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Abstract— This work presents a hardware accelerator, for the 

optimization of latency and area at the same time, to improve the 

performance of point multiplication process in Elliptic Curve 

Cryptography. In order to reduce the overall computation time in 

the proposed 2-stage pipelined architecture, a rescheduling of 

point addition and point doubling instructions is performed along 

with an efficient use of required memory locations. Furthermore, 

a 41-bit multiplier is also proposed. Consequently, the FPGA and 

ASIC implementation results have been provided. The 

performance comparison with state-of-the-art implementations, in 

terms of latency and area, proves the significance of the proposed 

accelerator. 

Keywords—elliptic curve cryptography, point multiplication, 
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I. INTRODUCTION 

The main advantages of Elliptic Curve Cryptography (ECC), 
as compared to the commonplace Rivest Shamir Adleman 
algorithm, are shorter key lengths, lesser power consumption, 
and the lower hardware cost for an equivalent security [1]–[2]. 
Therefore, the ECC is implemented frequently in software or 
hardware [3]. While the software implementation is convenient 
and flexible, the hardware-based solutions display higher 
throughputs, low latency and inherent security [4]–[16]. 
However, the low latency hardware solutions typically demand 
precious hardware resources (area) that are not always available. 
Consequently, the architectures providing low latency with 
minimum area are challenging to devise.  

A. Basis Parameters of ECC 

The most important operation in ECC is the point 
multiplication (PM) [2]. Two types of fields are generally 
utilized to implement PM: the prime field, i.e., 𝐺𝐹(𝑝) and the 
binary extension field, i.e., 𝐺𝐹(2𝑚) . For each of the 
aforementioned fields, the National Institute of Standards and 
Technology (NIST) has provided various key length 
recommendations [17]. Furthermore, the implementations can 
adopt simple affine or projective coordinates [5]. In addition to 
the selection of field coordinates, another important issue in 
ECC is to choose between polynomial and normal basis [10].  

The binary field is generally preferred over the primary filed 
for hardware implementations [4, 5]. In addition to this, the 
projective coordinates are more suitable than the general affine 
coordinates to attain effective latency/area architectures [3]. 
Similarly, the normal basis is valuable where the recurrent 

squarings are commonly required to be computed, while the 
polynomial basis is more convenient where the frequent 
multiplications are involved [2]. Consequently, in this paper, we 
have selected the binary field along with the projective 
coordinates to achieve some efficient latency/area results, 
whereas the polynomial basis has been selected to execute the 
finite field (FF) multiplications efficiently.  

B. Related Work 

Techniques toward latency optimization. In order to 
minimize the latency of ECC, different FF multipliers have been 
implemented. However, the three most frequently used 
multipliers are: digit level multipliers [4–8, 12, 15, 16], bit 
parallel multipliers [3, 9] and parallel Karatsuba multiplier [10, 
11, 13, 14]. For each FF multiplication, the digit level multipliers 

require, 𝐷 =
𝑚

𝑛
 clock cycles, where ‘𝐷 ’ determines the total 

number of digits, ‘𝑚’ defines the length of key and ‘𝑛’ is the 
size of digit. There are two possibilities to implement the digit 
level multipliers, either by using the digit serial, implemented in 
[4–8], or digit parallel multiplier, utilized in [12, 16]. The digit 
serial multipliers require ‘ 𝐷 ’ clock cycles for one FF 
multiplication while the digit parallel multipliers utilize one 
clock cycle for one FF multiplication, albeit with the higher 
requirements of required resources [12]. For both digit serial and 
digit parallel multipliers, the larger digit sizes are useful to 
reduce the number of clock cycles while the smaller digit sizes 
are more convenient to reduce the critical path [12, 15]. 
Therefore, to perform FF multiplication in one clock cycle, the 
bit parallel, implemented in [9], and Karatsuba multipliers, 
utilized in [10, 11, 13, 14] have been employed. These single-
cycle multipliers have long critical paths that compromise the 
latency of the overall ECC computation. Apart from the FF 
multipliers, additional techniques related to the latency 
optimizations are pipelining [4, 5, 10, 12, 16] and instruction 
level parallelism [7]. 

Techniques toward area optimization. Several techniques 
have been adopted to reduce the hardware resources: the 
execution of Itoh Tsujii inversion algorithm by sharing the 
hardware resources of squarer and multiplier components [7, 9, 
12, 16], the use of fewer temporary storage elements to keep the 
intermediate results during the computation of PM  [12, 14, 16], 
the use of a single FF adder, multiplier and squarer components 
in the arithmetic and logic unit (ALU) of the crypto processor 
[12] and the use of digit serial multipliers [4–8]. 
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C. Limitations of Existing Works 

Section 1-B shows that the existing hardware accelerators 
for the PM process either target the optimization of latency or 
area [4, 6-9, 11, 13, 14, 16]. However, there are some application 
scenarios where the optimization of latency and area at the same 
time is critical [12].  Although, there exist some solutions which 
consider the optimization of both at the same time [5, 10, 12, 
15], we believe that the performance can be further improved by 
using some efficient architectural techniques. Furthermore, 
another key issue in modern cryptographic applications is the 
scalability such that the solution can be configured for various 
key lengths, depending upon a particular requirement [16].  

