

An Area Aware Accelerator for Elliptic Curve Point

Multiplication

Malik Imran

Dept. of Computer Systems

Tallinn University of Technology (TalTech)

Tallinn, Estonia

malik.imran@taltech.ee

Samuel Pagliarini

Dept. of Computer Systems

Tallinn University of Technology (TalTech)

Tallinn, Estonia

samuel.pagliarini@taltech.ee

Muhammad Rashid

Dept. of Computer Engineering

Umm Al-Qurra University (UQU)

Makkah, Saudi Arabia

mfelahi@uqu.edu.sa

Abstract— This work presents a hardware accelerator, for the

optimization of latency and area at the same time, to improve the

performance of point multiplication process in Elliptic Curve

Cryptography. In order to reduce the overall computation time in

the proposed 2-stage pipelined architecture, a rescheduling of

point addition and point doubling instructions is performed along

with an efficient use of required memory locations. Furthermore,

a 41-bit multiplier is also proposed. Consequently, the FPGA and

ASIC implementation results have been provided. The

performance comparison with state-of-the-art implementations, in

terms of latency and area, proves the significance of the proposed

accelerator.

Keywords—elliptic curve cryptography, point multiplication,

Montgomery algorithm, FPGA, ASIC

I. INTRODUCTION

The main advantages of Elliptic Curve Cryptography (ECC),
as compared to the commonplace Rivest Shamir Adleman
algorithm, are shorter key lengths, lesser power consumption,
and the lower hardware cost for an equivalent security [1]–[2].
Therefore, the ECC is implemented frequently in software or
hardware [3]. While the software implementation is convenient
and flexible, the hardware-based solutions display higher
throughputs, low latency and inherent security [4]–[16].
However, the low latency hardware solutions typically demand
precious hardware resources (area) that are not always available.
Consequently, the architectures providing low latency with
minimum area are challenging to devise.

A. Basis Parameters of ECC

The most important operation in ECC is the point
multiplication (PM) [2]. Two types of fields are generally
utilized to implement PM: the prime field, i.e., 𝐺𝐹(𝑝) and the
binary extension field, i.e., 𝐺𝐹(2𝑚) . For each of the
aforementioned fields, the National Institute of Standards and
Technology (NIST) has provided various key length
recommendations [17]. Furthermore, the implementations can
adopt simple affine or projective coordinates [5]. In addition to
the selection of field coordinates, another important issue in
ECC is to choose between polynomial and normal basis [10].

The binary field is generally preferred over the primary filed
for hardware implementations [4, 5]. In addition to this, the
projective coordinates are more suitable than the general affine
coordinates to attain effective latency/area architectures [3].
Similarly, the normal basis is valuable where the recurrent

squarings are commonly required to be computed, while the
polynomial basis is more convenient where the frequent
multiplications are involved [2]. Consequently, in this paper, we
have selected the binary field along with the projective
coordinates to achieve some efficient latency/area results,
whereas the polynomial basis has been selected to execute the
finite field (FF) multiplications efficiently.

B. Related Work

Techniques toward latency optimization. In order to
minimize the latency of ECC, different FF multipliers have been
implemented. However, the three most frequently used
multipliers are: digit level multipliers [4–8, 12, 15, 16], bit
parallel multipliers [3, 9] and parallel Karatsuba multiplier [10,
11, 13, 14]. For each FF multiplication, the digit level multipliers

require, 𝐷 =
𝑚

𝑛
 clock cycles, where ‘𝐷 ’ determines the total

number of digits, ‘𝑚’ defines the length of key and ‘𝑛’ is the
size of digit. There are two possibilities to implement the digit
level multipliers, either by using the digit serial, implemented in
[4–8], or digit parallel multiplier, utilized in [12, 16]. The digit
serial multipliers require ‘ 𝐷 ’ clock cycles for one FF
multiplication while the digit parallel multipliers utilize one
clock cycle for one FF multiplication, albeit with the higher
requirements of required resources [12]. For both digit serial and
digit parallel multipliers, the larger digit sizes are useful to
reduce the number of clock cycles while the smaller digit sizes
are more convenient to reduce the critical path [12, 15].
Therefore, to perform FF multiplication in one clock cycle, the
bit parallel, implemented in [9], and Karatsuba multipliers,
utilized in [10, 11, 13, 14] have been employed. These single-
cycle multipliers have long critical paths that compromise the
latency of the overall ECC computation. Apart from the FF
multipliers, additional techniques related to the latency
optimizations are pipelining [4, 5, 10, 12, 16] and instruction
level parallelism [7].

Techniques toward area optimization. Several techniques
have been adopted to reduce the hardware resources: the
execution of Itoh Tsujii inversion algorithm by sharing the
hardware resources of squarer and multiplier components [7, 9,
12, 16], the use of fewer temporary storage elements to keep the
intermediate results during the computation of PM [12, 14, 16],
the use of a single FF adder, multiplier and squarer components
in the arithmetic and logic unit (ALU) of the crypto processor
[12] and the use of digit serial multipliers [4–8].

mailto:malik.imran@taltech.ee
mailto:samuel.pagliarini@taltech.ee
mailto:mfelahi@uqu.edu.sa

C. Limitations of Existing Works

Section 1-B shows that the existing hardware accelerators
for the PM process either target the optimization of latency or
area [4, 6-9, 11, 13, 14, 16]. However, there are some application
scenarios where the optimization of latency and area at the same
time is critical [12]. Although, there exist some solutions which
consider the optimization of both at the same time [5, 10, 12,
15], we believe that the performance can be further improved by
using some efficient architectural techniques. Furthermore,
another key issue in modern cryptographic applications is the
scalability such that the solution can be configured for various
key lengths, depending upon a particular requirement [16].

