dropped.

Bracket Notation. Fix a security parameter, for 𝑖 = 1, 2,T, we write ÈAÉ𝑖 for 𝑔A𝜆,𝑖, where the
exponentiation is element-wise. When bracket notation is used, group operations are written
additively and pairing is written multiplicatively, so that ÈAÉ𝑖 + ÈBÉ𝑖 = ÈA + BÉ𝑖 and ÈAÉ1ÈBÉ2 =
ÈAÉ2ÈBÉ1 = ÈABÉT. Furthermore, numbers can always operate with group elements, e.g., AÈBÉ1 =
ÈABÉ1.

Matrix Die–Hellman Assumption. In this paper, we rely on the MDDH assumptions.

Denition 10 (MDDH [EHK+13]). Let 𝐺 = {(𝐺𝜆, 𝑔𝜆)}𝜆∈ℕ be a sequence of groups of prime order 𝑝 =

𝑝(𝜆) with their generators, and � = � (𝜆), 𝑞 = 𝑞(𝜆) polynomials. The MDDH𝑞

𝑘,�
assumption holds in

𝐺 if

{ÈA, STAÉ}𝜆∈ℕ ≈ {ÈA,CTÉ}𝜆∈ℕ for A $← ℤ
𝑘×� (𝜆)
𝑝(𝜆) , S $← ℤ

𝑘×𝑞(𝜆)
𝑝(𝜆) ,C $← ℤ

� (𝜆)×𝑞(𝜆)
𝑝(𝜆) .

By default, � = 𝑘 + 1 and 𝑞 = 1. It is known [EHK+13] that 𝑘-Lin implies MDDH𝑘, which further
implies MDDH𝑞

𝑘,�
for any polynomial � , 𝑞.

3 IPFE with Gradual Simulation Security

In an inner-product functional encryption scheme, secret keys and ciphertexts are associated
with vectors. Decryption reveals the inner product and nothing more about the plaintext vec-
tor. We will use a public-key IPFE as our building block for 1-ABE, a precursor to full ABE. In
this work, we consider IPFE schemes based on MDDH-hard groups (potentially without pairing),
where the ciphertext encodes the encrypted vector in the exponent of the group, and decryption
computes the inner product in the exponent. In our denition below, we directly dene such
group-based IPFE. The denition can be easily modied for IPFE that are not group-based.

Denition 11 (IPFE). Let 𝐺 = {(𝐺𝜆, 𝑔𝜆)}𝜆∈ℕ be a sequence of groups of prime order 𝑝 = 𝑝(𝜆) with
their generators. A 𝐺-encoded public-key inner-product functional encryption (IPFE) scheme consists
of four ecient algorithms:

• Setup(1𝜆, 1𝑛, 1𝑇 ) takes as input the security parameter 1𝜆, the dimension 1𝑛 of the vectors, and
an additional parameter 1𝑇 (see Denition 12). It outputs a pair of master public/secret keys
(mpk,msk).

• KeyGen(msk, v) takes the master secret key and a vector as input, and outputs a secret key sk.

• Enc(mpk, ÈuÉ) takes the master public key and a vector (encoded in 𝐺) as input, and outputs a
ciphertext ct.

• Dec(sk, v, ct) takes a secret key, the vector in the secret key, and a ciphertext as input, and is
supposed to compute the inner product in the exponent.
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The scheme is required to be correct, meaning that for all 𝜆, 𝑛, 𝑇 ∈ ℕ,u, v ∈ ℤ𝑛
𝑝(𝜆) , it holds that

Pr


(mpk,msk) $← Setup(1𝜆, 1𝑛, 1𝑇 )

sk $← KeyGen(msk, v)
ct $← Enc(msk, ÈuÉ)

: Dec(sk, v, ct) = ÈuTvÉ
 = 1.

The scheme is succinct if the length of sk is independent of 𝑛 and only depends on 𝜆, 𝑇.

Setup algorithm in the above denition takes an additional input 1𝑇 specifying the desired level
of simulation security, which we dene next.

Gradual Simulation Security. When building the 1-ABE scheme, we rely on the notion of gradual
simulation security, which is stronger than the usual simulation security (see [ALMT20]). Roughly
speaking, on top of the requirement that simulation should be indistinguishable from the real
scheme, the notion stipulates that even when some ciphertexts are already simulated, whether
another ciphertext is honest or simulated should be indistinguishable. The parameter𝑇 species
the maximum number of ciphertexts that can be simulated.

To navigate around themany indices involved in the denition, it is the easiest to keep inmind
that 𝑖 (hence 𝐼, 𝐼∗, 𝐼𝑡) always counts the ciphertexts, and that 𝑗 (hence 𝐽, 𝐽∗, 𝐽𝑡) always counts the
keys.

Denition 12 (gradual simulation security). Adopt the notations in Denition 11. A simulator con-
sists of three ecient algorithms:

• SimSetup(1𝜆, 1𝑛, 1𝑇 ) takes the same input as Setup, and outputs a simulated master public key
mpk and an internal state st.12

• SimKeyGen(st, v, 𝑧1, . . . , 𝑧𝐼) takes as input the internal state st, a vector v, and a list 𝑧1, . . . , 𝑧𝐼 of
inner products in ℤ𝑝(𝜆) (which are the intended inner products between this simulated key and all
previously simulated ciphertexts). It outputs a simulated secret key sk and a new state st′.

• SimEnc(st, 𝑧1, . . . , 𝑧𝐽) takes as input the internal state st and a list 𝑧1, . . . , 𝑧𝐽 of inner products in
ℤ𝑝(𝜆) (which are the intended inner products between this simulated ciphertext and all previously
simulated keys). It outputs a simulated ciphertext ct and a new state st′.

The simulator gradually 𝑇-simulates the scheme if it satises both key simulation security and 𝑇-
ciphertext simulation security dened below.

An IPFE scheme is gradually 𝑇-simulation-secure if it can be gradually 𝑇-simulated by some sim-
ulator. The scheme is gradually simulation-secure if there exists a simulator such that the simulator
gradually 𝑇-simulates the scheme for all 𝑇 = poly(𝜆).

Key Simulation Security.Key Simulation Security. Roughly speaking, this captures the idea that it is indistinguishable to
interact with the real authority (who generates and distributesmpk and sk’s) versus the simulator
issuing simulated mpk and sk’s (without simulating any ciphertext). We require Expreal ≈ Expsim,
which proceed as follows when run with an adversary A:

12It is understood that the state is maintained by one instance of simulator, and except in denitions,
its creation, persistence, and update are suppressed when there is no danger of ambiguity.
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• Setup. Launch A(1𝜆) and receive from it (1𝑛, 1𝑇 ). Run

in Expreal: (mpk,msk) $← Setup(1𝜆, 1𝑛, 1𝑇 )
in Expsim: (mpk, st) $← SimSetup(1𝜆, 1𝑛, 1𝑇 )

and send mpk to A.

• Challenge. Repeat the following for arbitrarily many rounds determined by A: In each
round, A submits a vector v𝑗. Upon this challenge, run

in Expreal: sk𝑗 $← KeyGen(msk, v𝑗)
in Expsim: (sk𝑗 , st′) $← SimKeyGen(st, v𝑗) st← st′

and send sk𝑗 to A.

• Guess. The adversary outputs a bit 𝑏′, the outcome of the experiment.

We emphasize that there is no ciphertext challenge in the experiments. The adversary can gen-
erate ciphertexts on its own using mpk.

𝑇-Ciphertext Simulation Security.𝑇-Ciphertext Simulation Security. Roughly speaking, this captures the idea that when interacting
with the simulator, it is indistinguishable whether any subset of ciphertexts are normally gen-
erated or simulated, as long as at most 𝑇 ciphertexts are simulated. In the experiments below,
we denote by 𝑧𝑖, 𝑗 ∈ ℤ𝑝 the decryption outcome (inner product) between the 𝑗th simulated secret
key (ordered temporally among all queried secret keys) and the 𝑖th simulated ciphertext (ordered
temporally among all queried ciphertexts, excluding the challenge ciphertext). We also let 𝐼𝑡, 𝐽𝑡

be the number of simulated ciphertexts (excluding the challenge ciphertext) and secret keys at
any time 𝑡. Exp𝑏

𝑇-GS (𝑏 ∈ {0, 1}) with adversary A proceeds as follows:

• Setup. Launch A(1𝜆) and receive from it (1𝑛, 1𝑇 ). Run

(mpk, st) $← SimSetup(1𝜆, 1𝑛, 1𝑇 )

and send mpk to A.

• Query I. Repeat the following for arbitrarily many rounds determined byA: In each round,
A has 2 options.

– Key Simulation Query: A can submit a vector v𝑗 with a list 𝑧≤𝐼𝑡 , 𝑗 of inner products for
a secret key sk𝑗. The list 𝑧≤𝐼𝑡 , 𝑗 consists of 𝑧1, 𝑗 , . . . , 𝑧𝐼𝑡 , 𝑗, all the decryption outcomes
between sk𝑗 and the simulated ciphertexts queried up to this point. Upon this query,
run

(sk𝑗 , st′) $← SimKeyGen(st, v𝑗 , 𝑧1, 𝑗 , . . . , 𝑧𝐼𝑡 , 𝑗) st← st′

and send sk𝑗 to A.
– Ciphertext Simulation Query: A can submit a list 𝑧𝑖,≤𝐽𝑡

of inner products for a simu-
lated ciphertext ct𝑖. The list 𝑧𝑖,≤𝐽𝑡

consists of 𝑧𝑖,1, . . . , 𝑧𝑖,𝐽𝑡
, all the decryption outcomes

between ct𝑖 and the simulated secret keys queried up to this point. Upon this query,
run

(ct𝑖, st′) $← SimEnc(st, 𝑧𝑖,1, . . . , 𝑧𝑖,𝐽𝑡
) st← st′

and send ct𝑖 to A.
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• Challenge. The adversary submits a vector u∗. Upon the challenge, let the total number of
secret key queries in Query I be 𝐽∗ and the total number of ciphertext queries in Query I
be 𝐼∗, run

𝑏 = 0: ct∗ $← Enc(mpk, Èu∗É)
𝑏 = 1: ct∗ $← SimEnc

(
st, (u∗)Tv1, . . . , (u∗)Tv𝐽∗

)
st← st′

and send ct∗ to A.

