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Abstract

Functional encryption for set intersection (FE-SI) in the multi-client environment is that each client
i encrypts a set Xi associated with time T by using its own encryption key and uploads it to a cloud
server, and then the cloud server which receives a function key of the client indexes i, j from a trusted
center can compute the intersection Xi ∩X j of the two client ciphertexts. In this paper, we first newly
define the concept of FE-SI suitable for the multi-client setting. Then, we propose an efficient FE-SI
scheme in asymmetric bilinear groups and prove the static security of our scheme under newly introduced
assumptions. In our FE-SI scheme, a ciphertext consists of O(`) group elements, a function key consists
of a single group element, and the decryption algorithm has O(`2) complexity where ` is the size of
a set in the ciphertext. Next, we propose another FE-SI scheme with time-constrained keys that limits
the ability of function keys to be valid only for a specified time period T , and proves the static security
of our scheme. Finally, we prove that the two assumptions hold in the general group model to provide
confidence in the two newly introduced assumptions.
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1 Introduction

Functional encryption (FE) is a new extension of public-key encryption [9]. In FE, a ciphertext is associated
with a message x and a private key is associated with a function f , and the decryption algorithm reveals
the result of function calculation f (x) [8]. An FE scheme that supports arbitrary function f can be con-
structed by using indistinguishable obfuscation [17]. However, to date, designing an efficient construction
for indistinguishable obfuscation is a difficult problem. Another way to implement an efficient FE scheme
is to limit the expressiveness of the functions supported by FE. Recently, a new FE scheme that supports
the inner product operations of ciphertexts and private keys was introduced [2, 4]. By using the FE scheme
for inner-products, it is possible to build an efficient FE scheme that performs statistical operations such as
average and weighted sum.

It is an interesting research direction to devise other efficient FE scheme that provides new functions
that cannot be expressed using inner products. In this paper, we pay attention to a function that calculate the
intersection of two sets. Many studies have been conducted on private set intersection (PSI) that computes
the intersection of two sets without revealing anything else [14–16,22]. Basically, PSI is a two-party protocol
in which two parties with sets X and Y exchange encrypted messages multiple times with each other to
compute the intersection X ∩Y . At this time, the two parties cannot obtain information on the other’s set
items except the intersection items. Many PSI protocols have been proposed, but fundamentally it has a
disadvantage that requires interactions between parties. In an environment where a large number of users
stores their encrypted data in a cloud server and do not access the cloud server afterwards, an FE scheme
for set intersection that does not require interactions is more suitable than a PSI protocol that requires
interactions between users. An FE scheme for set intersection can be constructed by using a multi-input
FE scheme for arbitrary functions, but this approach is still ineffective because this FE scheme requires
indistinguishable obfuscation [20].

Recently, FE schemes that support set intersection operations was proposed by Kamp et al. [31]. They
defined the concept of multi-client FE for set intersection by extending the concept of multi-client FE intro-
duced in [20]. In addition, they proposed a two-client FE scheme for set intersection that operates between
two clients and a multi-client FE scheme for set intersection that operates between multiple clients. However,
their FE definition for set intersection has a problem of lacking the flexibility to control the set intersection
operation because only one function key is set at the setup stage. For this reason, their FE scheme has a
problem that the setup algorithm needs to be performed for each pair of clients to perform the set intersec-
tion. For example, if there are n clients, a maximum of n2 setups is required for the set intersection between
two clients and each client has to store n2 encryption keys.

A better FE scheme for set intersection is that only one setup is performed even if there are n clients, and
each client must own only one encryption key. In addition, this FE scheme can issue many function keys for
set intersection, and an entity with a function key must be able to freely calculate the set intersection on two
ciphertexts of the corresponding clients. In this paper, we ask whether it is possible to efficiently construct
this better FE scheme for set intersection.

1.1 Our Contributions

In this paper, we define FE that supports the set intersection operation and propose two FE schemes for set
intersection in bilinear groups.

Definition. First, we define functional encryption for set intersection (FE-SI) that supports basic intersection
operation. In FE-SI, a trusted center provides an independent encryption key EKi for each client i and
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generates a function key SKi, j for the intersection operation on two clients i, j. Each client with an index
i creates a ciphertext Ci on time T by encrypting a set Xi by using its encryption key. After that, a third
party with a function key SKi, j can compute the intersection Xi∩X j from two ciphertexts Ci and C j of two
clients i, j by running the decryption algorithm when the ciphertexts are generated at the same time T . We
modify the definition of FE-SI to define functional encryption for set intersection with time-constrained keys
(FE-SI-TCK) that issues a function key that is valid only for a limited time period T . The function key of
FE-SI-TCK can limit the life-time of the function key because the function key is additionally associated
with time and it is valid only for ciphertexts of the same time.

FE for Set Intersection. In order to design an FE-SI scheme in asymmetric bilinear groups, we devise
a method to derive a temporal key T K to be used for encryption and decryption when the ciphertext el-
ements of two clients encrypt the same set item x. That is, when the encryption keys of clients i and
j are given as (αi,βi) and (α j,β j) respectively, the ciphertext elements of two clients i, j are formed as
H(T‖x)αi ,H(T‖x)α j where H is a hash function and x is a set item, and a function key for indexes i, j
is provided as SKi, j = ĝβi/(αi+α j). Then a temporal key is derived as e(H(T‖x)αi ·H(T‖x)α j ,SKi, j) =
e(H(T‖x), ĝ)βi by using a pairing operation. In our FE-SI scheme, a function key is composed of a sin-
gle group element and the size of a ciphertext is proportional to the number of set items. The decryption
algorithm requires O(`2) complexity where ` is the size of a set because it needs to try all possible pairs
of ciphertext elements of two clients. In order to prove the security of our FE-SI scheme, we define a
static-IND security model such that an attacker initially submits all corrupted clients, challenge sets, and
all function key queries. To prove the static-IND security of our FE-SI scheme, we newly introduce two
dynamic assumptions derived from the FE-SI scheme and show that these assumptions hold in the generic
group model. In addition, we present the extensions of our FE-SI scheme that support associated data
encryption, set intersection cardinality, and multi-party set intersection.

FE-SI with Time-Constrained Keys. The function key for indexes i, j of our FE-SI scheme is very pow-
erful because it can be used to compute the set intersection of all ciphertexts of two clients i, j. A way to
provide additional control to the FE-SI scheme is to limit the availability of the function key to a specific
time period. By modifying our FE-SI scheme, we propose an FE-SI-TCK scheme that has the ability to
issue a function key that is only valid for a time period T . In order to limit the function key for the time T ,
we derive a time encryption key (αi,T ,βi,T ) for each individual time period T from an original encryption
key EKi and use this key for ciphertext encryption on time T . That is, by using the pseudo-random function
PRF , we calculate αi,T = PRF(z,1‖T ) and βi,T = PRF(z,2‖T ) where z is the original encryption key. In
this case, the function key is generated as SKi, j,T = ĝβi,T /(αi,T+α j,T ) for the time T , which is only valid for
the time T . In order to prove security of our FE-SI-TCK scheme, we argue that our FE-SI-TCK scheme is
static-IND secure if our FE-SI scheme is also static-IND secure. In addition, the FE-SI-TCK scheme can be
easily extended to support a time-range function key that is valid from time TL to time TR, and to provide
forward secrecy that protects past ciphertexts even when the encryption key of a client is exposed.

1.2 Related Work

Functional Encryption. The concept of functional encryption (FE) was introduced by Boneh et al. [8, 9].
Identity-based encryption, hierarchical identity-based encryption, attribute-based encryption, and predicate
encryption, which are widely known, can all be viewed as special forms of FE [7, 19, 21, 25]. In terms of
performing computation on encrypted data, FE is similar to homomorphic encryption (HE), but there is a
difference that unlike the ciphertext of the computation f (x) is the output of the evaluation algorithm in
HE, the computation f (x) itself is the output of the decryption algorithm in FE [18]. It is known that an
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FE scheme that supports all polynomial-size circuits can be designed by using indistinguishable obfuscation
[17]. By expanding the concept of FE, the concepts of multi-input FE (MI-FE) and multi-client FE (MC-FE)
were introduced, and MI-FE and MC-FE schemes can be also designed with indistinguishable obfuscation
[20]. For efficient FE schemes, functional encryption for inner-products (FE-IP) was introduced and many
FE-IP schemes were proposed [2, 4]. Since then, the FE-IP scheme has been extended to the multi-input
FE-IP and multi-client FE-IP schemes [3, 13, 27]. An efficient FE scheme for quadratic functions has also
been proposed, which has more expressive power than inner product operations [5]. Recently, an MC-FE
scheme that supports conjunctive equality and range queries has been proposed [26].

Private Set Intersection. The private set intersection (PSI) protocol was introduced by Freedman et al. [16].
The PSI protocol is a protocol that calculates the intersection X ∩Y when two parties A,B each own sets X ,Y
respectively, and does not expose other set information other than the set intersection of X and Y . Secure
PSI protocols can be designed by using various cryptographic tools such as Diffie-Hellman key exchange
[23], oblivious polynomial evaluation [16], oblivious pseudo-random functions [15], garbled circuits [22],
oblivious transfer protocols [14], and fully homomorphic encryption [12]. Basically, the PSI protocol is
an interactive one that exchanges multiple messages between two parties. An interesting variant of the
PSI protocol is the outsourced PSI protocol using a cloud server [24]. In the outsourcing PSI protocol,
since the cloud server performs the operations performed by individual clients instead, it is possible to
reduce conversations and operations between clients. However, this outsourcing PSI protocol also requires
interactions between clients during initial setup or at some stage.

Public-Key Searchable Encryption. Public-key encryption with keyword search (PEKS) is a kind of
public-key encryption that allows to search keywords in ciphertexts by using a trapdoor generated by a
trusted party [6]. In PEKS, ciphertext and trapdoor are associated with each keyword, and the test algorithm
can check whether the ciphertext keyword and the trapdoor keyword are the same or not. By using a PEKS
scheme, we can construct a special kind of the set intersection protocol [10]. That is, one client generates
ciphertexts by using a public key where each ciphertext is associated with a keyword x ∈ X , and the other
client receives trapdoors for a set Y from the trusted party where each keyword is associated with a keyword
y ∈ Y . In this case, the client who has trapdoors can calculate the intersection X ∩Y by running the test
algorithm for each pair of ciphertexts and trapdoors. In general, a PEKS scheme can be constructed by
using an anonymous IBE scheme [1].

2 Preliminaries

In this section, we first define functional encryption, symmetric-key encryption, and pseudo-random func-
tion. And we introduce complexity assumptions to prove the security of our FE-SI schemes proposed in this
paper.

2.1 Notation

Let n be a positive integer. The notation [n] is defined as a set {1, . . . ,n}, and the notation [n1,n2] is defined
as a set {n1, . . . ,n2}. Given two strings a and b, a‖b is the concatenation of the two strings.

2.2 Functional Encryption

Functional encryption is an extension of public key encryption that outputs the computation on encrypted
data f (x) instead of outputting the original message x in the decryption process in which a ciphertext is
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associated with a message x, and a private key is associated with a function f [8]. Functional encryption
can be modified in various ways and can be extended to multiple-input functional encryption that processes
multiple ciphertexts, and multi-client functional encryption that processes ciphertext generated by multiple
clients that have independent encryption keys [20]. The following is the syntax of public key functional
encryption.

Definition 2.1 (Functional Encryption). A functional encryption (FE) scheme consists of four algorithms
Setup, GenKey, Encrypt, and Decrypt, which are defined as follows:

Setup(1λ ). The setup algorithm takes as input a security parameter λ . It outputs a master key MK and
public parameters PP.

GenKey( f ,MK,PP). The key generation algorithm takes as input a function f , the master key MK, and
the public parameters PP. It outputs a secret key SK f .

Encrypt(x,PP). The encryption algorithm takes as input a message x and the public parameters PP. It
outputs a ciphertext CT .

