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Abstract

In this paper we present a signature scheme based on the diffi-
culty of finding a point in a shifted Grassmannian variety or on its
secant variety from a knowledge of its defining polynomials. An ad-
vantage of using the secant variety of the Grassmannian is that it is
defined by sparse cubic equations, which are in general more difficult
to solve than quadratic ones, thereby reducing the size of the public
key.

Keywords: Multivariate cryptography Grassmannian secant vari-
ety digital signature

1 Introduction

Most of the currently used public key cryptosystems are based on the well
known mathematical problems namely integer factorization and discrete
logarithm problems. But, after the widely acclaimed algorithm by Shor
[13], these problems have been considered unsafe from the possible large
scale quantum computers in near future. That gave a challenge to design
the cryptosystems that are strong enough to face quantum computers and
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at the same time these should be efficient enough for practical purposes.
Many efforts have been pursued toward the quantum resistant cryptosys-
tems that include lattice-based, code-based, multivariate, hash-based [4, 8]
and isogeny based cryptography see for example [6, 5, 10] .

Multivariate public key authentication scheme like Rainbow [7], one
of the three NIST post-quantum signature finalists [15], is known for rela-
tively fast signing and verification but large public key size in comparison
to other post quantum signature schemes. In this paper, we purpose a
multivariate signature scheme based on the difficulty of finding points in-
side the shifted secant variety of the Grassmannian when only the implicit
equations are known.

The main idea of the signature scheme can be summarized as follows:

1. Alice chooses a secret projective variety Y, which is a shifted (through
an automorphism of the ambient space) Secant variety of the Grass-
mannian.

2. She publishes a set of equations vanishing on the variety.

3. A document is a linear subspace of the ambient space. A signature is
a point lying in the intersection.

4. Alice can quickly sign a document by using the Plücker embedding
of the Grassmannian and her secret automorphism.

2 Preliminaries

In this section, we describe some background required to explain the sig-
nature scheme. There are good references for the materials covered in this
section, for example see in [12, 11, 9, 16, 1].

2.1 Affine Varieties

We begin our description by recalling the notion of affine n-space and its
subsets defined by zeros of polynomials.

Definition 2.1. The affine n-space (over a field κ) is the set of n-tuples

An = An(κ) = {P = (x1, . . . , xn) : xi ∈ κ}.
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Let κ[x] = κ[x1, . . . , xn] be a polynomial ring in n variables and let
I / κ[x] be and ideal. Then to each such I it is associated a subset of An:

V(I) = {P ∈ An : f (P) = 0 ∀ f ∈ I}.

Definition 2.2. An affine algebraic set is any set of the form V(I). If V is an
algebraic set, the ideal of V is given by

I(V) = { f ∈ κ[x] : f (p) = 0 ∀P ∈ V}.

The affine varieties are indecomposable affine algebraic sets.

Definition 2.3. An affine variety is an algebraic set V which can not be written
as a non-trivial union of other algebraic sets:

V = V1 ∪V2 ⇒ V = V1 or V = V2.

2.2 Projective Varieties

The projective space is historically constructed by adding ”points at infin-
ity” to the affine space. It can be characterized as the lines of the affine
space passing through the origin.

Definition 2.4. The projective n-space (over a field κ), denoted by Pn, is the set
of all the (n + 1)-tuples

(X0, . . . , Xn) ∈ An+1

such that at least one Xi is non-zero, modulo the equivalence relation

(X0, . . . , Xn) ∼ (Y0, ..., Yn)

if and only if there exists c ∈ κ∗ such that Xi = cYi for all i ∈ {0, ..., n}. The
equivalence class of the point (X0, ..., Xn) is denoted by [X0, ..., Xn].

Projective algebraic sets are defined similarly as affine algebraic sets.
Observe that it is not well defined the vanishing of a general polynomial
f ∈ κ[X0, ..., Xn] on a point P ∈ Pn = [p0, ..., pn] since it may happens that
f (cp0, ..., cpn) = 0 and f (c′p0, ..., c′pn) 6= 0 for c 6= c′. The vanishing on a
point P ∈ Pn is defined only for homogeneous polynomials.

Definition 2.5. A polynomial f ∈ κ[X0, ..., Xd] is homogeneous of degree d if
all its monomials have degree d. An ideal I / κ[X0, ..., xn] is homogeneous if it is
generated by homogeneous polynomials.
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Remark 2.6. For a polynomial f homogeneous and of degree d, a (n + 1)-tuple
(x0, ..., xn) ∈ An+1 and c ∈ κ, the following relation holds:

f (cx0, ..., cxn) = cd f (x0, ..., xn).