D. Proposed Solution

We have proposed an area aware latency optimized
hardware accelerator architecture with 𝑚 = 163 , 233 , 283 ,
409 and 571 for the PM computation of ECC. To reduce the
latency of the proposed accelerator, we have performed:

 an exploration for different stages of pipelining

 an efficient rescheduling of PM instructions

 Towards area reduction, we have proposed:

 an efficient use of required memory locations

 a digit parallel least significant digit level (DP-LSD)
multiplier, with the digit size of 41 𝑏𝑖𝑡𝑠.

The proposed accelerator/architecture is described in
Verilog HDL and synthesized for a Virtex-7 FPGA as well as
for a 16nm ASIC technology. On FPGA, the results after
synthesis reveal that the proposed accelerator can operate up to
maximum frequencies of 383, 379, 377, 342 and 340 MHz when
implemented with m = 163, 233, 283, 409 and 571 bit key
lengths, respectively. As ASIC, a maximum operational
frequency of 2.2GHz for 𝑚 = 571 bit key length is achieved,
and it requires only 5.5µs for one PM computation.

The performance in terms of ratio of 1 over latency times
area is provided on FPGA (Virtex 7) and ASIC (16nm)
platforms. As compared to the most recent state-of-the-art
solution, the proposed accelerator achieves 36%, 65% and 57%
higher performance ratio for 𝑚 = 163 , 233 and 283.
Moreover, as expected, the ECC computation in the ASIC
implementation takes 6.53 times less PM time than in the FPGA
implementation.

The remainder of this paper is structured as follows:
Theoretical background for the computation of PM on ECC over
𝐺𝐹(2𝑚) is provided in Section II. The proposed accelerator
architecture is described in Section III. The implementation
results and the comparison with state-of the-art are discussed in
Section IV. Finally, the conclusions are given in Section V.

II. POINT MUTIPLICATION ON ECC OVER GF(2M)

For 𝐺𝐹(2𝑚) , a Lopez Dahab projective form of elliptic
curve is described as a set of points 𝑃(𝑋: 𝑌: 𝑍), satisfying the
following Eq. (1):

𝐸: 𝑌2 + 𝑋𝑌𝑍 = 𝑋3𝑍 + 𝑎𝑋2𝑍2 + 𝑏𝑍4 (1)

As presented in Eq. (1), the terms ‘𝑋’, ‘𝑌’ and ‘𝑍’ are the
Lopez Dahab projective components of initial point 𝑃(𝑋: 𝑌: 𝑍)

where 𝑍 ≠ 0, ‘𝑎’ and ‘𝑏’ are the curve constants, with 𝑏 ≠ 0.
Then, PM is the addition of ‘𝑘’ copies of point ‘𝑃’, i.e., 𝑄 = 𝑘 ×
(𝑃 + 𝑃 +⋯+ 𝑃), where ‘𝑃’ is an initial point with ‘𝑥’ and ‘𝑦’
coordinates, ‘𝑘’ is an integer (equals to the size of field) and ‘𝑄’
is a final point on the elliptic curve. Due to its simplicity, several
algorithms are available for the computation of PM. We have
selected the Montgomery algorithm [18] due to its inherent
resilience against side channel attacks [5, 9, 16].

Algorithm 1: Montgomery algorithm over 𝐺𝐹(2𝑚) [18]

Input: 𝑘 = (𝑘𝑛−1, … , 𝑘1, 𝑘0) with 𝑘𝑛−1 = 1, 𝑃 = (𝑥𝑝, 𝑦𝑝) ∊ 𝐺𝐹(2𝑚)

Output: 𝑄(𝑥𝑞 , 𝑦𝑞) = 𝑘. 𝑃

1. Initialization: 𝑋1 = 𝑥𝑝, 𝑍1 = 1, 𝑋2 = 𝑥𝑝
4 + 𝑏, 𝑍2 = 𝑥𝑝

2

2. Point Multiplication: for (𝑖 from 𝑛 − 2 down to 0) do

2.1. 𝑖𝑓(𝑘𝑖 = 1), then

2.1.1. (𝑷 = 𝑷+ 𝑸)

2.1.1.1. 𝑍1 = 𝑋2 × 𝑍1

2.1.1.2. 𝑋1 = 𝑋1 × 𝑍2

2.1.1.3. 𝑇 = 𝑋1 + 𝑍1

2.1.1.4. 𝑋1 = 𝑋1 × 𝑍1

2.1.1.5. 𝑍1 = 𝑇
2

2.1.1.6. 𝑇 = 𝑥𝑝 × 𝑍1

2.1.1.7. 𝑋1 = 𝑋1 + 𝑇

2.1.1.8. 𝑅𝑒𝑡𝑢𝑟𝑛: 𝑃(𝑋1, 𝑍1)

2.1.2. (𝑷 = 𝑷+ 𝑷 = 𝟐𝑷)

2.1.2.1. 𝑍2 = 𝑍2
2

2.1.2.2. 𝑇 = 𝑍2
2

2.1.2.3. 𝑇 = 𝑏 × 𝑇

2.1.2.4. 𝑋2 = 𝑋2
2

2.1.2.5. 𝑍2 = 𝑋2 × 𝑍2

2.1.2.6. 𝑋2 = 𝑋2
2

2.1.2.7. 𝑋2 = 𝑋2 + 𝑇

2.1.2.8. 𝑅𝑒𝑡𝑢𝑟𝑛: 𝑄(𝑋2, 𝑍2)

2.2. 𝑒𝑙𝑠𝑒

2.2.1. (𝑷 = 𝑷+ 𝑸)