Decrypt(CT,SK f ,PP). The decryption algorithm takes as input a ciphertext CT encrypting a message x, a
secret key SK f corresponding to a function f , and the public parameters PP. It outputs a value f (x).

The correctness property of FE is defined as follows: For all (MK,PP)←Setup(1λ ), SK f ←GenKey( f ,MK,
PP) for any function f ∈F , and CT←Encrypt(x,PP) for any x∈X , it is required that Decrypt(CT,SK f ,PP)
= f (x).

2.3 Symmetric Key Encryption

Symmetric-key encryption is encryption that uses the same secret key for encryption and decryption algo-
rithms. The detailed syntax of the symmetric-key encryption is described as follows.

Definition 2.2 (Symmetric Key Encryption). A symmetric key encryption (SKE) scheme consists of three
algorithms GenKey, Encrypt, and Decrypt, which are defined as follows:

GenKey(1λ ). The key generation algorithm takes as input a security parameter λ . It outputs a symmetric
key K.

Encrypt(M,K). The encryption algorithm takes as input a message M ∈M and the symmetric key K. It
outputs a ciphertext C.

Decrypt(C,K). The decryption algorithm takes as input a ciphertext CT and the symmetric key K. It
outputs a message M or a symbol ⊥.

The correctness property of SKE is defined as follows: For all K generated by GenKey and any message
M ∈M, it is required that Decrypt(Encrypt(M,K),K) = M.

The right security model of symmetric-key encryption is indistinguishability security against chosen-
plaintext attacks (IND-CPA), but we define one-message security as the weakest form of security. One-
message security is to provide only one challenge ciphertext to an attacker, and the IND-CPA security
guarantees one-message security.
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Definition 2.3 (One-Message Security). The one-message security of SKE is defined in the following ex-
periment EXPSKE

A (1λ ) between a challenger C and a PPT adversary A:

1. Setup: C generates a secret key K by running GenKey(1λ ). It keeps K to itself.

2. Challenge: A submits challenge messages M∗0 ,M
∗
1 where |M∗0 | = |M∗1 |. C flips a random coin µ ∈

{0,1} and gives a challenge ciphertext CT ∗ to A by running Encrypt(M∗µ ,K).

3. Guess: A outputs a guess µ ′ ∈ {0,1} of µ . C outputs 1 if µ = µ ′ or 0 otherwise.

The advantage ofA is defined as AdvSKE
A (λ ) =

∣∣Pr[EXPSKE
A (1λ ) = 1]− 1

2

∣∣. An SKE scheme is one-message
secure if for all PPT adversary A, the advantage of A is negligible in the security parameter λ .

2.4 Pseudo-Random Function

A pseudo-random function (PRF) is a function F :K×X →Y where K is a key space, X is a domain, and
Y is a range. Let F(k, ·) be an oracle for a uniformly chosen k ∈ K and f (·) be an oracle for a uniformly
chosen function f : X → Y . We say that a PRF F is secure if for all efficient adversaries A, the advantage
of A defined as AdvPRF

A (λ ) =
∣∣Pr[AF(k,·) = 1]−Pr[A f (·) = 1]

∣∣ is negligible in the security parameter λ .

2.5 Bilinear Groups

A bilinear group generator G takes as input a security parameter λ and outputs a tuple (p,G,Ĝ,GT ,e) where
p is a random prime and G,Ĝ, and GT be three cyclic groups of prime order p. Let g and ĝ be generators of
G and Ĝ, respectively. The bilinear map e : G× Ĝ→GT has the following properties:

1. Bilinearity: ∀u ∈G,∀v̂ ∈ Ĝ and ∀a,b ∈ Zp, e(ua, v̂b) = e(u, v̂)ab.

2. Non-degeneracy: ∃g ∈G, ĝ ∈ Ĝ such that e(g, ĝ) has order p in GT .

We say that G,Ĝ,GT are asymmetric bilinear groups with no efficiently computable isomorphisms if the
group operations in G,Ĝ, and GT as well as the bilinear map e are all efficiently computable, but there are
no efficiently computable isomorphisms between G and Ĝ.

2.6 Complexity Assumptions

In order to prove the security of the proposed FE-SI schemes, we introduce two new complexity assump-
tions. These two new assumptions are not static assumptions that are composed of fixed group elements, but
dynamic assumptions in which the group elements of the assumptions change by given parameters.

The first assumption is an assumption derived from our FE-SI scheme. This is a modification of the
widely known external Diffie-Hellman (XDH) assumption, and this assumption says that it is difficult to
distinguish the Diffie-Hellman tuple even if additional group elements related to Q and J parameters are
provided. The second assumption is also an assumption derived from our FE-SI scheme.

Let n be a positive integer, ρ be a target index such that ρ ∈ [n], and Q = {(i, j)} be an arbitrary
indexes set such that i, j ∈ [n] and i < j. From n,ρ , and Q, we define an index set J = {k : 1 ≤ k 6= ρ ≤
n such that (k,ρ) /∈ Q if k < ρ and (ρ,k) /∈ Q if k > ρ}. This set can be computed by using the function
ComputeJ which is described as follows:
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ComputeJ(n,ρ,Q) where Q = {(i, j)}
1. Initialize J as empty one.
2. For each k ∈ {1, . . . ,n}\{ρ}:

If k < ρ and (k,ρ) /∈ Q, then add k to J.
If k > ρ and (ρ,k) /∈ Q, then add k to J.

3. Output J.

For example, if we let n = 4, ρ = 2, and Q = {(1,4),(2,3),(2,4)}, then we obtain J = {1} since (1,2) /∈Q,
(2,3) ∈ Q, and (2,4) ∈ Q.

Assumption 1. Let (p,G,Ĝ,GT ,e) be a bilinear group randomly generated by G(1λ ). Let g, ĝ be random
generators of G,Ĝ respectively. Let n,ρ,Q,J be defined above. The Assumption 1 for (n,ρ,Q,J) is that if
the challenge tuple

D =
(
(p,G,Ĝ,GT ,e), g, ga, {gbi}n

i=1, {gabk}k∈J, ĝ, {ĝ1/(bi+b j)}(i, j)∈Q
)

and Z

are given, no probabilistic polynomial-time (PPT) algorithm A can distinguish Z = Z0 = gabρ from Z =

Z1 = gd with more than a negligible advantage. The advantage of A is defined as AdvA1-(n,ρ,Q,J)
A (λ ) =∣∣Pr[A(D,Z0)= 0]−Pr[A(D,Z1)= 0]

∣∣ where the probability is taken over random choices of a,b1, . . . ,bn,d ∈
Zp.

Assumption 2. Let (p,G,Ĝ,GT ,e) be a bilinear group randomly generated by G(1λ ). Let g, ĝ be random
generators of G,Ĝ respectively. Let n,ρ,Q be defined above. The Assumption 2 for (n,ρ,Q) is that if the
challenge tuple

D =
(
(p,G,Ĝ,GT ,e), g, ga, {gbi}n

i=1, {gabk}1≤k 6=ρ≤n,

ĝ, {ĝci}1≤i6=ρ≤n, e(g, ĝ)cρ , {ĝci/(bi+b j)}(i, j)∈Q
)

and Z

are given, no probabilistic polynomial-time (PPT) algorithmA can distinguish Z = Z0 = e(g, ĝ)acρ from Z =

Z1 = e(g, ĝ)d with more than a negligible advantage. The advantage of A is defined as AdvA2-(n,ρ,Q)
A (λ ) =∣∣Pr[A(D,Z0) = 0]−Pr[A(D,Z1) = 0]

∣∣ where the probability is taken over random choices of a,b1, . . . ,bn,
c1, . . . ,cn,d ∈ Zp.

We analyzed that both of these new assumptions are secure in the generic group model proposed by
Shoup [30] in Section 5.

3 Functional Encryption for Set Intersection

In this section, we first introduce functional encryption for set intersection (FE-SI) and define the security
model of FE-SI. Next, we construct an FE-SI scheme using a bilinear map and analyze the security of our
FE-SI scheme using the cryptographic assumptions of the previous section.

3.1 Definition

To define functional encryption for set intersection, we modify the definition of public key functional en-
cryption to consider a multi-client setting in which individual clients own individual encryption keys [20].
First, a trusted center creates a master key, an encryption key for each client, and public parameters by run-
ning the setup algorithm, and the individual encryption keys are delivered securely to clients. After that, a
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client generates a ciphertext for a set Xi associated with time T by using their own encryption key. If a third
party who wants to perform the set intersection operation obtains a function key for client indexes i, j from
the trusted center, and computes the set intersection of the ciphertexts generated by two clients i and j at
time T by running the decryption algorithm. A more detailed syntax of FE-SI is given as follows.

Definition 3.1 (Functional Encryption for Set Intersection). A functional encryption for set intersection
(FE-SI) scheme for D and T consists of four algorithms Setup, GenKey, Encrypt, and Decrypt, which are
defined as follows:

Setup(1λ ,n). The setup algorithm takes as input a security parameter λ and the number of clients n. It
outputs a master key MK, client encryption keys {EKi}n

i=1, and public parameters PP.

GenKey(i, j,MK,PP). The key generation algorithm takes as input two client indexes i, j ∈ [n] such that
i < j, the master key MK, and public parameters PP. It outputs a function key SKi, j.

Encrypt(Xi,T,EKi,PP). The encryption algorithm takes as input a set Xi = {xi,1, . . . ,xi,`i}where xi, j ∈D, a
time period T ∈T , the client encryption key EKi, and the public parameters PP. It outputs a ciphertext
CTi,T .

Decrypt(CTi,T ,CTj,T ,SKi, j,PP). The decryption algorithm takes as input two ciphertexts CTi,T and CTj,T

for the same time T , a function key SKi, j, and the public parameters PP. It outputs a set Xi∩X j where
Xi and X j are associated with CTi,T and CTj,T respectively.

The correctness property of FE-SI is defined as follows: For all MK,{EKi},PP← Setup(1λ ,n), any SKi, j←
GenKey(i, j,MK,PP), and all CTi,T ← Encrypt(Xi,T,EKi,PP) and CTj,T ← Encrypt(X j,T,EK j,PP) for
any Xi,X j and the same time T , it is required that

• Decrypt(CTi,T ,CTj,T ,SKi, j,PP) = Xi∩X j except with negligible probability.

To define the security model of FE-SI, we modify the security model of multi-client functional encryp-
tion (MC-FE) defined by Goldwasser et al. [20]. For the security model of FE-SI, we consider a static
security model in which an attacker pre-specifies information related to the attack target and function key
queries. Initially, the attacker specifies the list of corrupted clients, the challenge target sets, the challenge
time period, and the indexes set of function key queries. At this time, the challenge target sets and the set of
function key queries submitted by the attacker are restricted so that the challenge target sets cannot be easily
identified by using the function keys in order to prevent trivial attacks. After that, the attacker obtains the
encryption keys of the corrupted clients and the challenge ciphertexts for the challenge sets. Additionally,
the attacker can request the previously specified function keys and ciphertexts for a time period other than
the challenge time period. Finally, the attacker identifies the challenge set of the challenge ciphertexts. A
more detailed definition of the static security model of FE-SI is defined as follows.

We first define a function CIQ({Xk},Q) for a group of item sets {Xk} and an indexes set Q = {(i, j)}
that computes the collected intersection of Xi and X j for each (i, j) ∈ Q as follows:

CIQ({Xk}k∈I,Q) where Q = {(i, j)}
1. For each i ∈ I, initialize Ei as empty one.
2. For each (i, j) ∈ Q,

calculate Y = Xi∩X j and add Y to Ei and E j respectively.
3. Output {Ei}i∈I .
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Definition 3.2 (Static-IND Security). The static-IND security of FE-SI with corruptions is defined in the
following experiment EXPST -IND

FE-SI,A(1
λ ) between a challenger C and a PPT adversary A:

1. Init: A initially submits an index set I ⊂ [n] of corrupted clients. Let I = {1, . . . ,n}\ I be the index set
of uncorrupted clients. A also submits two challenge sets of item sets {X∗0,k}k∈I , {X∗1,k}k∈I , a challenge
time period T ∗, and an indexes set Q = {(i, j)} of function key queries with the restriction that i, j ∈ I
for each (i, j) ∈ Q and CIQ({X∗0,k}k∈I,Q) =CIQ({X∗1,k}k∈I,Q).