It follows that the vanishing of f in [x0, ..., xn] is well defined.

The projective algebraic sets can now be defined.

Definition 2.7. A projective algebraic set is any set of the form

V(I) = {P ∈ Pn : f (P) = 0 for all homogeneous f ∈ I},

where I / κ[X] is a homogeneous ideal.

The ideal of a projective algebraic set is defined in the similar way.

Definition 2.8. Let V ⊂ Pn be a projective algebraic set. The ideal of V is

I(V) = ({ f ∈ κ[X] : f is homogeneous , f (P) = 0 ∀P ∈ V}).

Similar to affine algebraic sets, there exist indecomposable projective
algebraic sets.

Definition 2.9. A projective variety is a projective algebraic set V which can not
be written as a non-trivial union of other algebraic sets:

V = V1 ∪V2 ⇒ V = V1 or V = V2.

Pn contains many copies of An. The most special ones are so called
affine charts. For each 0 ≤ i ≤ n denote by Ui = {Xi 6= 0} ⊂ Pn, then we
have a natural identification

An
κ Ui

(x1, .., xn) [x1, ..., xi−1, 1, xi, ..., xn],

φi

which is a bijection since it has an inverse map

Ui An
κ

[X0, .., Xn]
(

X0
Xi

, ..., Xi−1
Xi

, Xi+1
Xi

, ..., Xn
Xi

)
.

φ−1
i
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Note that the affine charts Ui covers Pn. For any projective algebraic set
V ⊂ Pn, the sets φ−1

i (V) are affine algebraic sets: they are defined by de-
homogenize the polynomials defining I(V) with respect to the variable Xi.
If V is a projective variety, then V ∩Ui is an affine variety for 0 ≤ i ≤ n.

A simple example of projective varieties are the ones defined by linear
equations.

Definition 2.10. A linear subspace L ⊂ Pn is a projective variety defined by ho-
mogeneous polynomials of degree 1. The codimension of L, denoted by codimPn(L),
is the minimum number of generators of I(L). The dimension of L is the quantity
dim(L) = n− codimPn(L).

Other easy examples of projective algebraic sets are the varieties cut by
one equation.

Definition 2.11. An hypersurface is a projective algebraic set V ⊂ Pn defined
by a single equation F(X0, ..., Xn) = 0.

Remark 2.12. Note that an hypersurface is a projective variety if F has only one
prime factor.

To any projective algebraic set (not just to linear subspaces), the notion
of dimension is associated. Here we present a definition which is the most
intuitive and less technical, though not so commonly used in the literature.
We assume that κ is algebraically closed.

Definition 2.13. Let V ⊂ Pn be a projective algebraic set. Let d be the maximum
dimension of a linear subspace L ⊂ Pn such that L ∩V = ∅. Then codimension
of V in Pn is the quantity

codimPn(V) = d + 1.

The dimension of V is the quantity

dim(V) = n− codimPn(V).

Remark 2.14. Note that the codimension of a hypersurface is 1, as one could
expect.

2.3 Maps between varieties

In this subsection, we discuss about algebraic maps between varieties.

Definition 2.15. Let Y1 ⊂ Pm, Y2 ⊂ Pn be two projective varieties. A rational
map from Y1 to Y2 is a map of the form
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Y1 Y2
[X0, ..., Xm] [F0(X), ..., Fn(X)],

φ

where F0, ..., Fn ∈ κ[X] = κ[X0, ..., Xn] are homogeneous polynomials of the same
degree, satisfying the property that [F0(P), ..., Fn(P)] ∈ Y2 for any P ∈ Y1 such
that F0(P), ..., Fn(P) are not simultaneously 0.

In general rational maps have different representative sequence of poly-
nomials.

Definition 2.16. Two sequences of polynomials (F0, ..., Fn) and (G0, ..., Gn) rep-
resent the same rational map

Y → Pn

if [F0(P), ..., Fn(P)] = [G0(P), ..., Gn(P)] for all P ∈ Y such that both the two
sequences do not vanish on P.

A morphism is a rational map defined at every point.

Definition 2.17. A rational map φ : Y → Pn is regular in P if there exists a
representing sequence of polynomials (F0, ..., Fn) such that

(F0(P), ..., Fn(P)) 6= (0, ..., 0).

φ is a morphism if it is regular at every point of Y.

Definition 2.18. A birational map between projective varieties Y1 and Y2 is a
map

φ : Y1 → Y2,

for which there exist another rational map

ψ : Y2 → Y1

such that ψ ◦ φ = idY1 and φ ◦ ψ = idY2 . φ is an isomorphism if both φ and ψ
are morphisms.