D. Proposed Solution 

We have proposed an area aware latency optimized 
hardware accelerator architecture with 𝑚 = 163 , 233 , 283 , 
409 and 571 for the PM computation of ECC. To reduce the 
latency of the proposed accelerator, we have performed: 

 an exploration for different stages of pipelining 

 an efficient rescheduling of PM instructions 

 Towards area reduction, we have proposed: 

 an efficient use of required memory locations 

 a digit parallel least significant digit level (DP-LSD) 
multiplier, with the digit size of 41 𝑏𝑖𝑡𝑠.  

The proposed accelerator/architecture is described in 
Verilog HDL and synthesized for a Virtex-7 FPGA as well as 
for a 16nm ASIC technology. On FPGA, the results after 
synthesis reveal that the proposed accelerator can operate up to 
maximum frequencies of 383, 379, 377, 342 and 340 MHz when 
implemented with m = 163, 233, 283, 409  and 571  bit key 
lengths, respectively. As ASIC, a maximum operational 
frequency of 2.2GHz for 𝑚 = 571 bit key length is achieved, 
and it requires only 5.5µs for one PM computation.  

The performance in terms of ratio of 1 over latency times 
area is provided on FPGA (Virtex 7) and ASIC (16nm) 
platforms. As compared to the most recent state-of-the-art 
solution, the proposed accelerator achieves 36%, 65% and 57% 
higher performance ratio for 𝑚 = 163 , 233  and 283. 
Moreover, as expected, the ECC computation in the ASIC 
implementation takes 6.53 times less PM time than in the FPGA 
implementation. 

The remainder of this paper is structured as follows: 
Theoretical background for the computation of PM on ECC over 
𝐺𝐹(2𝑚)  is provided in Section II. The proposed accelerator 
architecture is described in Section III. The implementation 
results and the comparison with state-of the-art are discussed in 
Section IV. Finally, the conclusions are given in Section V. 

II. POINT MUTIPLICATION ON ECC OVER GF(2M) 

For 𝐺𝐹(2𝑚) , a Lopez Dahab projective form of elliptic 
curve is described as a set of points 𝑃(𝑋: 𝑌: 𝑍), satisfying the 
following Eq. (1): 

𝐸: 𝑌2 + 𝑋𝑌𝑍 = 𝑋3𝑍 + 𝑎𝑋2𝑍2 + 𝑏𝑍4  (1) 

As presented in Eq. (1), the terms ‘𝑋’, ‘𝑌’ and ‘𝑍’ are the 
Lopez Dahab projective components of initial point 𝑃(𝑋: 𝑌: 𝑍) 

where 𝑍 ≠ 0, ‘𝑎’ and ‘𝑏’ are the curve constants, with 𝑏 ≠ 0. 
Then, PM is the addition of ‘𝑘’ copies of point ‘𝑃’, i.e., 𝑄 = 𝑘 ×
(𝑃 + 𝑃 +⋯+ 𝑃), where ‘𝑃’ is an initial point with ‘𝑥’ and ‘𝑦’ 
coordinates, ‘𝑘’ is an integer (equals to the size of field) and ‘𝑄’ 
is a final point on the elliptic curve. Due to its simplicity, several 
algorithms are available for the computation of PM. We have 
selected the Montgomery algorithm [18] due to its inherent 
resilience against side channel attacks [5, 9, 16]. 

Algorithm 1: Montgomery algorithm over 𝐺𝐹(2𝑚) [18] 

Input: 𝑘 = (𝑘𝑛−1, … , 𝑘1, 𝑘0) with 𝑘𝑛−1 = 1, 𝑃 = (𝑥𝑝, 𝑦𝑝) ∊ 𝐺𝐹(2𝑚) 

Output: 𝑄(𝑥𝑞 , 𝑦𝑞) = 𝑘. 𝑃 

1. Initialization: 𝑋1 = 𝑥𝑝, 𝑍1 = 1, 𝑋2 = 𝑥𝑝
4 + 𝑏, 𝑍2 = 𝑥𝑝

2 

2. Point Multiplication: for (𝑖 from 𝑛 − 2 down to 0) do 

2.1. 𝑖𝑓(𝑘𝑖 = 1), then  

2.1.1. (𝑷 = 𝑷+ 𝑸) 

2.1.1.1. 𝑍1 = 𝑋2 × 𝑍1  

2.1.1.2. 𝑋1 = 𝑋1 × 𝑍2 

2.1.1.3. 𝑇 = 𝑋1 + 𝑍1 

2.1.1.4. 𝑋1 = 𝑋1 × 𝑍1 

2.1.1.5. 𝑍1 = 𝑇
2 

2.1.1.6. 𝑇 = 𝑥𝑝 × 𝑍1 

2.1.1.7. 𝑋1 = 𝑋1 + 𝑇 

2.1.1.8. 𝑅𝑒𝑡𝑢𝑟𝑛: 𝑃(𝑋1, 𝑍1) 

2.1.2. (𝑷 = 𝑷+ 𝑷 = 𝟐𝑷) 