2. Setup: C generates a master key MK, encryption keys {EKi}n
i=1, and public parameters PP by running

Setup(1λ ,n). It keeps MK and {EKi}i∈I to itself and gives {EKi}i∈I and PP to A.

3. Challenge: C flips a random coin µ ∈ {0,1} and obtains a ciphertext CTi,T ∗ by running Encrypt(X∗
µ,i,

T ∗,EKi,PP) for each i ∈ I. C gives the challenge ciphertexts {CTi,T ∗}i∈I to A

4. Query: A requests function keys and ciphertexts. C handles these queries as follows:

• If this is a function key query for indexes i, j ∈ I with the restriction that (i, j) ∈ Q, then C gives
a function key SKi, j to A by running GenKey(i, j,MK,PP).

• If this is a ciphertext query for a client index k, an item set Xk, and a time period T with
the restriction that k ∈ I and T 6= T ∗, then C gives a ciphertext CTk,T to A by running En-
crypt(Xk,T,EKk,PP).

5. Guess: A outputs a guess µ ′ ∈ {0,1} of µ . C outputs 1 if µ = µ ′ or 0 otherwise.

An FE-SI scheme is static-IND secure with corruptions if for all PPT adversary A, the advantage of A
defined as AdvST -IND

FE-SI,A(λ ) =
∣∣Pr[EXPST -IND

FE-SI,A(1
λ ) = 1]− 1

2

∣∣ is negligible in the security parameter λ .

3.2 Design Principle

The basic idea of supporting set intersection operations is to implement a private equality test. If a hash
function H is a random oracle and an input x is selected from a uniform distribution, a function H(x)α with
a secret α can play the role of pseudo-random function because the output of this function is indistinguish-
able from a completely random value by the DDH assumption [28]. Additionally, this function supports the
private equality test because the output of the function is same if the same input is given. If multiple inter-
actions are allowed between clients, the two clients can compute the set intersection of the two sets X and
Y by exchanging {H(x)α}x∈X , {H(y)α ′}y∈Y in the first round and exchanging {H(x)αα ′}x∈X , {H(y)α ′α}y∈Y

in the second round [23].
However, we cannot design a functional encryption scheme for set intersection with the above method

because clients are non-interactive in which messages cannot be exchanged between clients in functional
encryption. In order to devise a functional encryption scheme that supports the set intersection operation,
we have to solve two problems. First, we need to implement a private equality test that non-interactively
checks whether the items of two sets are the same. Second, if the items of two sets are the same, we need to
implement a method of decrypting the ciphertext of the corresponding item. To this end, we devise an equal-
then-derive method in which the correct message decryption key is derived by combining with a function
key if the equality of set items is satisfied.

The equal-then-derive method we devised is as follows. The first client generates a ciphertext element
H(x)α1 for a set item x using its encryption key α1. And the second client also generates a ciphertext
element H(y)α2 for a set item y using its encryption key α2. At this time, if the two set items are identical
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such as x = y, we have H(x)α1 ·H(y)α2 = H(x)α1+α2 from the ciphertext elements. Here, if the trusted center
provides a function key ĝβ1/(α1+α2), it is possible to derives a temporal key T K = e(H(x)α1+α2 , ĝβ1/(α1+α2))=
e(H(x),g)β1 which can be used to encrypt or decrypt a message. To do this, the encryption key of the first
client should contain an additional secret β1, and the first client uses the temporary key T K to create another
ciphertext element on a message x by using symmetric-key encryption.

The function H(x)α previously used for set intersection is pseudo-random function. Therefore, if a client
re-encrypts the previously encrypted set item x, then some information of the set item is exposed because
the output of this function is the same when the input is the same. To prevent such information leakage, we
set a client to encrypt the set associated with a specific time period T , and the set intersection operation to be
performed on the ciphertexts of two clients having the same time T . To do this, we use a modified function
H(T‖x)α , which contains additional time. In this case, even if the same x is encrypted, the value H(T‖x)α

appears to be a random value when the time T is different. Thus this function is secure since there is no
information leakage.

3.3 Construction

Let SKE = (GenKey, Encrypt, Decrypt) be an SKE scheme. An FE-SI scheme is described as follows.

Setup(1λ ,n). Let n be the maximum number of clients.

1. It first generates a bilinear group (p,G,Ĝ,GT ,e) of prime order p with random generators g∈G
and ĝ ∈ Ĝ. It chooses two hash functions H1 : {0,1}∗→G and H2 : GT →{0,1}λ .

2. Next, it selects a random PRF key z∈ {0,1}λ and computes αi = PRF(z,1‖i), βi = PRF(z,2‖i))
for each index i ∈ [n].

3. It outputs a master key MK = z, encryption keys {EKi = (αi,βi)}n
i=1 for clients, and public

parameters PP =
(
(p,G,Ĝ,GT ,e),g, ĝ,H1,H2

)
.

GenKey(i, j,MK,PP). Let i < j and MK = z. It first computes αi = PRF(z,1‖i), α j = PRF(z,1‖ j), and
βi = PRF(z,2‖i). It outputs a function key SKi, j = ĝβi/(αi+α j) by implicitly including i, j.

Encrypt(Xi,T,EKi,PP). Let Xi = {xi,1, . . . ,xi,`i} where |Xi|= `i and EKi = (αi,βi).

1. For each index k ∈ [`i], it proceed as follows: It computes Ci,k = H1(T‖xi,k)
αi and derives a tem-

poral key T Ki,k = e(H1(T‖xi,k), ĝ)βi . It obtains Di,k by running SKE.Encrypt(T‖xi,k,H2(T Ki,k)).

2. It chooses a random permutation π and outputs a ciphertext CTi,T =
{
(Ci,π(k),Di,π(k))

}`i

k=1 by
implicitly including i,T .

Decrypt(CTi,T ,CTj,T ′ ,SKi, j,PP). Let CTi,T = {(Ci,k,Di,k)}`i
k=1 and CTj,T ′ = {(C j,k,D j,k)}

` j
k=1 be ciphertexts

such that i < j and T = T ′. It first initializes a set Y = /0.

1. For each index ki ∈ [`i] and k j ∈ [` j], it proceeds as follows: It computes T Ki,ki = e(Ci,ki ·
C j,k j ,SKi, j) and obtains a message A‖x by running SKE.Decrypt(Di,ki ,H2(T Ki,ki)). It adds an
item x into Y if A = T .

2. It outputs the set Y .
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3.4 Correctness

For the correctness of our FE-SI scheme, we need to show that the set intersection of two client ciphertexts
can be calculated through the decryption process. Let CTi,T = {(Ci,k,Di,k)} be the ciphertext of a client i,
CTj,T = {(C j,k,D j,k)} be the ciphertext of a client j, and SKi, j be a function key. For the correctness of the
decryption process, it is only necessary to show that the correct temporal key T K is derived by combining
with a function key if the ciphertext elements from two clients are the encryption on the same item x and
these are related to the same time T . The reason is that if the correct temporary key is derived, the message
can be decrypted by running the decryption algorithm of symmetric key encryption. If the set items of the
two ciphertexts are the same, we can confirm that a temporal key is correctly derived through the following
equation

e(Ci,ki ·C j,k j ,SKi, j) = e(H1(T‖xi,ki)
αi+α j , ĝβi/(αi+α j)) = e(H1(T‖xi,ki), ĝ)

βi .

3.5 Security Analysis

To prove the security of the FE-SI scheme, we analyze the security by dividing the case where there is no
corrupted client and the case where there are corrupted clients.

In order to prove the static security without corrupted clients of the FE-SI scheme, we devise additional
hybrid games that an attacker cannot distinguish between the two challenge sets {X∗0,k} and {X∗1,k}. In the
definition of the static security model, the constraint CIQ({X∗0,k},Q) = CIQ({X∗1,k},Q) must be satisfied
because the attacker can compute the set intersection operation on the challenge set by using function keys.
This means that the set items related to the common set {E∗k } = CIQ({X∗

µ,k},Q) can be computed by the
attacker, but the remaining items that do not related to {E∗k } are not revealed to the attacker. Thus even if
these ciphertext elements not related to {E∗k } are changed to random values, the attacker can not distinguish
this change. Therefore, we define additional hybrid games and change the challenge ciphertext elements
that do not related to {E∗k } to random values one by one.

To do this, in the first game, we change the pseudo-random function into a truly random function. In the
second game, the ciphertext elements {Cµ,k} that do not related to {E∗k } are changed to random values. In
the third game the temporal keys {T Kµ,k} that do not related to {E∗k } are changed to random. After that, in
the last game, the ciphertext elements {Dµ,k} that do not related to {E∗k } are changed to random values. In
this last game, the ciphertext elements related to {E∗k } are the same as the original ciphertext, but all other
ciphertext elements not related to {E∗k } are changed to random values. Thus the attacker can’t tell whether
the challenge ciphertext of the last game is related to {X∗0,k} or {X∗1,k}. The details of the security are given
as follows.

Theorem 3.1. The above FE-SI scheme is static-IND secure with no corruptions in the random oracle model
if the PRF scheme is secure, the SKE scheme is one-message secure, and the Assumption 1 and 2 hold.

Proof. Suppose there exists an adversary that breaks the static-IND security of the FE-SI scheme with no
corruptions. We can assume that I = {1, . . . ,n} and I = /0. Let {X∗0,1, . . . ,X∗0,n} and {X∗1,1, . . . ,X∗1,n} be the
challenge sets of item sets where X∗b,i = {x∗b,i,1, . . . ,x∗b,i,`i

} and |X∗b,i| = `i. Let Q = {(i, j)} be the indexes
set of function key queries. We can derive a set of common sets {E∗1 , . . . ,E∗n} by calling CIQ({X∗0,k},Q)
since CIQ({X∗0,k},Q) =CIQ({X∗1,k},Q) by the restriction of the security model. To argue that the adversary
cannot win this game, we define a sequence of hybrid games G0,G1,G2,G3, and G4. The game Gi is defined
as follows:

Game G0. The first game G0 is the original security game defined in Definition 3.2.
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Game G1. In this game G1, the PRF which is used to generate encryption keys is changed to be truly
random function.

Game G2. This game G2 is similar to the game G1 except that the challenge ciphertext components {Ci,k}
are generated as random for all x∗

µ,i,k /∈ E∗i .

Game G3. This game G3 is slightly changed from the game G2. That is, the challenge temporal keys
{T Ki,k} are generated as random for all x∗

µ,i,k /∈ E∗i .

Game G4. In the final game G4, we change the generation of challenge ciphertext components {Di,k}. That
is, the challenge ciphertext components {Di,k} are the encryption of random values for all x∗

µ,i,k /∈ E∗i .
Note that the advantage of the adversary in this game is zero since challenge ciphertext components
{Ci,k} are random and {Di,k} are the encryption of random values for all x∗

µ,i,k /∈ E∗i .

Let SGi
A be the event that an adversary wins in a game Gi. From the following lemmas 3.2, 3.3, 3.4, and

3.5, we obtain the following result

AdvST -IND
FE-SI,A(λ )≤

∣∣∣Pr[SG0
A ]−Pr[SG4

A ]
∣∣∣+Pr[SG4

A ]≤
4

∑
i=1

∣∣∣Pr[SGi−1
A ]−Pr[SGi

A ]
∣∣∣+Pr[SG4

A ]

≤AdvPRF
B (λ )+n`AdvA1-(n,ρ,Q,J)

B (λ )+n`AdvA2-(n,ρ,Q)
B (λ )+n`AdvSKE

B (λ )

where n is the number of clients, ` is the maximum size of the challenge item set. This completes our
proof.