• Query II. Same as Query I, except that in Exp1
𝑇-GS, for each secret key query v𝑗, we put

(u∗)Tv𝑗 immediately aer 𝑧𝐼∗, 𝑗 in the argument list of SimKeyGen so that the simulator gets
the correct list of inner products:

𝑏 = 0: (sk𝑗 , st′) $← SimKeyGen(st, v𝑗 , 𝑧1, 𝑗 , . . . , 𝑧𝐼∗, 𝑗 , 𝑧𝐼∗+1, 𝑗 , . . . , 𝑧𝐼𝑡 , 𝑗);
𝑏 = 1: (sk𝑗 , st′) $← SimKeyGen(st, v𝑗 , 𝑧1, 𝑗 , . . . , 𝑧𝐼∗, 𝑗 , (u∗)Tv𝑗 , 𝑧𝐼∗+1, 𝑗 , . . . , 𝑧𝐼𝑡 , 𝑗);

st← st′ (in either case).

• Guess. The adversary outputs a bit 𝑏′. The outcome of the experiment is 𝑏′ if both con-
straints are satised:

– the total number of ciphertext simulation queries in Query I/II is less than 𝑇;
– the equation {uT

𝑖
v𝑗 = 𝑧𝑖, 𝑗 ∀𝑖, 𝑗} (about u𝑖’s) has a solution.

Otherwise, the outcome is set to 0.

Remarks.Remarks. In Exp1
𝑇-GS, the challenge ciphertext ct

∗ is generated in the same way as the other sim-
ulated ciphertexts, and in Query II the inner products between sk𝑗 and ct∗ are appropriately
positioned. From the simulator’s perspective, there is no indication which ciphertext is the chal-
lenge ciphertext. This denition ensures that the simulator cannot behave dierently depending
on whether a particular ciphertext is the challenge or not, and simplies the application of gradual
simulation security in our construction of ABE.

Note that the simulator receives inner products 𝑧𝑖, 𝑗 in the clear and the adversary submits
challenge u∗ in Exp𝑏

𝑇-GS in the clear, though the input to encryption and the output of decryption
are group-encoded. This is necessary as otherwise, the simulator must solve discrete logarithm
in 𝐺.

We note that when 𝑇 = 1, gradual simulation security becomes the standard notion of simula-
tion security. On the other hand, simulation security does not imply gradual simulation security.
So this denition is a strict generalization of simulation security.

3.1 Construction of Gradually Simulation-Secure IPFE

The IPFE scheme in [ALS16] has been proven simulation-secure [ALMT20]. We show that it can
be adapted for gradual simulation security. The scheme has succinct keys, whose length grows
linearly in 𝑇 and polynomially in 𝜆, and is independent of 𝑛, which eventually translates into the
succinctness of our ABE scheme.

Construction 13 ([ALS16]). The construction is described for a xed value of 𝜆, and 𝜆 is sup-
pressed for brevity. Let 𝐺 be a group (with generator 𝑔) of prime order 𝑝 such that MDDH𝑘

holds in 𝐺. Our 𝐺-encoded IPFE works as follows:
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• Setup(1𝑛, 1𝑇 ) takes as input the dimension 𝑛 and the maximum number 𝑇 of simulated
ciphertexts. It samples A $← ℤ

𝑘×(𝑘+𝑇)
𝑝 ,W $← ℤ

(𝑘+𝑇)×𝑛
𝑝 and outputs mpk = ÈA,AWÉ,msk =W.

• KeyGen(msk, v) outputs sk =Wv.

• Enc(mpk, ÈuÉ) samples s $← ℤ𝑘
𝑝 and outputs ct = (sTÈAÉ, sTÈAWÉ + ÈuTÉ).

• Dec(sk, v, ct) parses ct as (ÈcTÉ, ÈtTÉ) and outputs −ÈcTÉsk + ÈtTÉv.

The correctness is readily veried by

−ÈcTÉsk + ÈtTÉv = È−(sTA) (Wv) + (sTAW + uT)vÉ = ÈuTvÉ.

The scheme is succinct as sk consists of 𝑘 + 𝑇 elements in ℤ𝑝, independent of 𝑛.

Theorem 14. Suppose in Construction 13, the MDDH𝑘 assumption holds in 𝐺, then the constructed
scheme is gradually simulation-secure, and the 𝑇 in the security denition is the 𝑇 as input of Setup.

To prove this theorem, we rst study the simple one-time pad IPFE scheme (OTP-IPFE). The
simulator for Construction 13 can be constructed from the simulator of OTP-IPFE in a modular
fashion.

3.2 One-Time Pad IPFE Scheme

OTP-IPFE is a secret-key IPFE scheme, whose syntax and security are dened below.

Denition 15 (secret-key IPFE). A secret-key IPFE consists of four ecient algorithms:

• Setup(𝑝, 1𝑛) takes as input the modulus 𝑝 and the dimension 1𝑛. It outputs a master secret key
msk.

• KeyGen(msk, v) generates the secret key sk for v ∈ ℤ𝑛
𝑝.

• Enc(msk,u) encrypts u ∈ ℤ𝑛
𝑝 into a ciphertext ct.

• Dec(sk, v, ct) is supposed to compute the inner product.

The scheme is required to be correct, i.e., for all prime 𝑝, natural number 𝑛, and u, v ∈ ℤ𝑛
𝑝,

Pr


msk $← Setup(𝑝, 1𝑛)
sk $← KeyGen(msk, v)
ct $← Enc(msk,u)

: Dec(sk, v, ct) = uTv
 = 1.

Denition 16 (simulation security). Adopt the notations in Denition 15. A simulator consists of
three ecient algorithms:

• SimSetup(𝑝, 1𝑛) takes the same input as Setup. It outputs an internal state st.

• SimKeyGen(st, v, 𝑧) takes as input the state, the vector, and optionally an inner product 𝑧 ∈ ℤ𝑝.
It outputs a simulated secret key sk and a new state st′.

• SimEnc(st, 𝑧1, . . . , 𝑧𝐽) takes as input the state and a list of inner products. It outputs a simulated
ciphertext ct and a new state st′.
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The simulator perfectly simulates the scheme if Expreal ≡ Expsim, where the experiments with an
(unbounded) adversary A proceed as follows:

• Setup. Launch A and receive from it (𝑝, 1𝑛). Run

in Expreal: msk $← Setup(𝑝, 1𝑛);
in Expsim: st $← SimSetup(𝑝, 1𝑛).

• Query I. Repeat the following for arbitrarily many rounds determined byA: In each round,
A submits a vector v𝑗. Upon this query, run

in Expreal: sk𝑗 $← KeyGen(msk, v𝑗);
in Expsim: (sk𝑗 , st′)

$← SimKeyGen(st, v𝑗) st← st′;

and send sk𝑗 to A.

• Challenge. The adversary submits a vector u∗. Upon the challenge, let the total number of
secret key queries in Query I be 𝐽∗, run

in Expreal: ct∗ $← Enc(msk,u∗);
in Expsim: (ct∗, st′)

$← SimEnc(st, (u∗)Tv1, . . . , (u∗)Tv𝐽∗) st← st′;

and send ct∗ to A.

• Query II. Same as Query I, except that in Expsim, we supply the inner product to the simu-
lator:

(sk𝑗 , st′) $← SimKeyGen(st, v𝑗 , (u∗)Tv𝑗) st← st′.

• Guess. The adversary outputs a bit 𝑏′, which is the output of the experiment.

We now describe the one-time pad IPFE scheme.

Construction 17 (OTP-IPFE). The one-time pad IPFE works as follows:

• Setup(𝑝, 1𝑛) takes as input the prime 𝑝 and the dimension 𝑛. It samplesw $← ℤ𝑛
𝑝 and outputs

msk = w.

• KeyGen(msk, v) outputs sk = wTv.

• Enc(msk,u) outputs ct = (w + u)T.

• Dec(sk, v, ct) outputs −sk + ctv.

The correctness follows by −wTv + (w + u)Tv = uTv.

Wee [Wee17] implicitly constructed a simulator for OTP-IPFE where the adversary cannot query
secret keys before the ciphertext challenge. Abdalla, Catalano, Fiore, Gay, and Ursu [ACF+18]
explicitly gave that construction. Agrawal, Libert, Maitra, and Titiu [ALMT20] implicitly con-
structed the adaptive simulator.

Construction 18 (simulator for OTP-IPFE). The simulator works as follows:
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• SimSetup(𝑝, 1𝑛) samples w̃ $← ℤ𝑛
𝑝 and outputs st = (w̃,⊥).

• SimKeyGen(st, v, 𝑧) takes as input the state st, a vector v, and optionally an inner product 𝑧.
It parses st as (w̃, ct∗, v1, . . . , v𝐽) and outputs

(Query I) if w̃ ≠ ⊥: sk = w̃Tv, st′ = (w̃,⊥, v1, . . . , v𝐽 , v);
(Query II) if w̃ = ⊥: sk = ct∗v − 𝑧, st′ = (⊥, ct∗).

• SimEnc(st, 𝑧1, . . . , 𝑧𝐽) takes as input the state st and a list 𝑧1, . . . , 𝑧𝐽 of inner products. It
parses the state st as (w̃,⊥, v1, . . . , v𝐽′). If 𝐽 ≠ 𝐽 ′, the algorithm outputs ⊥ and terminates.
Otherwise, it outputs the ciphertext ct∗ as a uniformly random solution of

−w̃Tv𝑗 + ct∗v𝑗 = 𝑧𝑗 ∀ 𝑗 ∈ [𝐽],

and the updated state as st′ = (⊥, ct∗).

The following lemma shows that the simulator is perfect:

Lemma 19. The simulator in Construction 18 perfectly simulates the one-time pad scheme in Construc-
tion 17.

Proof.Proof. In the security experiment, the adversary can query arbitrarily many keys and one chal-
lenge ciphertext, both with vectors of its choice. The keys and ciphertext are either honestly gen-
erated or simulated, and we want to show that the adversary has no advantage in distinguishing
the two cases.