2.2.1.1. 𝑍2 = 𝑋1 × 𝑍2

2.2.1.2. 𝑋2 = 𝑋2 × 𝑍1

2.2.1.3. 𝑇 = 𝑋2 + 𝑍2

2.2.1.4. 𝑋2 = 𝑋2 × 𝑍2

2.2.1.5. 𝑍2 = 𝑇
2

2.2.1.6. 𝑇 = 𝑥𝑝 × 𝑍2

2.2.1.7. 𝑋2 = 𝑋2 + 𝑇

2.2.1.8. 𝑅𝑒𝑡𝑢𝑟𝑛: 𝑃(𝑋2, 𝑍2)

2.2.2. (𝑷 = 𝑷+ 𝑷 = 𝟐𝑷)

2.2.2.1. 𝑍1 = 𝑍1
2

2.2.2.2. 𝑇 = 𝑍1
2

2.2.2.3. 𝑇 = 𝑏 × 𝑇

2.2.2.4. 𝑋1 = 𝑋1
2

2.2.2.5. 𝑍1 = 𝑋1 × 𝑍1

2.2.2.6. 𝑋1 = 𝑋1
2

2.2.2.7. 𝑋1 = 𝑋1 + 𝑇

2.2.2.8. 𝑅𝑒𝑡𝑢𝑟𝑛: 𝑄(𝑋1, 𝑍1)

𝑒𝑛𝑑 𝑖𝑓

𝑒𝑛𝑑 𝑓𝑜𝑟

3. Reconversion:

3.1. 𝑥𝑞 =
𝑋1

𝑍1
 and

3.2. 𝑦𝑞 = (𝑥𝑝 +
𝑋1

𝑍1
) × {[(𝑋1 + 𝑥𝑝 × 𝑍1)(𝑋2 + 𝑥𝑝 × 𝑍2) +

(𝑥𝑝
2 + 𝑦)(𝑍1 × 𝑍2)] × (𝑥𝑝 × 𝑍1 × 𝑍2)

−1
} + 𝑦𝑝

As shown in Algorithm 1, the Montgomery algorithm
consists of three steps for the computation of PM. A scalar
multiplier ‘𝑘’ and an initial point ‘𝑃’ with its coordinates (𝑥𝑝,𝑦𝑝)

are the inputs. The coordinates (𝑥𝑞 ,𝑦𝑞) of the final point ‘𝑄’ are

the outputs. Initialization step of Algorithm 1 ensures the
conversions from affine to Lopez Dahab projective form,
whereas point multiplication step calculates point addition (PA)
and point doubling (PD) considering the inspected value of the
scalar multiplier 𝑘𝑖. At the end, the reconversion step reverts the
Lopez Dahab projective to affine conversion.

III. ARCHITECTURE OF PROPOSED ACCELERATOR

The proposed 2-stage pipelined accelerator architecture is

composed of a register file (RF), an arithmetic and logic unit

(ALU), pipeline registers and an FSM-based control unit (CU),

as presented in Fig. 1. The parameters for the architecture have

been chosen from NIST [17].

A. Register File

It contains an ‘8 × 𝑚’ register array, as illustrated in Fig. 1.
The numeric digit ‘8’ determines the total number of locations
while variable ‘𝑚 ’ determines the range of each particular
location. In this paper, ‘𝑚’ is the ECC key length, i.e., 163, 233,
283, 409 and 571. The purpose of RF is to keep intermediate
results 𝑋1 , 𝑋2 , 𝑍1 , 𝑍2 , 𝑇1 , 𝑇2 , 𝑇3 and 𝑇4 of Algorithm 1. The
multiplexers 𝑀1 (8 × 1) and 𝑀2 (8 × 1) are used to fetch the
operands from RF to the ALU while a single de-multiplexer
𝐷𝑚𝑢𝑥 (1 × 8) updates the contents of the RF by using the
𝑀𝑝𝑙𝑒𝑥_𝑜𝑢𝑡 signal.

B. Arithmetic and Logic Unit

The ALU of the proposed hardware accelerator contains a
total of two finite field operators, i.e., an adder and a multiplier,
as presented in Fig. 1. Input to both operators are two ‘𝑚’ bit
polynomials 𝐴(𝑥) and 𝐵(𝑥). Each operator produces a single
output polynomial, i.e., 𝐴_𝑜𝑢𝑡(𝑥) or 𝑀_𝑜𝑢𝑡(𝑥). The first input
to both operators is polynomial 𝐴(𝑥) , an output of routing
multiplexer 𝑀3, while the second input is polynomial 𝐵(𝑥), an
output of RF. Both output polynomials are inputted to mux 𝑀4
for write back on the RF. In order to compute the addition of
polynomials 𝐴(𝑥) and 𝐵(𝑥) over 𝐺𝐹(2𝑚), bitwise exclusive-
OR gates have been utilized.

Proposed multiplier architecture. For the multiplication of
two ‘m’ bit polynomials, a DP-LSD multiplier with a digit size
of 41 bits is utilized as depicted in Fig. 2. The digits with ‘𝑑 =
41’ bits of input polynomial 𝐵(𝑥) are created (𝐵1–𝐵14) by
generating simple partial products. Parallel execution of each
created digit (𝐵1–𝐵14) for the polynomial multiplication is
then performed with the input polynomial 𝐴(𝑥) . For the

computation of finite field multiplication over 𝐺𝐹(2571), a total
of 14 digits are required, as shown in Fig. 2. Out of these 14
digits, 13 digits (𝐵1–𝐵13) are with size of 41 bits, whereas the
remaining one digit (𝐵14) is with 38 bit size. The parallel
multiplication of each ‘ 𝐵1–𝐵14 ’ digit with an ‘𝑚 ’ bit
polynomial 𝐴(𝑥) results ‘𝑑 + 𝑚 − 1’ bits of polynomials and
these resultant polynomials are represented as ‘𝐶1– 𝐶14’. After
multiplication of each ‘𝑑’ bit digit with an ‘𝑚’ bit polynomial,
the resultant polynomial of 𝐷(𝑥) = 2 × 𝑚 − 1 bit is
constructed using shift and add operation of ‘𝐶1–𝐶14’.