Lemma 3.2. If the PRF is secure, then no polynomial-time adversary can distinguish between G0 and G1
with a non-negligible advantage.

Proof. The proof of this lemma is relatively easy from the security of PRF. That is, we simply change a
PRF to a truly random function since there is only one PRF in the FE-SI scheme. We omit the details of this
proof.

Lemma 3.3. If the Assumption1 for (n,ρ,Q,J) holds, then no polynomial-time adversary can distinguish
between G1 and G2 with a non-negligible advantage.

Proof. To prove this lemma, we additionally define hybrid games H1,0,H1,1, . . . ,H1,`1 ,H1,1, . . . ,Hi,k, . . . ,Hn,`n

where H1,0 = G0 and Hn,`n = G1. The game Hρ,δ is defined as follows:

Game Hρ,δ . This game Hρ,δ is almost identical to the game G1 except the generation of the components
{Ci,k} in the challenge ciphertexts.

• Case (i < ρ) or (i = ρ ∧ k ≤ δ ): If x∗
µ,i,k ∈ E∗i , then the component Ci,k is generated as normal.

Otherwise (x∗
µ,i,k /∈ E∗i ), the component Ci,k is generated as random.

• Case (i = ρ ∧ k > δ ) or (i > ρ): The component Ci,k is generated as normal.

Suppose there exists an adversary A that distinguishes between Hρ,δ−1 and Hρ,δ with a non-negligible
advantage. Without loss of generality, we assume that x∗

µ,ρ,δ /∈ E∗ρ since Hρ,δ−1 and Hρ,δ are equal if
x∗

µ,ρ,δ ∈ E∗ρ . A simulator B that solves the Assumption 1 for (n,ρ,Q,J) which will be defined later is
described as follows:

Init: A submits challenge sets {X∗0,1, . . . ,X∗0,n}, {X∗1,1, . . . ,X∗1,n}, a challenge time period T ∗, and an indexes
set Q = {(i, j)} of function key queries. B proceeds as follows:
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1. From n,ρ,Q, it derives an index set J by calling ComputeJ(n,ρ,Q).

2. It receives a challenge tuple D = ((p,G,Ĝ,GT ,e),g,ga,{gbi}n
i=1,{gabk}k∈J, ĝ,{ĝ1/(bi+b j)}(i, j)∈Q) and

Z of the Assumption 1 for (n,ρ,Q,J) where Z = gabρ or Z = R ∈G.

3. It flips a random coin µ ∈ {0,1} internally and derives a set of common sets {E∗1 , . . . ,E∗n} by calling
CIQ({X∗

µ,k},Q).

Setup: B first chooses random exponents β1, . . . ,βn ∈ Zp. Next, it sets PP = ((p,G,Ĝ,GT ,e),g, ĝ,H1,H2).
It prepares a hash table H-list for the H1 hash function as follows:

1. For each i ∈ [n] and k ∈ [`i], it proceeds as follows: If i 6= ρ and k 6= δ , then it selects a random
exponent fi,k ∈ Zp and adds (T ∗‖x∗

µ,i,k, fi,k,g fi,k) to the H-list. Otherwise, it adds (T ∗‖x∗
µ,ρ,δ ,−,g

a) to
the H-list.

Challenge: B creates challenge ciphertexts CT1,T ∗ , . . . ,CTn,T ∗ as follows:

1. For each i and k, it generates ciphertext elements Ci,k and T Ki,k depending on the following cases:

• Case i < ρ:

– If x∗
µ,i,k ∈ E∗i and x∗

µ,i,k = x∗
µ,ρ,δ , it retrieves (T ∗‖x∗

µ,i,k,−,ga) from the H-list, and sets

Ci,k = gabi and creates T Ki,k = e(ga, ĝ)βi . For this case, we show that gabi is given in the
assumption. If a function key with indexes (i,ρ) was queried, we have x∗

µ,ρ,δ ∈ E∗ρ by the
definition of CIQ. However, we assumed that x∗

µ,ρ,δ /∈ E∗ρ for this game. Thus a function
key with (i,ρ) was not queried and it means that i ∈ J by the definition of J.

– If x∗
µ,i,k ∈ E∗i and x∗

µ,i,k 6= x∗
µ,ρ,δ , it retrieves (T ∗‖x∗

µ,i,k, fi,k,g fi,k) from the H-list, and creates

Ci,k = (gbi) fi,k and T Ki,k = e(g fi,k , ĝ)βi .
– If x∗

µ,i,k /∈ E∗i , it retrieves (T ∗‖x∗
µ,i,k, fi,k,g fi,k) from the H-list, and chooses a random Ci,k ∈G

and creates T Ki,k = e(g fi,k , ĝ)βi .

• Case i = ρ:

– If k < δ and x∗
µ,ρ,k ∈ E∗ρ , it retrieves (T ∗‖x∗

µ,ρ,k, fρ,k,g fρ,k) from the H-list, and creates
Cρ,k = (gbρ ) fρ,k and T Kρ,k = e(g fρ,k , ĝ)βρ since x∗

µ,ρ,k 6= x∗
µ,ρ,δ .

– If k < δ and x∗
µ,ρ,k /∈ E∗ρ , then it retrieves (T ∗‖x∗

µ,ρ,k, fρ,k,g fρ,k) from the H-list, and chooses
a random Cρ,k ∈G and creates T Kρ,k = e(g fρ,k , ĝ)βρ .

– If k = δ , it sets Cρ,δ = Z and creates T Kρ,δ = e(ga, ĝ)βρ since we assumed that x∗
µ,ρ,δ /∈ E∗ρ .

– If k > δ , it retrieves (T ∗‖x∗
µ,ρ,k, fρ,k,g fρ,k) from the H-list, and creates Cρ,k = (gbρ ) fρ,k and

T Kρ,k = e(g fρ,k , ĝ)βρ since x∗
µ,ρ,k 6= x∗

µ,ρ,δ .

• Case i > ρ:

– If x∗
µ,i,k = x∗

µ,ρ,δ , it retrieves (T ∗‖x∗
µ,i,k,−,ga) from the H-list, and sets Ci,k = gabi and creates

T Ki,k = e(ga, ĝ)βi . For this case, we show that gabi is given in the assumption. If a function
key with indexes (ρ, i) was queried, we have x∗

µ,ρ,δ ∈ E∗ρ by the definition of CIQ. However,
we assumed that x∗

µ,ρ,δ /∈ E∗ρ for this game. Thus a function key with (ρ, i) was not queried
and it means that i ∈ J by the definition of J.
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– If x∗
µ,i,k 6= x∗

µ,ρ,δ , it retrieves (T ∗‖x∗
µ,i,k, fi,k,g fi,k) from the H-list, and creates Ci,k = (gbi) fi,k

and T Ki,k = e(g fi,k , ĝ)βi .

Next, it generates a ciphertext element Di,k by running SKE.Encrypt(T ∗‖x∗
µ,i,k,T Ki,k)

2. It chooses a random permutation πi and sets a challenge ciphertext CTi,T ∗ = {Ci,πi(k),Di,πi(k)}
`i
k=1 for

each client i.

Query: A adaptively requests hash, function key, and ciphertext queries. B handles these queries as follows:

• If this is a hash query for a time period T and an item x, then B proceeds as follows: If T‖x exists in
the H-list, then it retrieves (T‖x,−,h) from H-list and gives h to A. Otherwise, it selects a random
exponent f ∈ Zp and adds (T‖x, f ,g f ) to the H-list, and then it gives the hash value g f to A.

• If this is a function key query for indexes i, j such that (i, j) ∈ Q, then B generates a function key
SKi, j = (ĝ1/(bi+b j))βi since ĝ1/(bi+b j) is given in the assumption.

• If this is a ciphertext query for a client index i, a set Xi = (xi,1, . . . ,xi,`), and a time period T 6= T ∗,
then B generates a ciphertext as follows:

1. For each k ∈ [`i], it proceeds as follows: It retrieves (T‖xi,k, fk,g fk) from the H-list, and sets
Ci,k =(gbi) fk and T Ki,k = e(g fk , ĝ)βi . Next, it obtains Di,k by running SKE.Encrypt(T‖xi,k,T Ki,k).

2. It chooses a random permutation π and creates CTi,T = {(Ci,π(k),Di,π(k))}`i
k=1.

Guess: A outputs a guess µ ′. If µ = µ ′, it outputs 1. Otherwise, it outputs 0.
To complete the proof, we need to analyze the correctness of the simulation. In the case of the challenge

ciphertext, ciphertext elements with indexes i 6= ρ and k 6= δ are all generated correctly by using the values
given in the assumption. The challenge ciphertext elements with indexes i = ρ and k = δ are generated by
using the challenge Z of the assumption. If Z = Z0 = gabρ , then it is the same as the game Hρ,δ−1. Otherwise
(Z = Z1), it is the same as the game Hρ,δ . The function keys provided to the attacker are easily processed
by using the values given in the assumption because function key queries are pre-specified in Q. In the case
of ciphertext such as T 6= T ∗, all ciphertexts are correctly processed by using the hash table and the values
given in the assumption.

Lemma 3.4. If the Assumption 2 for (n,ρ,Q) holds, then no polynomial-time adversary can distinguish
between G2 and G3 with a non-negligible advantage.

Proof. To prove this lemma, we additionally define hybrid games H′1,0,H′1,1, . . . ,H′1,`1
, . . . ,H′i,k, . . . ,H

′
n,`n

where H′1,0 = G2 and H′n,`n
= G3. The game H′

ρ,δ is defined as follows:

Game H′
ρ,δ . This game H′

ρ,δ is almost identical to the game G2 except the generation of temporal keys
{T Ki,k} in the challenge ciphertexts.

• Case (i < ρ) or (i = ρ ∧ k ≤ δ ): If x∗
µ,i,k ∈ E∗i , then the temporal key T Ki,k is generated as

normal. Otherwise (x∗
µ,i,k /∈ E∗i ), the temporal key T Ki,k is generated as random.

• Case (i = ρ ∧ k > δ ) or (i > ρ): The temporal key T Ki,k is generated as normal.
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Suppose there exists an adversary A that distinguishes between H′
ρ,δ−1 and H′

ρ,δ with a non-negligible
advantage. Without loss of generality, we assume that x∗

µ,ρ,δ /∈ E∗ρ since H′
ρ,δ−1 and H′

ρ,δ are equal if
x∗

µ,ρ,δ ∈ E∗ρ . A simulator B that solves the Assumption 2 for (n,ρ,Q) which will be defined later is described
as follows:

Init: A submits challenge sets of item sets {X∗0,1, . . . ,X∗0,n}, {X∗1,1, . . . ,X∗1,n}, a challenge time period T ∗, and
an indexes set Q = {(i, j)} of function key queries. B proceeds as follows:

1. It receives a challenge tuple D=((p,G,Ĝ,GT ,e),g,ga,{gbi}n
i=1,{gabk}1≤k 6=ρ≤n, ĝ,{ĝci}1≤i6=ρ≤n,e(g, ĝ)cρ ,

{ĝci/(bi+b j)}(i, j)∈Q) and Z of the Assumption 2 for (n,ρ,Q) where Z = e(g, ĝ)acρ or Z = R ∈GT .

2. It flips a random coin µ ∈ {0,1} internally and derives a set of common sets {E∗1 , . . . ,E∗n} by calling
CIQ({X∗

µ,k},Q).

Setup: B sets PP = ((p,G,Ĝ,GT ,e),g, ĝ,H1,H2). It prepares a hash table H-list for the H1 hash function
as follows:

1. For each i ∈ [n] and k ∈ [`i], it proceeds as follows: If i 6= ρ and k 6= δ , then it selects a random
exponent fi,k ∈ Zp and adds (T ∗‖x∗

µ,i,k, fi,k,g fi,k) to the H-list. Otherwise (i = ρ ∧ k = δ ), it adds
(T ∗‖x∗

µ,ρ,δ ,−,g
a) to the H-list.