2.4 Grassmannian

Pn paramatrizes the lines through the origin contained in An+1. Equiva-
lently, it parametrizes the 1-dimensional subspaces of a κ-vector space V
of dimension n + 1. The Grassmannian is an immediate generalization of
this concept.
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Definition 2.19. Let V be a n dimensional vector space over κ. For 1 ≤ d ≤ n,
the Grassmannian of d-subspaces of V is the set

G(d, V) = {W ≤ V : dim(W) = d}.

When V = κn, this is denoted by G(d, n).

Recall, from basic linear algebra, that two ordered set of linearly inde-

pendent vectors of V, B =

~v1
...
~vd

 and B′ =

~w1
...
~wd

, generate the same

subspace W ⊂ V if and only there is an invertible matrix M ∈ GL(d) such
that

B′ = M · B.

It follows that, like the projective space, the Grassmannian can be identi-
fied as a quotient by an equivalence relation.

Proposition 2.20. Let G(d, n) be the set of d× n matrices A of rank d modulo
the equivalence relation

A ∼ A′ ⇐⇒ ∃M ∈ GL(d) : A = MA′.

Then there is a bijection
G(d, n)↔ G(d, n),

which maps the class of a matrix A to the vector space spanned by the rows of A.

From now on we will not distinguish between G(d, n) and G(d, n).
Similar to the case of the projective space, affine charts are also defined
for the Grassmannian. Let S any subset of {1, ..., n} such that #S = d
and denote by US ⊂ G(d, n) the subset of matrices for which the minor
d× d corresponding to S is non-zero. Note that G(d, n) is covered by these
subsets US. Furthermore any [M] ∈ US admits a unique representative for
which the d × d sub-matrix corresponding to S is the identity matrix: in
fact if MS is such a sub-matrix, then we have just to consider M−1

S M as a
representative. It follows that US is identified with Ad(n−d).

Example 2.21. Suppose that S = {1, ..., d}, then, denoting by HJ the operator
of horizontal joint of two matrices (having the same number of rows), we have the
following characterization

US = {HJ(Id, B) : B ∈ Matd×(n−d)(κ)}.
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We want now to characterize G(d, n) as a projective variety, i.e. as an
object defined by polynomial equations in a projective space. The first aim
is to find the projective space on which it lies. Recall first the notion of
exterior power of a vector space.

Definition 2.22. Let V be an n-dimensional κ-vector space, 0 < d ≤ n. Then
the d-th exterior power of V, denoted by

∧d V, is the vector space spanned by the
tensors of the form v1 ∧ v2 · · · ∧ vd, where ∧ satisfies the following properties:

• it is d-linear:

a · (v1 ∧ ...∧ vd) = (av1) ∧ v2...∧ vd = ... = v1 ∧ ...∧ vd−1 ∧ (avd),

v1∧ ...∧ (vi + v′i)∧ ...∧ vd = v1∧ ...∧ vi∧ ...∧ vd + v1∧ ...∧ v′i ∧ ...∧ vd;

• it is antisymmetric:

vσ(1) ∧ ...∧ vσ(d) = (−1)sgn(σ)v1 ∧ ...∧ vd,

for any σ ∈ Sd, where Sd denotes the d-th symmetric group.

Remark 2.23. Note that the antisymmetric condition implies, for characteristic
> 2, that

dim(Span(v1, ..., vd)) < d⇒ v1 ∧ ...∧ vd = 0. (1)

In characteristic 2, when there is no distinction between symmetry and antisym-
metry, it is possible to define the ”antisymmetric” property by requiring the sym-
metric one and the condition 1.

Fix a basis {e1, . . . , en} of the vector space V, the set

{ei1 ∧ · · · ∧ eid : 1 ≤ i1 < . . . ≤ id ≤ n} (2)

forms a basis for
∧d(V), whose dimension is then (n

d).

Lemma 2.24. Let W be a d-dimensional subspace of a n-dimensional vector space

V over κ. Let U =

u1
...

ud

 andW =

w1
...

wd

 be two bases of W and M be a d× d

invertible matrix such that
U = MW .

Then
u1 ∧ · · · ∧ ud = det(M) · w1 ∧ · · · ∧ wd.
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This lemma shows that whatever the bases we choose for W, the corre-
sponding wedge product is uniquely determined up to a scalar multipli-
cation. Therefore, the following map

ι : G(d, V)→ P(
∧d

V)

given by W 7→ [v1 ∧ · · · ∧ vd], where {v1, . . . vd} is a basis of W ∈ G(d, V),
is well defined.