2.1.2.1. 𝑍2 = 𝑍2
2 

2.1.2.2. 𝑇 = 𝑍2
2 

2.1.2.3. 𝑇 = 𝑏 × 𝑇 

2.1.2.4. 𝑋2 = 𝑋2
2 

2.1.2.5. 𝑍2 = 𝑋2 × 𝑍2 

2.1.2.6. 𝑋2 = 𝑋2
2 

2.1.2.7. 𝑋2 = 𝑋2 +  𝑇 

2.1.2.8. 𝑅𝑒𝑡𝑢𝑟𝑛: 𝑄(𝑋2, 𝑍2) 

2.2. 𝑒𝑙𝑠𝑒 

2.2.1. (𝑷 = 𝑷+ 𝑸) 

2.2.1.1. 𝑍2 = 𝑋1 × 𝑍2 

2.2.1.2. 𝑋2 = 𝑋2 × 𝑍1 

2.2.1.3. 𝑇 = 𝑋2 + 𝑍2 

2.2.1.4. 𝑋2 = 𝑋2 × 𝑍2 

2.2.1.5. 𝑍2 = 𝑇
2 

2.2.1.6. 𝑇 = 𝑥𝑝 × 𝑍2 

2.2.1.7. 𝑋2 = 𝑋2 + 𝑇 

2.2.1.8. 𝑅𝑒𝑡𝑢𝑟𝑛: 𝑃(𝑋2, 𝑍2) 

2.2.2. (𝑷 = 𝑷+ 𝑷 = 𝟐𝑷) 

2.2.2.1. 𝑍1 = 𝑍1
2 

2.2.2.2. 𝑇 = 𝑍1
2 

2.2.2.3. 𝑇 = 𝑏 × 𝑇 

2.2.2.4. 𝑋1 = 𝑋1
2 

2.2.2.5. 𝑍1 = 𝑋1 × 𝑍1 

2.2.2.6. 𝑋1 = 𝑋1
2 

2.2.2.7. 𝑋1 = 𝑋1 + 𝑇 

2.2.2.8. 𝑅𝑒𝑡𝑢𝑟𝑛: 𝑄(𝑋1, 𝑍1) 

𝑒𝑛𝑑 𝑖𝑓  

𝑒𝑛𝑑 𝑓𝑜𝑟 

3. Reconversion:  

3.1. 𝑥𝑞 =
𝑋1

𝑍1
 and  

3.2. 𝑦𝑞 = (𝑥𝑝 +
𝑋1

𝑍1
) × {[( 𝑋1 + 𝑥𝑝 × 𝑍1)( 𝑋2 + 𝑥𝑝 × 𝑍2) +

(𝑥𝑝
2 + 𝑦)( 𝑍1 × 𝑍2)] × (𝑥𝑝 × 𝑍1 × 𝑍2)

−1
} + 𝑦𝑝 

As shown in Algorithm 1, the Montgomery algorithm 
consists of three steps for the computation of PM. A scalar 
multiplier ‘𝑘’ and an initial point ‘𝑃’ with its coordinates (𝑥𝑝,𝑦𝑝) 

are the inputs. The coordinates (𝑥𝑞 ,𝑦𝑞) of the final point ‘𝑄’ are 

the outputs. Initialization step of Algorithm 1 ensures the 
conversions from affine to Lopez Dahab projective form, 
whereas point multiplication step calculates point addition (PA) 
and point doubling (PD) considering the inspected value of the 
scalar multiplier 𝑘𝑖. At the end, the reconversion step reverts the 
Lopez Dahab projective to affine conversion. 

III. ARCHITECTURE OF PROPOSED ACCELERATOR  

The proposed 2-stage pipelined accelerator architecture is 

composed of a register file (RF), an arithmetic and logic unit 

(ALU), pipeline registers and an FSM-based control unit (CU), 

as presented in Fig. 1. The parameters for the architecture have 

been chosen from NIST [17]. 
 



A. Register File 

It contains an ‘8 × 𝑚’ register array, as illustrated in Fig. 1. 
The numeric digit ‘8’ determines the total number of locations 
while variable ‘𝑚 ’ determines the range of each particular 
location. In this paper, ‘𝑚’ is the ECC key length, i.e., 163, 233, 
283, 409 and 571. The purpose of RF is to keep intermediate 
results 𝑋1 , 𝑋2 , 𝑍1 , 𝑍2 , 𝑇1 , 𝑇2 , 𝑇3  and 𝑇4  of Algorithm 1. The 
multiplexers 𝑀1 (8 × 1) and 𝑀2 (8 × 1) are used to fetch the 
operands from RF to the ALU while a single de-multiplexer 
𝐷𝑚𝑢𝑥 (1 × 8)  updates the contents of the RF by using the 
𝑀𝑝𝑙𝑒𝑥_𝑜𝑢𝑡 signal. 

B. Arithmetic and Logic Unit 

The ALU of the proposed hardware accelerator contains a 
total of two finite field operators, i.e., an adder and a multiplier, 
as presented in Fig. 1. Input to both operators are two ‘𝑚’ bit 
polynomials 𝐴(𝑥) and 𝐵(𝑥). Each operator produces a single 
output polynomial, i.e., 𝐴_𝑜𝑢𝑡(𝑥) or 𝑀_𝑜𝑢𝑡(𝑥). The first input 
to both operators is polynomial  𝐴(𝑥) , an output of routing 
multiplexer  𝑀3, while the second input is polynomial 𝐵(𝑥), an 
output of RF. Both output polynomials are inputted to mux 𝑀4 
for write back on the RF. In order to compute the addition of 
polynomials 𝐴(𝑥) and 𝐵(𝑥) over 𝐺𝐹(2𝑚), bitwise exclusive-
OR gates have been utilized. 