We consider the view of the adversary at each phase of the security experiment. Before the
ciphertext challenge, the simulator is perfect since the distribution of w̃ (w in the real scheme)
and how the secret keys are generated are the same as in the real scheme.

Once the adversary chooses the challenge vector u∗, the distribution of w is uniformly ran-
dom conditioned on wTv𝑗 = w̃Tv𝑗 for all 𝑗. Moreover, u∗ is a particular solution of uTv𝑗 = 𝑧𝑗 for
all 𝑗. This implies ct∗ = (w + u∗)T is a uniformly random solution of ct∗v𝑗 = w̃Tv𝑗 + 𝑧𝑗, and the
simulator does the same thing.

Aer the ciphertext challenge, the secret key of v is

wTv =
(
ct∗ − (u∗)T

)
v = ct∗v − (u∗)Tv︸ ︷︷ ︸

=𝑧

,

and the simulator computes the same value. �

3.3 Proof of Gradual Simulation Security

We rst discuss the intuition of our simulator. Recall that in the scheme, the public key consists
of a random matrix A and the projection AW of the master secret key W. A ciphertext can
be thought as an OTP-IPFE ciphertext using sTAW as its master secret key, which is a random
combination of AW. It also includes the combination coecients sTA, with respect toW. MDDH𝑘

assumption tells us that sTAW is a pseudorandom combination of W, so it is indistinguishable
for the ciphertext to use cTW as its OTP-IPFE master secret key for a random c, which lies outside
the row space of A with overwhelming probability. A ciphertext in this form is using an OTPmsk
independent of mpk, or equivalently, a fresh instance of OTP-IPFE dedicated to this ciphertext.

A recurring technique in dual system encryption is to perform a change of variable for W
to explicitly separate out the instance for the challenge ciphertext. We program W = W̃ + a⊥wT,
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where w is an OTP-IPFE master secret key and a⊥ is any vector such that Aa⊥ = 0, cTa⊥ = 1. (This
step is known as using the parameter hiding property.) Under this change of variable, keys and
ciphertext become

sk =Wv = W̃v + a⊥ wTv , ct = ÈcT, cTW + uTÉ = ÈcT, cTW̃ + (w + u)T É.

Note that the terms in the boxes are precisely OTP-IPFE keys and ciphertext, and the terms out-
side the boxes does not depend on u. Therefore, our simulator prepares an OTP-IPFE simulator
instance, and samples A, c, W̃ and computes a⊥ on its own. To simulate keys and ciphertext, it
invokes the OTP-IPFE simulator and stitches the result. The construction below extends this idea
to handle multiple simulated ciphertexts.

Construction 20. Adopt the notations in Construction 13 and let (OTP.SimSetup,OTP.SimKeyGen,
OTP.SimEnc) be the simulator in Construction 18. The simulator for Construction 13 works as
follows:

• SimSetup(1𝑛, 1𝑇 ) takes as input the dimension 𝑛 and the maximum number 𝑇 of simulated
ciphertexts. It samples

T $← ℤ𝑘×𝑘
𝑝 , W̃ $← ℤ

(𝑘+𝑇)×𝑛
𝑝 ,

P = (a⊥1 · · · a⊥𝑇 p1 · · · p𝑘)
$← ℤ

(𝑘+𝑇)×(𝑘+𝑇)
𝑝

conditioned on P being invertible. The algorithm prepares 𝑇 instance of OTP-IPFE simula-
tor: st𝑡 $← OTP.SimSetup(𝑝, 1𝑛) for 𝑡 ∈ [𝑇]. It sets

(
c1 · · · c𝑇−1 c𝑇 AT) = (PT)−1 ©«

I𝑇−1
1
T

ª®¬
and outputs mpk = ÈA,AW̃É and st = (0, a⊥1 , ÈcT1É, st1, . . . , a⊥

𝑇
, ÈcT

𝑇
É, st𝑇 ).

Note: Conceptually, we program W = W̃ + a⊥1 wT
1 + · · · + a⊥𝑇w

T
𝑇
, where w𝑡 is the OTP-IPFE mas-

ter secret key for the 𝑡th simulated ciphertext.13 By denition, Aa⊥
𝑖
= 0, cT

𝑖
a⊥
𝑖′ = 0 for 𝑖 ≠ 𝑖′ and

cT
𝑖
a⊥
𝑖
= 1. The rst component of st keeps track of the number of simulated ciphertext at any point.

• SimKeyGen(st, v, 𝑧1, . . . , 𝑧𝐼) takes as input the state st, a vector v, and a list of inner products
𝑧1, . . . , 𝑧𝐼. It parses st as (𝐼′, a⊥1 , ÈcT1É, st1, . . . , a⊥

𝑇
, ÈcT

𝑇
É, st𝑇 ). If 𝐼 ≠ 𝐼′, the algorithm outputs

⊥ and terminates. Otherwise, it runs

for 𝑡 ≤ 𝐼: (OTP.sk𝑡, st′𝑡)
$← OTP.SimKeyGen(st𝑡, v, 𝑧𝑡);

for 𝑡 > 𝐼: (OTP.sk𝑡, st′𝑡)
$← OTP.SimKeyGen(st𝑡, v).

The algorithm outputs

sk = W̃v + a⊥1 OTP.sk1 + · · · + a⊥𝑇OTP.sk𝑇 ,
st′ = (𝐼, a⊥1 , ÈcT1É, st′1, . . . , a⊥𝑇 , Èc

T
𝑇É, st

′
𝑇 ).

13The programming of msk’s is only conceptual because they are in fact simulated.
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• SimEnc(st, 𝑧1, . . . , 𝑧𝐽) takes as input the state st and a list of inner products 𝑧1, . . . , 𝑧𝐽 . It
parses st as (𝐼, a⊥1 , ÈcT1É, st1, . . . , a⊥

𝑇
, ÈcT

𝑇
É, st𝑇 ). If 𝐼 = 𝑇, the algorithm outputs ⊥ and ter-

minates. Otherwise, it runs

(OTP.ct, st′𝐼+1)
$← OTP.SimEnc(st𝐼+1, 𝑧1, . . . , 𝑧𝐽), st′𝑡 ← st𝑡 for 𝑡 ≠ 𝐼 + 1,

and outputs

ct = (ÈcT𝐼+1É, Èc
T
𝐼+1ÉW̃ + ÈOTP.ctÉ),

st′ = (𝐼 + 1, a⊥1 , ÈcT1É, st′1, . . . , a⊥𝑇 , Èc
T
𝑇É, st

′
𝑇 ).

Proving Theorem 14 amounts to proving the following two claims:

Claim 21. The simulator in Construction 20 satises key simulation security.

Claim 22. Suppose in Construction 13, MDDH𝑘 holds in 𝐺, then the simulator in Construction 20
satises 𝑇-ciphertext simulation security for all 𝑇 = poly(𝜆).

Proof (Claim 21).Proof (Claim 21). Recall that in Expreal and Expsim, the adversary only gets the master public key
and the secret keys. We show that their distributions are identical via these hybrids:

• H1 proceeds identically as Expreal, except that A is sampled as in Expsim.

• H2 proceeds identically as H1, except that we set

W = W̃ + a⊥1 wT
1 + · · · + a⊥𝑇w

T
𝑇

for uniformly random W̃,w1, . . . ,w𝑇 .

In both Expreal and Expsim, the matrix A is a uniformly random matrix, so Expreal ≡ H1. We also
have H1 ≡ H2 as the change of variable does not alter the distribution ofW and AW = AW̃. In H2,
the secret key for v is

Wv = W̃v + a⊥1 wT
1v + · · · + a⊥𝑇w

T
𝑇v.

In Expsim, the terms wT
𝑖
v are replaced by their simulation. Since the OTP-IPFE simulator is per-

fect, we conclude H2 ≡ Expsim. �

Proof (Claim 22).Proof (Claim 22). Recall that in Exp𝑏
𝑇-GS, the adversary receives the simulated mpk, can query for

arbitrarily many simulated secret keys and at most 𝑇 − 1 simulated ciphertexts, and submits one
challenge vector to obtain either a challenge ciphertext encrypted using the simulated mpk, or
a simulated challenge ciphertext. We want to show that the the two cases are indistinguishable.

To simulate the challenge ciphertext, we need to rst switch it from using sTA to cT. At rst
sight, it seems that the reduction cannot know a⊥’s (since it receives ÈAÉ as an MDDH𝑘 chal-
lenge) thus cannot simulate non-challenge ciphertexts. This is why the simulator samples A in
a fashion similar to the reduction of MDDH𝑘,𝑘+𝑇 to MDDH𝑘, which originates from a technique
in [CGKW18].

We go through these hybrids:
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• H1 proceeds identically to Exp0𝑇-GS, except that the 𝑇 th instance of OTP-IPFE simulator is
replaced by an instance of OTP-IPFE itself and c𝑇 is removed. In particular, the state of the
simulator is

st = (𝐼, a⊥1 , ÈcT1É, st1, . . . , a⊥𝑇−1, Èc
T
𝑇−1É, st𝑇−1, a

⊥
𝑇 , w𝑇 )

and a simulated secret key for v is

sk = W̃v + a⊥1 OTP.sk1 + · · · + a⊥𝑇−1OTP.sk𝑇−1 + a
⊥
𝑇 wT

𝑇v .

Since the adversary can query at most 𝑇 − 1 simulated ciphertexts (excluding the challenge
ciphertext), this instance is never used to simulate a ciphertext in Exp0

𝑇-GS, and it does not
matter if we remove c𝑇 . The transition from Exp0

𝑇-GS to H1 is essentially undoing simulation
for the last OTP-IPFE instance. Since the OTP-IPFE simulator is perfect, Exp0

𝑇-GS ≡ H1.

• H2 proceeds identically to H1, except that a⊥𝑇 and the last OTP-IPFE instance are removed.
The state of the simulator and a simulated secret key for v are

st = (𝐼, a⊥1 , ÈcT1É, st1, . . . , a⊥𝑇−1, Èc
T
𝑇−1É, st𝑇−1 , ),

sk = W̃v + a⊥1 OTP.sk1 + · · · + a⊥𝑇−1OTP.sk𝑇−1 + 0 .