Proposition 2.25. The map ι : G(d, V)→ P(
∧dV) defined above is an isomor-

phism onto the image, called Plücker embedding.

By the proposition 2.25, the Grassmannian G(d, V) can be seen a subset
of a projective space.

Fix a basis {e1, ..., en} of V and consider on
∧d V the basis in 2. Then, in

coordinates, the Plücker embedding maps [M] to the sequence of its mi-
nors of rank d.

The image ι(G(d, V)) is a projective variety defined by a set of quadratic
equations.

Theorem 2.26. The image of the Plücker embedding ι(G(d, V)) ⊂ P(
∧d(V)) is

a projective variety defined by quadratic equations, called Plücker relations. Call
{Xi1,...,id}1≤i1<...<id≤n the coordinates of P(

∧2 V), then for any couple of ordered
sequences

1 ≤ i1 < i2 < ... < id−1 ≤ n, 1 ≤ j1 < j2 < ... < jd+1 ≤ n

the following equations hold:

d+1

∑
l=1

Xi1,...,id−1,jl Xj1,..., ĵl ,...,jd+1
= 0

where j1, ..., ĵl, ..., jd+1 is the sequence obtained by discarding jl by the sequence
j1, ..., jd+1.

2.5 Grassmannian of planes and its secant variety.

In this section we focus the attention on the case d = 2. This case is inter-
esting since both the Grassmannian and its secant variety are defined by
sparse equations.
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Definition 2.27. Let X ⊂ Pn be a projective variety. The secant variety of X,
denoted by Sec(X) is the smallest projective variety containing the locus⋃

P,Q∈X
lP,Q,

where lP,Q denotes the line joining P and Q.

The definition implies that Sec(X) contains elements of the form [ax1 +
b2], where x1, x2 ∈ An+1 are such that [x1], [x2] ∈ X, a, b ∈ κ. When
X = G(d, n), Sec(X) parametrizes the tensors which can be written as
sum of two indecomposable tensors.

Definition 2.28. Let A be an antisymmetric matrix, then the square root of its
determinant i.e.

√
det(A) is called the Pfaffian of A.

Observe that there exists a correspondence between elements of
∧2 V

and n×n antisymmetric matrices: for any t ∈ ∧2 V, write t = ∑1≤i<j≤n tijei∧
ej. Then the corresponding n × n antisymmetric matrix is Mt = (mij),
where

mij =


tij if i < j
0 if i = j
−tij if i > j.

The rank of the matrix Mt is strictly related to the minimum number of
simple tensors in which t can be decomposed.

Proposition 2.29. Let t ∈ ∧2 V and Mt be its associated antisymmetric matrix.
Then

rank(Mt) = 2nt,

where nt is the minimum number of simple tensors in which t can be decomposed.

Remark 2.30. An antisymmetric matrix can have only an even rank. For anti-
symmetric matrices there is an alternative criteria for detecting its rank.

Definition 2.31. Let A = (aij) be an n× n matrix, let B = (b)ij be a sub-matrix
m×m of A. B is centred at the diagonal if there exist a sequence 1 ≤ s1 < ... <
sm ≤ n such that

bij = asi,sj .

A minor of A is called centred at the diagonal if it is the determinant of a sub-
matrix of A centred at the diagonal.

Remark 2.32. If A is (anti)symmetric, then so is any sub-matrix centred at the
diagonal.
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Proposition 2.33. Let M be an antisymmetric matrix. Then rank(M) ≤ r− 2
if and only if all the r× r minors that are centered at the diagonal vanish.

There is an immediate consequence for the description of G(2, n) and
Sec(G(2, n)).

Corollary 2.34. Let [t] ∈ P(
∧2 V). Then:

• t ∈ G(2, V) if and only if rank(Mt) = 2 if and only the Pfaffians of the
4× 4 centered at the diagonal sub-matrices vanish;

• t ∈ Sec(G(2, V)) if and only if rank(Mt) ≤ 4 if and only the Pfaffians of
the 6× 6 centered at the diagonal sub-matrices vanish.

In particular Sec(G(2, V)) is defined by (n
6) cubic polynomials, which

are quite spars. For example,

pf


0 X0 X1 X2 X3 X4
−X0 0 X5 X6 X7 X8
−X1 −X5 0 X9 X10 X11
−X2 −X6 −X9 0 X12 X13
−X3 −X7 −X10 −X12 0 X14
−X4 −X8 −X11 −X13 −X14 0


is a polynomial with 15 non zero monomials. So one expects that if we
shift Sec(G(2, n)) with a sparse automorphism of Pn then we will have a
variety defined by sparse cubic equations.

