
Factoring Algorithm Based on Parameterized Newton Method

Zhengjun Cao and Lihua Liu

Abstract. Given a non-square n = p q, since p, q are two roots of x2−θx+n = 0, where

θ = p + q is unknown, one can pick the initial values l, r and use Newton method to

construct A(θ, l, k), B(θ, r, k) approximating to p, q, respectively, where k is the iteration

depth. Solve A(θ, l, k)B(θ, r, k) = n ∧ θ > 2
√
n ∧ l < A(θ, l, k) <

√
n < B(θ, r, k) < r to

obtain the approximations of θ. Accumulate and sort the approximations for different

initial values. Then pivot these approximations to search for the target θ such that

θ2 − 4n is a square. The success probability of this algorithm depends on the choice

of initial values, the iteration depth, and the search scope around the pivots. The

algorithm can be easily parallelized, and its complexity can be restricted to O(log9 n).

Keywords: Factorization; Parameterized Newton method.

1 Introduction

In 1931, Lehmer and Powers [2] introduced an interesting factoring algorithm, called the continued

fraction method. The quadratic sieve was introduced and developed by Pomerance et al. [4, 6].

The elliptic curve method [3] and number field sieve [1, 5] are quite practical. Most of these modern

factoring algorithms are based on the fact: if a2 = b2 mod n, then gcd(a + b, n) or gcd(a − b, n)

could be a nontrivial factor of n. We refer to [7] for some interesting discussions on these algo-

rithms. In this paper, we introduce a factoring algorithm based on parameterized Newton method.

Though it runs in polynomial time, its success probability seems hard to decide theoretically. Some

experimental instructions will be explicitly discussed.

2 The basic method

Suppose n = p q, p < q, and p, q are two different positive integers. Let θ = p+ q. We consider the

parameterized equation x2 − θx + n = 0, where θ is unknown. Using Newton method, we obtain

the iteration formula

xi+1 = xi −
x2i − θxi + n

2xi − θ
=
x2i − n
2xi − θ

, i = 1, 2, · · · (1)

Z. Cao is with Department of Mathematics, Shanghai University, Shanghai, China. caozhj@shu.edu.cn
L. Liu is with Department of Mathematics, Shanghai Maritime University, Shanghai, China. liulh@shmtu.edu.cn

1

For the initial values l, r, and iteration depth k, one can obtain the approximationsA(θ, l, k), B(θ, r, k)

of p, q, respectively. Both are rational fractions in θ. Solve the equation

A(θ, l, k)B(θ, r, k) = n (2)

to obtain some approximations of θ. Then test each approximation θ̂ by checking whether λ2 − 4n

is a square for some integer λ ∈ [θ̂ − κ, θ̂ + κ], where κ is a preset bound.

For example, n = 59×79, the target number is 138. After 3 iterations, the constructed fraction

is quite complicated. See Figure 1 for some tests, where the initial values are 30 and 140. Clearly,

the algorithm’s performance depends heavily on the choice of initial values and iteration depth.

So, the crude method cannot be practically implemented.

Figure 1: An example for the basic method

3 The new algorithm

To polish the basic method, one should restrict the iteration depth. Practically, it is better to set

the depth k ≤ 3. By changing the initial values flexibly, the weakness of small depth could be

compensated. Besides, one should take enough initial values to obtain enough approximations, and

delete those obvious improper approximations. To do so, we use the below restrictions

A(θ, l, k)B(θ, r, k) = n ∧ θ > 2
√
n ∧ l < A(θ, l, k) <

√
n < B(θ, r, k) < r (3)

The new algorithm can be illustrated below (Fig. 2, Wolfram Mathematica code), where n =

336774871 = 14591× 23081, the target number is 37672, and the nearest approximation is 37681.

2

Figure 2: An example for the new method

3

4 Performance analysis

We now give more details about experimental instructions.

On the iteration depth. We have observed that it became inefficient to solve the equation

A(θ, l, k)B(θ, r, k) = n even if the iteration depth k = 3. So, it is better to restrict k to {1, 2}. The

loss can be compensated by assigning initial values through the sets

{l, l + d, l + 2d, · · · , l + [
r − l
d

]d}, {r, r − d, r − 2d, · · · , r − [
r − l
d

]d}.

As we see, the nearest approximation is still 37681 for k = 1, 2, 3. While it is 37624 for the extreme

case k = 1.

On the choice of step length. It is somewhat difficult to decide which step length is

better than others (see Fig. 3). Practically, we suggest some random step lengths. Since the

approximations are finally accumulated and sorted, the involved randomness could generate a good

distribution and good differences.

Figure 3: An example for different step lengths

On the differences of sorted approximations. In theory, as the iteration depth k increases,

the maximum of all differences will dramatically decrease. Plenty of experiments show that the

maximum is generally bound above by O(log5 n) even for the iteration depth k = 1, 2.