This can be interpreted as a change of variable W̃→ W̃ − a⊥
𝑇
wT

𝑇
, which does not aect the

distribution of W̃, so H1 ≡ H2.

• H3 proceeds identically to H2, except that the challenge ciphertext becomes

ct∗ = (È cT É, È cT W̃ + (u∗)TÉ) for c $← ℤ𝑘+𝑇
𝑝 .

Claim 23. H2 ≈ H3 reduces to MDDH𝑘 in 𝐺.

• H4 proceeds identically to H3, except that c in the challenge ciphertext becomes c𝑇 sampled
by SimSetup. Note that we are not using a⊥

𝑇
and c𝑇 is statistically close to c. Therefore,

H4 ≈𝑠 H3.

• H5 proceeds identically to H4, except that we perform a change of variable W̃→ W̃ + a⊥
𝑇
wT

𝑇
.

Clearly, H4 ≡ H5.

• H6 proceeds identically to H5, except that we resurrect the last instance of OTP-IPFE simu-
lator and use it to simulate the challenge ciphertext. In H5, the challenge ciphertext and a
simulated secret key for v are

ct∗ = (ÈcT𝑇É, Èc
T
𝑇W̃ + (w𝑇 + u∗)T É),

sk = W̃ + a⊥1 OTP.sk1 + · · · + a⊥𝑇−1OTP.sk𝑇−1 + a
⊥
𝑇 wT

𝑇v .

The terms in boxes are OTP-IPFE ciphertexts and keys, and in H6 they are replaced by
simulation. Since the OTP-IPFE simulator is perfect, we have H5 ≡ H6.

We argue H6 ≡ Exp1𝑇-GS. Note that the only dierence between the two is which instance is used
to simulate which ciphertext. This amounts to permuting (a⊥𝑡 , ÈcT𝑡É, st𝑡)’s. It is easy to verify that
the distribution of these tuples is permutation invariant. Once we prove H2 ≈ H3 (Claim 23), we
conclude Exp0

𝑇-GS ≈ Exp
1
𝑇-GS by hybrid argument. �
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Proof (Claim 23).Proof (Claim 23). LetA be an ecient adversary distinguishing H2 and H3. We construct B against
the MDDH𝑘 assumption in 𝐺. Upon receiving MDDH𝑘 challenge ÈB,dTÉ where dT = sTB or dT is
random, B launches A and receives 1𝑛, 1𝑇 from it, samples and denes

W̃ $← ℤ
(𝑘+𝑇)×𝑛
𝑝 , P = (a⊥1 · · · a⊥𝑇−1 p0 p1 · · · p𝑘)

$← ℤ
(𝑘+𝑇)×(𝑘+𝑇)
𝑝 ,

(c1 · · · c𝑇−1 c AT) = (PT)−1
(
I𝑇−1

d BT

)
.

Here, (d BT) occupies the position of
( 1

T

)
. B prepares 𝑇 − 1 instances of OTP-IPFE simulator:

st𝑡 $← OTP.SimSetup(𝑝, 1𝑛) for 𝑡 ∈ [𝑇 − 1]. It sets

mpk = (ÈAÉ, ÈAÉW̃), st = (0, a⊥1 , ÈcT1É, st1, . . . , a⊥𝑇−1, Èc
T
𝑇−1É, st𝑇−1).

B answers queries from A as dened in H2,H3. It responds to the ciphertext challenge as

ct∗ = (ÈcTÉ, ÈcTÉW̃ + Èu∗É).

Lastly, it outputs whatever A outputs.
Clearly B is ecient, produces correct distribution for (a⊥𝑡 , ÈcT𝑡É, st𝑡)’s and A, W̃, and answers

queries (non-challenges) as required. If dT = sTB, we have cT = sTA and B has simulated H2 for A.
If dT is random, so is cT and B has simulated H3 for A. Therefore, their advantages are the same.
If MDDH𝑘 holds in 𝐺, we have H2 ≈ H3. �

4 Ciphertext-Policy 1-ABE for ABP

In this section, we construct the core component of our adaptively secure ABE, called 1-ABE,
from any gradually 2-simulation-secure IPFE. A 1-ABE has the same syntax as an ABE, except
that

• The message space is ℤ𝑝 for some 𝑝 and decryption only needs to recover the message
encoded in (another) group.

• In the security denition, the adversary is allowed to query at most one secret key.

• In the security denition, the adversary only chooses the attribute but not themessage. The
message is 0 in one experiment (Exp01-ABE), and is uniformly random in the other experiment
(Exp11-ABE).

14

The relaxation of decryption correctness and the change of messages in the security denition
are because 1-ABE will be used to encapsulate keys for full ABE. In full ABE, the group-encoded
decryption result of 1-ABE is used to mask the message, and we argue security by replacing the
encapsulated key by random.

ABE constructions in some previous works such as [KW19,LL20] go through an intermediate
step of building a secret-key 1-ABE that is 1-key 1-ciphertext secure. In the secret-key setting, keys
and ciphertexts are symmetric, and consequently there is no distinction between ciphertext-
policy and key-policy 1-ABE. In contrast, our 1-ABE is public-key and 1-key secure. This asymmetry
separates CP-1-ABE and KP-1-ABE. We remark that 1-ABE in [KW19,LL20] can be easily modied
to t our denition as CP-1-ABE. We will see that our denition is easier to use in reductions for
full ABE.

14The adversary also does not receive the potential random message.
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Construction 24 (CP-1-ABE). The construction is described for a xed value of 𝜆, and 𝜆 is sup-
pressed for brevity. Let𝐺 be a group (with generator 𝑔) of prime order 𝑝, (IPFE.Setup, IPFE.KeyGen,
IPFE.Enc, IPFE.Dec) a 𝐺-encoded IPFE, and (Garble, Eval) be an AKGS for ABP. We construct a 1-
ABE for predicate space

P = {𝑃𝑛 | 𝑛 ∈ ℕ}, 𝑃𝑛(𝑦, x) = 𝑦(x) for 𝑦 ∈ ztABP𝑛𝑝 , x ∈ ℤ𝑛
𝑝 .

The scheme works as follows:

• Setup(1𝑛) takes as input the attribute length (i.e., 𝑃𝑛 is represented by 1𝑛) and outputs
(mpk,msk) $← IPFE.Setup(1𝑛+1).

• KeyGen(msk, x) outputs sk $← IPFE.KeyGen
(
msk, (1, x)

)
.

Note: If the underlying IPFE has succinct secret keys, so does this scheme. For instance, when
instantiated with Construction 13 with 𝑇 = 2 under DDH, each secret key consists of just three
group elements.

• Enc(mpk, 𝑦, 𝜇) garbles 𝑦 with 𝜇 and encrypts the label functions in IPFE ciphertexts as fol-
lows:

if 𝑦 = 𝑓≠0: 𝛼← 𝜇, 𝛽 ← 0;
if 𝑦 = 𝑓=0: 𝛼

$← ℤ𝑝, 𝛽 ← 𝜇;
(L1, . . . , L𝑚) $← Garble( 𝑓 ,𝛼,𝛽),

for 𝑗 ∈ [𝑚]: ict𝑗 $← IPFE.Enc(mpk, ÈL𝑗É).

The algorithm outputs ct = (ict1, . . . , ict𝑚).

• Dec(sk, x, ct, 𝑦) takes as input a secret key sk for x and a ciphertext ct for 𝑦. If 𝑦(x) = 0, the
algorithm outputs ⊥ and stops. Otherwise, it computes

for 𝑗 ∈ [𝑚]: È�𝑗É ← IPFE.Dec(sk, ict𝑗)

È𝜇′É ←
{

1
𝑓 (x) Eval( 𝑓 , x, È�1, . . . , �𝑚É), if 𝑦 = 𝑓≠0;

Eval( 𝑓 , x, È�1, . . . , �𝑚É), if 𝑦 = 𝑓=0;

and outputs È𝜇′É as the message.

Note: We show that the scheme is correct. By the correctness of IPFE, we have

�𝑗 = LT𝑗

(
1
x

)
= 𝐿𝑗 (x),

where 𝐿𝑗’s are the label functions dened by Garble. Since Eval is linear in the labels, it can be
performed in the exponent. By the correctness of AKGS,

if 𝑦 = 𝑓≠0, 𝑓 (x) ≠ 0: 𝜇′ = 1
𝑓 (x) (𝛼𝑓 (x) + 𝛽) = 1

𝑓 (x) (𝜇 𝑓 (x) + 0) = 𝜇;

if 𝑦 = 𝑓=0, 𝑓 (x) = 0: 𝜇′ = 𝛼𝑓 (x) + 𝛽 = 𝛼 · 0 + 𝜇 = 𝜇.

Theorem 25. Suppose in Construction 24, the IPFE is gradually 2-simulation-secure and the AKGS is
piecewise secure, then the constructed 1-ABE is secure.
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Proof.Proof. Recall that in Exp𝑏1-ABE, the adversary receives mpk and can query one secret key for at-
tribute x ∈ ℤ𝑛

𝑝. In addition, it receives a challenge ciphertext tied to some policy 𝑦 ∈ ztABP𝑛𝑝 of its
choice, encrypting either 0 (in Exp01-ABE) or 𝛿

$← ℤ𝑝 (in Exp11-ABE). The adversary is free to ask for
either the secret key or the ciphertext rst. Its goal is to distinguish the two cases, and we want
to show Exp01-ABE ≈ Exp

1
1-ABE.

Suppose the garbling size of the underlying ABP of 𝑦 is 𝑚, we go through a series of hybrids
Exp𝑏1-ABE,H

𝑏
1∼𝑚,1∼3. In these hybrids, we gradually modify the ciphertext queried by the adversary,

which starts out as encrypting label functions L𝑗 generated by AKGS Garble and ends up by en-
crypting simulated labels �𝑗 $← ℤ𝑝. The proof interleaves between using the gradual simulation
security of IPFE and the piecewise security of AKGS, in a fashion similar to [LL20].