Challenge: B creates challenge ciphertexts CT1,T ∗ , . . . ,CTn,T ∗ as follows:

1. For each i and k, it generates ciphertext elements Ci,k and T Ki,k depending on the following cases:

• Case i < ρ:

– If x∗
µ,i,k ∈ E∗i and x∗

µ,i,k = x∗
µ,ρ,δ , it retrieves (T ∗‖x∗

µ,i,k,−,ga) from the H-list, and sets Ci,k =

gabi and T Ki,k = e(ga, ĝci). In this case, gabi is given in the assumption since i 6= ρ .
– If x∗

µ,i,k ∈ E∗i and x∗
µ,i,k 6= x∗

µ,ρ,δ , it retrieves (T ∗‖x∗
µ,i,k, fi,k,g fi,k) from the H-list, and sets

Ci,k = (gbi) fi,k and T Ki,k = e(g fi,k , ĝci).
– If x∗

µ,i,k /∈ E∗i , then it retrieves (T ∗‖x∗
µ,i,k, fi,k,g fi,k) from the H-list, and selects random Ci,k ∈

G and T Ki,k ∈GT .

• Case i = ρ:

– If k < δ and x∗
µ,ρ,k ∈ E∗ρ , it retrieves (T ∗‖x∗

µ,ρ,k, fρ,k,g fρ,k) from the H-list, and sets Cρ,k =

(gbρ ) fρ,k and T Kρ,k = (e(g, ĝ)cρ ) fρ,k since x∗
µ,ρ,k 6= x∗

µ,ρ,δ .

– If k < δ and x∗
µ,ρ,k /∈ E∗ρ , then it retrieves (T ∗‖x∗

µ,ρ,k, fρ,k,g fρ,k) from the H-list, and selects
random Cρ,k ∈G and random T Kρ,k ∈GT .

– If k = δ , it chooses a random Cρ,δ ∈G and sets T Kρ,δ = Z since we assumed that x∗
µ,ρ,δ /∈

E∗ρ .

– If k > δ and x∗
µ,ρ,k ∈ E∗ρ , then it retrieves (T ∗‖x∗

µ,ρ,k, fρ,k,g fρ,k) from the H-list, and sets
Cρ,k = (gbρ ) fρ,k and T Kρ,k = (e(g, ĝ)cρ ) fρ,k since x∗

µ,ρ,k 6= x∗
µ,ρ,δ .

– If k > δ and x∗
µ,ρ,k /∈ E∗ρ , then it retrieves (T ∗‖x∗

µ,ρ,k, fρ,k,g fρ,k) from the H-list, and selects
a random Cρ,k ∈G and creates T Kρ,k = (e(g, ĝ)cρ ) fρ,k .

• Case i > ρ:
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– If x∗
µ,i,k ∈ E∗i and x∗

µ,i,k = x∗
µ,ρ,δ , it retrieves (T ∗‖x∗

µ,i,k,−,ga) from the H-list, and sets Ci,k =

gabi and T Ki,k = e(ga, ĝci). In this case, gabi is given in the assumption since i 6= ρ .
– If x∗

µ,i,k ∈ E∗i and x∗
µ,i,k 6= x∗

µ,ρ,δ , it retrieves (T ∗‖x∗
µ,i,k, fi,k,g fi,k) from the H-list, and sets

Ci,k = (gbi) fi,k and T Ki,k = e(g fi,k , ĝci).
– If x∗

µ,i,k /∈ E∗i , it retrieves (T ∗‖x∗
µ,i,k, fi,k,g fi,k) from the H-list, and selects a random Ci,k ∈G

and creates T Ki,k = e(g fi,k , ĝci).

Next, it generates a ciphertext element Di,k by running SKE.Encrypt(T ∗‖x∗
µ,i,k,T Ki,k)

2. It chooses a random permutation πi and sets a challenge ciphertext CTi,T ∗ = {Ci,πi(k),Di,πi(k)}
`i
k=1 for

each client i.

Query: A adaptively requests hash, token, and ciphertext queries. B handles these queries as follows:

• If this is a hash query for a time period T and an item x, then B proceeds as follows: If T‖x exists in
the H-list, then it retrieves (T‖x,−,h) from H-list and gives h to A. Otherwise, it selects a random
exponent f ∈ Zp and adds (T‖x, f ,g f ) to the H-list, and then it gives the hash value g f to A.

• If this is a function key query for indexes i, j such that (i, j) ∈ Q, then B generates a function key
SKi, j = ĝci/(bi+b j) since it is given in the assumption.

• If this is a ciphertext query for a client index i, a set Xi = (xi,1, . . . ,xi,`), and a time period T 6= T ∗,
then B generates a ciphertext as follows:

1. For each k ∈ [`i], it proceeds as follows: It retrieves (T‖xi,k, fk,g fk) from the H-list and sets
Ci,k = (gbi) fk . Next, it sets T Ki,k = (e(g, ĝ)cρ ) fk if i = ρ , and it sets T Ki,k = e(g fk , ĝci) if i 6= ρ . It
obtains Di,k by running SKE.Encrypt(T‖xi,k,T Ki,k).

2. It chooses a random permutation π and creates CTi,T = {(Ci,π(k),Di,π(k))}`i
k=1.

Guess: A outputs a guess µ ′. If µ = µ ′, it outputs 1. Otherwise, it outputs 0.

Lemma 3.5. If the SKE scheme is one-message secure, then no polynomial-time adversary can distinguish
between G3 and G4 with a non-negligible advantage.

Proof. To prove this lemma, we additionally define hybrid games H′′1,0,H′′1,1, . . . ,H′′1,`1
,H′′1,1, . . . ,H′′i,k, . . . ,H

′′
n,`n

where H′′1,0 = G3 and H′′n,`n
= G4. The game H′′

ρ,δ is defined as follows:

Game H′′
ρ,δ . This game H′′

ρ,δ is almost identical to the game G3 except the generation of components {Di,k}
in the challenge ciphertexts.

• Case (i < ρ) or (i = ρ ∧ k ≤ δ ): If x∗
µ,i,k ∈ E∗i , then the component Di,k is generated as normal.

Otherwise (x∗
µ,i,k /∈ E∗i ), the component Di,k is generated as the encryption of a random value.

• Case (i = ρ ∧ k > δ ) or (i > ρ): The component Di,k is generated as normal.

Suppose there exists an adversary A that distinguishes between H′′
ρ,δ−1 and H′′

ρ,δ with a non-negligible
advantage. Without loss of generality, we assume that x∗

µ,ρ,δ /∈ E∗ρ since H′′
ρ,δ−1 and H′′

ρ,δ are equal if
x∗

µ,ρ,δ ∈ E∗ρ . Then B that interacts with A is described as follows:
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Init: A submits challenge sets of item sets {X∗0,1, . . . ,X∗0,n}, {X∗1,1, . . . ,X∗1,n}, a challenge time period T ∗, and
an indexes set Q = {(i, j)} of function key queries. B then flips a random coin µ ∈ {0,1} internally and
derives a set of common sets {E∗1 , . . . ,E∗n} by calling CIQ({X∗

µ,k},Q).

Setup: B first chooses random exponents α1, . . . ,αn, β1, . . . ,βn ∈Zp. Next, it sets PP=((p,G,Ĝ,GT ,e),g, ĝ,
H1,H2). It prepares a hash table H-list for the H1 hash function as follows:

1. For each i ∈ [n] and k ∈ [`i], it selects a random exponent fi,k ∈ Zp and adds (T ∗‖x∗
µ,i,k, fi,k,g fi,k) to the

H-list.

Challenge: B creates challenge ciphertexts CT1,T ∗ , . . . ,CTn,T ∗ as follows:

1. For each i and k, it generates ciphertext elements Ci,k and T Ki,k depending on the following cases:

• Case x∗
µ,i,k ∈ Ei: It retrieves (T ∗‖x∗

µ,i,k, fi,k,g fi,k) from the H-list, and creates Ci,k = g fi,kαi and
T Ki,k = e(g fi,k , ĝ)βi .

• Case x∗
µ,i,k /∈ Ei: It selects random Ci,k ∈G and random T Ki,k ∈GT .

Next, it also generates a ciphertext element Di,k depending on the following cases:

• Case (i < ρ) or (i = ρ∧k < δ ): If x∗
µ,i,k ∈ E∗i , it creates Di,k by running SKE.Encrypt(T ∗‖x∗

µ,i,k,
T Ki,k). Otherwise (x∗

µ,i,k /∈E∗i ), it selects a random y∈D and creates Di,k by running SKE.Encrypt
(T ∗‖y,T Ki,k).

• Case (i = ρ ∧ k = δ ): It selects a random y ∈ D and submits challenge message x∗
µ,ρ,δ and y to

the encryption oracle of SKE. Next, it receives a challenge ciphertext CT ∗SKE from SKE and sets
Dρ,δ =CT ∗SKE . Recall that we assumed x∗

µ,ρ,δ /∈ E∗ρ .

• Case (i = ρ ∧ k > δ ) or (i > ρ): It creates Di,k by running SKE.Encrypt(T ∗‖x∗
µ,i,k,T Ki,k).

2. It chooses a random permutation πi and sets a challenge ciphertext CTi,T ∗ = {Ci,πi(k),Di,πi(k)}
`i
k=1 for

each client i.

Query: A adaptively requests hash, function key, and ciphertext queries. B handles these queries as follows:

• If this is a hash query for a time period T and an item x, then B proceeds as follows: If T‖x exists in
the H-list, then it retrieves (T‖x,−,h) from H-list and gives h to A. Otherwise, it selects a random
exponent f ∈ Zp and adds (T‖x, f ,g f ) to the H-list, and then it gives the hash value g f to A.

• If this is a function key query for indexes i, j, then B simply generates a function key SKi, j by using
αi,α j,βi.

• If this is a ciphertext query for a client index i, a set Xi, and a time period T 6= T ∗, then B simply
generates a ciphertext CT by using αi,βi.

Guess: A outputs a guess µ ′. If µ = µ ′, it outputs 1. Otherwise, it outputs 0.

Now, we analyze the static security with corrupted clients of the FE-SI scheme. In the definition of
the static security model, two indexes of a function key must be associated with corrupted clients, or two
indexes of the function key must be associated with non-corrupted clients. Therefore, we can process this
proof by selecting encryption keys for corrupted clients and using the static security proof of the FE-SI
scheme analyzed earlier for non-corrupted clients.
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Theorem 3.6. The above FE-SI scheme is static-IND secure with corruptions in the random oracle model
if the FE-SI scheme is static-IND secure with no corruptions.

Proof. Suppose there exists an adversary A that breaks the static-IND security with corruptions. By using
A, a simulator B try to break the static-IND security with no corruptions played by a challenger C. The
simulator B is described as follows:

Init: A submits the set of corrupted client indexes I 6= /0. Let I = {1, . . . ,n} \ I be the set of uncorrupted
client indexes where |I|= n′. A also submits two challenge sets {X∗0,k}k∈I,{X∗1,k}k∈I , a challenge time period
T ∗, and an indexes set Q = {(i, j)} of function key queries.

1. It first define a one-to-one mapping φ from I to I′ = {1, . . . ,n′} such that φ(i)< φ( j) if i < j for any
i, j ∈ I. It also define φ−1 as the inverse mapping of φ .

2. Next, it derives a new indexes set Q′ = {(φ(i),φ( j)) : (i, j) ∈ Q} from the set Q.

3. B submits two challenge sets {X∗0,φ(k)}φ(k)∈I′ ,{X∗1,φ(k)}φ(k)∈I′ , the challenge time period T ∗, and the
set Q′ to C. Note that C plays the static-IND security game with no corruptions for the set I′.