We have provided identical inputs to the DP-LSD multiplier
for the computation of FF squaring, i.e., 𝐴(𝑥)2 = 𝐴(𝑥) × 𝐴(𝑥),
which is required for the implementation of Algorithm 1. Both
multiplication of two polynomials (𝐴(𝑥) × 𝐵(𝑥)) and squaring
of one polynomial (𝐴(𝑥)2 = 𝐴(𝑥) × 𝐴(𝑥)), produce resultant
polynomial of degree almost ‘2 × m − 1’ bits. Consequently,
reduction is essential to execute after the computation of each
FF multiplication and squaring. For this purpose, NIST
reduction algorithms over 𝐺𝐹(2163) , 𝐺𝐹(2233) , 𝐺𝐹(2283) ,

𝐺𝐹(2409) and 𝐺𝐹(2571) are implemented as described in
Algorithms 2.41, 2.42, 2.43, 2.44 and 2.45 of [3]. Finally, to
perform inversion over 𝐺𝐹(2𝑚), a square Itoh Tsujii algorithm
[19] is implemented by repeatedly squaring along with FF
multiplication operation, using only the multiplier unit.

C. Pipeline Registers and Instructions Rescheduling

To minimize the latency and to shorten the critical path, we
have first sought an appropriate strategy for the deployment of
pipeline registers. Subsequently, the architecture is divided into
three portions: operands read [𝑅] using multiplexers 𝑀1, 𝑀2
and 𝑀3, execution of operands [𝐸] using the ALU and write
back [𝑊𝐵] of results into the RF unit.

There are three possible solutions with the aforementioned
division. First, without the pipeline registers; hence, read [𝑅],
execute [𝐸] and write back [𝑊𝐵] in one clock cycle (CC).
Second, 2-stage pipelined architecture (ALU containing the
registers at their inputs), executing [𝑅] in first clock cycle and
[𝐸,𝑊𝐵] in second cycle. Lastly, 3-stage pipelined processor
(ALU accommodating registers both at the input and output),
thus executing [𝑅], [𝐸] and [𝑊𝐵] in three clock cycles.

For each PA and PD computation, Algorithm 1 in its actual
structure requires a total of 14 instructions (𝑖𝑛𝑠𝑡1 to 𝑖𝑛𝑠𝑡14), as
shown in column 2 of Table I. Out of these 14 instructions, seven
instructions are for PA (𝑖𝑛𝑠𝑡1 to 𝑖𝑛𝑠𝑡7) and remaining
instructions are for PD. However, Algorithm 1 in its presented
form, can present read after write (RAW) hazards, as detailed in
column 3 of Table I. The term hazard means that whenever one
of the read operands of current instruction are dependent upon
the write operand of the previous instruction. In such cases, the
execution of current instruction (𝑖𝑛𝑠𝑡𝑖) is stalled until the result
of previous instruction (𝑖𝑛𝑠𝑡𝑖−1) is written back. In order to

Fig. 1: Proposed hardware accelerator architecture

Fig. 2: Proposed digit parallel least significant digit (DP-LSD)

multiplier with digit size of 41-bits

reduce RAW hazards, we reschedule the instructions of
Algorithm 1. The proposed instruction rescheduling was
achieved by considering the following:

 Parallel execution of PA and PD instructions for PM
computation. For example, in the proposed rescheduling
(shown in column 4 of Table I), 𝑖𝑛𝑠𝑡3 cannot be read
until the result of 𝑖𝑛𝑠𝑡2 is available, resulting in one
cycle delay. We have instead scheduled 𝑖𝑛𝑠𝑡11 when
𝑖𝑛𝑠𝑡2 is in the write back stage. In the next cycle, 𝑖𝑛𝑠𝑡3
is scheduled when 𝑖𝑛𝑠𝑡11 is in the write back stage.

 Efficient replacement of temporary storage element,
denoted as ‘𝑇’, shown in column 2 of Table I, with ‘𝑇1’
for PA instructions and ‘𝑇2’ for PD instructions, shown
in column 4. This results in decrease of one clock cycle
for one PA and PD computation. Therefore, for 𝑚 bit
key length, 𝑚 number of clock cycles are reduced.

The rescheduled instructions for non-pipelined case
([𝑅], [𝐸], [𝑊𝐵] in one CC) are presented in column 4 of Table
I, resulting in a single RAW hazard, shown in column 5 of Table
I (the original sequence of instruction had seven hazards,
marked in column 3). The corresponding sequences carried out
in 2- and 3-stage pipelining architectures are shown in the right
hand side of Table I. For each PA and PD computation, the last
instruction, i.e., 𝑖𝑛𝑠𝑡14 for non-pipelined, 2-stage, and 3-stage
pipelined cases are written back in 14, 16 and 22 clock cycles,
as shown in Table I. As described earlier, the proposed
rescheduling has only one RAW hazard, resulting in 1 and 6

clock cycles delay when executed in the 2-stage and 3-stage
pipelined architectures, respectively. For the 2-stage pipeline,
this delay is offset by the higher frequency enabled by the
pipelining technique. On the other hand, moving from 2- to 3-
stage brings only a slight increase in clock frequency that is not
beneficial. Consequently, in the remainder of this paper, we
discuss only 2-stage pipeline case.