The hybrids H𝑏
1,1∼3 changes ict1 from encrypting the label function L1 to being simulated using

the reversely sampled rst label �1:

• H𝑏
1,1 proceeds identically to Exp

𝑏
1-ABE, except that we use the simulator of IPFE to generate

mpk and sk for x, instead of using the real IPFE algorithms. By gradual 2-simulation security
of IPFE (Expreal ≈ Expsim), we have Exp𝑏1-ABE ≈ H

𝑏
1,1.

• H𝑏
1,2 proceeds identically to H

𝑏
1,1, except that ict1 (encoding the label function 𝐿1 in the chal-

lenge ciphertext) is simulated. By gradual 2-simulation security of IPFE (Exp02-GS ≈ Exp
1
2-GS),

we have H𝑏
1,1 ≈ H

𝑏
1,2. Note that in H

𝑏
1,2, the rst label function 𝐿1 is not directly used, and

only the rst label �1 = 𝐿1(x) is used.

• H𝑏
1,3 proceeds identically to H

𝑏
1,2, except that the �1 used to simulate ict1 (or isk, whichever

comes later) is reversely sampled instead of being computed from 𝐿1. By the reverse sam-
pleability of AKGS, H𝑏

1,2 ≡ H
𝑏
1,3.

Next, the hybrids H𝑏
𝑗,1∼3 (for 𝑗 = 2, . . . , 𝑚) change ict𝑗 from encrypting the label function L𝑗 to

encrypting the simulated label �𝑗 $← ℤ𝑝, via a temporary simulated form.

• H𝑏
𝑗,1 proceeds identically to H

𝑏
1,3, except that ict𝑗′ for 1 < 𝑗 ′ < 𝑗 encrypts (�𝑗′, 0) for �𝑗′ $← ℤ𝑝

(here, 0 is of the same length as x), and ict𝑗 is simulated using �𝑗 = 𝐿𝑗 (x). By gradual
2-simulation security of IPFE (Exp02-GS ≈ Exp

1
2-GS), we have H

𝑏
1,3 ≈ H

𝑏
2,1.

Similarly, H𝑏
𝑗−1,3 ≈ H

𝑏
𝑗,1, which should be clear once we specify H

𝑏
𝑗,3.

• H𝑏
𝑗,2 proceeds identically to H

𝑏
𝑗,1, except that �𝑗 is sampled uniformly at random instead of

being computed as 𝐿𝑗 (x). Note that both H𝑏
𝑗,1 and H

𝑏
𝑗,2 can be generated using just �𝑗 and

L𝑗+1, . . . , L𝑚 from the garbling, so marginal randomness property applies and H𝑏
𝑗,1 ≡ H

𝑏
𝑗,2.

• H𝑏
𝑗,3 proceeds identically to H

𝑏
𝑗,2, except that ict𝑗 is reverted to a normal ciphertext, now

encrypting (�𝑗 , 0), where �𝑗
$← ℤ𝑝 and 0 is of the same length as x. By gradual 2-simulation

security of IPFE (Exp12-GS ≈ Exp
0
2-GS), we have H

𝑏
𝑗,2 ≈ H

𝑏
𝑗,3.

Note that in H𝑏
𝑗+1,1, the next hybrid, ict𝑗+1 becomes simulated using �𝑗+1 = 𝐿𝑗+1(x). We have

H𝑏
𝑗,3 ≈ H

𝑏
𝑗+1,1 again by gradual 2-simulation security of IPFE.

Lastly, we argue H0
𝑚,3 ≡ H

1
𝑚,3. In both hybrids, ict𝑗 ’s for 1 < 𝑗 ≤ 𝑚 encrypt (�𝑗 , 0) for �𝑗 $← ℤ𝑝, and

ict1 is simulated using �1, which is reversely sampled. We have two cases under the constraint
𝑦(x) = 0:

if 𝑦 = 𝑓≠0, �1 ← RevSamp( 𝑓 , x, 𝛿 𝑓 (x) + 0, �2, . . . , �𝑚) = RevSamp( 𝑓 , x, 0, �2, . . . , �𝑚);
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if 𝑦 = 𝑓=0, �1 ← RevSamp( 𝑓 , x,𝛼𝑓 (x) + 𝛿, �2, . . . , �𝑚) ≡ RevSamp( 𝑓 , x,𝛾, �2, . . . , �𝑚) for 𝛾 $← ℤ𝑝.

Here, 𝛿 is either 0 (in H0
𝑚,3) or random (in H1

𝑚,3), and when 𝑦 = 𝑓=0, 𝑓 (x) ≠ 0, the random 𝛼 is not
used elsewhere and 𝛼𝑓 (x) is a one-time pad that hides 𝛿. In both cases, �1 as well as any other
value used to generate the response to the adversary contains no information about 𝛿. Therefore,
H0
𝑚,3 ≡ H

1
𝑚,3.

15 By hybrid argument, we have Exp01-ABE ≈ Exp
1
1-ABE. �

5 Key-Policy ABE for ABP

In this section, we apply the classic dual system encryption to obtain full KP-ABE from CP-1-ABE
instantiated with the IPFE in Section 3.1.

Construction 26 (KP-ABE). The construction is described for a xed value of 𝜆, and 𝜆 is sup-
pressed for brevity. Let 𝐺1, 𝐺2, 𝐺T be pairing groups of prime order 𝑝 for which MDDH𝑘 holds
in 𝐺1, 𝐺2, and let (Garble, Eval) be an AKGS for ABP. We construct an ABE for message space 𝐺T
and predicate space

P = {𝑃𝑛 | 𝑛 ∈ ℕ}, 𝑃𝑛(x, 𝑦) = 𝑦(x) for x ∈ ℤ𝑛
𝑝 , 𝑦 ∈ ztABP𝑛𝑝 .

The scheme works as follows:

• Setup(1𝑛) takes as input the attribute length (i.e., 𝑃𝑛 is represented by 1𝑛). It samples and
sets

A $← ℤ
𝑘×(𝑘+2)
𝑝 ,B $← ℤ

𝑘×(𝑘+1)
𝑝 , W $← ℤ

(𝑘+2)×(𝑘+1) (𝑛+1)
𝑝 ,𝝁

$← ℤ𝑘+1
𝑝 ,

xpk = (ÈBTÉ1, ÈW(BT ⊗ I𝑛+1)É1), fpk = (ÈAÉ2, ÈAWÉ2),
mpk = (È𝝁TBTÉT, xpk), msk = (fpk,𝝁).

Note: We explain the connection with CP-1-ABE and dual system encryption (as demonstrated
in Section 1.1). The matrix W = (W1 · · · W𝑘+1) consists of 𝑘 + 1 master secret keys of CP-1-
ABE concatenated by columns, each of shape (𝑘 + 2) × (𝑛 + 1). Its projection along a vector
b = (𝑏1, . . . , 𝑏𝑘+1)T is

𝑏1W1 + · · · + 𝑏𝑘+1W𝑘+1 =W1 · 𝑏1I𝑛+1 + · · · +W𝑘+1 · 𝑏𝑘+1I𝑛+1

= (W1 · · · W𝑘+1)
©«
𝑏1I𝑛+1

...

𝑏𝑘+1I𝑛+1

ª®®¬ =W(b ⊗ I𝑛+1).

The matrix B = (bT1 · · · bT𝑘)T consists of all the projection vectors, andW(BT ⊗ I𝑛+1) is the projec-
tions of W along B concatenated by columns.

• KeyGen(msk, 𝑦) garbles 𝑦 with 𝝁 as follows:

if 𝑦 = 𝑓≠0: 𝜶← 𝝁, 𝜷 ← 0;
if 𝑦 = 𝑓=0: 𝜶

$← ℤ𝑘+1
𝑝 , 𝜷 ← 𝝁;

(L1, . . . , L𝑚) $← Garble( 𝑓 ,𝜶,𝜷).
15In fact, H0

𝑚,2 ≡ H
1
𝑚,2, but this requires more careful argument.
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It samples s𝑗 $← ℤ𝑘
𝑝 for 𝑗 ∈ [𝑚] and sets

sk𝑗,1 = sT𝑗ÈAÉ2, sk𝑗,2 = sT𝑗ÈAWÉ2 + ÈL
T
𝑗É2.

The algorithm outputs sk = (sk1,1, sk1,2, . . . , sk𝑚,1, sk𝑚,2).

Note: Generating a key in KP-ABE means encrypting 𝝁 in each CP-1-ABE instance, which boils
down to generating IPFE ciphertexts, as shown above.

• Enc(mpk, x, 𝑔) samples r $← ℤ𝑘
𝑝 and sets

ct1 = ÈBTÉ1r, ct2 = ÈW(BT ⊗ I𝑛+1)É1
(
r ⊗

(
1
x

))
, ct3 = È𝝁TBTÉTr + 𝑔.

The algorithms outputs ct = (ct1, ct2, ct3).

Note: We remark that r (resp. BTr) is the coecients of random linear combination w.r.t. the
projections (resp. the CP-1-ABE instances). Here, ct2 corresponds to a CP-1-ABE key w.r.t. randomly
combined master secret keyW(BTr ⊗ I𝑛+1), which is an IPFE secret key for

( 1
x
)
, i.e.,

ct2 =
�
W(BTr ⊗ I𝑛+1)

(
1
x

)�
1
.

The ciphertext consists of 2𝑘 + 3 elements in 𝐺1 and one element in 𝐺T, hence is succinct.

• Dec(sk, 𝑦, ct, x) rst checks whether 𝑦(x) = 1. If not, it outputs ⊥ and terminates. Otherwise,
it parses sk, ct as dened in KeyGen, Enc, computes

for 𝑗 ∈ [𝑚]: È�𝑗ÉT = −sk𝑗,1ct2 + sk𝑗,2
(
ct1 ⊗

(
1
x

))
;

È𝜇′ÉT ←
{

1
𝑓 (x) Eval( 𝑓 , x, È�1, . . . , �𝑚ÉT), if 𝑦 = 𝑓≠0;

Eval( 𝑓 , x, È�1, . . . , �𝑚ÉT), if 𝑦 = 𝑓=0;

and outputs ct3 − È𝜇′ÉT as the recovered message.