The dimension of Sec(G(2, n)) is known.

Proposition 2.35. Let d = G(2, n) be the dimension of G(2, n) (so d = 2(n−
2)), then dim(Sec(G(2, n))) = 2d− 3.

2.6 Points in linear sections of the Grassmannian

A better approach for generating random points inside a linear section of
G(d, n) is not by using Gröbner bases, but by using the affine charts and
the Plucker embedding. If we fix a subset S ⊂ {1, ..., n} of cardinality d,
then the Plücker map restricts to an embedding

Ad(n−d) → P(n
d)−1.

Let L ⊂ P(n
d)−1 be a linear subspace of codimension n− d. Then it is pos-

sible to find points inside L ∩ G(2, n) by just using linear algebra. To illus-
trate the procedure we consider the case in which S = {1, ..., d}. Suppose
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that

L =


L1(X) = 0
...
Ln−d(X) = 0

then we can choose a vector of unknowns

~x = (1, 0, ..., 0, xd+1, ..., xn)

and d− 1 random vectors of κn

~a1 =(0, 1, ..., 0, a1,d+1, ..., a1,n)

...
~ad−1 =(0, ..., 0, 1, ad−1,d+1, ..., ad−1,n)

and solve the linear system in xd+1, ..., xn:
L1(~x ∧~a1 ∧ · · · ∧~ad−1) = 0
...
Ln−d(~x ∧~a1 ∧ · · · ∧~ad−1) = 0.

In general this system has a unique solution ~x0, then

P = [~x0 ∧~a1 ∧ · · · ∧~ad−1]

is a point of G(d, n) ∩ L.

3 New signature scheme

In this section we present a signature scheme, which consists of three parts:
key generation, signing and verification. We propose a signature scheme
using Sec(G(2, n)), but it can be easily adapted to G(d, n) as well. We use
a vector space V of dimension n over a finite field κ = F2` of characteristic
2 then V is identified with κn.

3.1 Key generation

The private key consists of a random automorphism φ of V = κn, which
is sparse and defined over F2. The public key is a set of cubic equations
vanishing on φ(Sec(G(2, n))).
Private key generation:
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1) Alice chooses a random upper triangular, invertible and sparse (n
2)×

(n
2) matrix M′A.

2) Alice chooses two random (n
2)× (n

2) permutation matrices A1, A2;

3) Alice defines MA = A1M′A A2 and then the private key is

Kpri
A = (MA, M−1

A ).

If a polynomial F(X), where X =

X0
...

Xn

, vanishes on a variety Y ⊂ Pn

and M is an invertible (n + 1)× (n + 1) matrix, then F(M−1X) vanishes
on MY. This observations makes easy to generate the public key.
Public key generation:

1) Alice chooses a random subset {F1(X), ...., Fm(X)} of the set of (n
6)

Pfaffians defining Sec(G(2, n)).

2) She computes Gi(X) = Fi(MAX) for i in {1, ..., m} and set

Kpub
A = {G1(X), ..., Gm(X)}

denoting the public key. Note that Gi vanishes on M−1
A Sec(G(2, n))

for i ∈ {1, ..., m}.

3.2 Signature generation an verification

The document D is assumed to be a linear subspace of P(n
2)−1 cut by n− 2

linear equations {L1 = 0, ..., Ln−2 = 0} defined over F2.

1) Alice choose a random vector~a ∈ κn of the form~a = (0, 1, a3, ..., an)
and a vector of unknowns ~x = (1, 0, x3, ..., xn);

2) Alice computes

L′1(X) = L1(M−1
A X), ..., L′n−2(X) = Ln−2(M−1

A X)

and imposes the condition

L′i(~x ∧~a) = 0, ∀i ∈ {1, ..., n− 2}.

Here ~x ∧~a is identified with its coordinates with respect to the basis
{ei ∧ ej : 1 ≤ i < j ≤ n}. It is a linear system in {x3, ..., xn} which
has, in general, a unique solution (b3, ..., bn) ∈ κn−2;
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3) Let~b = (1, 0, b3, ..., bn), then P = [M−1
A (~a ∧~b)] ∈ D ∩ (M−1

A G(2, n)).
So the point P satisfies the system of equations:

G1(X) = 0
...

Gm(X) = 0
L1(X) = 0

...
Ln−2(X) = 0

and P ∈ G(2, n) ∩ D.

4) Alice repeats the procedure in 1)− 3) and finds another point Q ∈
(M−1

A G(2, n)) ∩ D;

5) Alice chooses two random vectors of ~vP,~vQ ∈ κ(
n
2) such that [vP] =

P, [vQ] = Q and defines SA = [vP + vQ] ∈ D ∩ (M−1
A Sec(G(2, n)))

to be the signature of D.