D. Control Unit

The proposed hardware accelerator contains an FSM-based
control unit, described in the following:

In order to implement Algorithm 1, the initialization step
requires only 6 clock cycles. The proposed rescheduling of PA
and PD requires a total of 33 cycles. Out of these 33 cycles, 32
cycles are required for the computation of ‘𝑖𝑓’ and ‘𝑒𝑙𝑠𝑒’ parts
of Algorithm 1, while the remaining one cycle is required to
inspect the key bit. Finally, the reconversion step requires two
FF inversions (𝐼𝑛𝑣) for an additional 34 cycles. Clock cycles for
each 𝐼𝑛𝑣 operation are computed by implementing 𝑚 − 1 times
repeated squares followed with 9 (for 𝑚 = 163), 10 (for 𝑚 =
233), 10 (for 𝑚 = 283), 11 (for 𝑚 = 409) and 12 (for 𝑚 =
571) FF multiplications. The total number of required cycles for
the proposed accelerator can be calculated by using Eq. (2), as
detailed in Table II. It becomes clear that the PM calculation
takes most of the computation cycles.

Initial⏟
Initialization

+ 17 × (m − 1)⏟
Point Multiplication

+ 2 × (Inv) + 34⏟
Reconversion

 (2)

TABLE I. PROPOSED INSTRUCTION SCHEDULING USING SINGLE FINITE FIELD ADDER AND MULTIPLIER UNIT

C
lo

c
k

 c
y

cl
e
s

Original sequence of

instructions (𝒊𝒏𝒔𝒕𝒊) for

if part of Algorithm 1

R
A

W
 H

a
z
a
r
d

 Proposed rescheduling of

instructions (𝒊𝒏𝒔𝒕𝒊) for if

part of Algorithm 1

R
A

W
 H

a
z
a
r
d

 Status of proposed rescheduled instructions (𝒊𝒏𝒔𝒕𝒊) in pipelining for if part

of Algorithm 1

(for non-pipelined) (for 2-stage pipelined) (for 3-stage pipelined)

𝒊𝒏𝒔𝒕𝒊[𝑹, 𝑬,𝑾𝑩] 𝒊𝒏𝒔𝒕𝒊[𝑹] 𝒊𝒏𝒔𝒕𝒊[𝑬,𝑾𝑩] 𝒊𝒏𝒔𝒕𝒊[𝑹] 𝒊𝒏𝒔𝒕𝒊[𝑬] 𝒊𝒏𝒔𝒕𝒊[𝑾𝑩]

1 𝑖𝑛𝑠𝑡1 → 𝑍1 = 𝑋2 × 𝑍1 – 𝑖𝑛𝑠𝑡1 → 𝑍1 = 𝑋2 × 𝑍1 – inst1[𝑅] – inst1[𝑅] – –

2 𝑖𝑛𝑠𝑡2 → 𝑋1 = 𝑋1 × 𝑍2 – 𝑖𝑛𝑠𝑡2 → 𝑋1 = 𝑋1 × 𝑍2 – inst2[𝑅] inst1[𝐸,𝑊𝐵] 𝑖𝑛𝑠𝑡2[𝑅] 𝑖𝑛𝑠𝑡1[𝐸] –

3 𝑖𝑛𝑠𝑡3 → 𝑇 = 𝑋1 + 𝑍1 𝑋1 𝑖𝑛𝑠𝑡11 → 𝑋2 = 𝑋2 × 𝑋2 – inst11[𝑅] 𝑖𝑛𝑠𝑡2[𝐸,𝑊𝐵] 𝑖𝑛𝑠𝑡11[𝑅] 𝑖𝑛𝑠𝑡2[𝐸] 𝑖𝑛𝑠𝑡1[𝑊𝐵]

4 𝑖𝑛𝑠𝑡4 → 𝑋1 = 𝑋1 × 𝑍1 – 𝑖𝑛𝑠𝑡3 → 𝑇1 = 𝑋1 + 𝑍1 – inst3[𝑅] inst11[𝐸,𝑊𝐵] – 𝑖𝑛𝑠𝑡11[𝐸] 𝑖𝑛𝑠𝑡2[𝑊𝐵]

5 𝑖𝑛𝑠𝑡5 → 𝑍1 = 𝑇 × 𝑇 – 𝑖𝑛𝑠𝑡4 → 𝑋1 = 𝑋1 × 𝑍1 – inst4[𝑅] inst3[𝐸,𝑊𝐵] 𝑖𝑛𝑠𝑡3[𝑅] – 𝑖𝑛𝑠𝑡11[𝑊𝐵]

6 𝑖𝑛𝑠𝑡6 → 𝑇 = 𝑥𝑝 × 𝑍1 𝑍1 𝑖𝑛𝑠𝑡5 → 𝑍1 = 𝑇1 × 𝑇1 – inst5[𝑅] inst4[𝐸,𝑊𝐵] 𝑖𝑛𝑠𝑡4[𝑅] 𝑖𝑛𝑠𝑡3[𝐸] –

7 𝑖𝑛𝑠𝑡7 → 𝑋1 = 𝑋1 + 𝑇 𝑇 𝑖𝑛𝑠𝑡8 → 𝑍2 = 𝑍2 × 𝑍2 – inst8[𝑅] inst5[𝐸,𝑊𝐵] – 𝑖𝑛𝑠𝑡4[𝐸] 𝑖𝑛𝑠𝑡3[𝑊𝐵]

8 𝑖𝑛𝑠𝑡8 → 𝑍2 = 𝑍2 × 𝑍2 – 𝑖𝑛𝑠𝑡6 → 𝑇1 = 𝑥𝑝 × 𝑍1 – inst6[𝑅] inst8[𝐸,𝑊𝐵] 𝑖𝑛𝑠𝑡5[𝑅] – 𝑖𝑛𝑠𝑡4[𝑊𝐵]