Note: We show that the scheme is correct. By denition (also cf. Construction 13),

�𝑗 = −sT𝑗AW(B
T ⊗ I𝑛+1)

(
r ⊗

(
1
x

))
+ (sT𝑗AW + L

T
𝑗 )

(
BTr ⊗

(
1
x

))
= LT𝑗

(
BTr ⊗

(
1
x

))
= LT𝑗

(
BTr ⊗ I𝑛+1

) (
1
x

)
.

By Lemma 5, if we dene (L′1, . . . , L′𝑚) ← Garble( 𝑓 , rTB𝜶, rTB𝜷; rTBR), where R is the random-
ness used to generate L𝑗’s, then

�𝑗 = LT𝑗
(
BTr ⊗ I𝑛+1

) (
1
x

)
= (L′𝑗)

T

(
1
x

)
= 𝐿′𝑗 (x).

By the correctness of AKGS, we have

Eval( 𝑓 , x, �1, . . . , �𝑚) = rTB𝜶𝑓 (x) + rTB𝜷.
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In the two cases where decryption should succeed,

if 𝑦 = 𝑓≠0, 𝑓 (x) ≠ 0: 𝜇′ = 1
𝑓 (x) (r

TB𝝁 𝑓 (x) + rTB0) = rTB𝝁;
if 𝑦 = 𝑓=0, 𝑓 (x) = 0: 𝜇′ = rTB𝜶𝑓 (x) + rTB𝝁 = rTB𝝁.

Therefore, in both cases, we have ct3 − È𝜇′ÉT = È𝝁TBTrÉ𝑇 + 𝑔 − ÈrTB𝝁É𝑇 = 𝑔.

Minimizing Pairing Operations. The number of pairing operations in the decryption algorithm
appears to depend on the garbling size of the policy and the attribute length. It can be reduced
to 2𝑘 + 3 as follows.16 Since Eval is linear in the labels, the decryption algorithm can rst nd
𝛾1, . . . ,𝛾𝑚 ∈ ℤ𝑝 such that

Eval( 𝑓 , x, �1, . . . , �𝑚) =
𝑚∑︁
𝑗=1

𝛾𝑗�𝑗 .

The computation of È𝜇′ÉT can be rewritten as

È𝜇′ÉT =
𝑚∑︁
𝑗=1

𝛾𝑗È�𝑗ÉT =
𝑚∑︁
𝑗=1

𝛾𝑗

(
−sk𝑗,1ct2 + sk𝑗,2

(
ct1 ⊗

(
1
x

)))
= −

(
𝑚∑︁
𝑗=1

𝛾𝑗sk𝑗,1

)
ct2 +

(
𝑚∑︁
𝑗=1

𝛾𝑗sk𝑗,2

) (
I𝑘+1 ⊗

(
1
x

))
ct1.

Note that ct1, ct2 consist of 𝑘 + 1, 𝑘 + 2 group elements and only these elements (in 𝐺1) take part
in pairing. Therefore, the formula above only uses 2𝑘 + 3 pairing operations.

There are further optimizations possible, such as appropriately choosing which group of the
two source groups to use for the secret key to reduce the cost of exponentiation in decryption.
Next, we proceed to the security of our scheme.

Theorem 27. Suppose in Construction 26,MDDH𝑘 holds in both 𝐺1 and 𝐺2, and the AKGS is piecewise
secure, then the constructed scheme is IND-CPA secure.

Proof (Theorem 27).Proof (Theorem 27). Recall that in the security experiments, the adversary receives the master
public key, many secret keys, and a challenge ciphertext. Suppose the queried keys are for
𝑦1, . . . , 𝑦𝑄 and the challenge ciphertext encrypts one of 𝑔0, 𝑔1 with attribute x. The constraint
is 𝑦𝑞(x) = 0 for all 𝑞 ∈ [𝑄], and we want to show the adversary cannot distinguish which of 𝑔0, 𝑔1
is encrypted.

The proof follows dual system encryption methodology, as discussed in Section 1.1. More
formally, we go through hybrids Exp𝑏CPA and H

𝑏
1 ,H

𝑏
2:

• H𝑏
1 proceeds identically to Exp

𝑏
CPA, except that the challenge ciphertext becomes

ct1 = È c É1, ct2 =
�
W

(
c ⊗

(
1
x

))�
1
, ct3 = È𝝁T c ÉT + 𝑔𝑏,

where c is uniformly random outside the row space of B.
16Syntactically, we use the pairing groups in black box, and there are only 2𝑘 + 3 elements in 𝐺1 in

a ciphertext and no element in 𝐺1 in a secret key, so the operations can always be regrouped to use at
most 2𝑘 + 3 pairing operations. The content below provides the concrete regrouping method.
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• H𝑏
2 proceeds identically to H

𝑏
1 , except that each queried key

17 is garbled for 𝝁 + 𝛿𝑞b⊥:

if 𝑦𝑞 = 𝑓𝑞,≠0: 𝜶𝑞 ← 𝝁 + 𝛿𝑞 b⊥, 𝜷𝑞 ← 0;

if 𝑦𝑞 = 𝑓𝑞,=0: 𝜶𝑞
$← ℤ𝑘+1

𝑝 , 𝜷𝑞 ← 𝝁 + 𝛿𝑞 b⊥;

(L𝑞,1, . . . , L𝑞,𝑚) $← Garble( 𝑓𝑞,𝜶𝑞,𝜷𝑞).

Here, b⊥ is a xed vector such that Bb⊥ = 0 and cTb⊥ = 1, and 𝛿𝑞
$← ℤ𝑝 is fresh per key.

The basis of indistinguishability is as follows:

Claim 28. Exp𝑏CPA ≈ H
𝑏
1 reduces to MDDH𝑘 in 𝐺1.

Claim 29. H𝑏
1 ≈ H

𝑏
2 reduces to the security of CP-1-ABE (Construction 24 instantiated with gradually

2-simulation-secure Construction 13 in 𝐺2).

Claim 30. H02 ≡ H
1
2.

Once we prove these claims, we have Exp0CPA ≈ Exp
1
CPA by hybrid argument. �

Proof (Claim 28).Proof (Claim 28). A uniformly random c is outside the row space of B with overwhelming proba-
bility, so we can instead let c be uniformly random in H𝑏

1 . Let A be an ecient adversary distin-
guishing Exp𝑏CPA and H

𝑏
1 , we construct B against MDDH𝑘 in 𝐺1. Upon receiving MDDH𝑘 challenge

ÈB, cTÉ1 where either cT = rTB or cT is random, B launches A, receives the attribute length 1𝑛
from it, samples A,W,𝝁, and sets

xpk =
(
ÈBTÉ1,W(ÈBTÉ1 ⊗ I𝑛+1)

)
, fpk = (ÈAÉ2, ÈAWÉ2),

mpk = (È𝝁TÉ2ÈBTÉ1, xpk), msk = (fpk,𝝁).

It sends mpk to A and responds to the key queries normally. To respond to the ciphertext chal-
lenge for one of 𝑔0, 𝑔1 with attribute x, our B sets

ct1 = ÈcÉ1, ct2 =W
(
ÈcÉ1 ⊗

(
1
x

))
, ct3 = È𝝁TÉ2ÈcÉ1 + 𝑔𝑏.

Lastly, it outputs whatever A outputs.
Clearly B is ecient. Note that in Exp𝑏CPA, the exponents in ct2 are

W(BT ⊗ I𝑛+1)
(
r ⊗

(
1
x

))
=W

(
BTr ⊗

(
1
x

))
.

If cT = rTB, our B has simulated Exp𝑏CPA for A. If c
T is random, our B has (statistically closely)

simulated H𝑏
1 for A. Therefore, their advantages are negligibly close. If MDDH𝑘 holds in 𝐺1, we

have Exp𝑏CPA ≈ H
𝑏
1 . �

Proof (Claim 29).Proof (Claim 29). Let b⊥ be such that Bb⊥ = 0 and cTb⊥ = 1 for the B used in the master public
key and the cT used in the challenge ciphertext. We set18

W = W̃ + (b⊥)T ⊗ Ŵ, 𝝁𝑞 = 𝝁 + 𝛿𝑞b⊥,

17In a typical dual system proof, the keys are switched one by one. In our case, we can change them
all at once since our 1-ABE is public-key.

18Components with hat will come from CP-1-ABE, and components with tilde will be sampled by the
reduction algorithm.
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where W̃ $← ℤ
(𝑘+2)×(𝑘+1) (𝑛+1)
𝑝 , Ŵ $← ℤ

(𝑘+2)×(𝑛+1)
𝑝 ,𝝁

$← ℤ𝑘+1
𝑝 , and either 𝛿𝑞 = 0 (in H𝑏

1 ) or 𝛿𝑞
$← ℤ𝑝 (in

H𝑏
2). Recall that to create a secret key for 𝑦𝑞, we need to garble 𝑦𝑞 with 𝝁𝑞. For this, we set

if 𝑦𝑞 = 𝑓𝑞,≠0: �̃�𝑞 ← 𝝁, 𝛼𝑞 ← 𝛿𝑞, 𝜷𝑞 ← 0, 𝛽𝑞 ← 0;

if 𝑦𝑞 = 𝑓𝑞,=0: �̃�𝑞
$← ℤ𝑘+1

𝑝 , 𝛼𝑞
$← ℤ𝑝, 𝜷𝑞 ← 𝝁, 𝛽𝑞 ← 𝛿𝑞;

𝜶𝑞 = �̃�𝑞 +𝛼𝑞b⊥, 𝜷𝑞 = 𝜷𝑞 + 𝛽𝑞b⊥,

R̃𝑞
$← ℤ

(𝑘+1)×𝑚′
𝑝 , r𝑞 $← ℤ𝑚′

𝑝 , R𝑞 = R̃𝑞 + b⊥rT,
(L̃𝑞,1, . . . , L̃𝑞,𝑚) ← Garble( 𝑓 , �̃�𝑞,𝜷𝑞; R̃𝑞),
(L̂𝑞,1, . . . , L̂𝑞,𝑚) ← Garble( 𝑓 ,𝛼𝑞,𝛽𝑞; r𝑞),
(L𝑞,1, . . . , L𝑞,𝑚) ← Garble( 𝑓 ,𝜶𝑞,𝜷𝑞;R𝑞).