Proposed multiplier architecture. For the multiplication of 
two ‘m’ bit polynomials, a DP-LSD multiplier with a digit size 
of 41 bits is utilized as depicted in Fig. 2. The digits with ‘𝑑 =
41’ bits of input polynomial 𝐵(𝑥) are created (𝐵1–𝐵14) by 
generating simple partial products. Parallel execution of each 
created digit (𝐵1–𝐵14) for the polynomial multiplication is 
then performed with the input polynomial 𝐴(𝑥) . For the 

computation of finite field multiplication over 𝐺𝐹(2571), a total 
of 14 digits are required, as shown in Fig. 2. Out of these 14 
digits, 13 digits (𝐵1–𝐵13) are with size of 41 bits, whereas the 
remaining one digit (𝐵14 ) is with 38 bit size. The parallel 
multiplication of each ‘ 𝐵1–𝐵14 ’ digit with an ‘𝑚 ’ bit 
polynomial 𝐴(𝑥) results ‘𝑑 + 𝑚 − 1’ bits of polynomials and 
these resultant polynomials are represented as ‘𝐶1– 𝐶14’. After 
multiplication of each ‘𝑑’ bit digit with an ‘𝑚’ bit polynomial, 
the resultant polynomial of 𝐷(𝑥) = 2 × 𝑚 − 1  bit is 
constructed using shift and add operation of ‘𝐶1–𝐶14’.  

We have provided identical inputs to the DP-LSD multiplier 
for the computation of FF squaring, i.e., 𝐴(𝑥)2 = 𝐴(𝑥) × 𝐴(𝑥), 
which is required for the implementation of Algorithm 1. Both 
multiplication of two polynomials (𝐴(𝑥) × 𝐵(𝑥)) and squaring 
of one polynomial (𝐴(𝑥)2 = 𝐴(𝑥) × 𝐴(𝑥)), produce resultant 
polynomial of degree almost ‘2 × m − 1’ bits. Consequently, 
reduction is essential to execute after the computation of each 
FF multiplication and squaring. For this purpose, NIST 
reduction algorithms over 𝐺𝐹(2163) , 𝐺𝐹(2233) , 𝐺𝐹(2283) , 

𝐺𝐹(2409)  and 𝐺𝐹(2571)  are implemented as described in 
Algorithms 2.41, 2.42, 2.43, 2.44 and 2.45 of [3]. Finally, to 
perform inversion over 𝐺𝐹(2𝑚), a square Itoh Tsujii algorithm 
[19] is implemented by repeatedly squaring along with FF 
multiplication operation, using only the multiplier unit. 

C. Pipeline Registers and Instructions Rescheduling 

To minimize the latency and to shorten the critical path, we 
have first sought an appropriate strategy for the deployment of 
pipeline registers. Subsequently, the architecture is divided into 
three portions: operands read [𝑅] using multiplexers 𝑀1, 𝑀2 
and 𝑀3, execution of operands [𝐸] using the ALU and write 
back [𝑊𝐵] of results into the RF unit.  

There are three possible solutions with the aforementioned 
division. First, without the pipeline registers; hence, read [𝑅], 
execute [𝐸]  and write back [𝑊𝐵]  in one clock cycle (CC). 
Second, 2-stage pipelined architecture (ALU containing the 
registers at their inputs), executing [𝑅] in first clock cycle and 
[𝐸,𝑊𝐵]  in second cycle. Lastly, 3-stage pipelined processor 
(ALU accommodating registers both at the input and output), 
thus executing [𝑅], [𝐸] and [𝑊𝐵] in three clock cycles.  

For each PA and PD computation, Algorithm 1 in its actual 
structure requires a total of 14 instructions (𝑖𝑛𝑠𝑡1 to 𝑖𝑛𝑠𝑡14), as 
shown in column 2 of Table I. Out of these 14 instructions, seven 
instructions are for PA ( 𝑖𝑛𝑠𝑡1  to 𝑖𝑛𝑠𝑡7 ) and remaining 
instructions are for PD. However, Algorithm 1 in its presented 
form, can present read after write (RAW) hazards, as detailed in 
column 3 of Table I. The term hazard means that whenever one 
of the read operands of current instruction are dependent upon 
the write operand of the previous instruction. In such cases, the 
execution of current instruction (𝑖𝑛𝑠𝑡𝑖) is stalled until the result 
of previous instruction (𝑖𝑛𝑠𝑡𝑖−1 ) is written back. In order to 

Fig. 1: Proposed hardware accelerator architecture 

 
Fig. 2: Proposed digit parallel least significant digit (DP-LSD) 

multiplier with digit size of 41-bits 



reduce RAW hazards, we reschedule the instructions of 
Algorithm 1. The proposed instruction rescheduling was 
achieved by considering the following: 

 Parallel execution of PA and PD instructions for PM 
computation. For example, in the proposed rescheduling 
(shown in column 4 of Table I), 𝑖𝑛𝑠𝑡3  cannot be read 
until the result of 𝑖𝑛𝑠𝑡2  is available, resulting in one 
cycle delay. We have instead scheduled 𝑖𝑛𝑠𝑡11  when 
𝑖𝑛𝑠𝑡2 is in the write back stage. In the next cycle, 𝑖𝑛𝑠𝑡3 
is scheduled when 𝑖𝑛𝑠𝑡11 is in the write back stage.  