If Bob wants to verify the validity of a signature, he has to verify that
Gi(SA) = 0 for i ∈ {1, ..., m}, Li(SA) = 0 for i ∈ {1, ..., n− 2}.

3.3 A toy example

Here we give a toy example with n = 6, κ = F2. The ambient space of
G(2, 6) is P14, Sec(G(2, 6)) is a degree 3 hypersurface defined by the equa-
tion

X4X7X9 + X3X8X9 + X4X6X10 + X2X8X10 + X3X6X11+

X2X7X11 + X4X5X12 + X1X8X12 + X0X11X12 + X3X5X13+

X1X7X13 + X0X10X13 + X2X5X14 + X1X6X14 + X0X9X14 = 0
(3)

The private key is given by the two matrices:

MA =



0 0 0 0 0 0 0 0 1 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
1 0 0 0 0 0 1 1 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 1 0 0
0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1 1 0 1 0 0
0 0 0 0 0 1 0 0 1 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 1 0 0 0 0 1


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and

M−1
A =



0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 1 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 1 0 1 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 1 1
0 1 0 0 0 0 0 0 1 1 0 0 0 1 1
0 0 1 0 0 0 0 1 0 0 0 0 1 1 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0


.

The transformation of coordinates X 7→ MAX gives Kpub
A , which in this

example is the single equation

X2
0X4 + X1X2X5 + X2

2X5 + X0X4X6 + X1X4X6+

X2X4X6 + X0X3X7 + X0X4X7 + X3X6X7 + X3X2
7+

X1X2X8 + X2
2X8 + X2X3X8 + X0X4X8 + X0X5X8+

X3X6X8 + X0X2
8 + X1X2X9 + X2

2X9 + X0X4X9+

X4X6X9 + X1X7X9 + X2X7X9 + X4X7X9 + X8X2
9+

X1X7X10 + X2X7X10 + X0X8X10 + X8X9X10 + X0X4X11+

X3X7X11 + X4X9X11 + X0X2X12 + X2X3X12 + X0X4X12+

X0X7X12 + X1X7X12 + X2X7X12 + X0X8X12 + X2X9X12+

X8X9X12 + X0X5X13 + X3X6X13 + X0X8X13 + X2
9X13+

X0X10X13 + X9X10X13 + X0X12X13 + X9X12X13 + X0X4X14+

X0X5X14 + X4X6X14 + X5X6X14 + X4X7X14 + X5X7X14+

X0X8X14 + X6X8X14 + X7X8X14 + X0X9X14 + X6X9X14+

X7X9X14 + X4X11X14 + X5X11X14 + X8X11X14 + X9X11X14+

X2X12X14 + X6X12X14 + X9X12X14 + X10X12X14 + X2
12X14+

X9X13X14 + X10X13X14 + X12X13X14 = 0.

(4)

Suppose that Alice wants to sign a document D, corresponding to the sys-
tem of linear equations:

L1 = X0 + X2 + X3 + X4 + X5 + X7 + X10 + X11 + X12 = 0
L2 = X2 + X4 + X6 + X13 + X14 = 0
L3 = X3 + X4 + X10 + X11 + X13 + X14 = 0
L4 = X1 + X2 + X3 + X4 + X5 + X6 + X9 + X12 + X13 + X14 = 0.
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Alice shifts the document D through the matrix M−1
A , by computing L′i(X) =

Li(M−1
A X). She obtains the system

DA :


X1 + X4 + x6 + X9 + X10 + x12 + X13 = 0
X0 + X1 + X3 + X5 + X6 + X7 + X8 + X9 + X10 + X14 = 0
X0 + X2 + X3 + X4 + X5 + X6 + X7 + X8 + X9 + X13 + X14 = 0
X1 + X2 + X3 + X4 + X5 + X6 = 0.

Alice chooses a vector of unknowns ~x = (1, 0, x3, x4, x5, x6) and two ran-
dom vectors ~a1 = (0, 1, 1, 1, 1, 1),~a2 = (0, 1, 1, 0, 0, 1). The condition that
~x ∧~a1 ∈ DA corresponds to the linear system

x6 = 0
x3 + x5 + 1 = 0
x4 + x6 = 0
x3 + x4 = 0

whose solution is (0, 0,−1, 0). Call x1 = (1, 0, 0, 0,−1, 0), P1 = [x1 ∧ a1].
Similarly, the condition that ~x ∧~a2 ∈ DA corresponds to the linear system

x4 + x5 = 0
x3 + x5 + x6 = 0
x3 + x4 + x5 = 0
x3 + x4 = 0

whose solution is (0, 0, 0, 0). Call x2 = (1, 0, 0, 0, 0, 0), P2 = [x2 ∧ a2]. Then

P1 = [1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1],

P2 = [1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0].