By Lemma 5 and the linearity of Garble, we have L𝑞, 𝑗 = L̃𝑞, 𝑗 + b⊥ ⊗ L̂𝑞, 𝑗.
With the above preparation, we can describe the reduction. Let A be an ecient adversary

distinguishing H𝑏
1 and H

𝑏
2, we construct B against the security of CP-1-ABE (Construction 24 in-

stantiated with gradually 2-simulation-secure Construction 13 in 𝐺2). B launches A, receives the
attribute length 1𝑛 from it, and forwards 1𝑛 to the security experiment of CP-1-ABE. B receives
m̂pk = (ÈAÉ2, ÈAŴÉ2). It samples W̃,B, c,𝝁 and computes b⊥ as specied above. Note that

W(BT ⊗ I𝑛+1) = (W̃ + (b⊥)T ⊗ Ŵ) (BT ⊗ I𝑛+1)
= W̃(BT ⊗ I𝑛+1) + (b⊥)TBT ⊗ Ŵ = W̃(BT ⊗ I𝑛+1).

So B sets

xpk = (ÈBTÉ1, ÈW̃(BT ⊗ I𝑛+1)É1), mpk = (È𝝁TBTÉT, xpk).

It sends mpk to A and starts to respond to its queries and challenges. To respond to a secret key
query for 𝑦𝑞, our B computes L̃𝑞,1, . . . , L̃𝑞,𝑚 as specied above, and queries the security experi-
ment of CP-1-ABE for a ciphertext for 𝑦𝑞, which consists of

ict𝑞, 𝑗 = (ÈsT𝑞, 𝑗AÉ2, Ès
T
𝑞, 𝑗AŴ + L̂

T
𝑞, 𝑗É2).

B stitches the response as sk𝑞, 𝑗,1 = ÈsT𝑞, 𝑗AÉ2 and

sk𝑞, 𝑗,2 = ÈsT𝑞, 𝑗AW + L
T
𝑞, 𝑗É2 = Ès

T
𝑞, 𝑗A(W̃ + (b

⊥)T ⊗ Ŵ) + L̃T𝑞, 𝑗 + (b
⊥)T ⊗ L̂T𝑞, 𝑗É2

= ÈsT𝑞, 𝑗AÉ2W̃ + ÈL̃
T
𝑞, 𝑗É2 + (b

⊥)T ⊗ ÈsT𝑗AŴ + L̂
T
𝑞, 𝑗É2.

To respond to the ciphertext challenge for one of 𝑔0, 𝑔1 with attribute x, our B queries the se-

curity experiment of CP-1-ABE to obtain a secret key for x, which is Ŵ
(
1
x

)
. It sets ct1 = ÈcÉ1,

ct3 = È𝝁TcÉT + 𝑔𝑏, and stitches ct2 by

W
(
c ⊗

(
1
x

))
= (W̃ + (b⊥)T ⊗ Ŵ)

(
c ⊗

(
1
x

))
= W̃

(
c ⊗

(
1
x

))
+ (b⊥)Tc ⊗ Ŵ

(
1
x

)
(cTb⊥ = 1) = W̃

(
c ⊗

(
1
x

))
+ Ŵ

(
1
x

)
.
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Lastly, B outputs whatever A outputs.
Clearly B is ecient and only queries one secret key in the security experiments of CP-1-ABE.

If B is in (the multi-ciphertext version of) Exp01-ABE (𝛿𝑞 = 0 inside L̂𝑞, 𝑗 ’s), A is in H𝑏
1 . If B is in

Exp11-ABE (𝛿𝑞
$← ℤ𝑝 inside L̂𝑞, 𝑗 ’s), A is in H𝑏

2. Therefore, their advantages are the same. Since the
CP-1-ABE is secure, we have H𝑏

1 ≈ H
𝑏
2. �

Proof (Claim 30).Proof (Claim 30). Inspecting the appearances of 𝝁 in H02 and H
1
2, the master public key leaks 𝝁

TBT,
the secret keys leak 𝝁 + 𝛿𝑞b⊥, and the challenge ciphertext leaks 𝝁Tc. Consider the change of
variable 𝝁 = 𝝁 +𝛿b⊥ for 𝝁 $← ℤ𝑘+1

𝑝 and 𝛿
$← ℤ𝑝, then the master public key leaks 𝝁TBT, the secret

keys leak 𝝁 + (𝛿𝑞 + 𝛿)b⊥, and in the challenge ciphertext 𝛿 appears as

𝝁Tc + 𝑔𝑏 = 𝝁
Tc + 𝛿 + 𝑔𝑏.

Since 𝛿 is perfectly hidden elsewhere, it perfectly hides 𝑔𝑏 (thus 𝑏). We conclude that H02 ≡ H
1
2. �

6 Ciphertext-Policy ABE for ABP

In this section, we show how to construct CP-ABE using exactly the samemethod for building KP-
ABE. More specically, in a rst step, we obtain KP-1-ABE, which is simple as our KP-ABE also
serves as a KP-1-ABE. In the second step, we convert KP-1-ABE to a CP-ABE using dual system
encryption, similar to the transformation from CP-1-ABE to KP-ABE.

6.1 KP-1-ABE

We modify Construction 26 to obtain our KP-1-ABE,19 based on which we construct our CP-ABE.
In Setup(1𝑛), we change the master public key:

A $← ℤ
𝑘×(𝑘+2)
𝑝 ,B $← ℤ

𝑘×(𝑘+1)
𝑝 , W $← ℤ

(𝑘+2)×(𝑘+1) (𝑛+1)
𝑝 ,𝝁

$← ℤ𝑘+1
𝑝 ,

xpk = (ÈBTÉ1, ÈW(BT ⊗ I𝑛+1)É1), fpk = (ÈAÉ2, ÈAWÉ2),

mpk = (È𝝁TBTÉ 1 , xpk, fpk ), msk = (fpk,𝝁).

KeyGen(msk, 𝑦) is the same as in KP-ABE. In Enc(mpk, x, 𝑔), the message 𝑔 is now in ℤ𝑝, and the
ciphertext ct = (ct1, ct2, ct3) is generated with r $← ℤ𝑘

𝑝 as

ct1 = ÈBTÉ1r, ct2 = ÈW(BT ⊗ I𝑛+1)É1
(
r ⊗

(
1
x

))
, ct3 = È𝝁TBTÉ 1 r + È𝑔É1 .

In Dec, the message is recovered as È𝑔ÉT.
We change the encoding of 𝝁TBT and the last component of the ciphertext from 𝐺T to 𝐺1 so

that we do not “use up” the pairing at encryption time. We also include fpk in mpk, which will
be useful for reductions in CP-ABE. It is straightforward to adapt the security proof of KP-ABE
for these changes.

19The scheme in fact enjoys multi-key security, but we only need its 1-key security.
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6.2 CP-ABE

We use dual system encryption to li KP-1-ABE to CP-ABE. Recall that the transformation sets up
the system by preparing 𝑘 + 1 instances of 1-ABE and 𝑘 + 1 random messages (encrypted under
1-ABE and used to generate encapsulated keys in ABE), and publishing a random projection of
them. In the conversion from CP-1-ABE to KP-ABE, this is reected the fact that W is enlarged
from (𝑘 + 2) × (𝑛 + 1) to (𝑘 + 2) × (𝑘 + 1) (𝑛 + 1) and a fresh 𝝁 is sampled. However, the matrix A is
not enlarged and is shared among all the 𝑘 + 1 instances. More precisely, it is the master secret
key being duplicated.

It turns out that the master secret key of KP-1-ABE is essentially the messages 𝝁, not including
fpk. This is reected by the fact that fpk is also included in the master public key. Therefore, in
CP-ABE, preparing 𝑘+1 instances of KP-1-ABE just means 𝝁 ∈ ℤ𝑘+1

𝑝 is enlarged to U $← ℤ
(𝑘+1)×(𝑘+1)
𝑝 .

Below, we call the set of messages 𝝂 in CP-ABE.

Construction 31. The construction is described for a xed value of 𝜆, and 𝜆 is suppressed for
brevity. Let 𝐺1, 𝐺2, 𝐺T be pairing groups of prime order 𝑝 for which MDDH𝑘 holds in 𝐺1, 𝐺2, and
let (Garble, Eval) be an AKGS for ABP. We construct an ABE for message space 𝐺T and predicate
space

P = {𝑃𝑛 | 𝑛 ∈ ℕ}, 𝑃𝑛(𝑦, x) = 𝑦(x) for 𝑦 ∈ ztABP𝑛𝑝 , x ∈ ℤ𝑛
𝑝 .

The scheme works as follows:

• Setup(1𝑛) takes as input the attribute length (i.e., 𝑃𝑛 is represented by 1𝑛). It samples and
sets

A $← ℤ
𝑘×(𝑘+2)
𝑝 ,B $← ℤ

𝑘×(𝑘+1)
𝑝 ,D $← ℤ

𝑘×(𝑘+1)
𝑝 ,

W $← ℤ
(𝑘+2)×(𝑘+1) (𝑛+1)
𝑝 ,U $← ℤ

(𝑘+1)×(𝑘+1)
𝑝 ,𝝂

$← ℤ𝑘+1
𝑝 ,

xpk = (ÈBTÉ1, ÈW(BT ⊗ I𝑛+1)É1), fpk = (ÈAÉ2, ÈAWÉ2),
mpk = (ÈDÉ2, ÈDUÉ2, ÈD𝝂ÉT, fpk), msk = (ÈUBTÉ1, xpk,𝝂).

• KeyGen(msk, x) samples r $← ℤ𝑘
𝑝 and sets

sk1 = ÈBTÉ1r, sk2 = ÈW(BT ⊗ I𝑛+1)É1
(
r ⊗

(
1
x

))
, sk3 = È𝝂É1 + ÈUBTÉ1r.

It outputs sk = (sk1, sk2, sk3).

• Enc(mpk, 𝑦, 𝑔) samples t $← ℤ𝑘
𝑝 and sets

ÈuTÉ2 = tTÈDUÉ2, ct0,1 = tTÈDÉ2, ct0,2 = tTÈD𝝂ÉT + 𝑔.