 Efficient replacement of temporary storage element, 
denoted as ‘𝑇’, shown in column 2 of Table I, with ‘𝑇1’ 
for PA instructions and ‘𝑇2’ for PD instructions, shown 
in column 4. This results in decrease of one clock cycle 
for one PA and PD computation. Therefore, for 𝑚 bit 
key length, 𝑚 number of clock cycles are reduced. 

The rescheduled instructions for non-pipelined case 
([𝑅], [𝐸], [𝑊𝐵] in one CC) are presented in column 4 of Table 
I, resulting in a single RAW hazard, shown in column 5 of Table 
I (the original sequence of instruction had seven hazards, 
marked in column 3). The corresponding sequences carried out 
in 2- and 3-stage pipelining architectures are shown in the right 
hand side of Table I. For each PA and PD computation, the last 
instruction, i.e., 𝑖𝑛𝑠𝑡14 for non-pipelined, 2-stage, and 3-stage 
pipelined cases are written back in 14, 16 and 22 clock cycles, 
as shown in Table I. As described earlier, the proposed 
rescheduling has only one RAW hazard, resulting in 1 and 6 

clock cycles delay when executed in the 2-stage and 3-stage 
pipelined architectures, respectively. For the 2-stage pipeline, 
this delay is offset by the higher frequency enabled by the 
pipelining technique. On the other hand, moving from 2- to 3-
stage brings only a slight increase in clock frequency that is not 
beneficial. Consequently, in the remainder of this paper, we 
discuss only 2-stage pipeline case. 

D. Control Unit 

The proposed hardware accelerator contains an FSM-based 
control unit, described in the following:  

In order to implement Algorithm 1, the initialization step 
requires only 6 clock cycles. The proposed rescheduling of PA 
and PD requires a total of 33 cycles. Out of these 33 cycles, 32 
cycles are required for the computation of ‘𝑖𝑓’ and ‘𝑒𝑙𝑠𝑒’ parts 
of Algorithm 1, while the remaining one cycle is required to 
inspect the key bit. Finally, the reconversion step requires two 
FF inversions (𝐼𝑛𝑣) for an additional 34 cycles. Clock cycles for 
each 𝐼𝑛𝑣 operation are computed by implementing 𝑚 − 1 times 
repeated squares followed with 9 (for 𝑚 = 163), 10 (for 𝑚 =
233), 10 (for 𝑚 = 283), 11 (for 𝑚 = 409) and 12 (for 𝑚 =
571) FF multiplications. The total number of required cycles for 
the proposed accelerator can be calculated by using Eq. (2), as 
detailed in Table II. It becomes clear that the PM calculation 
takes most of the computation cycles. 

Initial⏟  
Initialization

+ 17 × (m − 1)⏟        
Point Multiplication

+ 2 × (Inv) + 34⏟          
Reconversion

 (2) 

TABLE I.  PROPOSED INSTRUCTION SCHEDULING USING SINGLE FINITE FIELD ADDER AND MULTIPLIER UNIT 

C
lo

c
k

 c
y

cl
e
s 

Original sequence of 

instructions (𝒊𝒏𝒔𝒕𝒊) for 

if part of Algorithm 1 

R
A

W
 H

a
z
a
r
d

 Proposed rescheduling of 

instructions (𝒊𝒏𝒔𝒕𝒊) for if 

part of Algorithm 1 

R
A

W
 H

a
z
a
r
d

 Status of proposed rescheduled instructions (𝒊𝒏𝒔𝒕𝒊) in pipelining for if part 

of Algorithm 1 

(for non-pipelined) (for 2-stage pipelined) (for 3-stage pipelined) 

𝒊𝒏𝒔𝒕𝒊[𝑹, 𝑬,𝑾𝑩] 𝒊𝒏𝒔𝒕𝒊[𝑹] 𝒊𝒏𝒔𝒕𝒊[𝑬,𝑾𝑩] 𝒊𝒏𝒔𝒕𝒊[𝑹] 𝒊𝒏𝒔𝒕𝒊[𝑬] 𝒊𝒏𝒔𝒕𝒊[𝑾𝑩] 

1 𝑖𝑛𝑠𝑡1 → 𝑍1 = 𝑋2 × 𝑍1 – 𝑖𝑛𝑠𝑡1 → 𝑍1 = 𝑋2 × 𝑍1 – inst1[𝑅] – inst1[𝑅] – – 

2 𝑖𝑛𝑠𝑡2 → 𝑋1 = 𝑋1 × 𝑍2 – 𝑖𝑛𝑠𝑡2 → 𝑋1 = 𝑋1 × 𝑍2 – inst2[𝑅] inst1[𝐸,𝑊𝐵] 𝑖𝑛𝑠𝑡2[𝑅] 𝑖𝑛𝑠𝑡1[𝐸] – 