P1, P2 ∈ G(2, 6) ∩ DA. Call P = [x1 ∧ a1 + x2 ∧ a2], then

P = [0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1]

is a point of Sec(G(2, 6)) ∩ DA. It follows that

SA = M−1
A · P = [0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0]

is a point of M−1
A Sec(G(2, 6)) ∩ D. Therefore, in particular, it satisfies the

equation 4 and Li(SA) = 0 for i ∈ {1, 2, 3, 4}.
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4 Security analysis

Suppose that Frank wants to forge a signature of Alice for a document
D = {L1, ..., Ln−2}. In general, finding a solution of the system{

Gi = 0 for i ∈ {1, ..., m}
Li = 0 for i ∈ {1, ..., n− 2}

is an NP-hard problem. Nevertheless, if Alice produces around (n
6) signa-

tures, Frank is able to compute a basis of the vector space of cubic equa-
tions vanishing on M−1

A Sec(G(2, n)). This fact allows Frank to use two
possible approaches:

1) Trying to reconstruct the matrix MA;

2) Using a Gröbner basis approach, having a full set of equations defin-
ing Sec(G(2, n)) makes the computations easier. The complexity of
the Gröbner basis computation is related to the CM-regularity of the
variety.

We study the complexity of the second approach: in general it is possible
to give just a very rough upper bound of it, so it is preferable an empirical
analysis.

Note that κ has to be greater than F2. In fact, if we have a valid sig-
nature P defined over κ for a document D, then the probability that it is
a valid signature also for another document D′ is 1

(#κ)n−2 . So signatures
defined over a smaller field must be considered invalid.

5 Estimated key sizes

5.1 Private key size

The private key consists of the two matrices MA and M−1
A , which are, by

construction, sparse binary matrices with around 2n components equal to
1. So they require a storage of around 4n bits.

5.2 Public key size

The public key is given by a set of m equations of the form

{Fi(MAX) : i ∈ {1, ..., m}},
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where {F1, ..., Fm} is a subset of the (n
6) Pfaffian cubic polynomials defining

Sec(G(2, n)). The Pfaffians have 15 non-zero terms, which are square-free.
The number of non-zero terms of the shifted Pfaffians is in general vari-
able. Since the matrix MA is sparse, we expect that they are also sparse. In
the particular case when all the rows of MA have exactly two components
equal to 1, each shifted Pfaffian has a number of non-zero terms which is
less than or equal to 120 = 15 · 23. Therefore, it is expected that the size of
the public key is around 120m bits.

5.3 Document size

If κ = F2` then the size of the document, which is a set of n− 2 hyperplanes
of P(n

2)−1, is (n
2) · (n− 2) bits.

5.4 Signature size

The signature is a point of P(n
2)−1 defined over κ, so it depends on ` ·(

(n
2)− 1

)
bits.
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A Magma code

A.1 Code for signature scheme
Here we present a MAGMA code which simulates the signature scheme
proposed above. Note that the computation of the equations of the stan-
dard secant variety takes a bit long, but this is not a problem since they are
known and they don’t need to be computed everytime.

Plucker:=function(v,w)

n:=#v;

N:=Binomial(n,2);

F:=Parent(v[1]);

y:=[F!0: i in [1..N]];

m:=1;

for i in [1..n-1] do

for j in [i+1..n] do

y[m]:=v[i]*w[j]-v[j]*w[i];

m:=m+1;

end for;

end for;

return(y);

end function;

RandomPermutation:=function(S)

n:=#S;

v:=[v: v in S];

S0:=S;

for i in [1..n] do

v[i]:=Random(S0);

S0:=S0 diff {v[i]};

end for;

return(v);

end function;

RandomLinearForm:=function(R)

F:=BaseRing(R);

mon:=MonomialsOfDegree(R,1);

f:=R!0;

for i in [1..#mon] do

f:=f+Random(F)*mon[i];

end for;

return(f);

end function;
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/* *******Function generating a nxn matrix with around 2n

components equal to 1 and the remaining equal to 0 *** */

RandomSparseMatrix:=function(F,n)

N:=Binomial(n,2);

v:=[F!0: i in [1..N]];

m:=Floor(N/n);

for i in [1..N] do

r:=Random(0,m-1);

if r eq 0 then

v[i]:=1;

end if;

end for;