9 𝑖𝑛𝑠𝑡9 → 𝑇 = 𝑍2 × 𝑍2 𝑍2 𝑖𝑛𝑠𝑡9 → 𝑇2 = 𝑍2 × 𝑍2 – inst9[𝑅] inst6[𝐸,𝑊𝐵] 𝑖𝑛𝑠𝑡8[𝑅] 𝑖𝑛𝑠𝑡5[𝐸] –

10 𝑖𝑛𝑠𝑡10 → 𝑇 = 𝑏 × 𝑇 𝑇 𝑖𝑛𝑠𝑡7 → 𝑋1 = 𝑋1 + 𝑇1 – inst7[𝑅] inst9[𝐸,𝑊𝐵] – 𝑖𝑛𝑠𝑡8[𝐸] 𝑖𝑛𝑠𝑡5[𝑊𝐵]

11 𝑖𝑛𝑠𝑡11 → 𝑋2 = 𝑋2 × 𝑋2 – 𝑖𝑛𝑠𝑡10 → 𝑇2 = 𝑏 × 𝑇2 – inst10[𝑅] inst7[𝐸,𝑊𝐵] 𝑖𝑛𝑠𝑡6[𝑅] – 𝑖𝑛𝑠𝑡8[𝑊𝐵]

12 𝑖𝑛𝑠𝑡12 → 𝑍2 = 𝑋2 × 𝑍2 𝑋2 𝑖𝑛𝑠𝑡12 → 𝑍2 = 𝑋2 × 𝑍2 – inst12[𝑅] inst10[𝐸,𝑊𝐵] 𝑖𝑛𝑠𝑡9[𝑅] 𝑖𝑛𝑠𝑡6[𝐸] –

13 𝑖𝑛𝑠𝑡13 → 𝑋2 = 𝑋2 × 𝑋2 – 𝑖𝑛𝑠𝑡13 → 𝑋2 = 𝑋2 × 𝑋2 – inst13[𝑅] inst12[𝐸,𝑊𝐵] – 𝑖𝑛𝑠𝑡9[𝐸] 𝑖𝑛𝑠𝑡6[𝑊𝐵]

14 𝑖𝑛𝑠𝑡14 → 𝑋2 = 𝑋2 + 𝑇 𝑋2 𝑖𝑛𝑠𝑡14 → 𝑋2 = 𝑋2 + 𝑇2 𝑋2 – 𝑖𝑛𝑠𝑡13[𝐸,𝑊𝐵] 𝑖𝑛𝑠𝑡7[𝑅] – 𝑖𝑛𝑠𝑡9[𝑊𝐵]

15 – – – – inst14[𝑅] – 𝑖𝑛𝑠𝑡10[𝑅] 𝑖𝑛𝑠𝑡7[𝐸] –

16 – – – – – inst14[𝐸,𝑊𝐵] 𝑖𝑛𝑠𝑡12[𝑅] 𝑖𝑛𝑠𝑡10[𝐸] 𝑖𝑛𝑠𝑡7[𝑊𝐵]

17 – – – – – – 𝑖𝑛𝑠𝑡13[𝑅] 𝑖𝑛𝑠𝑡12[𝐸] 𝑖𝑛𝑠𝑡10[𝑊𝐵]

18 – – – – – – – 𝑖𝑛𝑠𝑡13[𝐸] 𝑖𝑛𝑠𝑡12[𝑊𝐵]

19 – – – – – – – – 𝑖𝑛𝑠𝑡13[𝑊𝐵]

20 – – – – – – 𝑖𝑛𝑠𝑡14[𝑅] – –

21 – – – – – – – 𝑖𝑛𝑠𝑡14[𝐸] –

22 – – – – – – – – 𝑖𝑛𝑠𝑡14[𝑊𝐵]

TABLE II. CLOCK CYCLES INFORMATION

Field
(𝐦) 𝐈𝐧𝐢𝐭𝐢𝐚𝐥 𝐏𝐀 + 𝐏𝐃

𝟏𝟕 × (𝐦− 𝟏)
𝐈𝐧𝐯. 𝐑𝐞𝐜𝐨𝐧. Total

cycles
163 6 2754 502 1038 3798
233 6 3944 709 1452 5402
283 6 4794 867 1768 6568
409 6 6936 1239 2512 9454
571 6 9690 1300 2633 12329
Initial = initialization, PA + PD = point additions & doublings, Inv =
inversion, Recon=reconversion

IV. RESULTS AND COMPARISONS

This section describes the implementation results for the
proposed accelerator architecture on ASIC and FPGA platforms
(Section IV-A). The achieved results are then compared with
most recent state-of-the-art solutions on FPGA (Section IV-B).

A. Results after synthesis on FPGA and ASIC library

We have created a Verilog HDL model for each field size

over 𝐺𝐹(2163), G𝐹(2233), 𝐺𝐹(2283), 𝐺𝐹(2409) and 𝐺𝐹(2571)
The HDL models are then synthesized for Virtex-7
(XC7VX690T) FPGA, using Xilinx ISE tool [20]. For ASIC
implementation, the HDL model for 𝐺𝐹(2571) is synthesized
targeting a 16nm FinFET technology, using Cadence Genus tool
and a commercial cell library. The circuit was implemented with
a nominal voltage of 0.8V and results are reported for the typical
corner (TT). The clock uncertainty and clock tree delays were
carefully modelled to achieve a tapeout-quality result. The
circuit is fully routed and passes DRC with no violations. Metals
1 through 7 are used for signal routing, while the power is
distributed in M8/M9. The actual layout of the accelerator, as
shown in Fig. 3, is obtained from Cadence Innovus [21].