3 𝑖𝑛𝑠𝑡3 → 𝑇 = 𝑋1 + 𝑍1 𝑋1 𝑖𝑛𝑠𝑡11 → 𝑋2 = 𝑋2 × 𝑋2 – inst11[𝑅] 𝑖𝑛𝑠𝑡2[𝐸,𝑊𝐵] 𝑖𝑛𝑠𝑡11[𝑅] 𝑖𝑛𝑠𝑡2[𝐸] 𝑖𝑛𝑠𝑡1[𝑊𝐵] 

4 𝑖𝑛𝑠𝑡4 → 𝑋1  = 𝑋1 × 𝑍1 – 𝑖𝑛𝑠𝑡3 → 𝑇1 = 𝑋1 + 𝑍1 – inst3[𝑅] inst11[𝐸,𝑊𝐵] – 𝑖𝑛𝑠𝑡11[𝐸] 𝑖𝑛𝑠𝑡2[𝑊𝐵] 

5 𝑖𝑛𝑠𝑡5 → 𝑍1 =  𝑇 × 𝑇 – 𝑖𝑛𝑠𝑡4 → 𝑋1  = 𝑋1 × 𝑍1 – inst4[𝑅] inst3[𝐸,𝑊𝐵] 𝑖𝑛𝑠𝑡3[𝑅] – 𝑖𝑛𝑠𝑡11[𝑊𝐵] 

6 𝑖𝑛𝑠𝑡6 → 𝑇 = 𝑥𝑝 × 𝑍1 𝑍1 𝑖𝑛𝑠𝑡5 → 𝑍1 = 𝑇1 × 𝑇1 – inst5[𝑅] inst4[𝐸,𝑊𝐵] 𝑖𝑛𝑠𝑡4[𝑅] 𝑖𝑛𝑠𝑡3[𝐸] – 

7 𝑖𝑛𝑠𝑡7 → 𝑋1 = 𝑋1 + 𝑇 𝑇 𝑖𝑛𝑠𝑡8 → 𝑍2 = 𝑍2 × 𝑍2 – inst8[𝑅] inst5[𝐸,𝑊𝐵] – 𝑖𝑛𝑠𝑡4[𝐸] 𝑖𝑛𝑠𝑡3[𝑊𝐵] 

8 𝑖𝑛𝑠𝑡8 → 𝑍2 = 𝑍2 × 𝑍2 – 𝑖𝑛𝑠𝑡6 → 𝑇1 = 𝑥𝑝 × 𝑍1 – inst6[𝑅] inst8[𝐸,𝑊𝐵] 𝑖𝑛𝑠𝑡5[𝑅] – 𝑖𝑛𝑠𝑡4[𝑊𝐵] 

9 𝑖𝑛𝑠𝑡9 → 𝑇 = 𝑍2 × 𝑍2 𝑍2 𝑖𝑛𝑠𝑡9 → 𝑇2 = 𝑍2 × 𝑍2 – inst9[𝑅] inst6[𝐸,𝑊𝐵] 𝑖𝑛𝑠𝑡8[𝑅] 𝑖𝑛𝑠𝑡5[𝐸] – 

10 𝑖𝑛𝑠𝑡10 → 𝑇 = 𝑏 × 𝑇 𝑇 𝑖𝑛𝑠𝑡7 → 𝑋1 = 𝑋1 + 𝑇1 – inst7[𝑅] inst9[𝐸,𝑊𝐵] – 𝑖𝑛𝑠𝑡8[𝐸] 𝑖𝑛𝑠𝑡5[𝑊𝐵]  

11 𝑖𝑛𝑠𝑡11 → 𝑋2 = 𝑋2 × 𝑋2 – 𝑖𝑛𝑠𝑡10 → 𝑇2 = 𝑏 × 𝑇2 – inst10[𝑅] inst7[𝐸,𝑊𝐵] 𝑖𝑛𝑠𝑡6[𝑅] – 𝑖𝑛𝑠𝑡8[𝑊𝐵] 

12 𝑖𝑛𝑠𝑡12 → 𝑍2 = 𝑋2 × 𝑍2 𝑋2 𝑖𝑛𝑠𝑡12 → 𝑍2 = 𝑋2 × 𝑍2 – inst12[𝑅] inst10[𝐸,𝑊𝐵] 𝑖𝑛𝑠𝑡9[𝑅] 𝑖𝑛𝑠𝑡6[𝐸] – 

13 𝑖𝑛𝑠𝑡13 → 𝑋2 = 𝑋2 × 𝑋2 – 𝑖𝑛𝑠𝑡13 → 𝑋2 = 𝑋2 × 𝑋2 –  inst13[𝑅] inst12[𝐸,𝑊𝐵] – 𝑖𝑛𝑠𝑡9[𝐸] 𝑖𝑛𝑠𝑡6[𝑊𝐵] 

14 𝑖𝑛𝑠𝑡14 → 𝑋2 = 𝑋2 + 𝑇 𝑋2 𝑖𝑛𝑠𝑡14 → 𝑋2 = 𝑋2 + 𝑇2 𝑋2 – 𝑖𝑛𝑠𝑡13[𝐸,𝑊𝐵] 𝑖𝑛𝑠𝑡7[𝑅] – 𝑖𝑛𝑠𝑡9[𝑊𝐵] 