Setup: B receives PP from C. It chooses random exponents {αi,βi}i∈I . Next, it gives {EKi = (αi,βi)}i∈I
and PP to A.
Challenge: B receives challenge ciphertexts {CTi′,T ∗}i′∈I′ from C and gives {CTφ−1(i′),T ∗}φ−1(i′)∈I to A.
Query: A requests hash, function key, and ciphertext queries. B relays these queries to C and gives the
response of C to A by using the mappings φ and φ−1 to change the indexes of sets I′ and I.
Guess: A outputs a guess µ ′. B also outputs µ ′.

3.6 Discussions

Efficiency Analysis. We analyze the efficiency of our FE-SI scheme. First, the encryption algorithm re-
quires 2` exponentiation operations and 2` symmetric key encryption operations since it computes Ci,k,T Ki,k,
and Di,k for each item of the set where ` is the size of the set. The size of the ciphertext is proportional to the
size of the set. The key generation algorithm is efficient because it only requires a PRF computation and a
single exponentiation operation, and the function key is composed of one group element. The slowest part of
the FE-SI scheme is the decryption algorithm. Since the decryption algorithm processes two possible com-
bination of ciphertext elements of two clients, it requires O(`2) pairing operations and O(`2) symmetric-key
decryptions. Therefore, the decryption algorithm has O(`2) time complexity when ` is the size of the set.

Hiding the Set Sizes. In our FE-SI scheme, the ciphertext exposes the set size information because the
size of a ciphertext is proportional to the size of the set. A simple way to hide the size of a set is to
include additional dummy items in the ciphertext. That is, a dummy element C̃i,k is generated by computing
H(r)αi with a random string r such that prefix(r) 6= T , and a dummy element D̃i,k is generated by running a
symmetric-key encryption on a message r. In this case, the probability that the two clients select the same
random string r is very low, and even if the two clients select the same r, the time string T is not decoded
from the decryption of the dummy D̃i,k. Thus the intersection of ciphertexts with dummy elements works
correctly.

Encryption with Associated Data. The FE-SI scheme encrypts only the set information during encryption.
One natural way to extend the FE-SI scheme is to encrypt a set with additional associated data. This associ-
ated data can be easily encrypted by using symmetric-key encryption. In this case, the entity with a function
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key can decrypt not only the set intersection of two clients but also associated data encrypted by individual
clients. Since the function key of our FE-SI scheme only provides ĝβi/(αi+α j) for client indexes i, j, only
the associated data of the client index i is decrypted. If only the set is encrypted, this is not a problem,
but if associated data is included, it is necessary to decrypt the ciphertext elements of the client j as well
as the client i. Therefore, for this purpose, the key generation algorithm must provide two group elements,
ĝβi/(αi+α j) and ĝβ j/(αi+α j) as function keys.

Set Intersection Cardinality. An interesting variant of the functional encryption for set intersection is func-
tional encryption for set intersection cardinality (FE-SIC) that reveals the cardinality of the set intersection
instead of revealing the set intersection of two sets. The simplest way to devise an FE-SIC scheme is to
modify our FE-SI scheme to encrypt the string T instead of the concatenated string T‖x when generating
the ciphertext element Di,k. In this case, if the correct string T is derived during decryption, the same item
exists, so the number of intersections can be calculated by counting these cases. However, this method has
the disadvantage of preserving the decryption complexity O(`2) of the FE-SI scheme and requiring to create
a new ciphertext.

Multi-Party Set Intersection. The FE-SI scheme we devised calculates the set intersection of two clients.
It is possible to modify the FE-SI scheme to calculate the set intersection of three clients. The basic idea
is for the key generation algorithm to receive the indexes of three clients (i, j,k) as an input and to cre-
ate a function key SKi, j,k = ĝβi/(αi+α j+αk). In this case, if the ciphertexts generated by the clients of in-
dexes i, j, and k are on the same item x, then the decryption algorithm first derives H(T‖x)αi ·H(T‖x)α j ·
H(T‖x)αk = H(T‖x)αi+α j+αk . If the pairing operation is performed with the function key, the temporary key
e(H(T‖x), ĝ)βi can be derived for symmetric-key decryption. At this time, the decryption algorithm requires
O(`3) pairing operations since all possible combination of ciphertext elements should be considered. If this
method is extended, it is possible to process the set intersection of n clients, but it is inefficient because the
decryption algorithm has O(`n) time complexity. The method for the set intersection cardinality of multiple
clients can be implemented by modifying the method for the set intersection cardinality of two clients.

4 FE for Set Intersection with Time-Constrained Keys

In this section, we define the syntax and the security model of FE-SI that supports time-constrained keys
(FE-SI-TCK). In addition, we propose an FE-SI-TCK scheme by modifying the previous FE-SI scheme and
prove the security of the scheme.

4.1 Definition

The syntax of FE-SI-TCK is almost similar to that of FE-SI. The key difference in the syntax of FE-SI-TCK
is that a function key is only valid at time T because the function key is associated with client indexes i, j and
additional time T . For this reason, the decryption algorithm of FE-SI-TCK correctly proceeds the decryption
process only when the time T of the two client’s ciphertexts and the time T of the function key are the same.
That is, the function key of the FE-SI-TCK scheme does not always compute the set intersection of the
two client’s ciphertexts for any time, but only computes the set intersection of the two client’s ciphertexts
corresponding to the limited time T . A more detailed syntax of FE-SI-TCK is defined as follows.

Definition 4.1 (FE-SI with Time-Constrained Keys). An FE-SI with time-constrained keys (FE-SI-TCK)
scheme for D and T consists of four algorithms Setup, GenKey, Encrypt, and Decrypt, which are defined
as follows:
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Setup(1λ ,n). The setup algorithm takes as input a security parameter λ and the number of clients n. It
outputs a master key MK, encryption keys {EKi} for clients, and public parameters PP.

GenKey(i, j,T,MK,PP). The key generation algorithm takes as input two client indexes i, j such that i< j,
a time period T , the master key MK, and public parameters PP. It outputs a time-constrained function
key SKi, j,T .

Encrypt(Xi,T,EKi,PP). The encryption algorithm takes as input a set Xi = (xi,1, . . . ,xi,`i) where xi, j ∈ D,
a time period T ∈ T , an encryption key EKi, and the public parameters PP. It outputs a ciphertext
CTi,T .

Decrypt(CTi,T ,CTj,T ,SKi, j,T ,PP). The decryption algorithm takes as input two ciphertexts CTi,T and CTj,T ,
a function key SKi, j,T , and the public parameters PP. It outputs a set Xi ∩X j where Xi and X j are
associated with CTi,T and CTj,T respectively.

The correctness property of FE-SI-TCK is defined as follows: For all MK,{EKi},PP← Setup(1λ ,n), any
SKi, j,T ← GenKey(i, j,T,MK,PP) for any i, j,T such that i < j, CTi,T ← Encrypt(Xi,T,EKi,PP), and
CTj,T ← Encrypt(X j,T,EK j,PP), it is required that

• Decrypt(CTi,T ,CTj,T ,SKi, j,T ,PP) = Xi∩X j except with negligible probability.

The static security model of FE-SI-TCK is almost similar to the previous defined static security model
of FE-SI. An important difference is that the attacker of FE-SI-TCK initially submits a set of function key
queries QT ∗ related to a challenge time T ∗ instead of submitting all function key queries. Afterwards, when
the attacker queries a function key for time T , the function key query must be specified in QT ∗ if T = T ∗,
but the function key query can be any query if T 6= T ∗. A more detailed static security model of FE-SI-TCK
is defined as follows.

Definition 4.2 (Static-IND Security). The static-IND security of FE-SI-TCK with corruptions is defined in
the following experiment EXPST -IND

FE-SI-TCK,A(1
λ ) between a challenger C and a PPT adversary A:

1. Init: A initially submits an index set I ⊂ [n] of corrupted clients. Let I = {1, . . . ,n}\ I be the index set
of uncorrupted clients. A also submits two challenge sets of item sets {X∗0,k}k∈I , {X∗1,k}k∈I , a challenge
time period T ∗, and an indexes set QT ∗ = {(i, j)} of function key queries on the time period T ∗ with
the restriction that i, j ∈ I for each (i, j) ∈ Q and CIQ({X∗0,k}k∈I,QT ∗) =CIQ({X∗1,k}k∈I,QT ∗).

2. Setup: C generates a master key MK, encryption keys {EKi}n
i=1 and public parameters PP by running

Setup(1λ ,n). It keeps MK and {EKi}i∈I to itself and gives {EKi}i∈I and PP to A.

3. Challenge: C flips a random coin µ ∈{0,1} and obtains a ciphertext CTi,T ∗ by running Encrypt(X∗
µ,i,T

∗,
EKi,PP) for each i ∈ I. C gives the challenge ciphertexts {CTi,T ∗}i∈I to A

4. Query: A requests function keys and ciphertexts. C handles these queries as follows:

• If this is a function key query for indexes i, j ∈ I and a time period T with the restriction that
(i, j)∈QT ∗ if T =T ∗, then C gives a function key SKi, j,T toA by running GenKey(i, j,T,MK,PP).

• If this is a ciphertext query for a client index k, a set Xk, and a time period T with the restriction
that k ∈ I and T 6= T ∗, then C gives CTk,T to A by running Encrypt(Xk,T,EKk,PP).

5. Guess: A outputs a guess µ ′ ∈ {0,1} of µ . C outputs 1 if µ = µ ′ or 0 otherwise.

An FE-SI-TCK scheme is static-IND secure with corruptions if for all PPT adversary A, the advantage of
A defined as AdvST -IND

A (λ ) =
∣∣Pr[EXPST -IND

FE-SI-TCK,A(1
λ ) = 1]− 1

2

∣∣ is negligible in the security parameter λ .
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4.2 Construction

The idea of devising a function key limited to time T is to derive an independent encryption key for each
time T from an original client encryption key by slightly modifying our FE-SI scheme. In other words, the
client encryption key of the FE-SI-TCK scheme is a PRF key z and two exponents (αT = PRF(z,1‖T ),βT =
PRF(z,2‖T )) are derived for a specific time period T , whereas the client encryption key of the FE-SI scheme
is just (α,β ). The encryption and decryption algorithms are almost the same as those of the FE-SI scheme.
An FE-SI-TCK scheme that supports time-constrained function keys is described as follows.

Setup(1λ ,n). Let n be the maximum number of clients.

1. It first generates a bilinear group (p,G,Ĝ,GT ,e) of prime order p with two random generators
g ∈G and ĝ ∈ Ĝ. It chooses two hash functions H1 : {0,1}∗→G and H2 : GT →{0,1}λ .

2. Next, it selects a random PRF key z ∈ {0,1}λ and computes zi = PRF(z,0‖i) for each index
i ∈ [n].

3. Finally, it outputs a master key MK = z, encryption keys {EKi = zi}n
i=1 for clients, and public

parameters PP =
(
(p,G,Ĝ,GT ,e),g, ĝ,H1,H2

)
.

GenKey(i, j,T,MK,PP). Let i, j be indexes such that i < j and T be a time period.

1. It first derives zi = PRF(z,0‖i) and z j = PRF(z,0‖ j) from MK = z. It also calculates αi,T =
PRF(zi,1‖T ), α j,T = PRF(z j,1‖T ), and βi,T = PRF(zi,2‖T ).

2. Finally, it outputs a time-constrained function key SKi, j,T = ĝβi,T /(αi,T+α j,T ) by implicitly includ-
ing i, j,T .

Encrypt(Xi,T,EKi,PP). Let Xi = {xi,1, . . . ,xi,`i} be a set of items where |Xi|= `i and EKi = zi.

1. It calculates αi,T = PRF(zi,1‖T ) and βi,T = PRF(zi,2‖T ).
2. For each index k ∈ [`i], it proceed as follows: It computes a component Ci,k = H1(xi,k)

αi,T and
then derives a temporal key T Ki,k = e(H1(xi,k), ĝ)βi,T . Next, it obtains an encrypted data Di,k by
running SKE.Encrypt(T‖xi,k,H2(T Ki,k)).