It garbles 𝑦 with ÈuÉ2 as follows:

if 𝑦 = 𝑓≠0: 𝜶← u, 𝜷 ← 0;
if 𝑦 = 𝑓=0: 𝜶

$← ℤ𝑘+1
𝑝 , 𝜷 ← u;

ÈL1, . . . , L𝑚É2 $← Garble( 𝑓 , È𝜶É2, È𝜷É2).

The algorithm then samples s𝑗 $← ℤ𝑘
𝑝 for 𝑗 ∈ [𝑚] and sets

ct𝑗,1 = sT𝑗ÈAÉ2, ct𝑗,2 = sT𝑗ÈAWÉ2 + ÈL
T
𝑗É2.

It outputs ct = (ct0,1, ct0,2, ct1,1, ct1,2, . . . , ct𝑚,1, ct𝑚,2).
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• Dec(sk, x, ct, 𝑦) rst checks whether 𝑦(x) = 1. If not, it outputs ⊥ and terminates. Otherwise,
it parses sk, ct as dened in KeyGen, Enc, computes

for 𝑗 ∈ [𝑚]: È�𝑗ÉT = −ct𝑗,1sk2 + ct𝑗,2
(
sk1 ⊗

(
1
x

))
;

È𝜇′É ←
{

1
𝑓 (x) Eval( 𝑓 , x, È�1, . . . , �𝑚É), if 𝑦 = 𝑓≠0;

Eval( 𝑓 , x, È�1, . . . , �𝑚É), if 𝑦 = 𝑓=0;

and outputs ct0,2 + È𝜇′ÉT − ct0,1sk3 as the recovered message.

Note: We show that the scheme is correct. Note that sk1, sk2 of this scheme are ct1, ct2 in Con-
struction 26 (KP-ABE), and ct𝑗,1, ct𝑗,2 correspond to sk𝑗,1, sk𝑗,2 for 𝑗 ∈ [𝑚], except that ct𝑗,1, ct𝑗,2
are generated with the master secret 𝝁 in KP-ABE replaced by UTDTt. By the same argument for
KP-ABE correctness, we have 𝜇′ = rTBUTDTt if decryption should succeed. Therefore,

ct0,2 + È𝜇′ÉT − ct0,1sk3 = ÈtTD𝝂ÉT + 𝑔 + ÈrTBUTDTtÉT
− ÈtTDÉ2È𝝂 + UBTrÉ1 = 𝑔.

Similar to our KP-ABE, the number of pairing operations in decryption can be reduced to 3𝑘 + 4.

Theorem 32. Suppose in Construction 31,MDDH𝑘 holds in both 𝐺1 and 𝐺2, and the AKGS is piecewise
secure, then the constructed scheme is IND-CPA secure.

Similar to the proof for KP-ABE, we rst switch tTD in the challenge ciphertext to random cT.
This corresponds to a fresh uT = cTU used as the 𝝁 in KP-1-ABE and a fresh encapsulated key cT𝝂
encrypted under this KP-1-ABE instance. By KP-1-ABE security, cT𝝂 is hidden, which in turn hides
the message in CP-ABE.

Proof (Theorem 32).Proof (Theorem 32). We go through hybrids Exp𝑏CPA,H
𝑏
1 ,H

𝑏
2:

• H𝑏
1 proceeds identically to Exp

𝑏
CPA, except that when generating the challenge ciphertext,

we set

ÈuTÉ2 = È cT UÉ2, ct0,1 = È cT É2, ct0,2 = È cT 𝝂ÉT + 𝑔𝑏,

where c is uniformly random outside the row space of D and the rest of the procedure to
generate the ciphertext proceeds normally.

• H𝑏
2 proceeds identically to H

𝑏
1 , except that in each queried key,

sk3 = È𝝂 + 𝛿𝑞 d⊥ + UBTrÉ1.

Here, d⊥ is a xed vector such that Dd⊥ = 0 and cTd⊥ = 1, and 𝛿𝑞
$← ℤ𝑝 is fresh per key.

The basis of indistinguishability is as follows:

Claim 33. Exp𝑏CPA ≈ H
𝑏
1 reduces to MDDH𝑘 in 𝐺2.

Claim 34. H𝑏
1 ≈ H

𝑏
2 reduces to the security of KP-1-ABE (Section 6.1).

Claim 35. H02 ≡ H
1
2.

Once we prove these claims, we have Exp0CPA ≈ Exp
1
CPA by hybrid argument. �
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Proof (Claim 33).Proof (Claim 33). This is analogous to the proof of Claim 28. Let A be an ecient adversary
distinguishing Exp𝑏CPA and H𝑏

1 , we construct B against MDDH𝑘 in 𝐺2. Upon receiving MDDH𝑘

challenge ÈD, cTÉ2 where either cT = tTD or cT is random, B launches A, receives the attribute
length 1𝑛 from it, sets up the system using ÈDÉ2 and sampling and computing everything else
as required. It sends mpk to A and responds to the key queries normally. To respond to the
ciphertext challenge for one of 𝑔0, 𝑔1 with policy 𝑦, our B sets

ÈuTÉ2 = ÈcTÉ2U, ct0,1 = ÈcTÉ2, ct0,2 = ÈcTÉ2È𝝂É1 + 𝑔𝑏,

and nishes the rest of the encryption procedure from there. Lastly, it outputs whatever A out-
puts.

Clearly B is ecient. If cT = tTD, our B has simulated Exp𝑏CPA for A. If c
T is random, and B has

(statistically closely) simulated H𝑏
1 for A. Their advantages are negligibly close, and if MDDH𝑘

holds in 𝐺2, we have Exp𝑏CPA ≈ H
𝑏
1 . �

Proof (Claim 34).Proof (Claim 34). This is analogous to the proof of Claim 29. Let d⊥ be such that Dd⊥ = 0 and
cTd⊥ = 1 for D in the master public key and cT in the challenge ciphertext. We set

U = Ũ + d⊥𝝁T, Ũ $← ℤ
(𝑘+1)×(𝑘+1)
𝑝 ,𝝁

$← ℤ𝑘+1
𝑝 , 𝝂𝑞 = 𝝂 + 𝛿𝑞d⊥,

where 𝝁 comes from KP-1-ABE, and 𝛿𝑞 = 0 or 𝛿𝑞
$← ℤ𝑝 for each key queried.

Let A be an ecient adversary distinguishing H𝑏
1 and H

𝑏
2, we construct B against the security

of KP-1-ABE (Section 6.1). B launches A, receives the attribute length 1𝑛 from it, and forwards 1𝑛
to the security experiment of KP-1-ABE. It receives m̂pk = (È𝝁TBTÉ1, xpk, fpk), where

xpk = (ÈBÉ1, ÈW(BT ⊗ I𝑛+1)É1), fpk = (ÈAÉ2, ÈAWÉ2).

B samples D, c, Ũ,𝝂 and computes d⊥. Since

DU = DŨ + Dd⊥𝝁 = DŨ,

B setsmpk = (ÈDÉ2, ÈDŨÉ2, ÈD𝝂ÉT, fpk), sends it toA, and starts to respond to the queries and the
challenge. To respond to a key query for x𝑞, our B queries the security experiment of KP-1-ABE
for a ciphertext

ĉt𝑞,1 = ÈBTrÉ1, ĉt𝑞,2 =
�
W

(
BTr ⊗

(
1
x𝑞

))�
1
, ĉt𝑞,3 = È𝝁TBTr + 𝛿𝑞É1.

It sets sk𝑞,1 = ĉt𝑞,1, sk𝑞,2 = ĉt𝑞,2 and stitches sk𝑞,3 by

sk𝑞,3 = È𝝂𝑞 + UBTrÉ1 = È𝝂 + 𝛿𝑞d⊥ + ŨBTr + d⊥𝝁TBTrÉ1
= È𝝂É1 + ŨÈBTrÉ1 + d⊥È𝝁TBTr + 𝛿𝑞É1.

To respond to the ciphertext challenge for one of 𝑔0, 𝑔1 with policy 𝑦, our B queries the security
experiment of KP-1-ABE for a secret key for 𝑦, receiving

ŝk𝑗,1 = ÈsT𝑗AÉ2, ŝk𝑗,2 = ÈsT𝑗AW + L̂
T
𝑗É2,

where 𝑦 is garbled with 𝝁 to get L̂1, . . . , L̂𝑗. Note that

uT = cTU = cTŨ + cTd⊥𝝁 = cTŨ + 𝝁,
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so B can garble 𝑦 with cTŨ to obtain L̃1, . . . , L̃𝑚 and stitch the response as

ct0,1 = ÈcTÉ2, ct0,2 = ÈcT𝝂ÉT + 𝑔𝑏, ct𝑗,1 = ŝk𝑗,1, ct𝑗,2 = ŝk𝑗,2 + ÈL̃T𝑗É2.

The linearity of Garble guarantees the result is well-distributed. Lastly, B outputs whatever A
outputs.

Clearly B is ecient and queries at most one secret key in the security experiments of KP-1-
ABE. If B is in Exp01-ABE, it has simulated H

𝑏
1 for A. Otherwise, B is in Exp11-ABE and has simulated

H𝑏
2 for A. Therefore, the two have the same advantage. By KP-1-ABE security, H

𝑏
1 ≈ H

𝑏
2. �

Proof (Claim 35).Proof (Claim 35). This is analogous to the proof of Claim 30. Observe that 𝝂 appears in mpk as
D𝝂, in sk’s as 𝝂 + 𝛿𝑞d⊥, and in the challenge ciphertext as cT𝝂. Consider the change of variable
𝝂 = �̃� + 𝛿d⊥, then in mpk we only use D�̃�, in sk’s we only use �̃� + (𝛿𝑞 + 𝛿)d⊥, and in the challenge
ciphertext the message appears as

cT𝝂 + 𝑔𝑏 = cT�̃� + 𝛿 + 𝑔𝑏,

which means 𝑔𝑏 (thus 𝑏) is perfectly hidden. We conclude that H02 ≡ H
1
2. �
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