The synthesis results on ASIC and FPGA are given in Table
III and Table IV, respectively. The numerical figures of
achieved latency for the proposed hardware accelerator on both

FPGA and ASIC are 36.26µs and 5.55µs over 𝐺𝐹(2571)
respectively. Consequently, and as expected, the ECC
computation in the ASIC implementation takes 6.53 times less
time than in the FPGA implementation.

TABLE IV. RESULTS AND COMPARISON ON VIRTEX-7 FPGA

Ref
year

m Slices LUTs FFs Fq.
(MHz)

Latency
(µs)

[12]
2019

163 2207 9965 1981 369 10.73
233 5120 18953 2764 357 15.78

283 5207 20202 3210 337 20.32

[9]
2018

163 3670 – – – 2.50
233 5616 – – – 4.09
283 7738 – – – 5.81
409 12290 – – – 9.50
571 20291 – – – 18.51

[16]
2018

163 3107 10955 1968 351 28.53
233 5674 19753 2764 343 10.73

[15]
2015

163 1476 4721 1886 397 10.51
233 2647 7895 2832 370 16.01
283 3728 11593 3973 345 20.96
409 6888 20881 6038 316 32.72
571 12965 38547 10066 250 57.61

This
work

163 1529 4162 1832 383 9.91
233 2048 6407 2524 379 14.25
283 2623 6753 3018 377 17.42
409 3373 10083 4229 342 27.64
571 4560 12691 5871 340 36.26

Comparing ASIC implementations with one another is

challenging since technology nodes can be widely different, not
only in transistor dimensions (i.e., technology node) but also in
transistor structure. Our work utilizes a commercial “1st
generation” FinFET technology, which cannot be fairly
compared to older bulk technologies. Hence, we have selected
only the most relevant FPGA-based solutions [10, 12, 15] for
our comparison of results.

B. Comparison with FPGA-based solutions

Figure-of-Merit (FoM). To evaluate the performance of
proposed accelerator and to perform a fair comparison with
recent state-of-the-art solutions, we have defined a FoM (ratio
of 1 over latency times slices) that captures both latency and area
(slices) characteristics at the same time. The term latency is the
time required for the computation of one PM (𝑘. 𝑃 𝑖𝑛 µ𝑠) and is
calculated by using Eq. (3). Therefore, the defined FoM is
calculated by using Eq. (4) and the calculated values are given
in Fig. 4.

𝑙𝑎𝑡𝑒𝑛𝑐𝑦 = 𝑘. 𝑃(𝑖𝑛 µ𝑠) =
𝑜𝑓 𝑐𝑙𝑜𝑐𝑘 𝑐𝑦𝑐𝑙𝑒𝑠

𝑐𝑙𝑜𝑐𝑘 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 (𝑀𝐻𝑧)
 (3)

1

𝑙𝑎𝑡𝑒𝑛𝑐𝑦 × 𝑠𝑙𝑖𝑐𝑒𝑠
=

1

𝑘.𝑝 (𝑖𝑛 µ𝑠) × 𝑠𝑙𝑖𝑐𝑒𝑠
 (4)

Ccomparison using the individual latency and area: As
far as only the latency is concerned, the proposed accelerator
over 𝐺𝐹(2163) to 𝐺𝐹(2283) is 8%, 10% and 15% faster than the
solution provided in [12]. The comparison is not possible for
higher key lengths, as the authors in [12] do not target them.

Similarly, for 𝐺𝐹(2163) to 𝐺𝐹(2571), this work provides 6%,

TABLE III. ARCHITECTUR RESULTS ON 16NM ASIC OVER GF(2571)

Clk

Prd.

(ps)

Fq.

(MHz)
Inst

Area

(µm2)

Latency

(µs)

Power (nW)

Lkg Dyn

450 2220 34281 22441 5.55 39039 30529403

Clk Prd: Clock Period, Inst: Instances, Lkg: leakage, Dyn: Dynamic

Fig. 3: Layout of the proposed accelerator for 𝑚 = 571 bits key

length

11%, 17%, 16% and 38% speedup with respect to [15].
However, the improvement in latency is 66% for 𝐺𝐹(2163), as
compared to [16] while over 𝐺𝐹(2233) the solution described in
[16] is 25% faster than the proposed accelerator. Finally, for

𝐺𝐹(2163) to 𝐺𝐹(2571), the latency achieved in [9] is 75%, 72%,
67%, 66% and 49% better than the proposed one.

On the other hand, when considering only the area for
comparison, the work in [12] over 𝐺𝐹(2163) to 𝐺𝐹(2283)
utilizes 69%, 40% and 50% more FPGA slices than this work.
As compared to [15] over 𝐺𝐹(2163), the proposed accelerator
consumes 4% more hardware slices while for the remaining field

sizes, i.e., 𝐺𝐹(2233) to 𝐺𝐹(2571) , the proposed accelerator
utilizes 23%, 30%, 52% and 65% less slices. While the work in
[9] shows better results in terms of latency for 𝐺𝐹(2163) to

𝐺𝐹(2571), the proposed accelerator utilizes 59%, 64%, 67%,
73% and 78% lower FPGA slices than [9]. Finally, as compared
to [16], the proposed accelerator consumes 51% and 64% lower
slices over 𝐺𝐹(2163) and 𝐺𝐹(2233).

Comparison using the defined FoM: As compared to [12],
the proposed accelerator achieves 36%, 65% and 57% higher
FoM values over 𝐺𝐹(2163) to 𝐺𝐹(2283). Similarly, for

𝐺𝐹(2163) to 𝐺𝐹(2571), the proposed accelerator provides 3%,
32%, 42%, 59% and 78% higher FoM values as compared to
[15]. For 𝐺𝐹(2163) to 𝐺𝐹(2233), the proposed accelerator
obtains 83% and 52% higher FoM values as compared to [16].
As compared to [9] over 𝐺𝐹(2163) to 𝐺𝐹(2283), the proposed
accelerator achieves 39%, 21% and 2% lower values while for
the remaining field sizes, i.e., 𝐺𝐹(2409) to 𝐺𝐹(2571) , the it
achieves 20% and 56% higher values as compared to [9]. These
results strongly suggest that our accelerator is better suited for
longer key lengths (for 𝑚 = 571 bits).