3. Finally, it chooses a random permutation π and outputs a ciphertext CTi,T =
{
(Ci,π(k),Di,π(k))

}`i

k=1
by implicitly including i,T .

Decrypt(CTi,T ,CTj,T ,SKi, j,T ,PP). Let CTi,T = {(Ci,k,Di,k)}`i
k=1 and CTj,T = {(C j,k,D j,k)}

` j
k=1 be cipher-

texts such that i < j with the same time T . It first initializes a set Y = /0.

1. For each index ki ∈ [`i] and k j ∈ [` j], it proceeds as follows: It computes T Ki,ki = e(Ci,ki ·
C j,k j ,SKi, j,T ) and obtains a message A‖x by running SKE.Decrypt(Di,ki ,H2(T Ki,ki)). It adds
an item x into Y if A = T .

2. Finally, it outputs the set Y .

4.3 Correctness

The FE-SI-TCK scheme is almost the same as the previous FE-SI scheme except that the encryption key for
a specific time period T is derived by using the PRF. Therefore, the correctness of the FE-SI-TCK scheme
is easily guaranteed by the correctness of the PRF and the correctness of the FE-SI scheme.

21



4.4 Security Analysis

In order to prove the static security of the FE-SI-TCK scheme, we also analyze by dividing into two cases,
the case where there is no corrupted client and the case where there are corrupted clients. Similar to the
proof of the FE-SI scheme, we can also prove the static security of the scheme with corrupted clients by
using the static security proof of the scheme with non-corrupted clients.

We can show that the FE-SI-TCK scheme without corrupted clients is static secure by using the static
security of the FE-SI scheme without corrupted clients. The basic idea of this proof is that ciphertext and
function key queries for T = T ∗ are all handled by the challenger of the FE-SI scheme, and ciphertext and
function key queries for T 6= T ∗ are handled by a simulator itself with randomly selected encryption keys.
The security theorem of the FE-SI-TCK scheme is described as follows.

Theorem 4.1. The above FE-SI-TCK scheme is static-IND secure with no corruptions in the random oracle
model if the PRF scheme is secure and the FE-SI scheme is static-IND secure with no corruptions.

Proof. To argue that the adversary cannot win this game, we define a sequence of hybrid games G0,G1. The
game Gi is defined as follows:

Game G0. The first game G0 is the original security game defined in Definition 4.2.

Game G1. In this game G1, the PRFs which are used to generate encryption keys are changed to be truly
random functions.

Let SGi
A be the event that an adversary wins in a game Gi. From the following lemmas 4.2 and 4.3, we

obtain the following result

AdvST -IND
FE-SI-TCK,A(λ )≤

∣∣∣Pr[SG0
A ]−Pr[SG1

A ]
∣∣∣+Pr[SG1

A ]≤ (n+1)AdvPRF
B (λ )+AdvST -IND

FE-SI,B(λ )

where n is the number of clients, ` is the size of the challenge attribute. This completes our proof.

Lemma 4.2. If the PRF is secure, then no polynomial-time adversary can distinguish between G0 and G1
with a non-negligible advantage.

Proof. The proof of this lemma is relatively easy from the security of PRF. That is, we simply change a PRF
to a truly random function one by one by defining additional hybrid games. Note that there are at most n+1
PRFs are used in the FE-SI-TCK scheme. We omit the details of this proof.

Lemma 4.3. If the FE-SI scheme is static-IND secure, then no polynomial-time adversary can win G1 with
a non-negligible advantage.

Proof. Suppose there exists an adversary A that wins the game G1 with a non-negligible advantage. Then
B that interacts with A is described as follows:

Init: A submits challenge sets of item sets {X∗0,1, . . . ,X∗0,n}, {X∗1,1, . . . ,X∗1,n}, a challenge time period T ∗, and
an indexes set QT ∗ of function key queries. B also submits {X∗0,i}, {X∗1,i}, T ∗, and QT ∗ to the FE-SI scheme.

Setup: B receives P̃P from the FE-SI scheme and sets PP = P̃P. B prepares an EK-list as empty one that
stores a tuple (i,T,αi,T ,βi,T ).
Challenge: B receives C̃T 1,T ∗ , . . . ,C̃T n,T ∗ of the FE-SI scheme and sets challenge ciphertexts CTi,T ∗ =
C̃T i,T ∗ for each i. It gives the challenge ciphertexts to A.
Query: A adaptively requests hash, function key, and ciphertext queries. B handles these queries as follows:
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• If this is a hash query for an item x, then B proceeds as follows: It requests a hash query to the FE-SI
scheme on the time period T ∗ and the item x and receives a hash value h̃. It sets h = h̃ and gives h to
A. Note that it implicitly sets H1(x) = H̃1(T ∗‖x) where H̃1 is the hash function of the FE-SI scheme.

• If this is a time-constrained function key query for indexes i, j and a time period T , then B generates
a function key as follows:

– Case T = T ∗: It requests a ciphertext query to the FE-SI scheme on input i, j and receives a
function key ˜SKi, j since (i, j) ∈ QT ∗ . It creates a time-constrained function key SKi, j,T = ˜SKi, j.

– Case T 6= T ∗:

1. If a tuple (i,T,αi,T ,βi,T ) already exists in the EK-list, then it retrieves (i,T,αi,T ,βi,T ) from
the EK-list. Otherwise, it selects random αi,T ,βi,T ∈ Zp and adds (i,T,αi,T ,βi,T ) to the
EK-list.

2. If a tuple ( j,T,α j,T ,β j,T ) already exists in the EK-list, then it retrieves ( j,T,α j,T ,β j,T )
from the EK-list. Otherwise, it selects random α j,T ,β j,T ∈ Zp and adds ( j,T,α j,T ,β j,T ) to
the EK-list.

3. Next, it creates a time-constrained function key SKi, j,T = ĝβi,T /(αi,T+α j,T ).

• If this is a ciphertext query for a client index i, a set Xi = {xi,1, . . . ,xi,`i}, and a time period T 6= T ∗,
then B generates a ciphertext as follows:

1. If a tuple (i,T,αi,T ,βi,T ) already exists in the EK-list, then it retrieves (i,T,αi,T ,βi,T ) from the
EK-list. Otherwise, it selects random αi,T ,βi,T ∈ Zp and adds (i,T,αi,T ,βi,T ) to the EK-list.

2. For each index k ∈ [`i], it obtains h from hash query on input xi,k and creates Ci,k = hαi,T , T Ki,k =
e(h, ĝ)βi,T , and Di,k by running SKE.Encrypt(T‖xi,k,H2(T Ki,k)).

3. It chooses a random permutation π and generates a ciphertext CTi,T = {(Ci,π(k),Di,π(k))}`i
k=1.

Guess: A outputs a guess µ ′. B also outputs µ ′.

Theorem 4.4. The above FE-SI-TCK scheme is static-IND secure with corruptions in the random oracle
model if the FE-SI-TCK scheme is static-IND secure with no corruptions.

The proof of Theorem 4.4 is almost identical to that of Theorem 3.6.

4.5 Discussions

Time Range Function Key. In our FE-SI-TCK scheme, a function key is only valid for a specified time
period T . If a third party performing the set intersection operation needs a function key that is valid for
time range periods from TL to TR, the trusted center generates a time range function key which consists of
individual function keys for each time period T ∈ [TL,TR]. In this case, the size of the time range function
key increases in proportion to the size of the time range. We can reduce the size of the time range function
key by using a binary tree. That is, if the leaf nodes in the binary tree are related to time periods, a ciphertext
is related to the path of the binary tree, and a time range function key is related to the minimum set of internal
nodes which include all leaf nodes corresponding to the time range. In this case, the ciphertext is composed
of 2` log(Tmax) group elements, and the time range function key can also be composed of 2 log(Tmax) group
elements where Tmax is the maximum time period of the binary tree.
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Forward Secrecy. A forward-secure encryption scheme does not expose information on ciphertexts gener-
ated in the past time periods if a long-term key is exposed to an attacker [11]. In our FE-SI-TCK scheme,
if the encryption key of an corrupted client, which is the client’s long-term key, is exposed, the attacker can
obtain information on the past ciphertexts of another uncorrupted client by using the function key of the
past time and the encryption key of the corrupted client. Note that the security model of FE-SI-TCK is not
considered forward secrecy because corrupt clients are fixed in advance. We can modify our FE-SI-TCK
scheme to provide forward secrecy. First, each client is initially given an encryption key (α0,β0), and the en-
cryption key evolves over time through αT = PRG(αT−1) and βT = PRG(βT−1). The encryption algorithm
uses the evolved encryption key (αT ,βT ) to generate a ciphertext as the same as that of our FE-SI-TCK
scheme. If an attacker obtains an encryption key (αT ,βT ) on time T , the attacker can generate a future
ciphertext on time T ′′ ≥ T , but he cannot generate a past ciphertext on time T ′ < T due to the one-wayness
of pseudo-random generator.

5 Generic Group Model

In this section, we prove that the assumptions we introduced earlier are secure in the generic group model.
To do this, we modify the previous master theorems in [25] into the asymmetric bilinear groups and analyze
our assumptions by using the modified master theorems.

5.1 Master Theorem

Let G,Ĝ,GT be asymmetric bilinear groups of prime order p. The bilinear map is defined as e :G×Ĝ→GT .
In the generic group model, a random group element of G,Ĝ,GT is represented as a random variable Pi,Ri,Ti

respectively where Pi,Ri,Ti are chosen uniformly in Zp. We say that a random variable has degree d if the
maximum degree of any variable is d. The definition of dependence and independence is given as follows:

Definition 5.1. Let P = {P1, . . . ,Pu}, R = {R1, . . . ,Rw}, and T = {T1, . . . ,Tv} be random variables over G,
Ĝ, and GT respectively. We let Z0,Z1 be random variables over G. We say that Zb is dependent on P if
there exists constants α,{βi} such that α ·Zb = ∑

u
i=1 βi ·Pi where α 6= 0. We say that Zb is independent of

P if Zb is not dependent on P. We say that {e(Zb,Ri)}i is dependent on P∪R∪T if there exist constants
{αi},{βi, j},{γi} such that ∑

w
i=1 αi ·e(Zb,Ri) = ∑

u
i=1 ∑

w
j=1 βi, j ·e(Pi,R j)+∑

v
i=1 γi ·Ti where αi 6= 0 for at least

one i. We say that {e(Zb,Ri)}i is independent of P∪R∪T if {e(Zb,Ri)}i is not dependent on P∪R∪T .

Theorem 5.1. Let P = {P1, . . . ,Pu}, R = {R1, . . . ,Rw}, and T = {T1, . . . ,Tv} be random variables over G,
Ĝ, and GT respectively. We let Z0,Z1 be random variables over G. We consider the following experiment in
the generic group model:

An algorithm A is given P = {P1, . . . ,Pu}, R = {R1, . . . ,Rw}, and T = {T1, . . . ,Tv}. A random
bit b is chosen and Zb is given to A. Finally, A outputs a bit b′ and succeeds if b = b′. The
advantage of A is defined as |Pr[b = b′]− 1

2 |.

If Zb is independent of P for all b ∈ {0,1}, and {e(Zb,R j)} j is independent of P∪R∪T for all b ∈ {0,1},
then any algorithm A issuing at most q instructions has an advantage at most 3(q+ 2l)2d/p where l =
max{u,w,v}.

Proof. To prove this theorem, we define a sequence of hybrid games, which are described as as follows:
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Game G0. This game is the original game. In this game, the simulator instantiates each of random variables
P,R,T,Zb by choosing random values for random variables. Then it gives the handles of P,R,T,Zb to
the algorithm A. If A requests a sequence of multiplication, exponentiation, and pairing instructions,
it gives the handles of results. Finally, A outputs a bit b′.