On the searching scope around each pivot. The final approximations will be used as

pivots to search for the target number θ, by testing whether θ2 − 4n is a square. Usually, one

has two choices. (1) Use the mean of all approximations as the unique pivot, and choose a proper

radius. (2) Select the minimum of all differences, and use the corresponding approximation as

4

the first pivot. If it fails, select the minimum of the remainders and update the pivot. The greedy

strategy for selecting pivots is sometimes quite efficient although its programming code is somewhat

complicate.

On the repeating number. In the above demonstration, we simply set the repeating number

as [r−l
d]. Actually, lots of starting numbers for l+ud, r−vd are wasted because they cannot generate

any approximation satisfying the subsequent checking. See the below example (Fig 4), in which the

repeating number is simply set as 10. While it also generates the nearest approximation 37681. In

the next example, the repeating number is also set as 10. The nearest approximation is 6011287,

with the difference 4615 against the target integer 6015902.

Figure 4: An example for small repeating number

5

On the computational complexity. As discussed above, for the iteration depth k = 2 and

each pair of starting values, it needs to find the roots of a 6-degree polynomial with the coefficients

in Zn3 , which takes O(log2 n) cost. To check whether an integer is a square, it also needs O(log2 n)

cost. If we take α different steps and restrict the repeating number to β, it needs to do α2β2 loops

and obtain at most 8α2β2 approximations. For each pivot, it needs to test at most O(log5 n) integers

for squareness. Thus, the total complexity is 8α2β2 × log2 n × log2 n × log5 n ∈ O(log9 n). Note

that the squareness testing around all pivots can be done in parallel. Likewise, the accumulation

of approximations can also be done in parallel.

5 Conclusion

We present a factoring algorithm which is based on a new principle, not the usual equal-residue-pair

searching. It only involves some basic numerical computations and squareness checking. Though

its running time can be totally controlled, we admit its success probability is quite hard to estimate

due to the involved randomness. We want to stress that the algorithm is unsuited to extremely

unbalanced composite numbers (the difference a − b between the biggest prime factor a and the

smallest prime factor b almost equals a). For conveniences, we directly use the built-in function

Solve[] which generates many trivial solutions (negative numbers and complex numbers), and

wastes much time. But this weakness can be reasonably removed.

References

[1] J. Buhler, H. Lenstra, and C. Pomerance. Factoring integers with the number field sieve. The
Development of the Number Field Sieve, page 5094, 1993.

[2] D. Lehmer and R. Powers. On factoring large numbers. Bulletin of the AMS, (37):770776, 1931.

[3] H. Lenstra. Factoring integers with elliptic curves. Annals of Mathematics, (126):649673, 1987.

[4] H. Lenstra and C. Pomerance. A rigorous time bound for factoring integers. Journal of the
AMS, (4):483516, 1992.

[5] J. Pollard. Factoring with cubic integers. The Development of the Number Field Sieve, page
410, 1993.

[6] C. Pomerance. Analysis and comparison of some integer factoring algorithms. Computational
Methods in Number Theory, Part I, page 89139, 1982.

[7] V. Shoup. A Computational Introduction to Number Theory and Algebra, 2nd ed. Cambridge
Univ. Press, 2008.

6

Appendix The Wolfram Mathematica code for the factoring algorithm

MyFactor [mynumber , myle f t , myright , I t e rat ionDepth , StepLength]

:=(n=mynumber ; b=Intege rPar t [Sqrt [n]] ; B={};
f [x] :=(xˆ2−n)/(2∗x−a) ; g [x , k] := Nest [f , x , k] ;

l=myle f t ; r=myright ; K=Iterat ionDepth ; H=StepLength ;

For [i =1, i<Length [K]+1 , i ++, k=K[[i]] ;

For [j =1, j<Length [H]+1 , j ++, d=H [[j]] ;

For [u=0, u<In tege rPar t [(r−l)/d] , u++, s=l+u∗d ;

I f [s>b , Break [] ,

For [v=0, v<In tege rPar t [(r−l)/d] , v++, t=r−v∗d ;

I f [t<b , Break [] , l e f t=g [s , k] ; r i g h t=g [t , k] ;

T=N[Solve [l e f t ∗ r i g h t==n , a] , 1 0] ;

T=S e l e c t [a / .T, Im[#]==0 && #>2∗Sqrt [n] &] ;

T=S e l e c t [T, s<(l e f t / . a−>#)<b<(r i g h t / . a−>#)<t &] ;

B=Union [B, T] ; Clear [T]]]]]]] ;

B=Function [x , In tege rPar t [x]] /@B; B=Union [B] ;

Pr int [B] ; Pr int [D i f f e r e n c e s [B]])

MyFactor [8257092578401 , 1000000 , 5000000 , {1 , 2} , {10500 , 35021}]

7

	Introduction
	The basic method
	The new algorithm
	Performance analysis
	Conclusion