15 – – – – inst14[𝑅] – 𝑖𝑛𝑠𝑡10[𝑅] 𝑖𝑛𝑠𝑡7[𝐸] – 

16 – – – – – inst14[𝐸,𝑊𝐵] 𝑖𝑛𝑠𝑡12[𝑅] 𝑖𝑛𝑠𝑡10[𝐸] 𝑖𝑛𝑠𝑡7[𝑊𝐵] 

17 – – – – – – 𝑖𝑛𝑠𝑡13[𝑅] 𝑖𝑛𝑠𝑡12[𝐸] 𝑖𝑛𝑠𝑡10[𝑊𝐵] 

18 – – – – – – – 𝑖𝑛𝑠𝑡13[𝐸] 𝑖𝑛𝑠𝑡12[𝑊𝐵] 

19 – – – – – – – – 𝑖𝑛𝑠𝑡13[𝑊𝐵] 

20 – – – – – – 𝑖𝑛𝑠𝑡14[𝑅] – – 

21 – – – – – – – 𝑖𝑛𝑠𝑡14[𝐸] – 

22 – – – – – – – – 𝑖𝑛𝑠𝑡14[𝑊𝐵] 

 



TABLE II.  CLOCK CYCLES INFORMATION 

Field 
(𝐦) 𝐈𝐧𝐢𝐭𝐢𝐚𝐥 𝐏𝐀 +  𝐏𝐃  

𝟏𝟕 × (𝐦− 𝟏) 
𝐈𝐧𝐯. 𝐑𝐞𝐜𝐨𝐧. Total 

cycles 
163 6 2754 502 1038 3798 
233 6 3944 709 1452 5402 
283 6 4794 867 1768 6568 
409 6 6936 1239 2512 9454 
571 6 9690 1300 2633 12329 
Initial = initialization, PA + PD = point additions & doublings, Inv = 
inversion, Recon=reconversion 

IV. RESULTS AND COMPARISONS 

This section describes the implementation results for the 
proposed accelerator architecture on ASIC and FPGA platforms 
(Section IV-A). The achieved results are then compared with 
most recent state-of-the-art solutions on FPGA (Section IV-B). 

A. Results after synthesis on FPGA and ASIC library 

We have created a Verilog HDL model for each field size 

over 𝐺𝐹(2163), G𝐹(2233), 𝐺𝐹(2283), 𝐺𝐹(2409) and 𝐺𝐹(2571) 
The HDL models are then synthesized for Virtex-7 
(XC7VX690T) FPGA, using Xilinx ISE tool [20]. For ASIC 
implementation, the HDL model for 𝐺𝐹(2571) is synthesized 
targeting a 16nm FinFET technology, using Cadence Genus tool 
and a commercial cell library. The circuit was implemented with 
a nominal voltage of 0.8V and results are reported for the typical 
corner (TT). The clock uncertainty and clock tree delays were 
carefully modelled to achieve a tapeout-quality result. The 
circuit is fully routed and passes DRC with no violations. Metals 
1 through 7 are used for signal routing, while the power is 
distributed in M8/M9. The actual layout of the accelerator, as 
shown in Fig. 3, is obtained from Cadence Innovus [21]. 

The synthesis results on ASIC and FPGA are given in Table 
III and Table IV, respectively. The numerical figures of 
achieved latency for the proposed hardware accelerator on both 

FPGA and ASIC are 36.26µs and 5.55µs over 𝐺𝐹(2571) 
respectively. Consequently, and as expected, the ECC 
computation in the ASIC implementation takes 6.53 times less 
time than in the FPGA implementation. 

TABLE IV.  RESULTS AND COMPARISON ON VIRTEX-7 FPGA 

Ref 
year 

m Slices LUTs FFs Fq. 
(MHz) 

Latency 
(µs) 

 
[12] 
2019 

 

163 2207 9965 1981 369 10.73 
233 5120 18953 2764 357 15.78 

283 5207 20202 3210 337 20.32 

[9] 
2018 

163 3670 – – – 2.50 
233 5616 – – – 4.09 
283 7738 – – – 5.81 
409 12290 – – – 9.50 
571 20291 – – – 18.51 

[16] 
2018 

163 3107 10955 1968 351 28.53 
233 5674 19753 2764 343 10.73 

[15] 
2015 

163 1476 4721 1886 397 10.51 
233 2647 7895 2832 370 16.01 
283 3728 11593 3973 345 20.96 
409 6888 20881 6038 316 32.72 
571 12965 38547 10066 250 57.61 

This 
work 

163 1529 4162 1832 383 9.91 
233 2048 6407 2524 379 14.25 
283 2623 6753 3018 377 17.42 
409 3373 10083 4229 342 27.64 
571 4560 12691 5871 340 36.26 

 
Comparing ASIC implementations with one another is 

challenging since technology nodes can be widely different, not 
only in transistor dimensions (i.e., technology node) but also in 
transistor structure. Our work utilizes a commercial “1st 
generation” FinFET technology, which cannot be fairly 
compared to older bulk technologies. Hence, we have selected 
only the most relevant FPGA-based solutions [10, 12, 15] for 
our comparison of results.  