Game G1. In this game, the simulator never concretely instantiates the formal variables. Instead it keeps the
formal polynomials themselves. Additionally, the simulator gives identical handles for two elements
if these elements are equal as formal polynomials in each of their components. That is, the simulator
of this game assigns different handles for X and Y since these are different polynomials. Note that the
simulator of G0 assigned the same handle for X = (X1, . . . ,Xn) and Y = (Y1, . . . ,Yn) if Xi =Yi for all i.

To prove this theorem, we will show that the statistical distance between two games G0 and G1 is
negligible and the advantage of A in the game G1 is zero. Then the advantage of A in the original game is
bounded by the statistical distance of two games.

First, we calculate the statistical distance between two games G0 and G1. The only difference between
two games is the case that two different formal polynomials take the same value by concrete instantiation.
The probability of this event is at most d/p from the Schwartz-Zippel Lemma [29]. If we consider all pairs
of elements produced by A, the statistical distance between two games is at most 3(q+ 2l)2 · d/p since A
can request at most q instructions, the maximum size of handles in each group is at most q+ 2l, and there
are three different groups.

Next, we calculate the advantage of A in the game G1. In this game, A only can distinguish whether it
is given Z0 or Z1 if it can generate a formal polynomial that is symbolically equivalent to some previously
generated polynomial for one value of b but not the other. In this case, we have α ·Zb = ∑

u
i=1 βi ·Pi where

α 6= 0, or else we have ∑
w
i=1 αi ·e(Zb,Ri) = ∑

u
i=1 ∑

w
j=1 βi, j ·e(Pi,R j)+∑

v
i=1 γi ·Ti where αi 6= 0 for at least one

i (otherwise, symbolic equality would hold for both value of b). However, the above equations are contradict
to the independence assumptions of the theorem. Thus the advantage of A in this game is zero.

Definition 5.2. Let P= {P1, . . . ,Pu}, R= {R1, . . . ,Rw}, and T = {T1, . . . ,Tv} be random variables over G, Ĝ,
and GT respectively. We let Z0,Z1 be random variables over GT . We say that Zb is dependent on P∪R∪T if
there exist constants α,{βi, j},{γi} such that ∑

w
i=1 α ·Zb = ∑

u
i=1 ∑

w
j=1 βi, j ·e(Pi,R j)+∑

v
i=1 γi ·Ti where α 6= 0.

We say that Zb is independent of P∪R∪T if Zb is not dependent on P∪R∪T .

Theorem 5.2. Let P = {P1, . . . ,Pu}, R = {R1, . . . ,Rw}, and T = {T1, . . . ,Tv} be random variables over G,
Ĝ, and GT respectively. We let Z0,Z1 be random variables over GT . We consider the same experiment as
in Theorem 5.1. If Zb is independent of P∪R∪T for all b ∈ {0,1}, then any algorithm A issuing at most q
instructions has an advantage at most 3(q+2l)2d/p where l = max{u,w,v}.
Proof. The proof of this theorem is almost identical to that of Theorem 5.1 except the analysis of the final
game. In the final game G1, the algorithm A only can distinguish whether it is given Z0 or Z1 if it can
generate a formal polynomial that is symbolically equivalent to some previously generated polynomial for
one value of b but not the other. In this case, we have ∑

w
i=1 α · Zb = ∑

u
i=1 ∑

w
j=1 βi, j · e(Pi,R j)+∑

v
i=1 γi · Ti

where α 6= 0 (otherwise, symbolic equality would hold for both value of b). However, the above equations
are contradict to the independence assumptions of the theorem. Thus the advantage of A in this game is
zero.

5.2 Analysis of Assumption 1 for (n,ρ,Q,J)

We analyze the security of the Assumption 1 for (n,ρ,Q,J) in the generic group model by using Theorem
5.1. However, we cannot directly apply the theorem to the assumption because the assumption contains
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negative exponents. To solve this negative exponent problem, we set ĥ = ĝ∏(i, j)∈Q(bi+b j) and use ĥ instead of
ĝ. In this case, the Assumption 1 is described again as follows:(

g,ga,{gbk}n
k=1,{gabk}k∈J, ĥ,{ĥ1/(bi+b j)}(i, j)∈Q

)
, Z0 = gabρ , Z1 = gd .

Let η = ∏(i, j)∈Q(Bi +B j) be a random variable where the maximum degree of η is n(n− 1)/2. The
Assumption 1 is described again as the following set of random variables.

P = {1,A}∪{Bk}n
k=1∪{ABk}k∈J, R = {η}∪{η/(Bi +B j)}(i, j)∈Q, T = {},

Z0 = ABρ , Z1 = D.

To apply the master theorem to this assumption, we must show that the random variables Z0 and Z1 are
independent of P∪R∪T by following Definition 5.1. We can easily show that Z1 is independent of P and
{e(Z1,R j)} is also independent of P∪R∪T by using the fact that the random variable D in Z1 does not exist
in P,R,T . Next, we can also show that Z0 is independent of P by using the fact that ρ /∈ J from the definition
of J. To show that {e(Z0,R j)} is independent of P∪R∪T , we derive two sets {e(Z0,R j)} and {e(Pi,R j)}
as follows:

{e(Z0,R j)}={ηABρ}∪{ηABρ/(Bi +B j)}(i, j)∈Q,

{e(Pi,R j)}={η ,ηA}∪{ηBk}1≤k≤n∪{ηABk}k∈J∪
{η/(Bi +B j)}(i, j)∈Q∪{ηA/(Bi +B j)}(i, j)∈Q∪
{ηBk/(Bi +B j)}(i, j)∈Q,1≤k≤n∪{ηABk/(Bi +B j)}(i, j)∈Q,k∈J.

The set {e(Z0,R j)} consists of two component types: ηABρ and ηABρ/(Bi +B j). Since ηABρ addi-
tionally includes (Bi +B j) compared to ηABρ/(Bi +B j), these component types are independent of each
other. Thus, we can analyze ηABρ and ηABρ/(Bi +B j) separately.

• First, we show that ηABρ is independent of {e(Pi,R j)}. At this time, since ηABρ includes random
variables A and Bρ , only {ηABk} and {ηABk/(Bi +B j)} in {e(Pi,R j)} can have a dependency. How-
ever, ηABρ is independent because of ρ /∈ J.

• Next, we show that ηABρ/(Bi +B j) is independent of {e(Pi,R j)}. The subsets of {e(Pi,R j)} that
contain the random variable A are {ηA},{ηABk},{ηA/(Bi +B j)}, and {ηABk/(Bi +B j)}. Here, the
subset {ηABk} need not be considered because of ρ /∈ J. The subset {ηA/(Bi +B j)} does not need
to be considered because it does not contain Bρ . Now using the remaining subsets {ηA = ηA(Bi +
B j)/(Bi+B j)} and {ηABk/(Bi+B j)}, we may try to compose a linear equation with ηABρ/(Bi+B j).
Here, the index k cannot be the index ρ because of ρ /∈ J. Thus the only way to create a linear equation
is to derive

ηABρ

(Bρ +Bk)
=

ηA(Bρ +Bk)

(Bρ +Bk)
− ηABk

(Bρ +Bk)

when (ρ,k) ∈ Q. To satisfy the above equation, it is required that k ∈ J when (ρ,k) ∈ Q. However,
if (ρ,k) ∈ Q, we have k /∈ J according to the definition of J. Thus ηABρ/(Bi +B j) is independent
because ABk /∈ P when (ρ,k) ∈ Q.

Therefore, we have that {e(Z0,R j)} is independent of P∪R∪T .
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5.3 Analysis of Assumption 2 for (n,ρ,Q)

We analyze the security of the Assumption 2 for (n,ρ,Q) in the generic group model by using Theorem 5.2.
However, we cannot directly apply the theorem to the assumption because the assumption contains negative
exponents. To solve this negative exponent problem, we set ĥ = ĝ∏(i, j)∈Q(bi+b j) and use ĥ instead of ĝ. In this
case, the Assumption 2 is described again as follows:(

g,ga,{gbi}n
i=1,{gabk}1≤k 6=ρ≤n, ĥ,{ĥci}1≤i 6=ρ≤n,e(g, ĥ)cρ ,{ĥci/(bi+b j)}(i, j)∈Q

)
,

Z0 = e(g, ĥ)acρ , Z1 = e(g, ĥ)d .

Let η = ∏(i, j)∈Q(Bi +B j) be a random variable where the maximum degree of η is n(n− 1)/2. The
Assumption 2 is described again as the following set of random variables.

P = {1,A}∪{Bk}n
k=1∪{ABk}1≤k 6=ρ≤n,

R = {η}∪{ηCi}1≤i6=ρ≤n∪{ηCi/(Bi +B j)}(i, j)∈Q, T = {ηCρ},
Z0 = ηACρ , Z1 = ηD.

To apply the master theorem to this assumption, we must show that the random variables Z0 and Z1 are
independent of P∪R∪T by following Definition 5.2. We can easily show that Z1 is independent of P∪R∪T
by using the fact that the random variable D in Z1 does not exist in P,R,T . To show that Z0 is independent
of P∪R∪T , we derive the set {e(Pi,R j)} as follows:

{e(Pi,R j)}={η ,ηA}∪{ηBk}n
i=k∪{ηABk}1≤k 6=ρ≤n∪{ηCi,ηACi}1≤i6=ρ≤n∪

{ηBkCi}1≤i 6=ρ≤n,1≤k≤n∪{ηABkCi}1≤i 6=ρ≤n,1≤k≤n∪
{ηCi/(Bi +B j)}(i, j)∈Q∪{ηACi/(Bi +B j)}(i, j)∈Q∪
{ηBkCi/(Bi +B j)}(i, j)∈Q,1≤k 6=ρ≤n∪{ηABkCi/(Bi +B j)}(i, j)∈Q,1≤k 6=ρ≤n.

We show that Z0 = ηACρ is independent of {e(Pi,R j)}∪T . The subsets of {e(Pi,R j)} that contain the
random variables A,Cρ are {ηACi/(Bi +B j)} and {ηABkCi/(Bi +B j)}. Here, the subset {ηACi/(Bi +B j)}
does not need to be considered because it lacks (Bi +B j). By using the remaining subset {ηABkCi/(Bi +
B j)}, we may try to compose a linear equation with ηACρ . The only way to create a linear equation is to
derive

ηACρ =
ηABk1Cρ

(Bρ +B j)
+

ηABk2Cρ

(Bρ +B j)

when (ρ, j) ∈ Q, k1 = ρ , and k2 = j. To satisfy the above equation, it is required that k1 = ρ where k1 is
an index for {ABk}. However, we have k1 6= ρ from the restriction of the Assumption 2. Therefore Z0 is
independent of P∪R∪T .

6 Conclusion

From the practical point of view, designing an efficient FE scheme that provides practical functionality is
an important issue. In this paper, we newly defined the concept of FE for set intersection (FE-SI) in the
multi-client setting and proposed two efficient FE-SI schemes in bilinear groups. The FE-SI scheme issues
encryption keys for all clients with a single setup and issues a function key for two client indexes to a
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third party that wants to perform the set intersection. And we also proposed another FE-SI scheme to add
additional control to the function key by limiting the validity of the function key for a specified time period.
In addition to this, we have shown that our FE-SI schemes can be extended to provide functionality such as
associated message encryption, set intersection cardinality, multi-party set intersection, and forward secrecy.

Because of this research, we have identified interesting open problems. The first problem is to prove the
security of our FE-SI schemes under simple assumptions. Since the assumptions we have introduced are
dynamic assumptions that depend on the function key queries of an attacker, it is necessary to change them
to simpler assumptions. The second problem is to prove our FE-SI schemes in a weaker security model than
the static security model. In particular, it is necessary to prove the security of FE-SI schemes in a weaker
security model that does not requires the function key queries of an attacker. The third problem is to improve
the performance of the decryption algorithm of our FE-SI schemes.
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