V. CONCLUSIONS

This paper has presented an efficient 2-stage pipelined
accelerator, in terms of latency and area, over GF(2163) to

GF(2571). The accelerator uses an LSD based multiplier with
digit size of 41bits to execute the FF multiplication in one clock
cycle. Moreover, the pipeline registers are efficiently placed at
the input of ALU to shorten the critical path(s). Furthermore, an
efficient rescheduling of PA and PD computations is presented.
Finally, the proposed accelerator provides a best-in-class figure-
of-merit of 6 (for 𝑚 = 571) as compared to state-of-the-art
FPGA implementations. Our ASIC implementation pushes the

performance envelope further, as it displays a speedup of 6.53
as compared to the same FPGA implementation.

ACKNOWLEDGEMENTS

This work was supported by the EC through the European

Social Fund in the context of the project “ICT programme”.

REFERENCES

[1] N. Koblitz, “Elliptic curve cryptosystems,” Mathematics of Communication,

vol. 48, no. 177, pp. 203–209,1987.

[2] M. Rashid, et al., “Flexible architectures for cryptographic algorithms - A

Systematic Literature Review, Journal of Circuits, Systems and Computers,

vol. 28, no. 3, 2019.

[3] D. Hankerson, A. Menezes, and S. Vanstone, “Guide to elliptic curve

cryptography,” New York: Springer-Verlag, 2004.

[4] W. Chelton and M. Benaissa, “Fast elliptic curve cryptography on FPGA,”

IEEE Trans. on VLSI System., vol. 16, no. 2, pp. 198–205, 2008.

[5] Z. Khan and M. Benaissa, “High speed and low latency ECC processor

implementation over 𝐺𝐹(2𝑚) on FPGA,” IEEE Trans. on VLSI Systems, vol.

25, pp. 165–176, 2017.

[6] B. Ansari and M. Hasan, “High-performance architecture of elliptic curve

scalar multiplication,” IEEE Trans. on Computers., vol. 57, no. 11, pp. 1443–

1453, 2008.

[7] Y. Zhang et al., “A high performance ECC hardware implementation with

instruction-level parallelism over GF(2163) ,” Microprocessor and

Microsystems., vol. 34, no. 6, pp. 228–236, 2010.

[8] G. Sutter, J. Deschamps, and J. Imana, “Efficient elliptic curve point

multiplication using digit serial binary field operations,” IEEE Trans on

Industrial Electronics., vol. 60, no. 1, pp. 217–225, 2013.

[9] L. Li and S. Li, “High-performance pipelined architecture of point

multiplication on koblitz curves,” IEEE Trans. on Circuits and Systems-II, vol.

65, no. 11, pp. 1723–1727, 2018.

[10] R. Salarifard, S. Bayat-Sarmadi and H. Mosanaei-Boorani, “A low-latency and

low-complexity point-multiplication in ECC,” IEEE Trans on Circuits and

Systems-I, vol. 65, no. 9, pp. 2869–2877, 2018.

[11] S. Roy, C. Rebeiro, and D. Mukhopadhyay, “Theoretical modeling of elliptic

curve scalar multiplier on LUT-based FPGAs for area and speed,” IEEE Trans

on VLSI System., vol. 21, no. 5, pp. 901–909, 2013.

[12] M. Imran et al., “Throughput/area optimised pipelined architecture for elliptic

curve crypto processor,” IET Computers and Digital Techniques, vol. 13, no.

5, pp. 361–368, 2019.

[13] G. Sutter, J. Deschamps, and J. Imana, “Efficient elliptic curve point

multiplication using digit serial binary field operations,” IEEE Trans. on

Industrial Electronics., vol. 60, no. 1, pp. 217–225, 2013.

[14] M. Imran, M. Kashif and M. Rashid “Hardware design and implementation of

scalar multiplication in elliptic curve cryptography (ECC) over GF(2163) on

FPGA,” IEEE Int. Conf. on Information and Communication Technologies

(ICICT), Pakistan, 2015, pp. 1–4.

[15] Z. Khan and M. Benaissa, “Throughput/area-efficient ECC processor using

Montgomery point multiplication on FPGA,” IEEE Trans. on Circuits and

Systems-II., vol. 62, no. 11, pp. 1078–1082, 2015.

[16] M. Imran et al., “ACryp-Proc: flexible asymmetric crypto processor for point

multiplication,” IEEE Access, vol. 6, pp. 22778–22793, 2018.

[17] NIST recommended elliptic curves for federal government use, July 1999.

http://csrc.nist.gov/CryptoToolkit/dss/ecdsa/NISTReCur.pdf.

[18] P. L. Montgomery, “Speeding the pollard and elliptic curve methods of

factorization,” Mathematics of Computation, vol. 48, no. 177, pp. 243–264,

1987.

[19] T. Itoh and S. Tsujii, “A fast algorithm for computing multiplicative inverses

in GF(2m) using normal bases,” Journal of Information and Computation, vol.

78, no. 3, pp 171–177.

[20] Xilinx ISE Design Suite, [Online] Available at:

https://www.xilinx.com/products/design-tools/ise-design-suite.html.

[21] Cadence, [online] Available at: https://www.cadence.com/en_US/home.html.

Fig. 4: Results of 1/latency×area for different key lengths

https://www.xilinx.com/products/design-tools/ise-design-suite.html
https://www.cadence.com/en_US/home.html