M:=UpperTriangularMatrix(v);

M:=HorizontalJoin(ZeroMatrix(F,n-1,1),M);

M:=VerticalJoin(M,ZeroMatrix(F,1,n));

M:=M+IdentityMatrix(F,n); //Random Sparse upper triangular matrix

S:={s: s in [1..n]};

A:=PermutationMatrix(F,RandomPermutation(S));

B:=PermutationMatrix(F,RandomPermutation(S));

M:=A*M*B;

return(M);

end function;

F:=GF(2);

K:=GF(2^13);

n:=12;

d:=2*(n-2);

N:=Binomial(n,2);

R:=PolynomialRing(K,N,"grevlex");

Ad:=AffineSpace(K,n-2);

Rd:=CoordinateRing(Ad);

/* Equations defining the Sec(G(2,n)) */

M:=UpperTriangularMatrix(R,[R.i: i in [1..N]]);

M:=HorizontalJoin(ZeroMatrix(R,n-1,1),M);

M:=VerticalJoin(M,ZeroMatrix(R,1,n));

M:=M-Transpose(M);

S:=[1..n];

S:={s: s in S};

S:=Subsets(S,6);

eqSec:={};

for s in S do

t:=[i:i in s];
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pf:=Pfaffian(Submatrix(M,t,t));

eqSec:=eqSec join {pf};

end for;

/* *****The document***** */

Rtemp:=PolynomialRing(F,N);

D:={R!RandomLinearForm(Rtemp): i in [1..n-2]};

/* ***Alice private key*** */

MA:=RandomSparseMatrix(F,N);

MAinv:=MA^(-1);

MA:=ChangeRing(MA,R); //Private key

MAinv:=ChangeRing(MAinv,R); //Private key

/* ***Alice public key*** */

m:=20;

KA:=RandomSubset(eqSec,m);

X:=[R.i: i in [1..N]];

X:=Matrix(R,N,1,X);

MAX:=Eltseq(MA*X);

KA:={ Evaluate(f,MAX) : f in KA }; //Public key

/* ***Signing*** */

MAinvX:=Eltseq(MAinv*X);

time DA:={Evaluate(f,MAinvX) : f in D};

a:=[Rd!0: i in [1..n]];

a[1]:=1;

SA:=[[K!0: i in [1..N]]: j in [1,2]];

for i in [3..n] do

a[i]:=Rd.(i-2);

end for;

for j in [1,2] do //Generating two points in D cap K_A^pub

b:=[Random(K): i in [1..n]];

b[1]:=0; b[2]:=1;

y:=Plucker(a,b);

YA:=[Rd!Evaluate(f,y): f in DA];

YA:=Scheme(Ad,YA);

YA:=Points(YA)[1];

YA:=Eltseq(YA);

SA[j]:=[Evaluate(y[i],YA): i in [1..N]];

end for;

r:=[Random(K): i in [1,2]];

SA:=[r[1]*SA[1][j]+r[2]*SA[2][j]: j in [1..N]]; //Random linear combination of
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the two points

MAinv:=ChangeRing(MAinv,K);

SA:=Eltseq(MAinv*Matrix(K,N,1,SA)); //Digital signature

/* ***Verification*** */

{Evaluate(f,SA): f in D}; //It is the set {0}

{Evaluate(f,SA): f in KA}; // It is the set {0}

A.2 Code for Gröbner basis computation

M−1
A Sec(G(2, n)) has dimension 2d− 3, where d = 2(n− 2) = dim(G(2, n)).

So, if we want to find points on (M−1
A Sec(G(2, n)))∩D, where D is a codi-

mension n− 2 linear subspace of P(n
2)−1, in general, we need to intersect

with other 2d− 3− (n− 2) = 2d− n− 1 hyperplanes. In the code below
we will consider hyperplanes of the form Xi = ciXi0 , where ci ∈ κ. If we
dehomogenize with respect to the variable Xi0 (i.e. we set Xi0 = 1), it is
equivalent to put 2d− n conditions of the form Xi = ci. The code below is
a prosecution of the one in A.1. We assume that the forger Frank knows a
basis of the vector space of cubic forms vanishing on M−1

A Sec(G(2, n)).

eqSec := { Evaluate(f, Eltseq(MAX) ): f in eqSec }; // Polynomials defining MA^(-1)*Sec

H:={i: i in [1..N]};

H:=RandomSubset(H,2*d-n);

H:={R.h-Random(K): h in H}; //Choice of 2d-n-1 hyperplanes and dehomogenization

H:=H join (eqSec join D);

I := ideal<R|H>;

time G := GroebnerBasis(I);
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