B. Comparison with FPGA-based solutions 

Figure-of-Merit (FoM). To evaluate the performance of 
proposed accelerator and to perform a fair comparison with 
recent state-of-the-art solutions, we have defined a FoM (ratio 
of 1 over latency times slices) that captures both latency and area 
(slices) characteristics at the same time. The term latency is the 
time required for the computation of one PM (𝑘. 𝑃 𝑖𝑛 µ𝑠) and is 
calculated by using Eq. (3). Therefore, the defined FoM is 
calculated by using Eq. (4) and the calculated values are given 
in Fig. 4. 

𝑙𝑎𝑡𝑒𝑛𝑐𝑦 = 𝑘. 𝑃(𝑖𝑛 µ𝑠) =
# 𝑜𝑓 𝑐𝑙𝑜𝑐𝑘 𝑐𝑦𝑐𝑙𝑒𝑠

𝑐𝑙𝑜𝑐𝑘 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 (𝑀𝐻𝑧)
 (3) 

1

𝑙𝑎𝑡𝑒𝑛𝑐𝑦 × 𝑠𝑙𝑖𝑐𝑒𝑠
=

1

𝑘.𝑝 (𝑖𝑛 µ𝑠) × 𝑠𝑙𝑖𝑐𝑒𝑠
  (4) 

Ccomparison using the individual latency and area: As 
far as only the latency is concerned, the proposed accelerator 
over 𝐺𝐹(2163) to 𝐺𝐹(2283) is 8%, 10% and 15% faster than the 
solution provided in [12]. The comparison is not possible for 
higher key lengths, as the authors in [12] do not target them. 

Similarly, for 𝐺𝐹(2163) to 𝐺𝐹(2571), this work provides 6%,  

TABLE III.  ARCHITECTUR RESULTS ON 16NM ASIC OVER GF(2571) 

Clk 

Prd. 

(ps) 

Fq. 

(MHz) 
Inst 

Area 

(µm2) 

Latency 

(µs)  

Power (nW) 

Lkg Dyn 

450 2220 34281 22441 5.55 39039 30529403 

Clk Prd: Clock Period, Inst: Instances, Lkg: leakage, Dyn: Dynamic 

 
Fig.  3: Layout of the proposed accelerator for 𝑚 = 571 bits key 

length 



11%, 17%, 16% and 38% speedup with respect to [15]. 
However, the improvement in latency is 66% for 𝐺𝐹(2163), as 
compared to [16] while over 𝐺𝐹(2233) the solution described in 
[16] is 25% faster than the proposed accelerator. Finally, for 

𝐺𝐹(2163) to 𝐺𝐹(2571), the latency achieved in [9] is 75%, 72%, 
67%, 66% and 49% better than the proposed  one. 

On the other hand, when considering only the area for 
comparison, the work in [12] over 𝐺𝐹(2163)  to 𝐺𝐹(2283) 
utilizes 69%, 40% and 50% more FPGA slices than this work. 
As compared to [15] over 𝐺𝐹(2163), the proposed accelerator 
consumes 4% more hardware slices while for the remaining field 

sizes, i.e., 𝐺𝐹(2233)  to 𝐺𝐹(2571) , the proposed accelerator 
utilizes 23%, 30%, 52% and 65% less slices. While the work in 
[9] shows better results in terms of latency for 𝐺𝐹(2163)  to 

𝐺𝐹(2571), the proposed accelerator utilizes 59%, 64%, 67%, 
73% and 78% lower FPGA slices than [9]. Finally, as compared 
to [16], the proposed accelerator consumes 51% and 64% lower 
slices over 𝐺𝐹(2163) and 𝐺𝐹(2233). 

Comparison using the defined FoM:  As compared to [12], 
the proposed accelerator achieves 36%, 65% and 57% higher 
FoM values over 𝐺𝐹(2163)  to 𝐺𝐹(2283).  Similarly, for 

𝐺𝐹(2163) to 𝐺𝐹(2571), the proposed accelerator provides 3%, 
32%, 42%, 59% and 78% higher FoM values as compared to 
[15]. For 𝐺𝐹(2163)  to 𝐺𝐹(2233),  the proposed accelerator 
obtains 83% and 52% higher FoM values as compared to [16]. 
As compared to [9] over 𝐺𝐹(2163) to 𝐺𝐹(2283), the proposed 
accelerator achieves 39%, 21% and 2% lower values while for 
the remaining field sizes, i.e., 𝐺𝐹(2409)  to 𝐺𝐹(2571) , the it 
achieves 20% and 56% higher values as compared to [9]. These 
results strongly suggest that our accelerator is better suited for 
longer key lengths (for 𝑚 = 571 bits). 

V. CONCLUSIONS 

This paper has presented an efficient 2-stage pipelined 
accelerator, in terms of latency and area, over GF(2163)  to 

GF(2571). The accelerator uses an LSD based multiplier with 
digit size of 41bits to execute the FF multiplication in one clock 
cycle. Moreover, the pipeline registers are efficiently placed at 
the input of ALU to shorten the critical path(s). Furthermore, an 
efficient rescheduling of PA and PD computations is presented. 
Finally, the proposed accelerator provides a best-in-class figure-
of-merit of 6 (for 𝑚 = 571) as compared to state-of-the-art 
FPGA implementations. Our ASIC implementation pushes the 

performance envelope further, as it displays a speedup of 6.53 
as compared to the same FPGA implementation.  
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